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Introduction

The main purpose of this paper is to prove the following theorem:

THEORBM. Let W be a plane domain containing the origin 0. Let v be an
integrable function on the complex plane C such that (z)=c a.e. on W for a
positive number ¢ and ¥(z)=0 a.e. on the complement of W. If

/ 1 ’
;0= Wgwf vdm
for every analytic function f on W such that Swlf'lzvdm<oo, then

S svdm = cS sdm

w ar

for every subharmonic integrable function s on A,={zeC||z|<r}, where
r={fvdm/(cm)}'/? and m denotes the two-dimensional Lebesgue measure.

The equality holds if and only if either s is harmonic on 4, or W(z)=c a.e.
on Wand W=A,—E, where E denotes a relatively closed subset of A, such that
E n K is removable with respect to analytic functions with finite Dirichlet inte-
grals for every compact subset K of 4,.

In the above statement, one might wonder if s is defined on W and if S svdm
w

has a meaning. These follow from the following result: .

ProrosiTioN A ({7, Proposition 3.2]). Under the same assumption as in
the above theorem, it follows that W A, and the equality sup,.y |z|=r holds if
and only if W(z)=c a.e. on Wand W=4,—E, where E denotes a relatively closed
subset of A, mentioned in the theorem.

In fact, if sup,ey |z|=r, then S svdm=cS sdm. Since every subharmonic
w

4y
function is locally bounded from above, if sup,. |z]<r, then max {sv, 0} is
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integrable.

As an application of our theorem, we can estimate the Gaussian curvature
K(2) of the span metric, namely, the metric induced by the exact Bergman kernel
differentials. The metric is equal to the Poincaré metric on an open disc, and so
K(z)= —4 on the disc.

In 1934, K. Zarankiewicz [10] showed that K(z)< —4 for annuli and, in
1967, S. Bergman and B. Chalmers [3] treated the case of triply-connected plane
domains.

S. Bergman [2] obtained the following:

Let z, be a boundary point of a plane domain such that two circles can be
constructed passing through z,, one interior and one exterior to the domain.
Then lim,,, K(z)= —4 if z approaches z, so that z—z, makes with the interior
normal an angle in absolute value less than =«/2.

Therefore it is plausible that K(z)< —4 for such a domain. N. Suita [9]
conjectured that K(z) < —4 for every Riemann surface R¢ O, namely, for every
Riemann surface on which there is a nonconstant analytic function with a finite
Dirichlet integral, and that the equality holds if and only if R is conformally
equivalent to 4, —E, where 4, denotes the unit disc and E denotes a relatively
closed subset of 4, mentioned as in the above theorem.

Recently J. Burbea [5] proved that K(z)< —2 for a plane domain which is
not contained in the class O 4.

We apply our theorem and show that the above conjecture is true.

This paper consists of eight sections. In Sections from 1 to 6 we make
preparations for the proof of the theorem. On first reading this paper one could
omit these sections except for the definition of the kernel functions M,(z; {, ¢, R)
in Section 5 and the statements of Propositions 2.1, 3.3, 4.2, 6.1 and Corollary
5.2.

The proof of the theorem is given in Section 7. The final section, Section 8,
is devoted to its application to the estimation of the Gaussian curvature of the
span metric.

§1. An areal inequality

Throughout this paper we denote by m the two-dimensional Lebesgue
measure. In this section we shall show the following proposition:

ProposiTION 1.1. For every ¢ with O0<e<1, there is 6>0 such that if a
measurable set E and open discs 4;, j=1,..., n, in the complex plane C satisfy

m(E n 4;) < om(4))
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for every j, then
m(E n (QiA )< sm(.f‘\/l 4).
J= J=

To prove Proposition 1.1 we prepare several lemmas.

Lemma 1.2 ([7, Lemma 1.2]). Let 4, j=1,..., n, be open discs whose radii
are not less than a positive number r. Then the length £(6(\J}-,4))) of the
boundary of \U%_, 4; is not greater than (2/rym(\J%}- 4;).

Lemma 1.3. Let J be a Jordan curve in C and set J,={zeC|d(z, J)<p}
for p>0, where d(z, J) denotes the distance from z to J. Then

m(J,) £ 2p¢(J) + np.

LEMMA 1.4. Let w be a number with 0<w<1/10. Set A={zeC||z|<1},
I'={zeC||z|>1+2w} and Q={zeC|—-w/2Largz<w/2}. Let 4; j=1,...,n,
be open discs such that the center c; of each A; belongs to Q and each 4; satisfies
4;n4#0 and A;nT'#D. Then \U%_ 4; is a domain starlike with respect to
14+w. In particular, \U%-,4; is a Jordan domain. .

Proor. To prove the lemma, it is sufficient to show that 1+ w € 4; for every
Jj. Set c;=r;e'% and denote by p; the radius of 4;. Then

(1 + o) —¢;] £ (A + w) — reier?]
S (1 + 2w)eie’2 — rieiel?|
= |(1 + 20)e*% — ¢}
< p;
if r;<1+4+o, and
(1 + @) — ¢ £ [ei? — riet*2| < p;
if r;>14w. These inequalities imply 1+w e 4;.

LemMA 1.5. Let C be a convex set and let H;, j=1,..., n, be closed half-
planes in C such that Cc\U}- H;. Then one can choose half-planes H, ,...,
H;, 12153, so that Cc\Jj-, H,.

LeMMA 1.6. Let S be a closed square with sides of length d, let A be an
open disc with radius r and let H be a closed half-plane such that the boundary
O0H of H is tangent to 04 at a point belonging to S and H contains 4. Then
m(S n(H—4))s4d3/r.
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LemMA 1.7. For every € with 0<e<1, there is 6>0 such that if a measur-
able set E and open discs 4;, j=0, 1,..., n, in C satisfy 4;n4o#9D and pjgpo,'
Jor j=1,...,n, and m(End)=ém(4,) for j=0,1,...,n, where p; denotes the
radius of 4;, then

m(E n (,\:Jo 4)) S em(dy).

Proor. We may assume 4o={z€C||z|<1}. Then \Uj_,4;c{zeC]||zi<
3}. Set w=¢/10 and I'={zeC|1+2w<|z|<3}. We shall determine & later.
For a moment we assume m(E n 4;)<om(4;) for j=0, 1,..., n.

We first estimate the area of ENn(\J%-;4)nTI. For d with 0<d<
1/2n, set Sy={x+iyeC|jdSx=s(j+1)d and kd<y=(k+1)d}, A={Su|Syn
H{(\Wi-14)NnT}#0} and B={S;, |S;c(\U3-,4)nT}. Let N be the smallest
natural number not less than 2n/w, set Q,={zeC| —w/2<Zarg z—2nk/N <w/2},
k=0, 1,..., N—1, and let D, be the union of discs 4; such that 4;n I'#@ and the
center of 4; belongs to Q,. Then, by Lemma 1.4, D, are Jordan domains. Hence,
by Lemmas 1.2 and 1.3, we have

m((0Dy)yza) S 2/2d £(0D,) + 2nd?
< 22d-Z.m(Dy) + 2nd?

< (1600/e + 1)d.
Since m({zeC||z|=14+2w}/3,)£22d and N=2rn/w+ 1, we have

(1.1 m( U S,) < N(1600/e + 1)d + 22d
Siked

< (100600/¢? + 1670/s + 23)d.

To estimate the area En S for S e B, we consider the discs 4; intersecting S.
If S=4; for some 4;, then
mEn S)=m(E n 4 £ ém(4;) £ nd.

If Snod;#0 for every disc 4; intersecting S, take a closed half-plane H; so that
OH; is tangent to 04; at a point belonging to S and H; contains 4;. Then Sc
Uasns#oHjs and hence, by Lemma 1.5, there are closed half-planes H;,,..., H;,,
15153, such that Se\Uj-; H;,. Therefore, by Lemma 1.6,

‘m(E nss= kz:,lm(E n 4;) +ki2,1m(S n(H; —4;)

< 3(nd + 4d¥|w)
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= 370 + 120d3/e.
Set d=ad?. Then
m(E n S) £ (120d/e + 3mo)d?
for every Se B. Hence

(1.2) m(E n (S‘gBS,-k)) gsﬂ‘zw m(E N Sy)

<, X (120d]s + 3na)m(S,)

Sixe

= (120d/e + 37toc)m(sUBSjk)

JkE
< 8n(120d/e + 3na).

From (1.1) and (1.2), we have

m(E 0 (\U 4;) n T) £ (100600/s2 + 5000/e + 23)d + 240c.
j=1

Since
m(E n {zeCllz] 21 + 2w})
Sm(En dy) + m({zeC|1 £ |z] £ 1 + 2w)})
< nod? + en/2,
we obtain

mE 0 (U 4,)
Jj=0
< (100600/¢2 + 5000/e + 23)d + 2400 + nad? + enf2.

