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Abstract

Background

Understanding the cancer genome is seen as a key step in improving outcomes for cancer

patients. Genomic assays are emerging as a possible avenue to personalised medicine in

breast cancer. However, evolution of the cancer genome during the natural history of breast

cancer is largely unknown, as is the profile of disease at death. We sought to study in detail

these aspects of advanced breast cancers that have resulted in lethal disease.

Methods and Findings

Three patients with oestrogen-receptor (ER)-positive, human epidermal growth factor

receptor 2 (HER2)-negative breast cancer and one patient with triple negative breast cancer

underwent rapid autopsy as part of an institutional prospective community-based rapid

autopsy program (CASCADE). Cases represented a range of management problems in

breast cancer, including late relapse after early stage disease, de novo metastatic disease,

discordant disease response, and disease refractory to treatment. Between 5 and 12

metastatic sites were collected at autopsy together with available primary tumours and lon-

gitudinal metastatic biopsies taken during life. Samples underwent paired tumour-normal

whole exome sequencing and single nucleotide polymorphism (SNP) arrays. Subclonal
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architectures were inferred by jointly analysing all samples from each patient. Mutations

were validated using high depth amplicon sequencing.

Between cases, there were significant differences in mutational burden, driver mutations,

mutational processes, and copy number variation. Within each case, we found dramatic het-

erogeneity in subclonal structure from primary to metastatic disease and between meta-

static sites, such that no single lesion captured the breadth of disease. Metastatic cross-

seeding was found in each case, and treatment drove subclonal diversification. Subclones

displayed parallel evolution of treatment resistance in some cases and apparent augmenta-

tion of key oncogenic drivers as an alternative resistance mechanism. We also observed the

role of mutational processes in subclonal evolution.

Limitations of this study include the potential for bias introduced by joint analysis of forma-

lin-fixed archival specimens with fresh specimens and the difficulties in resolving subclones

with whole exome sequencing. Other alterations that could define subclones such as struc-

tural variants or epigenetic modifications were not assessed.

Conclusions

This study highlights various mechanisms that shape the genome of metastatic breast can-

cer and the value of studying advanced disease in detail. Treatment drives significant geno-

mic heterogeneity in breast cancers which has implications for disease monitoring and

treatment selection in the personalised medicine paradigm.

Author Summary

WhyWas This Study Done?

• We understand very little about the genomic changes that take place in advanced breast

cancers, particularly in the most advanced disease that results in death.

• Seeking this information is expected to provide important insights into cancer biology

and help us understand how advanced breast cancer evolves over time and the impact

this has on the natural history of the disease.

What Did the Researchers Do and Find?

• We conducted rapid autopsies on four patients that died of advanced breast cancer and

extensively profiled multiple lesions, which were compared to biopsies taken whilst

patients were alive, where possible.

• We aimed to reconstruct the relationship between different metastatic lesions and

understand the tumour cell subpopulations that make up metastatic lesions.

• Our findings reveal significant heterogeneity and evolution over time, which was shaped

by treatment, mutational processes, and the interaction of these factors with alterations

in cancer-promoting driver genes.
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What Do These Findings Mean?

• Our findings reveal the complexity of the cancer genome in advanced disease and high-

light the importance of ongoing monitoring and reassessment of the genomic profile if

this is to be used to guide therapy.

• Detailed autopsy studies in small numbers of patients can yield valuable insights into

cancer biology.

• Detecting small populations of cancer cells from actual patient specimens is difficult,

and the findings in this study could be limited by poor sensitivity to detect rare

populations.

Introduction

Heterogeneity in the natural history of advanced cancers has long been noted. The advent of

cancer genomics has revealed that significant heterogeneity may exist both between and within

lesions in the same patient. Since that time, autopsy studies have found a great variety of geno-

mic heterogeneity in multiple cancer types. Evolution over time has also been documented,

with varying influences of therapy in shaping the subclonal architecture of advanced disease.

At the same time, the clinical significance of heterogeneity is yet to be established.

