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The sub-seasonal to seasonal prediction project (S2S) and the

prediction of extreme events
Frédéric Vitart1 and Andrew W. Robertson2

The sub-seasonal to seasonal prediction project (S2S) is a 5-year project, established in 2013 by the World Weather Research

Program (WWRP) and the World Climate Research Program (WCRP). This paper briefly describes the S2S project in the context of

extended range prediction of extreme events. We provide evidence that S2S forecasts have the potential to predict the onset,

evolution and decay of some large-scale extreme events several weeks ahead. For instance, S2S models displayed skill to predict

high probabilities of extreme 2-m temperature anomalies over Russia during the worst week of the 2010 Russian heat wave up to

3 weeks in advance. In other cases, like for tropical cyclone prediction, S2S models can produce useful information on the

probability of the occurrence of tropical storms within sufficiently large areas through the prediction of large-scale predictors, such

as the Madden–Julian Oscillation (MJO). In future, S2S forecasts of extreme events could be integrated into a “ready-set-go”

framework between seasonal and medium range forecasts, by providing an early warning of an extreme event a few weeks in

advance. Finally, S2S forecasts can also be used to investigate the causality of some extreme events and we show evidence that the

cold March 2013 over western Europe and North Asia was linked to a MJO event propagating over the western Pacific.
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INTRODUCTION

There is increasing interest in extreme weather and climate
events, both in order to develop early warning systems to improve
societal preparedness, as well as to gain a better understanding of
the impacts of climate change. Extreme weather and climate
events pose a serious threat to the health and welfare. For
instance, between 2011 and 2013, the United States experienced
32 weather events that each caused at least one billion dollars in
damage, with a total of more than $110 billion in damages in 2012
(NOAA1). According to Munich Re,2 the world’s largest reinsurance
company, more than 90 percent of all disasters and 65 percent of
associated economic damages in 2010 were weather and climate
related (i.e., high winds, flooding, heavy snowfall, heat waves,
droughts, and wildfires), although there were far more deaths
from geological disasters that year (almost entirely from the Haiti
earthquake). In all, 874 weather and climate-related disasters
resulted in 68,000 deaths and $99 billion in damages worldwide in
2010. These extreme weather events can also damage critical
infrastructure, such as roads, railways or power and telecommu-
nication grids. For instance, during the latest flooding in the
United Kingdom at the end of 2015, some 20,000 homes were left
without power. Therefore, the prediction of weather extremes is
one of the major challenges of weather forecasting and one of the
main duties of national services to allow appropriate mitigating
action to be taken and contingency plans to be put into place by
the authorities and the public.
Sub-seasonal to seasonal forecasting (defined here as the time

range between 2 weeks and 2 months) bridges the gap between
the more-mature weather and seasonal climate prediction
communities. It has received much less attention than medium
range and seasonal prediction despite the considerable socio-

economic value that could be derived from such forecasts. This
time range is critical for pro-active disaster mitigation efforts, since
they may take several weeks to implement.3 It is considered a
difficult time range since the lead time is sufficiently long that
much of the memory of the atmospheric initial conditions is lost
and it is too short for the variability of the ocean to have a strong
influence. However, recent research has indicated important
potential sources of predictability for this time range such as the
MJO, the evolution of ENSO, soil moisture, snow cover and sea ice,
stratosphere–troposphere interactions, ocean conditions and
tropical-extratropical teleconnections.4

The sub-seasonal to seasonal prediction project (S2S) project
and database will be briefly described in The S2S project and
database section. Types of extreme weather and climate predic-
tion section will discuss the type of extreme event prediction we
could expect for this time range. Sub-seasonal prediction of
tropical cyclones section will present examples of tropical cyclone
sub-seasonal predictions and Prediction of the 2010 Russian heat
wave section will discuss the sub-seasonal prediction of the
Russian heat wave of 2010. Finally, Attribution of extreme events
section will discuss the possible use of sub-seasonal forecasts for
the attribution of some extreme event.