Take d=10"%3 and §=10"13¢7. Then a=10"3¢, so that
m(E n (j\_"/OA ) S em = em(d,).

This completes the proof.

ProoF oF ProrosiTiION 1.1. For ¢ with O<e<1, let 6 be a number con-
sidered in Lemma 1.7. We prove the proposition by mathematical induction on
the number n of open discs. If n=1, then our assertion is trivial. Assume that

our assertion is true when the number of open discs is equal to n—1=1.

Let E

be a measurable set and 4;, j=1,..., n, be open discs satisfying m(E n 4;)<ém(4)
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for every j. Assume that 4, has the maximum radius p;. Set D=\U, 4,204
and D'=\U, g=04;. Then \U}_,;4;=DUD’. By the assumption,

j

m(E n D"y £ em(D")
and, by Lemma 1.7, we have
m(E n D) £ em(4,).

Hence
m(E N (\U4;) = m((E 0 D) U (£ n DY)

< e{m(4y) + m(D")}

= em(4; U D)
=< sm(\"/Aj).
j=1

This completes the proof.

§2. Functional inequalities

In this section we deal with functional inequalities. Our aim is to prove the
following proposition.

ProposiTiON 2.1. Let a, B, y, k and 6 be nonnegative numbers, let J, A
and 7 be positive numbers, and let € be a number such that 0<e<1. Letuandv

be nonnegative integrable functions on [0, c0) with Swu(x)dx=a and ng(x)dx=
0 0
B. Set

A, ) = 55 (") + wpax

for every pair of numbers a and b with 0La<b. If U(t)ESwu(x)dx and V(t)=
t

Swv(x)dx satisfy
t

2.1 Ut + o{(U + MO £ U + V)@
and
22 V(b) < yA(a, b)'*?

for every pair of numbers a and b such that 0<a<b, A(a, b)£1 and 2A(a, b)*<
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b—a, then there is a nonnegative number M satisfying UM)=V(M)=0 and
depending only on a, B, y, 0, &, x, A, 6 and .

Proor. We may assume that a+f, y and x are positive. Let g be a
number satisfying g6=6, g1=3 and (2+¢q)t>1, and let N be a natural number
satisfying N =2« (N+1)12xk, 1+6/3=log(N+2)/log (N+1) and

N+1V/N+2\ yrite
I—e 2 577 -
N N+1 (N+1)2e3

Set g,=1/{(n+ 1)*(n+2)4} for n=N—1, N, N+1,... and F(s)=0s".
First we show that there exists a positive number e depending only on «, f§, y,
0, & K, A, o and 7 such that (U+V)(e)<ey_,. Set

¢ = max {(a+ B, 21/ D {(a+ Pt D, (a+ Flrc{(1 —e)ey—/(2y)} 71T}

Since A0, c)<(a+f)x/c<1 and

2
24(0, c)* £ 2{21/(”“{(2(“-{_—*?[%6,6}“(1“)}

= 2U(+D {(g + B} H (1+1)

IIA

c,
by (2.2), we have

V(c) = 74(0, c)'*°

(a+ Bk 1+
éy{w+mua—wwﬂum»ﬂme

— (1—8)ey_
> .

Set d=F((U+V)(0))=F(x+f). Then, by (2.1),
Ule + d) 2 Ule + F(U + V)(©) £ &U + V)(c) = ae + &(1 — e)ey_4/2.
Since
Ulc + nd) £ U(c + (n — 1)d + F(U + V)(c + (n = 1)d))),
< oU + V)(e + (n — D),
by mathematical induction, we have

(U4 M+ nd) £oe” + (X8} (1—e)ey- /2 + V()
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= oe" + ey q/2

for every natural number n. Choose m so that ag™<gy_,/2 and set e=c+md.
Then e has the required property.

Consider A(e, e+1/N?). Since A(e, e+1/N2)<kN%ey_;=x/(N+1)2<1 and

1 \* K }l N 1
L < L =
24(es e+ yr) < 2wl S Grrpe S W

we have
1) < 1 \1+¢
V(e + W) = ?A(e, e 4+ Wf)

< y{ P }1+a

= (N+1)4

_ 1 . 1 . 'le“"s

T (N+ DR (N+ 1)1+ (N+1)e%3

1 1 EEN_

S FDT +2)e '(1 i ) = ENT 88N

by (2.2) and

Ule + F(ey_)) = Ule + F((U + V)(e))) £ (U + V)(e) < eey_y

by (2.1). Hence
U + V)<e + o+ F(sN_1)> < sy
Repeating this process we have
(U + Vet 372+ 3 Feyo) S o

Since

3 CVYeew S 1T S i-(2+a)e
NF(EJ'I) aj=N{j2(j+1)q} < aj‘:"‘NJ *

i=

and 2+4g)r>1,

0 O
M=e+ 3 j2+03 j7@+0
Jj=N

has the required property.
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§3. Modifications of bounded positive integrable functions on the plane

In [7, §1], we have dealt with modifications of positive measures. In this
section we deal with bounded L! functions on € (i.e., bounded integrable func-
tions on C).

We begin with

Lemma 3.1. Let W be a plane domain and A be a nonnegative bounded
L function on W. Then there is a nonnegative bounded lower semicontinuous

L function A* on W such that g sldm<g sA*dm for every se SLY(W), where

SLY(W) denotes the class of subharmonic L' functions on W.

Proor. Exhaust W by an increasing sequence {W;}7, of relatively com-
pact subdomains such that 0W;_, cW; for each j=1, and set E;=W, and E;=
W;—W;_, for j=1. Set A;=A1yg, for j 20, where g, denotes the characteristic
function of E; and set d;=d(E;, 0W;.,) for j=0,1 and d;=d(E;, 0W;_, U OW;,,)
for j=z2. We write D(z) for 4,,,(z), and consider

SD o
M@ = =lam

and

It is easy to see that each M is continuous and that A* <3 sup_ 4 A(z). Naturally,
A* is lower semicontinuous. For every se SL'(W) we have

[,s©1@am© < {zatmel, s@an@}uano
Sw{ 7r(afi/2)2 EWS(Z)XD,-«;)(Z)dm(Z)} A;(0)dm(0)
Sw{n(df-/Z) SW%(C)XDM(C)dm(C)}s(z)dm(z)
={_sM@dm(2).

Hence st).dm < Swsl*dm. By considering s =1 we obtain S A¥dm= g Adm < o0.
w w

Our lemma is now proved.



564 Makoto SakAr

LemMa 3.2, Let A be a positive lower semicontinuous function on a open
set W. Then there is a sequence of functions A,= X% -, B;x; increasing to /. a.e.
on W as n—oo, where each B; is a positive constant and each y; denotes the
characteristic function of an open disk in W.

ProorF. We may assume that 2 is bounded and m(W)<o. Set M=
sup,.w A(z) and denote the open set {ze W|A(z)>kM/[2"} by G,, for n=1,
2,..., k=1,2,...,,2"—1. Define f, by (M/2")>?27'%s,,.. Thenf,T 1 asnt co.
In the following we let all B, be the union of finitely many mutually disjoint
open discs. By making use of Vitali’s covering theorem choose By ; =G, so
that m(G;;—B,;,)<1/22. Set A, =(M/2)yp,, and E,;={ze W|f(2)#1(2)].
Then m(E,)<1/2. Suppose B;,, j=I1,...,n, k=1,...,2/—1, are chosen so
that B;,=G;,, m(G;,—B;,)<1/2?/, ), <---<£), and m(E;)<1/2/, where i;=
(M2 ¥ 35 s, and E;={ze W|f(z)#1(z)}. Choose B,,;, so that B,,c
Bry1,0kCGyi1,2r and m(G,yy 2x—Bpiy ) <1/220*D for k=1,..., 2"—1, and
so that B, 4 =G,+1 and m(G,y 1, — B,y ) <1/22*D for other k. Set 4,.,=
(M2 )5 22 " .y, and E, ={zeW|f,, ((D#4,11(2)}. Then 1,£4,,,
and m(E,,,)<1/2"*1. Theset E=N\;, \U%, E; is of measure zero and 4,1 A on
W—E. This proves our lemma.

Our main aim in this section is to prove the following proposition:

ProposITION 3.3. Let W be a plane domain and let v be a bounded Ll_
function on C such that W(z)=1 a.e. on Wand v(z)=0 a.e. on the complement W¢
of W. Then, for every e=(g,, &,) with 0<g, <1 and &,>0, there are domains
W, and W,, and a bounded L' function v, on C such that

) WeW,cW,

) m(W,) £ fvdm|(1 — &,) and m(W, — W,) < {&,/(1 — &))}fvdm.