Patients die of metastatic disease, but little is known about the biology of this late-stage,

lethal process. Genomics is a mature and robust platform for querying this biology. In breast

cancer, although many thousands of primary tumours have been characterised in detail, such

comprehensive data do not exist for metastatic disease, particularly in the most advanced and

lethal disease. Shah et al. studied genomic heterogeneity in a case of lobular breast cancer that

recurred 9 years after initial diagnosis. This single case showed genomic evolution over time

from primary to metastatic disease [1]. Ding et al. analysed a chemoresistant metastatic basal-

like breast cancer and showed low divergence between primary and metastatic lesions, with 48

of 50 mutations in common between sites [2].

More recently, the focus has shifted to understanding heterogeneity at the subclonal level.

Complex but reproducible subclonal dynamics were revealed by Eirew et al. in a large study of

treatment-naïve breast cancer xenografts analysed at the single-cell level [3]. Murtaza et al.

combined multi-region sequencing at autopsy with circulating DNA (ctDNA) measurements,

finding that ctDNA captured some of the underlying subclonal dynamics [4]. Juric et al. used

sequential biopsies and samples from autopsy to study the evolution of resistance to a PI3K

inhibitor in a case of hormone-positive breast cancer, finding evidence for multiple resistance

mechanisms evolving simultaneously in spatially distinct sites (termed convergent evolution)

[5]. Yates et al. performed a combination of whole genome and targeted sequencing on 50

breast cancer cases and inferred subclonal populations, finding variable intra-lesional hetero-

geneity [6]. Low prevalence or “minor” subclones in primary tumours could be seen giving

rise to recurrent disease and convergent evolution occurred both late and early in the disease

course. The profound influence of treatment on the subclonal structure of breast cancer has

also been delineated in human epidermal growth factor receptor 2 (HER2)-positive tumours

using a method that visualises driver mutation heterogeneity in different tumour subpop-

ulations [7]. This study also found an association between heterogeneity and poor clinical

outcome. Determining the genomic changes that define subclonal populations allows the
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evolutionary history of a cancer to be inferred, as was performed by Gao et al. in a single-cell

whole genome sequencing study of triple negative breast cancers [8]. Well-demarcated subclo-

nal populations could be defined by copy number alterations (CNA) without the presence of

populations showing intermediate copy number states. These findings are most consistent

with punctuated evolution of neoplastic phenotypes early in the natural history of a tumour

rather than gradual accumulation of genomic alterations. These studies paint an expanding

picture of the challenges and opportunities in understanding the complexities of advanced dis-

ease. Many questions remain about the relationship between breast cancer’s capacity to evolve

towards heterogeneous states and clinical outcome.

To understand the biology of lethal metastatic disease, our institution has implemented a

prospective community-based rapid autopsy program (CASCADE) in which patients consent

whilst alive to allow tissue donation after death [9]. In this study, we attempted to understand

the evolutionary history of four patients with lethal breast cancer who participated in the CAS-

CADE program: an aggressive and treatment-resistant triple negative breast cancer where the

patient died 12 months from diagnosis (TN1); an oestrogen-receptor (ER)-positive HER2-ne-

gative breast cancer with late relapse 7 years from diagnosis of early-stage disease (ER1); a de

novo metastatic ER-positive, HER2-negative breast cancer (ER2); and an ER-positive, HER2--

negative breast cancer in a young patient with multiple instances of discordant responses to

treatment between metastatic lesions (ER3). By interrogating the cancer genome at multiple

metastatic sites, including metastatic biopsies taken during life, we aimed to infer the subclonal

structure and evolutionary history of the disease for each case as it progressed from the pri-

mary tumour to lethal metastatic dissemination.

Methods

As breast cancer is relatively treatment responsive compared to other tumour types, we

focussed our analysis on understanding subclonal composition and how this evolves over time

under the influence of therapy. The first case was recruited in 2013, at which time methods for

performing subclonal inference on multiple samples were not mature. By the time the final

case was recruited in 2015, the field had advanced considerably, which made this approach fea-

sible, as will be detailed below. All four cases were analysed concurrently.