THE S2S PROJECT AND DATABASE

To bridge the gap between medium range weather forecasts and
seasonal forecasts, in 2013 the World Weather Research program
(WWRP) and the World Climate Research program (WCRP) jointly
launched a 5-year research initiative called the S2S project. Its goal
is to improve forecast skill and understanding of the sources of sub-
seasonal to seasonal predictability, and to promote its uptake by
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operational centers and exploitation by the applications commu-
nities (www.s2sprediction.net). The research is organized around a
set of six topics (Madden–Julian Oscillation (MJO), Monsoons, Africa,
Extremes, Teleconnections and Verification), each being intersected
by the cross-cutting research and modeling issues, and applications
and user needs.5 To address these issues, the S2S project has
created an extensive database6 (the S2S Database) containing sub-
seasonal (up to 60 days) forecasts and reforecasts (sometimes
known as hindcasts) from 11 operational and research centers. It is
modeled in part on the THORPEX Interactive Grand Global
Ensemble (TIGGE) database for medium range forecasts (up to
15 days)7 and the Climate-System Historical Forecast project (CHFP)
(http://wcrp-climate.org/index.php/wgsip-chfp/chfp-overview) for
seasonal forecasts. This database is archived at the European
Centre for Medium range Weather Forecasts (ECMWF), and the
Chinese Meteorological Administration (CMA) and (in part) at the
International Research Institute for Climate and Society (IRI) and
provides an important community resource for research on the
predictability of extreme weather.

TYPES OF EXTREME WEATHER AND CLIMATE PREDICTION

Historically, numerical prediction of extreme events started in the
1960s with the emergence of computers and operational
numerical weather forecasting. It was originally exclusively a
short-range deterministic forecasting problem, with the goal of
predicting specific extreme weather events a few minutes to a few
days in advance. On the other hand, with the advent of dynamical
seasonal forecasts in the 1990s, probabilistic forecasts of extreme
events such as tropical storm frequency at the ocean-basin scale
were developed in the early 2000s,8,9 and extreme weather
became an increasingly important research topic for climate
change projection. In the case of climate prediction, the main goal
is to determine how much seasonal-to-interannual climate
variability or climate change will affect the statistics (frequency,
intensity, duration..) of extreme weather events (see for example
Knutson et al.10 for the impact of global warming on tropical
cyclone activity). Therefore, short/medium range and climate
forecasting of extreme weather events answer very different
questions, the former being a (largely atmospheric) initial value
problem for specific weather phenomena such as tropical or
extratropical cyclones, while the latter is largely an atmospheric
boundary condition problem for the spatio-temporal statistics of
individual extreme events, depending, for example, on sea surface
temperatures, or on greenhouse gas concentrations, respectively.
The latter are inherently probabilistic, while a probabilistic
treatment of weather forecasts is more recent. Sub-seasonal to
seasonal prediction, which lies in between, is a combination of
both, being an initial value as well as a boundary condition
problem. Depending on the nature and predictability of a specific
extreme weather event, sub-seasonal to seasonal forecasting
systems could be used to predict a specific extreme weather event
at longer lead time than a weather forecast, or to predict changes
to the statistics of the event in the coming few weeks or months
compared to climatology. Small scale, short lived extreme weather
events such as tornadoes which have a predictability of the order
of minutes cannot be predicted individually weeks in advance, but
it may be possible to predict changes to probability of tornado
activity over large areas and windows of time due to their
relationship to large-scale weather circulation. It may also be
possible to predict the genesis, duration and decay a few weeks in
advance of a large scale, long-lasting extreme weather events,
such as heat waves or droughts. Therefore, depending on the
nature of the extreme weather/climate event, S2S prediction may
look more like an initial value problem such as in short/medium
range forecasting of specific large-scale long-lived events, or more
like a boundary condition problem for event statistics such as in
seasonal forecasting or climate change projection.