(3 v, satisfiesv(z)=1 a.e. on W, v(2)=0a.e. on W¢ and \(v,— xy )dm <e,.

4 g svdm __<_S sv.dm for every se SLYW,).

W We
(5) U(r+2(1/m)72{(U + Y@} £ e(U + V)(r) for every r=20, where

u) = - witreyrdo, U = “uoa,

o(r) = Sznva(réi")rdé) and V(r) = Sjov(t)dt.

ReMARrRK. If his harmonic, then h-and —h are both subharmonic. Hence
it follows from (4) that g hvdm=g hv,dm for every harmonic L! function h on
WB_ w We

To prove the proposition we first give notation. Let Q be a bounded domain
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whose boundary consists of a finite number of piecewise analytic curves or points,
let ¢ be a point of Q, let o be a nonnegative number and let § be a number with
0<d<1l. We shall define an open set R(Q, ¢, «, 6) which is the union of a finite
number of open rings, define a disc A(L, ¢, «, §) and define a domain G(Q, ¢, «, §)
whose boundary consists of a finite number of piecewise analytic curves or points.

Set ¢(r)= Szﬂxg(c +ret®)d0/(2n) for r=0, F={r=0|¢p(r)£1—45} and &(r)=

Sr27ttxp(t)dt, where y denotes the characteristic function of F on [0, c0).
0 .

Then ¢ is lower semicontinuous and analytic except, at most, at a finite number
of points. Hence F is closed, F N[0, ] consists of at most a finite number of
closed intervals or points for every r=0 and @(r;)=®(r,) implies (F n [0, r,])°=
(F n [0, r,])°, where (F [0, r])° denotes the interior of F N[O, r] in [0, o0).

Since @(r) is continuous and increases from 0 to co as r varies from 0 to oo,
there is a nonnegative number a such that @(a)=a. The number a may not be
determined uniquely, but the open set A=(F N[0, a])° in [0, o0) is determined
uniquely by a.

Set R=R(Q, ¢, o, §)={zeC||z—c|e A}, A=4(Q, ¢, a, d)={zeC||z—c|<
sup,.4F}and G=G(Q, ¢, o, 5)=Q U R. Then m(R)=P(a)=a, m(2Nn RYZ(1-d)a,
SS{BXA,,(c)}dméngR dm for every s e SL'(4), where 4,(c) denotes the open disc

with radius p and center at ¢ such that 4,(c)=Q and § is a number with fnp?=aq,
and the domain G satisfies m(4 — G) < dm(4).

PrOOF OF ProPoSITION 3.3. We may assume that W is a bounded domain
whose boundary consists of a finite number of piecewise analytic curves, v is lower
semicontinuous on W, ¥(z)=1 on W and w(z)=0 on W¢. In fact, for any W, v
and e=(g,, &,) given in Proposition 3.3, let v* be a bounded L! function on C
such that v* is lower semicontinuous on W, v¥(z)=1 on W, v¥*(z)=0 on W< and

S svdm§g sv¥dm for every s e SLI(W); its existence follows from Lemma 3.1.
w w

Choose a bounded subdomain Q on W whose boundary consists of a finite number
of piecewise analytic curves such thatg v¥dm<e,/2. If Proposition 3.3 is

wW-Q ~ ~
proved for Q, v =v*y, and &' =(e,, &,/2), then W,=W U Q,, W,=W U £, and
v, = V. + V¥ _ o satisfy conditions from (1) to (5). We shall show only that (5)
is true. We set

U'(r) = S“’{ijﬂ o (te)do} s,

Vi(r) = Sf{gz"vg,(zew)tdo}dt,

and define U and V corresponding to W,, W, and v,. From the relation
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Afe ~0p T Ver S AWo-we T ViAw-a + Vo
= XWB-WE + Ve,

we have U'+V'SU+V. Since ULU’ and U’(r) is a decreasing function of r,
we derive (5) for U and V from that for U’ and V.

Take a positive number & so small that Proposition 1.1 is valid for g, and
fix it. Set Wy=W and vo=v.

Since v, is lower semicontinuous and satisfies vo(z) 2 xw,(z) on C, by Lemma
3.2 there is a sequence of functions Vo ,=yxw,+ 2 1=1 Bo,jXo,; Such that vy, 1 v,
a.e. as n1 oo, where each B, ; is a positive constant and each y, ; denotes the
characteristic function of an open disc with radius p, ; and center at ¢, ;.

Take n; so that

_i Bo,on,j dm _5_'5— (vo ~ xwo)dm
S(}—ny{-l ) 2 S

and set
R, = R(W,_1, Com BouTPbm 9)>
4y = AW, 1, Con Bon PG ),
W, = G(W,-1, Con BonTPGm )
and

n n —_—
Vo= XIn + 21XWJ_,nR, + max {vy — xo "}_Zlﬂo,on,ja 0}
j= =

for n=1,..., n,, inductively, where y, means yy and xo_; denotes the characteristic
function of the closed disc with radius p, ; and center at ¢, ;. Then

[0, = zam = 1 = 3o - xo)dm.

Since v,, is lower semicontinuous and satisfies v, (z)2y,,(z) on C, we can
again find a sequence of functions v, ,=yx,, + X%, +1 1,5 %1,; such that v, , 1 v,
a.e. as nt oo, where each B, ; is a positive constant and each y, ; denotes the
characteristic function of an open disc with radius p, ; and center at ¢, ;. Take
n,>n, so that

J=n2

S( Ozolﬂﬂl,j)fl,j)dm é%g("n, —= Xn,)dm,

and set

Rn = R(Wn—l’ Cim ﬂl,nnp%,m 5)9
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An = A(VVn—l’ cl,m Bl,nnp%,m 6),
W, =GW,_1, ¢1 ﬂl,nnp%,m d)

and

n n ——
V= Xn +' 2 ij~1nRj + max {vm = Xny -, 2 Bl,le,j’ 0}
J=m+1 Jj=ni+1

for n=n,+1,...,n,. Then
(00, = zodm < (1 = 323, — gy )dm

<@- 6/2)230’0 ~ Yo)dm.

Repeating this process, choose {n,} and define v, for ny<n=<mn,.; and By ;, 1 ;
for jzn,+1asabove. Let N be a natural number such that (1 —8/2)¥ S(v0 —Xo)dm
se,.

Set W,=W,,, W,=WUd4,Ud,U U4, and v,=v, . Then, by the defini-
tion, it is evident that these satisfy (1) and (3).

Set ng=0. If my+1<n=Zn,,, then

i n
Ssv,,dm = Ss(Xn + 2wkt Ve ™ Ame — 2 Brida)dm
+1 JEnpt+l

J=nE

for every se SLY(W,). Since x,+ Xw,_,0Ry=XWn_10RaF X, _i0Ra=Xn-1+ X, and
Ssxkndm = Ss(ﬁk,,, Axn)dm for every s e SLY(4,), we have

n—1

n—1
Ssv,,dm 2 SS(Xn~1 + Awyinky T Ve = X — p ﬂk,ij,j)dm
+1 j=net1

J=nK

=Ssv,,_1dm

for every s € SLY(W,). Similarly Ssv,,kﬂdmggsv,,kdm. Hence (4) is satisfied.
Next we show (2). Set E=W,—W,. Then

m(E n An) = m(An - I/Vn) = 6m(An)

for n=1, 2,..., ny. Hence, by Proposition 1.1,
L34 nN ~
m(E) = m(E N (U 4)) < e;m(J 4) S e;m(,).

Therefore m(W,) —m(W,) <e,m(W,), so that
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m(W) < m(W(1 — &) < Svﬁdm/u —ey).

This implies 1 e SL}(W,), and so, by Remark to Proposition 3.3, Svedm=gvdm.
This completes the proof of (2).

Finally we show (5). Set x(r)-& xw (ret®)rdo, X(r)—S x()dt and A4,=
{4,11&nZny, 4,0{zeC||z|>r+2(1/m)2X(#r)12} £} for r20. If 4,€A4,,
then 4,n{zeC||z|<r}=0. Infact,if 4,n{zeC||z|<r}#D, then

m(d, 0 {zeClr < |z| < r + 2(1/R)V2X(r)*/?})
> a{(1/m)' 12X (r)t/2}2
= X(r).
Hence
X(r)=mW, n {zeCllz| > r})
2 m(d, n {zeClr <|z| <r + 2(1/m)'2X(r)'72})
> X(r).

This contradiction implies 4,n{zeC||z|<r}=0. Therefore, by Proposition
1.1,

U(r + 2(1/n)t2X()'/2) = m(E n {zeC]|z| > r + 2(1/n)V/2X(r)}/2})

= m(E n ( U 4,)

Anedy

< slm( U 4,)

< g, X(r).

Since X(r) Z(U + V) (r), we obtain (5).