Patients were recruited by their treating clinicians to CASCADE, a prospective commu-

nity-based rapid autopsy program [9] conducted in association with the Kathleen Cuningham

Foundation Consortium for Research into Familial Breast Cancer (kConFab) and approved by

the Human Research Ethics Committee of the Peter MacCallum Cancer Centre, Melbourne

(HREC approval numbers: CASCADE 13/122, kConFab 92/97 and 11/102). Any patient with

advanced breast cancer was eligible. All patients provided written informed consent.

Study Procedures

The workflow for the CASCADE program is shown in Fig 1. Once recruited, the CASCADE

coordinator communicates with the patient, their family, and the associated health care pro-

viders regarding the patient’s status and ongoing willingness to participate. Following the

patient’s death, the next of kin specifies when the body can be transferred for autopsy. Autop-

sies were conducted by a specialist forensic pathologist assisted by the research team. Tumour

tissue was harvested from multiple representative metastatic sites. Each lesion was divided into

portions that were immediately snap frozen in liquid nitrogen and also fixed in formalin for

subsequent paraffin embedding. Frozen samples were used for sequencing where possible.

Prospectively collected fresh frozen samples were available for some cases. For all fresh tissues,

frozen sections were reviewed by a pathologist to confirm the presence of tumour, quantify
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necrosis, and estimate tumour cellularity. Premorbid formalin-fixed, paraffin-embedded

(FFPE) archival samples from primary tumours and metastatic lesions were also obtained.

Whole Exome Sequencing

DNA was extracted from sections cut from frozen tissues or FFPE blocks. For three of the

cases, ER1–ER3, whole exome libraries were prepared using the Roche-NimbleGen SeqCap

EZ exome version 3. For case TN1, libraries were prepared using the Illumina Nextera Rapid

Exome. All libraries were sequenced on the Illumina Hiseq platform. TN1 had DNA submitted

for single nucleotide polymorphism (SNP) array analysis with the Illumina Human Omni

2.5S beadchip, and other cases had DNA submitted for SNP array analysis on the Affymetrix

GenomeWide SNP 6.0 array. Blood was available for all cases for reference germline DNA.

After adapter trimming with cutadapt [10], raw sequence data were aligned to the human

reference genome GRCh37 with BWA [11]. Two samples for TN1 exhibited low sequencing

Fig 1. Workflow diagram giving overview of methodology.

doi:10.1371/journal.pmed.1002204.g001
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yield and a large number of likely artefactual mutations due to FFPE processing, and were

excluded from further analysis. Fresh frozen samples were sequenced to a mean depth of 105,

with FFPE samples sequenced to a mean depth of 75. Following alignment, BAM files were

processed according to GATK best practices [12]. Variants were called using MuTect [13] with

default parameters. Indels were called with VarDict [14] and pindel [15].

Called variants were annotated with ANNOVAR [16]. Variants were filtered as follows:

exclusion of variants in 1000 Genomes and the Exome Sequencing Project [17,18]; variants

with an allele frequency�2% or with 2 or more supporting reads in the normal; and allele fre-

quency<5% in fresh tissues or<10% in FFPE tissues. Indels were manually reviewed and

excluded if adjoining>4 homopolymer runs or repetitive regions.

Copy number was called from whole exome sequencing (WES) data using the facets pack-

age, which also provided purity and ploidy estimates [19]. For the Illumina bead chips, raw

data were tQN normalised [20], and segmented allele-specific copy number was called using

OncoSNP [21]. For the Affymetrix SNP chips, samples were processed using the Aroma pack-

age, applying TumorBoost and PSBCS [22,23]. Output of facets was compared to the SNP chip

data, and, in some cases, the parameters were adjusted to exclude less likely combinations of

copy number and purity. As SNP arrays were not available for the FFPE samples, whole exome

copy number was used for all analyses. Copy number segmentation determined from SNP

arrays was used as orthogonal validation of WES copy number calls from facets.