SUB-SEASONAL PREDICTION OF TROPICAL CYCLONES

Short and medium range forecasts of tropical storm track and
intensity have been available for a few decades. These forecasts
predict the trajectory of tropical cyclones which are already
present in the initial conditions (e.g., Kurihara et al.,11) and more
recently also from tropical storms which are predicted to develop
in a few days.12 More recently, seasonal forecasts of tropical
storms have been developed (e.g., Vitart and Stockdale8) which
predict if a tropical cyclone season over a specific basin will be
more or less active than normal. These seasonal forecasts are
justified by the fact that tropical cyclone genesis is sensitive to its
large-scale environment, most especially the vertical wind shear
between the upper and lower troposphere, mid-level humidity,
low level vorticity.13 As a consequence, the El-Niño Southern
Oscillation (ENSO) and local sea surface temperatures (SSTs) which
affect these environmental parameters play a major role in
modulating tropical cyclone activity over some ocean basins.
S2S which lies in between medium range and seasonal time

ranges can include both aspects of tropical cyclone prediction.
There are cases where extended range prediction of a specific
tropical storm might be possible if the genesis can be predicted a
few days in advance (e.g., tropical cyclone Nargis over the North
Indian Ocean in 201014) combined to the fact that some tropical
storms can last for more than 3 weeks. However, successful
tropical storm track forecast beyond 2 weeks remains very rare,
despite significant improvement in short and medium range
tropical storm track forecasting over the past decades. At the S2S
time scale, most of the tropical storm predictability is likely to be
provided by changes to the large-scale circulation which affect
tropical cyclone activity as for seasonal forecasting. ENSO and
Indian Ocean Dipole (IOD) can be a source of predictability for
tropical cyclones in some ocean basins as for seasonal forecasting
and are indeed used as predictors for statistical sub-seasonal
forecast models.15 However, the main source of predictability for
tropical storm activity at the sub-seasonal time scale is often the
MJO (e.g., Nakazawa,16) particularly over the Southern Hemisphere
where the tropical cyclone season coincide with the strongest
MJO activity (boreal winter and spring) through mostly its impact
on low level absolute vorticity and vertical wind shear.17 The
modulation of tropical cyclone numbers by the phase of the MJO
has been quoted to be as high as 4:1 in some locations (e.g.,
Maloney and Hartmann.18) Other sources of predictability at the
intra-seasonal time scale include equatorial Rossby (ER) waves,
mixed Rossby gravity (MRG) waves, easterly waves, extratropical
waves, and equatorial Kelvin wave.19

In order to be skillful in the sub-seasonal prediction of tropical
cyclones, it is therefore essential for S2S models to display skill in
predicting these various sources of sub-seasonal predictability,
and most especially the MJO. The skill of sub-seasonal forecasts to
predict the MJO has been assessed in the S2S database using the
Wheeler and Hendon MJO index.20,21 This index consists of
projecting the model forecasts onto the first two EOFs of 850 hPa,
200 hPa zonal wind and outgoing long-wave radiation (OLR), pre-
computed from NCEP/NCAR reanalysis for winds and satellite
observations for OLR. A bivariate correlation22 of the two principal
component time series from the model forecasts and ERA Interim
is then computed. Figure 1 shows the skill of the models from the
S2S databases to predict the MJO for the common re-forecast
period 1999–2010, measured here as the forecast day when the
bivariate correlation reaches 0.5 or 0.6. This figure shows that the
S2S models display some skill to predict the MJO up to about
3 weeks on average, and for the ECMWF model beyond 4 weeks.
Model experimentation would be needed to determine which
specific aspect of the forecasting system (initialization, ensemble
generation, model physics, model resolution..) could explain this
lead. However, specific changes to the ECMWF model physics,23
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especially in the convective parameterization helped to increase
the limit of MJO predictive skill by 2 weeks over the past decade.
Demonstrating skill in predicting the MJO is an important step