§4. Cauchy transforms

Let v be an L! function on €. The Cauchy transform ¥ of v is the function
defined by

Wz) = S___V(Cc)il_”’lz(l) .

The integral on the right-hand side is absolutely convergent for almost all zeC
and analytic outside the support of v.
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First we give a lemma without proof.

LEmMa 4.1. Let v be an L' function satisfying 0Swz)E£N a.e. on C.
Then :

g_"_(l?__.‘_i__’_";([Q < 2,/N=ufvdm.

The equality holds if and only if v=Ny, a.e. on C, where A={{eC||{—z|<

JVIvdm/(Nn)}.

The purpose of this section is to prove the following proposition:

PROPOSITION 4.2. Let W be an open set, let W be a domain such that W W
and m(W)< o, and let v be an L! function on C such that v(z2)=1 a.e. on Wn
{zeC||z|Zry} for some ry>0 and v(z)=0 a.e. on W¢. Set

u(r) = gzan_W(re“’)rdG, Ur) = Smu(t)dt,

o(r) = Sz"v(re"“)rde and V(r) = Swv(t)dt.
If
4.1) o(z)=—fv$ on Wen{zeCllz| 2 ry),

then
V(b) < yA(a, b)1*3/5

for every pair of numbers a and b such that roSa<b, A(a, b)= {rc/(b——a)}gb{u(t)

+v()}dt<1 and 2A(a, b)\3<b—a, where y=2nry(r§/?+4 max {ro, 1}§|v|dm)
and k=28/(nry).

ProofF. Set T(rei®)= —e*%%(rei?). Then

(4.2) —ZJ;SZ”T("em)’dO _ jln_gzn{* e“’gc%},d@
B Sc{%ﬂl,z—d_%} v(©)dm(()
= Svdm - V(r)

for almost all r € [0, co) and (4.1) implies
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T(re'?) = Jvdm
r

for every rei® e Wen {zeC||z|=1,}.

Let g and b be numbers such that ro<a<b, A=A(a, b)<1and 24*/<b—a.
We may assume 4>0. In fact, if 4=0, then S S XW(re‘°)rd0dr<g (u+v)dr=
0. Since W is connected, we obtain the two cases m(W n{zeC||z|>a})=0
or m(Wn{zeC||zl<b})=0. If m(Wn{|z|>a})=0, then V(b)<V(a)=0. If
m(W n {|z| <b})=0 and fvdm #0, then the function 9 analytic outside the support
of v has a pole at the origin by (4.1). This is a contradiction. Hence if m(W n
{lz|<b})=0, then [vdm=0, and so v=0 a.e. on C. Therefore we have V(b)=0
in both cases.

Next we show that there is a number ¢ € (¢, b) such that

(1) [ec— A3 ¢ + AY3] < [a, b].
(2) Sc+A1/5(u + v)dr < E_Q_A1+1/5
c—AY/S = 2 )

() L({relc — (A/DA'5, ¢ + (1/DAVP](u + v)(r) < mrod}) = (1/2)417,

where £ denotes the one-dimensional Lebesgue measure.
Let n be the largest natural number not greater than (b—a)/(241/5) and set
cj=a+(2j-1)AY5, j=1,2,...,n. Then n=(b—a)/(44/%) and

bh—
K

(u+v)dr §Sb(u+v)dr = =4 4= mrelboa) 4

n SCJ+A1/5
j=1Jc;—A1/5
Let c=c¢; be a number satisfying
crt+Al/S . cj+AL/S
S (u + v)dr = min S 5(u + v)dr.
/

ck—AL/S 15jsn/ecj—A1

Then (1) and (2) are satisfied. If 4({re[c—(1/2)A'/5, c+(1/2)AV*] |[(u+v)(r) =
nroA})>(1/2)AV/5, then

cHAL/S c+(1/2)41/5
S (u + v)dr 2 S (u + v)dr > mrod - (1/2)AM
c—AY/S c—(1/2)A4Y/5
= o qi+ys

This contradicts (2), so that (3) is satisfied.

We set E={relc—(1/2)AY5, c+(1/2)AY5]|(u+v)(r)<nmryd} and R=
{zeClc—AY3<]z|<c+AY%}. In what follows, we consider only reE. If
r€E, then r=r,, T(re!®)=fvdm/r for re® € We and (u+v)(r)<mroA.
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Next we define, for each re E, ¢=¢(0) on [0, 2n) as follows: If rei® & We,
then ¢(0)=0, and if re'® e W, then $(f) is the minimum solution x satisfying
x=0, rei*e We and '
x [
S Awe(ret)dt = S Aw(rett)dr.
0 o
In the latter case, since

rgznxw(re"’)dt S+ 0)(r) <mrgAL wr
0

and We is closed, ¢(0) exists and satisfies 0<¢(@)<4n and r(PO)—0)=
0

rS:( )xW(re")dt<2nr0A.
From (4.2) we have

V() = Zl—nSZ"{T(rew) — T(re!®)}rdo

= i%gar{T(rew) —~ T(rei®)}rdd
for almost all r € E, where G,={0 [0, 2n)|rei® € W}. Set

I(ret®) = — eiog v(Q)dm(0)

R {—re¥

and
O(re%) = — eiﬂgm»—w—”c@dj’;%) .
Then T(rei?)=I(re!?)+ O(rei%) and
V() = Zl—ngcr{z(rew) — I(re®)}rd0 + 21736,{0("3”) — O(re'®)}rdo

for almost all re E. Hence, by integrating V on E, we have

(/DAY (b) < SEV(r)dr
= E%—SG{I(re”’) — I(re'yrdrdd

+ 2| _100¢#) = Oreiyrdrdo

by (3), where G={(r, 0)|reE and 0€G,}.
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Since
ct

1/5
S rdrdd gg (u+u)dr§§ P utv)dr < 0 q1+us
G E AL/ 2

[

by (2), Lemma 4.1 gives

rdrd@ < 1/2 43/5

Hence, by (2),

|{ — re'?|
- SR{SGY%} v(Hdm(0)

c+AV/S
én(2ro)1/2A3/5g L p0Vdr
.

n2
2

Consider the inverse function 6=(¢|G,)™! of ¢|G,. Then

=

r3I2 41415,

09) = | tw(re'at

on G;=¢(G,), and so the general derivative of 8 is equal to xp.(re’®) a.e. on G..
Therefore

S do _S Xwe(ret)de _gG;l d¢

o T=re®O] =)o |0 = ret®l o TT=re®]
Since G, < [0, 4n) and 4(G)=¢(G,), by Lemma 4.1, we have

[rcenrarar <{ {{ 222 dv@yam)

|l oo

< m2r3/2 414415,

where G'={(r, ¢)|reE and ¢ e G}.
Finally we consider the following:

|0(re*?) — O(re'?)|
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o] QMO _ QD

re { —re'® { — ret®

(I1/r)|ret® — retf
é(chMh + SchA§,> [ — re™[[l — re®| () dm((),

where 4,,={zeC||z|<2r}. For {eRe, we have |{—rei®|, | —rei®|=(1/2)41/5,
If |{] =2r, then

e -1 |t 2

=1 1 2
r

T — e = R =157

Since |re’¢ —ret®| <r(¢p —0)<2nryA4, we have
|O(re*®) — O(re*®)|
47["0.14

= (L
2

< 167 max {r, 1}S|v|dmA3/5.

4nr,A S

[ v@lam@+ 2 p©lam)
ReNday Fea A1/5

Rendaz,

Hence
SG[O(re"'P) — O(ret®)|rdrdf £ 8n?r, max {r,, 1}S]v|dmA‘+4/5.
Combining the inequalities obtained above, we have
V(b) < 2nro(ri/? + 4 max {ro, 1}S|v|dm)A1+3/5.

This completes the proof.

§5. Convergence of kernel functions

Let R be a Riemann surface and let { be a point on R. Let v be a measurable
function on R such that v(z)=c a.e. on R for a positive number ¢. We denote by
AD(R, {) the complex linear space of analytic functions f on R such that f({)=0

and S Lf'(2)PW(2)dxdy < o, where z=x +iy.
R
An inner product on AD (R, {) is defined by

(s ) = & S@TEdxdy

for every pair of f and g in AD(R, {). With this inner product AD,(R, {) be-
comes a Hilbert space.
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Let ¢ be a fixed local coordinate defined in a neighborhood of {. Since the
functional f—(df/dt)({) is bounded, there is a unique function M(z)=M(z; {,
t, R) such that

i o =
L= m,

for every fe AD(R, {). We call M the kernel function of AD(R, {).