To determine the functional significance of novel nonsynonymous variants, the following

steps were taken: search COSMIC [24] and TCGA [25] for previous reports (across all tumour

types); prioritise variants with a high CADD score [26]; map variants to functional domains of

the gene, if possible; check if variant falls in a mutational hotspot using MutationAligner [27]

and Cancer HotSpots [28]; and review literature (using GeneRIF queried via MyGene.info

[29]). Annotation of CNA was limited to genes found to be recurrently altered in the literature

[30,31].

Subclonal Inference

superFREQ is a cancer exome clonality inference tool that takes advantage of multiple samples

from the same individual by tracking both single nucleotide variants (SNV) and CNA across

samples [32]. This allows the detection of highly subclonal somatic mutations that are present

at higher cell fraction in other samples. An advantage of superFREQ is that it estimates and

propagates statistical and systematic error sources throughout the analysis, thus decreasing the

number of false positives and allowing downstream analysis of uncertainties. It also accepts

aligned sequence data as input directly. Briefly, the pipeline performs the following steps: (1)

GC bias correction, (2) differential coverage analysis with limma-voom [33], (3) examines var-

iant positions shared between individual samples, flagging variants for base quality, mapping

quality, strand bias, stuttering, or other artefacts detected in the pool of normal control sam-

ples, (4) summarises differential coverage and SNPs for each gene, (5) recursively clusters

neighbouring genes with sufficiently similar differential coverage or SNP frequencies until a

segmentation of the genome is achieved for each sample, (6) summarises consensus coverage

and SNP frequencies for each segment and renormalizes, taking accuracy of coverage and SNP

frequency into account, (7) calls CNAs and clonality in each segment based on coverage and

SNP frequency, (8) calculates clonalities of somatic SNVs using local CNA, (9) tracks clonal-

ities of SNVs and CNAs over multiple samples to determine if the same or different alleles are

gained/lost between samples, (10) clusters mutations (SNVs or CNAs) with similar clonalities

in all samples into clones, (11) sorts clones into a tree structure, with smaller clones being

assigned as subclones when the sum of the clonalities of disjoint subclones cannot be larger
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than the clonality of the containing clone. Not all mutations are allocated to subclones by

superFREQ, usually due to highly deranged copy number, which does not permit the cancer

cell fraction to be reliably determined. Others have noted this problem with subclonal recon-

struction [6].

Case TN1 displayed a high degree of copy number variation, including large swathes of loss

of heterozygosity (LOH) affecting over 50% of the genome. Accurate clonal inference with

superFREQ was not successful. As an alternative, mutation clonality was determined using

PyClone [34], with allele-specific copy number provided by the R package facets [19]. Muta-

tion genotypes were built using “parental_copy_number” mode. For mutations in regions of

LOH, genotypes consistent with LOH were assigned a prior weight of 10, and other genotypes

down weighted to 0.1. All other genotype prior weights were left as 1. From the PyClone out-

put, the median clonality for each mutation (or cancer cell fraction) was clustered via affinity

propagation using the Schism package [35]. Mutation clusters were reviewed to separate

agglomerated private subclones if needed, and then the reviewed clusters were supplied to

Schism’s genetic algorithm to construct a multi-sample phylogeny. To validate this approach,

high depth validation sequencing of mutations found in more than one sample was subjected

to the same process to check the consistency of the tree with the WES data.

Validation

From each case, mutations and indels were selected for high depth validation based on their

contribution to the subclonal phylogeny and biological interest. An Ion AmpliSeq custom

panel was designed for the variants of interest in each case, and multiplex PCR was performed

as per the manufacturer’s protocol. Libraries were sequenced on the Ion Torrent PGM

sequencer (Life Technologies) to a median depth of 770. Wild-type and mutant reads from val-

idation loci were extracted from BAM files using the GenomicAligments R package [36]. Tak-

ing loci where there were at least 20 reads, a mutation was considered validated if there was a

significant deviation from an expected error rate of 1/200 using the p-binomial test [1].