for sub-seasonal prediction of tropical cyclones, but it is also
important for the dynamical models to be able to simulate the
impact of the MJO on the tropical cyclones that are produced by
the model. In order to assess if S2S models can reproduce this
modulation of tropical cyclone activity by the MJO, the model-
simulated tropical cyclones have been tracked24 in each model
ensemble forecast. Since the S2S database output are gridded at a
1.5-degree resolution, the model tropical cyclones tend to be
weaker than observed. The threshold for 10-meter maximum wind
has been adjusted for each model so that the total climatological
density of simulated tropical cyclones matches the observations.
Longer model integrations would be needed to assess the realism
of other characteristics of simulated tropical cyclones (e.g. tropical
cyclone interannual variability). This tracking has been applied to
eight S2S model reforecasts which were chosen because of their
large re-forecast frequency and ensemble size and their skill to
predict the evolution of the MJO: ECMWF, NCEP, JMA, BoM, UKMO,
CMA, ECCC and CNRM. Work is ongoing to extend this study to the
other S2S models. The density of tropical cyclone tracks (number
of tropical cyclones passing within 500 km, normalized by the total
number of tropical storms over the whole basin) has been
calculated for each model. All eight S2S models display more (less)
tropical cyclone activity over the Indian Ocean and less (more)
tropical cyclone activity over the South Pacific and near the
Maritime Continent when there is an MJO in phase 2 or 3 (6 or 7)
in the model (Fig. 2), which is consistent with observational
studies17 and with previous modeling studies.25 This result
suggests that the models are capable of reproducing very well
the modulation of tropical cyclones in the southern Hemisphere
by the MJO, even if the model resolution is very coarse (BoM has a
resolution of the order of 200 km). Therefore, even if the
dynamical models considered in Fig. 2 are not able to predict
the occurrence of a given storm at a precise location 3 to 4 weeks
in advance, they are likely to have some skill in predicting an
increase or decrease of tropical cyclone activity over a large
domain and a sufficiently large period of time. For example at
ECMWF sub-seasonal forecasts of tropical cyclone activity are
produced over weekly mean periods and each ocean basin.
Verification of these forecasts26,27 suggests some skill up to at
least 2 weeks over most of the basins, and up to week 3 over the
South Indian ocean.

Extending upward from the more-mature medium range
weather forecasting of individual tropical storms, the results
above suggest that there is a potential opportunity to extend
tropical cyclone forecasting to longer lead times, using probabil-
istic forecasts of tropical cyclone density or landfall. In the context
of humanitarian aid and disaster preparedness, the Red Cross
Climate Centre/IRI have proposed a “Ready-Set-Go” early-warning
concept for taking action based on forecasts from weather to
seasonal, in which seasonal forecasts are used to begin monitor-
ing of sub-seasonal and short-range forecasts, update contingency
plans, train volunteers, and enable early warning systems
(“Ready”); sub-monthly forecasts would be used to alert volun-
teers, warn communities (“Set’); and, weather forecasts are then
used to activate volunteers, distribute instructions to commu-
nities, and evacuate if needed (“Go”). This seamless forecasts to
action paradigm could be applied to tropical cyclones prediction.
Figure 3 shows an example of Ready-Set-Go paradigm for the
prediction of tropical cyclone Yasi, which made landfall in
northern Queensland, Australia on 3 February 2011, as a severe
Category 5 causing major damage to affected areas. The storm
caused an estimated AU$3.5 billion (US $3.6 billion) in damage,
making it the costliest tropical cyclone to hit Australia on record
(source https://en.wikipedia.org/wiki/Cyclone_Yasi). Figure 3 sug-
gests that sub-seasonal forecasts could have provided useful
information in a seamless prediction of tropical cyclone activity
from seasonal forecasts. At the seasonal time scale (ready), the
model predicted, as early as 1st November, that the December-
March tropical cyclone season in the Australian basin would likely
be more active than normal, and that this signal was statistically
significant within the 10% level of confidence. This seasonal
forecast was consistent with La Niňa conditions, which prevailed
during the 2010–2011 austral summer (more tropical cyclone
activity over the Australian basin and less tropical cyclones in the
South Pacific). At the sub-seasonal time scale, the forecast issued
on 13 January for the 26 January–4 February period predicted
20–30% chance of tropical cyclone landfall in the Queensland
area, which is well above the climatological probability, adding
more geographical and temporal specificity to the forecast of a
landfall, and increasing its confidence. At the medium range time
scale, the probability of landfall from a 5–12 day forecast issued on
January 27 reaches 90% which should trigger some action such as
activating volunteers, distributing instructions to communities,
and evacuating if needed. This type of seamless forecasts could be
a possible contribution of sub-seasonal forecasts to climate service
development within the Global Framework for Climate Services
(GFCS).