The kernel function M (z; {, t, R) is identically equal to zero if and only if
@dflay()=0 for every feAD/(R,{). If M(z)=Mz;{ t, R)#0, then
(dM/dt)()=(M, M),>0. In this case we aiso consider the following normalized
function:

M*z;(,t,R) = de(Z; {,t, R)

—E—Mv(c; Cs t9 R)

This function is the unique function minimizing (f, f), in the class of functions
fe AD(R, {) such that (d f/dt)({)=1.

In this section we are concerned with the convergence of kernel functions and
show the following proposition:

ProproSITION 5.1. Let R be a Riemann surface, let { be a point on R and
let t be a fixed local coordinate defined in a neighborhood of {. Let {R;}7-, be
a sequence of subdomains of R such that UR;=R, R;<=R;, and { e R; for every
j. Let {v;}7., be a sequence of measurable functions on R such that v{z)=c
a.e. on R; for a fixed positive number c, v{(z)=0 a.e. on R—R; and v{(z)<v;, (2)
a.e. on R for every j. We denote by v(z) a measurable function on R which is
equal to lim;,,v{(z) ae on R. Set Mfz)=M,(z;(, t, R, p(w)=
eem;'om V(2 =1, 2,0, M(2)=M(z; {, t, R) and p(w)=3,cp-1my ¥(2). Then

M SR|M;.|2v,.dxdy =Scyjdm <o, j=1,2,..
and

S IM'|?vdxdy =S pdm < 0.
R C

)] Sujdmlgudm as jt o
c c
and
S IM}; — M'|?v;dxdy gg u;dm —S udm.
R c c

In particular, M; converges to M uniformly on every compact subset of R.
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3) S IM?v; — M'?v|dxdy — 0 as j—— 0.
R

4) Sclﬂj — pldm — 0 as j— oo.
PrOOF. Assertions (1) and (2) are easily verified. We write

S |IM'2v; — M'?v|dxdy
R
< SR|M'{2(V — v)dxdy + XR|M;. — M| (M| + [M')y,dxdy.

Since v; t v and S [M’'|2vdxdy < 0, S |M'[2|ly—v;ldxdy—0as j—>co. By applying
R R

Schwarz’s inequality and (2), we see that g M —M’|(IM}]+|M'|)v;dxdy—0 as
j—oo. Thus (3) is proved. :

Next we prove (4). We may assume M#0. For every ¢>0, let Q be a
relatively compact subdomain of R such that its boundary dQ consists of a finite
number of smooth curves,

S IM'|2vdxdy < ¢
R-Q

and

2

inf, 1M 12dxdy
)

where o denotes a second order differential on R with a positive continuous
coefficient.

Set G=M(RQ), G_;={weG|d(w, M(8Q))>8} and W=Qn M~ (G_,), where
0 is a positive number taken sufficiently small so that S |M'|Pvdxdy <e.

Q-w

Take j sufficiently large so that |M;— M|<d on Q. Then every point we G_;
is taken by M;|Q with the same number of times as taken by M|Q. Since
infg|M'|2dxdy/w>0 and z;—z as j— oo, where z € Wand each z; is an appropriate
element of M7'(M(z)), there is a 1-1 analytic mapping F; of W into Q such that
M ;oF ;=M for sufficiently large j. The sequence {F;} converges to the identity
mapping of W. Take j so large that g |M'|?vdxdy <2¢ and set W;=

Q-F;(W)

F(W).

For a measurable set E in R, set y; f(W)=3 ,cp; wyne v(2) for every j and
.uE(W) = ZzeM“(w)nE V(Z). Then

{ 1us = tam
C
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= SCU‘j,n + By r-0 — Ho — Hr-gldm
S Sc“ij,n — Ugldm +Scﬂj,R—ndm + Sc.uR—Qdm’

S P =S IM'|Pvdxdy
C R—Q
and

S ;. —gdm gg M 2vdxdy +S M2y, — M"2v|dxdy
c R—-0Q 2

* (ftm = pam)

We also have
g |#j,9 — lgldm
C

= C|ﬂj,W, + Ujo-w, = Hw — Ho-wldm

ég |, w, — Hwldm +S Bj0-w,dm +S Ho-wdm,
G-s C C

s dm =S IM'|?vdxdy
Q-w

[

and

S Bja-w,dm ég |M'|2vdxdy +S [M2v; — M'2v|dxdy.
C W, o-w;

Let ¢=fdxdy be a second order differential on R with continuous coefficient
such that the support of ¢ is compact and ¢ satisfies

S If — IM/Py|dxdy < e.
R
Since

SG_ |jw; — pwldm

)

SG lZzeM}’(w)nW, Vj(z) - ZzeM"(w)an(z)Idm
-5

[ IS st s OAF @) = v
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<{ P @) - WM @Pdxay,
we have

'ﬂj,w, = pwldm
G-s

<{ 1M @PvyF@) - SF @axdy

w
+{ 1@ - s(ldxdy
+{ 110 - M @Paldxdy.
Set z;=x;+iy;=F(z) and ¢=f;dx;dy;. Since

[ 1M @PF () = FFeldxdy

I

[IM(z)1v(z)) = filzpldx,dy,

Lg]

|
[ IM3@1902) — f@dxay
|

A

A

MRy, — Mdxdy + SR’ M2y — fldxdy

and
[ 17F ) - s@axay — 0 (j— o),
using all the above inequalities, we have
lim Stu-»aoSclﬂj — uldm £ Ts.

This completes the proof of (4).

CoROLLARY 5.2. In Proposition 5.1, assume further M#0 and set M¥(z)=
M3(z; 0, 6 Ry, uf(W)= 2 em) o Vi(2): J=1, 2,0, M¥(2)=M3}(z; {,t,R) and
/l*(W)= ZzeM""‘(w) V(Z). Then

§)) Scu}‘dm 1 gc,u*dm as j 1 oo.

@) Sl,u}'-‘—u*[dm———»O as j— oo.
[
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§6. Estimates for the area

Let M*(z; {, t, R) be the extremal function defined in §5. If R is a domain
in the complex z-plane, then we choose z as a fixed local coordinate defined in a
neighborhood of {. In this section, we deal with the case v=yy and abbreviate
M}.(z; ¢, z, R) by M*(z; {, R). We also consider a univalent function minimiz-

ing (f, f)’“‘=gxl f'1?2dxdy=Dg[f] in the class of univalent functions f such that

(df/dz)({)=1. This function may not be determined uniquely. We call it an
extremal univalent function on R for (.
In this section we prove the following proposition:

ProposITION 6.1. Let Q be a plane domain such that 0e Q and m(Q)< .
Then

m( — 4,) < 10{m(Q)/n}'3/'5Do[z — M*]'/19,
where A,={zeC||z|<r}, r={m(Q)[r}/? and M*(z)=M*(z; 0, Q).
To prove Proposition 6.1 we prepare several lemmas.

LeMMaA 6.2 (a length-area principle, cf. e.g. [1, p. 117]). Let g be an ana-
2z
Iytic function on a ring domain W={weC|s<|w|<t}. Set L(r)=g lg’'(ret?)|rd6
0
(s<r<t). Then
t L(r)z
Ss_ﬁ— dr < Dylg].
2n(r
PrROOF. We may assume Dy[g]<oo. Set D(r)=SO S |9’ (pei®)|? pdpd®.

Then, by the Schwarz inequality, we have
2r
Lir? g 27er lg’(re*®)|2rd@=2nrD'(r).
0

Our assertion follows from this inequality.

LEMMA 6.3. Let c and r be numbers with 0<c<r. Then F(z)=(r*-c?)z/
(cz+7r2—c?) is an extremal univalent function on A(c)={zeC||z—c|<r} for
0 and satisfies F(4,(c))={weC||w|<r—c?/r}.

We omit the proof of this lemma. Next we show

LEmMMA 6.4. Let Q be a finitely connected domain such that 0eQ and
m(Q)<co. Let F be an extremal univalent function on Q for 0. Then
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m(Q — 4,) < 9{m(Q)[m}13/1Do[z ~ FIH/1e,
where A,={zeC||z|<r} and r={m(Q)/r}1/?.

Proor. Without loss of generality we may assume m(Q)=mn. Then r=1.
Set d={Dp[z—F]/n}i/2. If dY82n"1/18(x/9), then m(Q-A4)sm(Q)=n=
9nl/164d1/8 =9D,[z— F]'/16 and our lemma is proved. Hence we may assume
A8 <~ 116(7[/9)=0,324- - .
Since {D,[F1/n}V/2 2 {Dy[z]/n}!/? —d=1—d, the image W= F(Q) is a circular
slit disc of radius not less than 1—d. Set G=F!,r;=1-2d and V={weC|
ri<|wi<r;+d}. Then {Dy[w—G]/n}1/2={D,[F —z]/n}!/?=d and Dy 1w [G]}/2 <
2n

m(V)2+ Jmd. Set L(r)=g IG/(rei%)|rd0 for r with {weC|lw|=rlcV n W
4]

and set L=inf{L(r): {weC||w|=r}<=V n W}. Then, by Lemma 6.2, we have

L2
27T(r1+d)

d < [n(ry + d)? — mr?}12 + /nd}P.
Hence
L2 < ary + 2nd) {2nry + (2 + Jd)2n/d}
< (nry + 2n\/dy.
Therefore we can choose a number p so that {(weC||w|=p}=V n Wand

L(p) — 2np < L(p) — 2nry < 2n./d.