Mutational Signatures

Mutational signatures were ascertained in a two-step process. Somatic mutations were filtered

to have allele frequency>10% in FFPE samples to avoid detecting formalin fixation artefact

and>5% in fresh samples. To increase detection power and avoid spurious signature detec-

tion, all unique mutations from each patient were pooled together and used as input to decon-

structSigs [37]. “default” normalisation was used as per the authors’ instructions, with a

minimum signature contribution of 0.06. The 30 signatures found in the latest COSMIC classi-

fication were used [38,39]. The contribution of the restricted set of signatures found in the

pooled mutation set was then examined in each sample. To test the robustness of signature

detection, pooled mutations were randomly downsampled to between 10% and 90% of the

original mutations, and deconstructSigs was re-run on 1,000 such downsampled sets.

ctDNA and Immunohistochemistry

ctDNA was assayed as previously described [40]. For immunohistochemistry, heat-induced

antigen retrieval was performed in 1× citrate buffer (Thermo Scientific). Samples were blocked

in 2% bovine serum albumin in tris-buffered saline/Polysorbate 20 solution and endogenous

peroxidase inactivated in 1.5% H2O2. Samples were incubated with primary antibodies,

including AGF2 (Abcam), CHD4 (Abcam), and Cullin1 (Cell Signalling Technology). Biotiny-

lated species-specific secondary antibodies were used at 1:300 (Dako) followed by the avidin-

biotin-complex (ABC) method prior to visualisation with 3,30-Diaminobenzidine (DAB)
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chromogen (Dako). Bright-field microscopy was performed on an Olympus BX-51 micro-

scope. Murine inguinal mammary fat pads were used as normal control tissue.

Results

Three ER-positive cases (denoted ER1, ER2, and ER3) and one triple negative case (denoted

TN1) were analysed. Cases were recruited sequentially, and no cases were excluded from the

analysis. In all cases, primary tumours were available as FFPE samples. Original pathology

reports describing the macro-dissection of the primary tumours were used to select FFPE

blocks in spatially distinct regions for each patient. In ER2, ER3, and TN1, metastatic biopsies

taken during life were also available for analysis, as well as ctDNA for ER2. To study heteroge-

neity and evolution in detail, 8 (ER1), 13 (ER2), 16 (ER3), and 15 (TN1) samples were

sequenced from each patient. Samples are summarised in S1 Table.

Patient TN1 was a woman diagnosed with a locally advanced triple negative breast cancer

not associated with a BRCA1 or BRCA2 germline mutation, at age 39. She had a clinical

response to a third-generation standard adjuvant chemotherapy regimen and underwent mas-

tectomy, which showed significant residual disease. Shortly thereafter, she developed a solitary

bony metastasis, followed by a liver metastasis and then multiple additional sites of metastatic

disease across lung, liver, and brain before dying of liver failure less than 12 months from first

diagnosis. She was treated with trastuzumab briefly when the breast primary was found to

have focal HER2 positivity, which was not seen again in other lesions. In contrast, patient ER1

relapsed with metastatic disease 7 years after her primary diagnosis at age 42 and underwent a

series of endocrine therapies before developing liver metastases and dying of liver failure after

surviving 8 years with metastatic disease. Patient ER2 had de novo metastatic disease diag-

nosed at age 35 and survived 3 years, receiving multiple lines of chemotherapy and endocrine

therapy. Patient ER3 did not receive surgical or medical treatment after initial diagnosis of

early stage disease at age 36 due to personal circumstances. She presented 18 months later with

metastatic disease and displayed discordant responses to therapy during her disease course,

which ran 4 years in duration before death.

Of 52 samples, three samples from TN1 were sequenced but not used in further analysis, as

they failed quality control (a breast core biopsy and biopsy of a femoral lesion taken premor-

tem, and a subcarinal lymph node from autopsy). One additional sample, a brain metastasis

from TN1, failed to sequence. Quality control metrics along with per sample validation rates

are shown in S2 and S3 Tables. For mutations detected with an allele frequency�10% from

WES, high depth validation rates for FFPE samples ranged from 95%–100% and from 97%–

100% for fresh samples. When mutations with an allele frequency�5% were used, 44/45 sam-

ples had validation rates of 95% or greater, with one sample from TN1 having a rate of 94%.