PREDICTION OF THE 2010 RUSSIAN HEAT WAVE

Long-lasting heat waves, which can last from a week to several
months enter into the category of extreme climate events where
sub-seasonal forecast could potentially be used to predict the
onset, evolution and decay a few weeks in advance. This section
will discuss the predictability of a specific heat wave event: the
2010 Russian heat wave. This heat wave was the strongest ever
recorded over the past 30 years.28 It caused an estimated 55,000
deaths and caused wildfires, the worst drought over Russia in
nearly 40 years and the loss of at least millions hectares of crops.
The heat wave which lasted a few months (May–August 2010),

was particularly intense during the week of 1–7 August 2010,
where the weekly 2-m temperature anomalies over Russia reached
a record value of +5 C (exceeding the heat wave over France in
2003). Re-forecasts from the S2S database have been used to
assess the capability of state-of-the-art extended range forecasts
to predict this specific event. 2-m temperature anomalies have
been computed relative to the model climatology from 1999 to
2009 and averaged over the area 20E–50E, 45N–70N where this
event took place. According to Fig. 4, ECMWF ensemble forecasts

Fig. 1 MJO forecast skill. Forecast lead time (days) when the MJO
bivariate correlation reaches 0.5 (yellow bars) or 0.6 (orange bars) for
10 model re-forecasts from the S2S database covering the common
period 1999–2010. The black vertical bars represent the 10% level of
confidence for a bivariate correlation of 0.6 using a 10,000 re-
sampling bootstrap technique
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predicted well the time evolution of this extreme event at the time
range day 1–7. At the time range day 8–14, the model predicted
well the timing of the intensification and the extreme values
during the first 2 weeks of August, but it predicted the decay of
the heat wave a week too late. In the extended range, at lead time
day 15–21, the model also predicted the day a week too late, and
the intensity during the first 2 weeks of August was under-
estimated. However, the model at this time range was still able to
predict an anomaly of 2-m temperature above the 95th percentile
at the peak of the event, with some ensemble members above the
99th percentile. Figure 5, which focuses on the verifying week 1–7
August 2010, confirms that at the time range day 15–21 most
ensemble members where in the 99th percentile, and even at a
longer lead times (day 19–15) the ECMWF extended forecasts
indicated some high risk of extreme 2-m temperature anomalies.
Even if all ensemble members under-predicted the intensity
taking place that week, the ECMWF extended range could have
provided useful guidance at least 3 weeks in advance that 2-m
temperature anomalies would be exceptionally high at large
spatial scale over Russia.
The same study was performed with the other re-forecasts from

the S2S database (Not Shown). At least 3 of other S2S models

(CNRM, JMA and BoM) also indicated a high probability of 2-m
temperature within the 99th percentile about 3 weeks in advance.
For some other S2S models, which have very small re-forecast
ensemble size, this probability was difficult to estimate. Overall,
these results suggest that sub-seasonal forecasts could be
potentially useful for early warnings of such extreme events.

ATTRIBUTION OF EXTREME EVENTS

Another important area where S2S forecasts could be useful is in
the attribution of the causes of extreme events to physical
phenomena. S2S forecasting systems run in real-time quite
frequently (at least once a week) with often large ensemble size
and therefore produce a very extensive data set which can be
used to better understand the origin of some extreme events. This
attribution can be performed in several ways. Differences between
ensemble members which successfully predicted an extreme
event and those which did not may help better understand the
causality of the extreme event.
For example, March 2013 was exceptionally cold over part of

western Europe (second coldest month since 1900 over the United
Kingdom), most of Russia and part of North America (Fig. 6, top