Let U, be the domain surrounded by the curve G({we C||wj=p}) and R be
the radius of the circumscribed circle of U, ; the circumscribed circle of U, is the
unique circle of the smallest radius that encloses U,. Set A(p)=m(U,). Then

A(p) 2 m(G({|lw|<p} n W)) = np?,
and hence
L(p)* — 4nA(p) < (2np + 27 /d)* — (2np)>.
By the Bonnesen inequality ([4], see [6]) we have
|L(p) — 27R| < {L(p)* — 4nA(p)}'/ < 21\/2 + Jd dV/*
so that
R — p £ (V2 + J/d + di%di4 < 1.641/4,

Let ¢ be the center of the circumscribed circle of U,. Then G({|w|<p} n W)c
U,<dg(c). Hence, by Lemma 6.3, we have
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p = R —[c]*R.
Therefore
le|* = R(|¢|?/R) < (p + 1.6dY*4)1.6d14 < (1.4d1/8)2,
Since dg(c) = gy yc)s2(c/2) and A,(0) = Ag.|,2(c/2), we obtain
m(4,0) = D) S m(A+1e2(e/2) = G({Iwl < p} 0 W)
< n(R + [cl/2)? — np?
< nf(p + 1.6dY* + 0.7d1/8)2 — p2}
=n(1.6d'% + 0.7)(2p + 1.6d'/* + 0.7d1/8)d1/8
<9248,
On the other hand, we have the following inequality:
m(d; — 4,00) = n(1 — p?) £ n{l ~ (1 ~ 2d)?} < 4nd < 0.14"/8.
Therefore
me—4,)=m(d4, — Q)
S m(4, — 4,(0) + m(4,(00) — Q)
< 9.3d¢E
< 9Dg[z — F]U/16,

LemMMA 6.5. Let Q be a plane domain and let F be an extremal univalent
function on Q for { € Q and set M*(z2)=M*(z; {, Q). Then

Doz — F] £ 4Dz — M*].
ProoF. Since Do[F]=m(F(2))<m(L), we have
Dglz = F1'2 < Dolz — M*]'/2 + Dol[F — M*]"2
= Dolz — M*]V2 + {Do[F] — Do[M*]}'/2
S Doz — M*]'2 + {m(Q) — Do[M*]}1/?
= 2Dg[z — M*]1/2,

Proor or ProrositioN 6.1. Let {Q,} be an exhaustion of Q such that
each Q, is finitely connected and contains 0. Then, by Lemmas 6.4 and 6.5,
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m(Q, — 4,) = 10{m(Q,)/r}'%/1°Dg [z — MF]'/1¢,

where r,={m(Q,)/n}*/? and M¥(z)=M*(z; 0, Q,). Since lim,,, Dy [z—M}]=
Dg[z— M*], by letting n— o0, we obtain the proposition.

§7. Proof of the theorem

In this section we prove our theorem and state a conjecture. At first we give
two lemmas.

Lemma 7.1. Let A={zeCl|z|<r}, Ri={zeCl|r,,<|z|<r{,} and R,=
{zeC|ry <zl <ry,} with 0Zr  <r(,Sr,,<r,,<r. Let s be a subharmonic
L! function on A. Then

1 e 1 S
m(Ry) gm””" = Ry Jr, ™

The equality holds if and only if s is harmonic on {zeC||z|<r,,}.

LemMma 7.2. Let W be a domain and let v be an L* function on C such that
v(z)=1 a.e. on W and v(z)=0 a.e. on W¢. Then, for every £¢>0, there are an
open set W, and a domain W, satisfying the following conditions:

(1) WeWcW,

2 m(W)y<ow and m(W,— W) <e.

3) gwhvdm =g hdm for every harmonic L? function h on W..
We

ProoF. To prove the lemma it is sufficient to construct the following W,
W, and v,, n=0, 1, 2,...:

(a) W, is an open set and W, is a domain.

(b) W,cW,,; and W,cW,,,.

© WeW,cW,

d) m(W)<ow for n=0, m(Wy— Wo)=0 and m(W, ~ W) <ey 1/2m
for n>1. "

(e) v, is an L2 function on € such that v,(z) 2 1 a.e. on W, and v,(z) =0
a.e. on W¢.

®) Nl w, <€/2"*2 and |p,llow, <1/2" for n2 1, where p, =v, — xw,

and Uil = (| lalram )i

(g S hvdm =S hv,dm for every harmonic L2 function h on W,.
W W'l

We construct W,, W, and v,, n=0, 1, 2,..., by mathematical induction. Set
Wo=W,=W and vo=v. Then W,, W, and v, satisfy the above conditions for
n=0. Note that m(W)< oo because ve L*(W) and v=>1 a.e. on W.
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Assume that W,, W, and v, are constructed. Let €, be a domain such that
09, consists of a finite number of smooth curves, Q,=W,, |[v,l, w,-a,<&2"+?
and |[v,)l2.w,-0,<1/2"*1. We apply Proposition 1.9 proved in [7] replacing
W, dv and ¢ by Q,, (V,xw, 0.+ Xa--w,)dm and g/2"2, respectively. Then there
are a bounded open set W, , and a bounded domain WQ,,, such that Q, < W, ,<

Wo.m Q,c WQ,,,, m(Wg," — Wp,)<e/2"2 and
S hv,dm + S* hdm = S hdm
Wnn2n -W, Wea.n

for every harmonic integrable function h on W,,. Define W, ,=W,U {W,,—
Q=W Worr=W,U Wﬂ,n and Vi =tw, . FVdAWoo 0" AW Wan=AWnss T

Hnt1-
Substituting 1 in the above equality, we have

S v, dm + S_ dm =S dm.
Wanf2n W Wayn

Hence
mWan= 2=\ (s, = Ddm
a2y
ég Hadm
W'I
< gf27*2,
Therefore

m(WnH -W) = m((Wn U Wﬂ,n) - (Wn U Wao)
+ m((W, U Won) — W) + m(W, — W)
é m(WQ,n - Wﬂ,n) + ;n(WQ,n - gn) + m(vr/n - Wl)

n+1 1

Thus W,, , satisfies (d). The other conditions are easily verified. The proof is
complete.

We divide the proof of the theorem into three steps. We may assume that
v=c everywhere on Wand v=0 everywhere on We.

Step 1. Let { be a point on a Riemann surface R and let ¢ be a local coordi-
nate defined in a neighborhood of {. We abbreviate M, (z;(, t, R) (resp.
M}.(z; {, t, R)) by M(z) (resp. M*(z)). Assume M(z)#0 and let f be an analytic
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function on W= M*(R) such that S | f'1?vdm < oo, where v denotes the valence
w

function of M*. By the reproducing property of M we have

(.1 71y = LMD )

=J—S (foM*)' M’ dxdy
T )R

=LA (MM~ axay

_1 dM )
=L rrvam

In this step we show that if the valence function v of M* satisfies (W)= n on
W for some natural number n, then

S svdm £ nS sdm
w 4

for every function s which is subharmonic on C and bounded from below, where
A={weC||w|<{fvdm/(nT)}/2}.

Let {R;} be a regular exhaustion of R, namely, let {R;} be a sequence of sub-
domains of R such that UR;=R, R;=R,,, for every j and each dR; consists of
a finite number of mutually disjoint analytic Jordan curves in R. We may
assume that {e R; for every j. It is known that M¥(z)=M;j(z; {, t, R;) can be
extended analytically onto R; (cf. [8; pp. 114-137]), where y;=xz .- Hence
each valence function v; of M¥ is bounded. Set W;=M7%(R;) and U;={we W,|
v(w)Znj.

For every >0, choose a compact set K containing O as its interior point so

that S vdm <d. Applying Rouché’s theorem choose J; so that K< U, for

W-K
any j=J,, and then choose J=J, so that SK(v—v,)dm<5 by Fatou’s lemma.
Set u=max {v;, nyw,}. Then pisabounded L! function on W, such that u(w)=n
on W, and u(w)=0 on W5%.

Let e=(g,, &,) be a pair of positive numbers ¢; and &, with &, <1, and apply
Proposition 3.3 replacing W and v by W; and u/n, respectively. Then there are
domains W, and W,, and a bounded L! function v, on € such that

n WyeW,cW,
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1

Sudm and m(W,—-W,) £ —1— S,udm

(1 8)

(3) v, satisfies v,(z)=1 a.e. on W,, v,(z)=0a.e. on W¢ and g(ve— Iw)dm = e,.