Importantly, high depth orthogonal validation did not affect the structure of the subclonal

tree. Three samples could not undergo validation due to insufficient DNA (1 pre-chemother-

apy breast biopsy for ER2 and the 2 primary samples for ER3).

Subclonal Architecture Defines Metastatic Spread

Inferring subclones and constructing subclonal phylogenies is a complex problem, requiring

high sequencing depth and/or multiple samples to increase sensitivity and reduce the space of

possible tree reconstructions [41–43]. By utilising multiple samples from each patient, we were

able to construct consistent subclonal phylogenies using mutation and copy number informa-

tion (Figs 2–5). Private subclones (that is, subclones that are found only in one lesion) are not

displayed in these figures for clarity, as they do not contribute to the core tree structure; there-

fore, all clones displayed were found in at least two spatially distinct sites.

The Subclonal Architecture of Metastatic Breast Cancer
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Fig 2. Treatment history (A) and subclonal structure (B and C) for ER1, inferred by superFREQ. Pre- and postmortem samples are shown. AC:
doxorubicin, cyclophosphamide; CMF: cyclophosphamide, methotrexate, 5-fluorouracil; Cyclo-MTX: cyclophosphamide, methotrexate; Gem-Carbo:
gemcitabine, carboplatin; Everolimus-Ex: everolimus, exemestane. P1: multiple samples from archival breast primary; A1, A3, A4: right liver lobe
metastases; A2: left liver lobe metastasis; A5: right adrenal lesion.

doi:10.1371/journal.pmed.1002204.g002
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Fig 3. Treatment history (A) and subclonal structure (B and C) for ER2, inferred by superFREQ. Pre- and postmortem samples are shown. AC:
doxorubicin, cyclophosphamide; Gem-Paclitaxel: gemcitabine, paclitaxel; Everolimus-Ex: everolimus, exemestane. P1: multiple samples from archival
breast primary, including pretreatment breast core biopsy; M1: liver core biopsy; A1: dural metastasis; A2, A3, A4: left liver lobe metastases; A5, A8:
para-aortic nodal metastases; A6, A7: right liver lobe metastases.

doi:10.1371/journal.pmed.1002204.g003
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Fig 4. Treatment history (A) and subclonal structure (B and C) for ER3, inferred by superFREQ. Pre- and postmortem samples are shown.
Cape-Cyclo: capecitabine, cyclophosphamide; P1: multiple samples from archival breast primary; M1: ovarian metastasis; M2: supraclavicular lymph
node biopsy; A1: brain metastasis; A2, A9: left and right hilar lymph nodes; A3: left lung lower lobe metastasis; A4: left paravertebral soft-tissue
metastasis; A5, A6: anterior and posterior left liver lobe lesions; A7: perinephric metastasis; A8: right upper lobe lesion; A10: rib metastasis; A11, A12:
right liver lobe metastases.

doi:10.1371/journal.pmed.1002204.g004
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Fig 5. Treatment history (A) and subclonal structure (B and C) for TN1, inferred using PyClone and Schism. Pre- and postmortem samples
are shown. FEC: 5-fluorouracil, epirubicin, cyclophosphamide; TCH: docetaxel, carboplatin, trastuzumab; AURKA: aurora kinase; P1: multiple
samples from archival breast primary (post-neoadjuvant chemotherapy); M1: liver core biopsy; A1: left upper lobe metastasis; A2: left liver lobe
metastasis; A3, A4, A5: left lung metastases; A6: right liver lobe metastasis.

doi:10.1371/journal.pmed.1002204.g005
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All ER-positive cases had founding clones containing known driver alterations. These

founding clones developed secondary alterations before giving rise to diverse subclones across

multiple metastatic sites. By way of example, in ER1 shown in Fig 2B, we inferred the presence

of an intermediate blue clone not found in isolation. This follows from (1) the absence of this

clone in the primary tumours, indicating the blue clone is a true subclone; (2) the absence of

the orange subclone in two samples where the red subclone has a high clonality, indicating the

red subclone did not arise in the orange subclone; and (3) two different subclones (red and

orange) with the blue clone as an ancestor. This intermediate blue clone was marked by an