Fig. 2 Tropical cyclone density anomalies. Tropical storm density anomalies during the period October to March 1999–2010 when there is an
MJO in phase 2 or 3 (left), phase 4 or 5 (middle left), phase 6 or 7 (middle right) and phase 8 or 1 (right). The top panels show observations
(from Joint Typhoon Warning Center), the other panels show the tropical storm density anomalies from the reforecasts from ECMWF, NCEP,
JMA, BoM, UKMO, CMA, ECCC and CNRM. The tropical storm density is calculated by computing the number of tropical storms passing within
500 km and by normalizing that number by the total number of tropical storms over the whole basin
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right panel). This event coincided with a strong MJO event
propagating into the western Pacific (top left panel in Fig. 6). The
16-member extended range ensemble forecasts from NCEP (CFS.
v2) starting from 14 February 2013 could be classified into two
categories: those which predicted that the MJO event which was
located in Phase 3 (Indian Ocean) on 14 February 2013 will
propagate into the western Pacific, and the others (about half the
ensemble members) which predicted that the MJO will die over
the Maritime Continent. The 2-m temperature anomalies pro-
duced from the ensemble members with a fairly strong MJO
produced a 2-m temperature anomaly consistent with ERA
Interim, whereas the 2-m temperature anomalies produced from
the ensemble members with no strong MJO in Phase 6 or 7 looks
very different from the verification. This result suggests that this
MJO event and the cold wave over part of the northern
Hemisphere were linked, although the causality (is it the MJO
which impacted the northern Hemisphere weather or the other
way around?) would need further investigation.

CONCLUSIONS

Sub-seasonal forecasting is still in its infancy, and certainly much
less well understood and developed than medium range and
seasonal forecasting. Sub-seasonal predictions have the potential
to be useful to predict the onset, evolution and decay of some
large scale, multi-week events such as long-lasting heat waves and
droughts, as well as to predict changes in the probabilities of the
occurrence of shorter lived extreme weather events, ranging from
tornedoes to tropical cyclones, linked to changes in the large-scale
circulation and environment. The examples presented above
suggest that there is potential to use these forecasts for early
warnings of several types of extreme events and also for better
understanding the origin of some extreme events. Increased

Fig. 3 Tropical cyclone YASI (26 January–4 February 2011). Prediction of tropical cyclones at different time ranges from ECMWF seasonal and
ensemble forecasting systems. The left panel shows a seasonal forecast of hurricane frequency starting on 1st November 2010 and covering
the period December 2010 to May 2011. Green bras represent the predicted frequency of hurricane-intensity cyclones compared to observed
climatology (orange). The black bars show the 5% level of confidence. The middle panel shows the probability of a tropical cyclone strike
within 300 km from the ECMWF extended range forecast starting on 13 January 2011 at the time range day 19–25, and the right panel the
strike probabilities from the ECMWF medium range forecast starting on 27 January 2011 at the time range day 5–11

Fig. 4 2010 Russian heat wave prediction. Weekly mean 2-m
temperature anomalies ensemble predictions from the ECMWF
extended range forecasts for different lead times: day 1–7 (blue), day
8–14 (green), and day 15–21 (red curve) from mid-June to mid-
August 2010. The vertical lines represent the ensemble spread. The
black curve represents the verification from ERA Interim. The yellow
and gray background represent respectively the 5 and 1 percentile
from ERA Interim.

Fig. 5 2-m temperature anomalies forecast over Russia (1–7 August
2010). Weekly mean 2-m temperature anomalies ensemble predic-
tions from the ECMWF extended range forecasts for different lead
times and verifying on the week of 1–7 August 2010. The 2-m
temperature has been average over the area 20E–50E, 45N–70N.
Each green point represents one of the 11 ensemble members. The
black dots represent the ensemble means. The x-axis indicates the
start dates and the forecast lead time in days. The anomalies have
been computed relative to the model climatology. The yellow and
gray background represent the 5 and 1, respectively, percentile from
ERA Interim. The red line indicates the anomalies from ERA Interim
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resolution, in addition to improved parametrizations, initialization
schemes and continuous improvements in the prediction of major
sources of sub-seasonal prediction23 should lead to a better
representation of these extreme events, most especially the
smaller scale ones like tropical cyclones, in operational sub-
seasonal forecasting systems and more skillful S2S predictions.
Sub-seasonal forecasts of extreme events are starting to

become available from some operational centers, such as weekly
outlooks of tropical cyclone activity from ECMWF. Much work is
still needed to fully integrate these forecasts into a fully integrated
ready-set-go type of system, tailored for specific applications. An
important goal of the S2S project is to create a few regional
projects to demonstrate and quantify the benefits of using sub-
seasonal forecasts of extreme events. This will be one of the foci of
the next phase of the S2S project.

Data Availability

The data sets analyzed during the current study are available from
the S2S database at s2s.ecmwf.int or s2s.cma.cn.
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