©)] S sudm < nS sv.dm for every s e SLY(W,).
W We
B) U(r + 2(1/n)2{(U + V)(r)}/?) £ ¢,(U + V)(r) for every r =0, where

u(r) = Sznxwe_ws(re"”)rdé), UG = S:ou(t)dt,

2n ©
o(r) =S y(ret%)rd6 and  V(r) =S (D).
0 r
By Remark to Proposition 3.3, we have
(7.2) X hudm = nS hv,dm
Wg We

for every he HLY(W,)). Set l=v,+(min {v;, ngw,} —nyw,)/n and ro=(fvdm|
n)1/2. By (1) of Corollary 5.2, fv;dm < {vdm, so that by Proposition A, we have
W,c{weC||w|<ry}. Hence A(w)=v w)=1 a.e. on W,n{weC||w|/=r,} and
Aw)=0 a.e. on We. Let us see that A(w)= —fidm/w on Wen{weC||w|=r,}.

Let weWen{weC||w|=r,} and set h({)=1/({—w). Since both Reh and
Im h belong to HLY(W,), we have by (7.2)

A(w) =S hAdm
We

= g hv,dm + —l—g h(min {v;, nxw,} — nxw,)dm
Wg n W£

%S h(max {v;, n} + min {v,, n} — n)dm

:[,_

g hv, dm.

Let f({) be a branch of log({—w) on {weCllw|<ry}. Applying (7.1) to f we
have

S hv,dm=h(0)g v,dm=—ig v;dm
Wi W Ww,

and hence A(w)= — (nw)‘lg v;dm. If we carry the same computation with h=1,
Wy

then we obtain S/Idm:n‘lgw v;dm. Hence Z(w)=—gldm/w.
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By using Proposition 4.2, we have
V(b) £ yA(a, b)**3/3
for every pair of numbers a and b such that roSa<b, A(a, b)={k/(b—a)} b{u(t) +
o(f)}dt<1 and 24(a, b)/5<b—a, where y=2mry(rd/2+4max {ro, 1}f|Adm) and
k=8/(nry). Hence, by Proposition 2.1, there is a number M > {fvdm/(nrn)}/? sat-
isfying UM)=V(M)=0. We can choose M so that it depends only on ¢,, r, and
flAldm. Therefore W,c{weC||wj<M} for every & =(¢}, &;) with 0<e;<e¢,

and &,>0. Since every subharmonic function on C is locally bounded from above,
s is bounded on {we C||w|<M}. Set [s]w,r=5up|y < [s(W)|. Since

S v,dm = gvjdm - Svdm +S vdm +S (v —vy)dm < 26,
Wi~K WK K

we have

|S svy;dm —S sudml = lg sv,dm —g sudml
W W Ws—K Wis-K

< sboel s + sl v,
N

R

< sl + Df  vidm

< 50, 20n + 1)5.

From (3) and (4), we have

S sudmgng sv,dm
Wi We

n{S sdm +S s(v, — xwp )dm +g sdm ——S
4 We w

sdm}

=4 A-Wg

< n{ sdm + nlsha,ler + m(W, — 4) + m(4 = W)}

We next estimate m(W,—A4) and m(4—W,). Apply Lemma 7.2 replacing
W, v and ¢ by W,, v, and #, respectively. Then there are an open set W, and a

domain W, such that W,=W,<W,, m(W,)< o, m(W,—W,)<n and SW hv,dm=

S hdm for every he HLZ(W,,). Hence, by (7.2),
Wa

S f’udm=n§ f'dm
W Wa
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for every analytic function f on Q= W, U W, with a finite Dirichlet integral D[ f].
Set Mo(w)=M,(w; 0, w, Q). Then

ngnf,<j'v,ldm - ;@)dm = j'vlndm Sn—w,,f/dm t g Tv,dm dm g f(p=v))dm

for every fe AD,(Q, 0). Since
o] —_ ]. !
1O =y, S vadm,

p—v,=0 on U,, 0Zu—v;<n—1 on W,—U, and m(Q—W,,)gm(WE—WB)+
m(W,, Wyse(n(l—e)) Hudm+n=<e (1 —g) vdm+n s e,(1—g)  fvdm+n,
we have

_w_ _M&]m <
DQ[ fv;dm nm =

W)+ Vm(W,—Up}

1 <\/ 1i181 J'vdm+n+\/%>.

fv,dm

Hence

D [W - ———‘fv]dm M*] 2 < \/

D AE] _fvdm + 1+ /26,

where M(w)=M3} (w; 0, w, 2). Since K=Q and K contains 0 as its interior
point, g(w)=w— M 2[v,dm/(nDo[ME]) tends to O uniformly on some neighbor-
hood of 0 as &, &; and 5 tend to 0. Hence g'(0) tends to O so that fv,dm/
(nDo[M}]) tends to 1. It follows that Do[w—ME] tends to 0.

Finally we show that m(W,— 4)+ m(4 — W,) tends to O as J, &, &, and # tend
to 0. We apply Proposition 6.1 and obtain m(Q— 4,)—0, where r={m(Q)/=}/2.

From the relation S vsdm=g dm and (7.2) we obtain m(W,)=n"! ” udm.
We Wi J

Since m(Q)—m(W,)=m(Q—-W,)<e,(1—¢,) " fvdm+n and
0 gg udm —g vydm < 2(n — 1)6,
W W

by (1) of Corollary 5.2, we have m(Q)—n~'fvdm, and hence r— {Jvdm/(nr)}i/2.
Therefore

mW, — 4) = m(Q — 4) = m(Q — 4,) + m(4, — 4)— 0,

and
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im(4 — W) — m(W, — 4)| = [m(4) — m(W,)| — 0.
Thus m(4—W)—0 too. By (2) of Corollary 5.2, we have

S svdm = limS svidm < nS sdm.
w J~0)w, 4

Step 2. Let W be a domain and let v be an L! function on € given in the
theorem. In this step we show

(7.3) S svdm £ cg sdm
W i

for every function s which is subharmonic on € and bounded from below.
Suppose first that v is a lower semicontinuous function on € and v(z) is a
natural number not less than n for every ze W. In this case, by using the same
argument as in [7, Proposition 3.1], we can construct a Riemann surface R of
infinite genus and F € AD, (R, {) for some { € R such that
(1) The valence function v of F is equal to v a.e. on C.
(2) (dF/dt)({)#0 for some (and hence every) local coordinate t defined in
a neighborhood of {.
(3) For every ge AD, (R, (), there is a function fe AD(W, 0) satisfying
g=feF.
By virtue of (2) we can choose F as a local coordinate defined in a neighborhood
of {. As was shown in the proof of Proposition 3.1 of [7], F(p)=M} (p; {, F
R). By Step 1, we have

>

S svdm =S svedm £ nS sdm

w w 4

for every function s which is subharmonic on € and bounded from below, where
A={zeC||z|<{fvdm/(nm)}1/2}.

Suppose next that v is lower semicontinuous on €, that v(z)/e is a natural
number for some fixed ¢>0 and for every z € W and that ¢/e is a natural number.
By the above argument, we also have (7.3) in this case.

Finally we show (7.3) for an arbitrary v given in the theorem. We can con-
struct functions v; on C, j=1, 2,..., such that

(1) 0£v;£vj,yandlimy;=vae. onC.

(2 v{z)zcon W

(3) v, is lower semicontinuous on C.

(4) (2//c)v(2) is a natural number for every ze W.

Set M?(z)=Mt,(Z; 0, z, W), ﬂ}‘(w)=Zst;'l(w) Vj(Z), i=12,.., M*(Z)=M:‘(Z;
0, z, W) and p*(w)=3 ,cpe-1wy¥(2). From the assumption in the theorem and
the definition of the kernel function, we have M*(z)=z and so p*=v. The
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function p¥ is lower semicontinuous on € and satisfies that p¥(w)=c on M¥(W),
(27 [e)p¥(w) = u¥(w)/(c/27) is a natural number for almost all we M¥(W) and

IO = Ty ) s, T
for every fe AD (M¥(W), 0). Hence, by the above argument, we have

Scsu;‘-‘dm =< cg sdm
for every function s which is subharmonic on C and bounded from below, where
4;={weC||w|<{fufdm/(cn)}'/?}. Therefore, by Corollary 5.2, we obtain

S svdm = limgk sp¥dm < cg sdm.
w w r

Step 3. Let W be a domain and let v be an L! function on € given in the
theorem. Let s be a subharmonic function on € which is not necessarily bounded
from below. Since max {s, N} is subharmonic for every number N, by Step 2,
we have

S max {s, N}vdm < cS max {s, N}dm.
W Ay

Letting N | — oo, we obtain (7.3) for every subharmonic function on C.

Now we prove (7.3) for every subharmonic L! function on 4,. By Proposi-
tion A, we may assume that there is a compact subset K of W such that m(K)>0
and inf, ., v(z)>c. By using the same argument as in the proof of Proposition A
([7], Proposition 3.2), we can construct a measurable function v, on W such that

(1) vo(z) Z c+ oyu(z) on W and vy(z) =0 on We, where o >0 and

A, denotes a disc centered at 0 with 4, = W.

2 Swsvdm < gwsvodm for every se SLI(W).

Set p(z)=vo(z) —ays,(z). Then u(z)=c on W, u(z)=0 on We and
1O = T f
for every fe AD,(W, 0). Hence

(7.4) S sudm = cS sdm
w

4,

for every subharmonic function s on €, where 4,={zeC||z|<p} and p=

{fudm(cm)3*/2.
For every seSL(4,), there is a subharmonic function § on € such that
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§|4,=s|4,. Therefore (7.4) holds for every s € SL!(4,).
By Lemma 7.1, we have

(1.5) Sws(axdo)dm < cS sdm,

4~ 4,

and so we obtain (7.3) for every se SL'(4,). The equality in (7.5) holds if and
only if s is harmonic on 4,. This completes the proof of our theorem.

In our theorem we have treated upon the special case when v satisfies
FO =g} frvdm
fvdm )y

for every analytic function f on W such that S {f'1?vdm<co. By our theorem
W

and Lemma 7.2 we are led to the following conjecture:

" CONJECTURE. Let W be a domain and let v be an LP (1< p< o) function
on C such that W(z)=1 a.e. on Wand w(z)=0 a.e. on W¢. Then there is a domain
W satisfying the following conditions: k

() WeW.
2 m(W) = fvdm < co.
3 gwsvdm < Swsdm for every subharmonic L4 function s on W, where q

satisfies 1/p+1/q=1.

If this conjecture were true, then it would be possible to simplify the proof of
our theorem.

§8. An application to the estimation of the Gaussian curvature of the span
metric

Let R be a Riemann surface and let v be a measurable function on R such
that wW(z)=c¢ a.e. on R for a positive number ¢. For a natural number n, let
AD(R, {™) be the complex linear space of analytic functions f on R such that

SRIf "(2)PU(2)dxdy <o and f(O)=(df[dt)({)="--=(d""" f]dt"1)({)=0 for a fixed

local coordinate t defined in a neighborhood of {. We define an inner product
by '

(5, 00 == _F@F@uaxdy

for every pair of f and g in ADY(R, {"). With this inner product AD/R, {*)
becomes a Hilbert space. Set || f|,= (/. f),-
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Since the functional f—(d"f/dt")({) is bounded, there is a unique M(z2)=
M(z; (", t, R)e AD (R, (") such that

arf . _
T © =, M),

for every fe AD(R, {"). By Proposition A, we have M(R)cd={weC]|w|<
M,/ \/E}; see the following proof. Applying our theorem we have

ProrosiTION 8.1. If M(z)=M(z; {", t, R) is not identically zero, then
8.1 Dg[foM] < D,[f]

for every analytic function f on A={weC| |w|<||M||v/\/—E . The equality
holds if and only if one of the following is satisfied:

(i) fis constant.

(ii) v(z)=c a.e. on R and f is a linear function, namely, f(wy=aw+b for
some constants a and b.

(iti) n=1,v(z)=c a.e. on R and R is conformally equivalent to A—E,
where E denotes a relatively closed subset of A such that EnK is
removable with respect to analytic functions with finite Dirichlet
integrals for every compact subset K of 4.

PROOF. Set W=M(R) and pw)=Y,cy-1yWz). Then Sudm=
[

S |M'|>vdxdy < o0, y(w)=c a.e. on W, u(w)=0 on W¢e and
R

O — I / aM

. d"(f-M)
fudm dar ©

- wbm SR( foM) Mvdxdy

1 .
fudm Swf udm

for every fe AD,(W, 0). To prove (8.1) we may assume fe AD, (4, 0). Since
f'I2=1f"*| € SL'(4), by our theorem, we have

DalfoM1 5 | (fo MYTo Y vdxdy = |fPudm < f 1rpam,

and so
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DR[f"M] = DA[f]-

Next we prove the equality assertion. It suffices to show the ‘‘only if”
part. Assume Dg[fo M]=D,[f] for a nonlinear analytic function f on 4. If

D,[f]l=00, then Dg[fe M]—S |flPudm=00. We know that g,udm<oo

Therefore W ¢ A4 so that sup,,.y |w| is equal to the radius of 4. By Proposition A,
it follows that u(w)=c a.e. on 4, so that v(z)=c a.e. on R and M is univalent.
Hence n=1 and R is a Riemann surface mentioned in the proposition. If D,[f]<
oo, then the subharmonic L!' function |f’|* is not harmonic on 4, since f is
nonlinear. Therefore, by our theorem, we have again u(w)=c a.e. on 4. It
follows as above that (iii) is true. This completes the proof of our proposition.

CoroLLARY 8.2. If M(2)=M,(z; {, t, R) is not identically equal to zero,
then

Dx[M?|2] < Dx[M}?/(27).

The equality holds if and only if R is conformally equivalent to A,—E, where
A4, denotes the unit disc and E denotes a relatively closed subset of 4, men-
tioned in Proposition 8.1.

Proor. Set f(w)=w?/2. Then D, f]=n|M|%./2=Dg[M]?/(2n), and so
our assertion follows from Proposition 8.1.

REMARK. Set ¢=M/|M|,,. Then Dg[¢]=n. Hence, by Corollary 8.2,
we have Dg[¢?/2] £ Dg[¢]*/(2r)==r/2. This has been conjectured by J. Burbea
['S, Conjecture 2].

Now we deal with the ‘“‘span metric”. The span S({) at { e R is defined by

SO =4 M, (&6 1 R).

The span S({) depends on the choice of the local coordinate . But if the span
vanishes for some local coordinate, then it vanishes for every local coordinate.
We denote by N the set of points { € R at which the spans vanish.

If R e 0 ,,, namely, if there are no nonconstant analytic functions on R with
finite Dirichlet integrals, then Ny=R. If R¢0,p, then Ny is a closed discrete
subset of R. We note that Ny=@ if R¢ 0,5 and R is of finite genus.

The metric \/S({) |dt| defined on R— Ny is called the span metric. Let K({)
be the Gaussian curvature of the span metric, namely,

KQ) =~ 2 357 108 S
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ProrosiTioN 8.3. It follows that
K= -4

for every { in R—Npg. The following conditions are equivalent:
(i) K()=—4 for some point { in R— Np.
(ii) K({)= —4 for every point { in R— Np.
(iii) R is conformally equivalent to A, —E, where A, denotes the unit disc
and E denotes a relatively closed subset of 4, mentioned in Proposi-
" tion 8.1.

Proor. Since (€ R—Ng, dM,((; {, t, R)/dt#0. In §5 we set M¥ (z; ¢(,
t, R)=M,(z; {, t, R)[{dM . ({; {, t, R)/dt}. Denoting it by F,(z) here, we have
Dg[F%/2]< oo by Corollary 8.2. Hence d?M, ({; (2, t, R)/dt?#0. Set Fz(z)-
M, (z; (3 t, B)/{d*M,,({; {3, t, R)/dt?}.  Since

Dr[F.] = DlF}/2],
by Corollary 8.2, we have
(8.2) Dg[F,] = Dg[F,T*/(27).
It is known that

_ 2 D[RT?
KO ==+ D]

(cf. e.g. [2, Chapter III]). By (8.2), we have
K= -4

for every { € R— Ng.

Next we prove the second assertion. It is evident that (iii) implies (i) and
(i) implies (i). If K({)= —4 for some { in R— Ny, then Dg[F2/2]=Dg[F,12/(2%).
Hence, by Corollary 8.2, R is a planar domain mentioned in (iii).

-~ Finally we deal with the integral curvature of the span metric. It is the
surface integral C of the Gaussian curvature K(z), namely,

c= S K(2)S(z)dxdy.
R-Ngr
'COROLLARY 8.4, If R¢O,p, then C=—oo.

Proor. By Proposition 8.3, we have C< — 4g S(z)dxdy——4g S(z)-
dxdy. Let {¢,} be a complete orthonormal system “of AD, (R, {). Then
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S(z)dxdy =3 |¢,(2)|*dxdy, and hence

J—S S(z)dxdy = dimg AD, (R, ).
T )r

Since R¢0p, by [7, Corollary 2.5], dim¢ AD, (R, {)=oc0. Therefore C= —co.
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