FGFR4 tyrosine kinase domain mutation and a splice site mutation inMGA, which counter-

regulatesMYC activity. The blue clone also shows deletions in genomic regions containing

known tumour suppressor genes RB1, SPEN, CASP9, and FANCA. These mutations and CNAs

likely conferred metastatic potential, as all subsequent metastatic subclones arose from this

intermediate clone, as described above. The FGFR4mutation could not be detected in three spa-

tially separated samples of the primary tumour, even with high depth validation sequencing,

although this does not rule out very low prevalence subclones at the time of diagnosis. Emer-

gence of an unheralded “lethal subclone” following treatment has been documented in many

tumour types, including breast cancer, but here it associated with delayed disease relapse.

ER2 and ER3 display a different relationship between subclonal structure and metastatic

disease. For ER2, a biopsy of the breast mass was the index lesion, and the breast primary was

removed after chemotherapy, followed by a liver biopsy after several lines of therapy. All pre-

mortem samples displayed a similar subclonal structure, with a subclone (orange) marked by a

frameshift deletion in the cancer testis antigenMAGEA3 and a splice site mutation in ROCK1

that was subsequently detected at multiple sites in the liver at autopsy. The absence of this sub-

clone at other metastatic sites, however, shows there was early divergence and parallel evolu-

tion of at least two other subclones (blue and red). ctDNA for the AKT1 (E17K) mutation and

three ESR1mutations (D538G, S463P, E380Q) were assayed in plasma taken at the time of

liver biopsy and subsequently after death. Fig 6F shows all these mutations were detectable at

both time points (albeit at very low levels for the first time point), even though the liver biopsy

WES data did not reveal any ESR1mutations.

ER3 was a case of delayed presentation, with 2 years elapsing between initial detection of

early stage disease and subsequent metastatic disease, without intervening treatment. No sam-

ples could be obtained from the original diagnosis. In a similar fashion to ER1, the primary

subclones have a linear monophyletic relationship with the metastatic subclones. This case is

distinguished, however, by an ovarian lesion that contains the founding clone only. This ovar-

ian lesion was discovered incidentally during a therapeutic oophorectomy prior to any anti-

cancer therapy. Hence, despite lacking the more complex subclonal structure seen in other

lesions, this disease possessed the ability to metastasise very early. Whether this ovarian metas-

tasis would have resulted in clinically significant disease is unknown. The rest of the lesions

must have arisen from dissemination of a different subclone, which had acquired the SPEN

K1838X nonsense mutation and deletion of the negative modulator of oestrogen signalling

DUSP22. These alterations occurred while the patient was receiving endocrine therapy.

TN1 displayed both short linear evolution and early divergence. Fig 5 shows the subclonal

structure of the primary is found in all metastatic lesions via the green clone, but the blue and

orange clone diverged from a common ancestor derived from an earlier progenitor of the

green clone. Fig 5C shows the private subclones, some of which also emerged from the com-

mon ancestor. It is noteworthy that this case, with the most aggressive disease history with no

response to three different standard chemotherapy regimens, had the fewest common sub-

clones. S1 Fig demonstrates that CDH4, which contains a truncal mutation, is expressed at the

protein level.
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Fig 6. Mutational signatures in TN1 and ER2, and ctDNA assays in ER2. (A) Reconstruction of mutational context plot with deconstructSigs for TN1
using COSMIC signatures 17, 24, and 29. 50 and 30 nucleotides are indicated by colour code on x-axis. (B) Contribution of each signature per sample.
(C) Subclonal phylogeny for TN1 showing private and public subclones. Private subclones in dark blue. Mutations arising from signature 17 represented
in pink along branches. (D) Reconstruction of mutational context for ER2 using APOBEC signatures 2 and 13 detected with deconstructSigs, with origin
of key mutations overlaid. Colour codings as for (A). (E) Subclonal phylogeny for ER2, with private subclones in dark blue. (F) Bar charts show ctDNA
results at time of liver biopsy and later at death. y-axis unit is copies per millilitre.

doi:10.1371/journal.pmed.1002204.g006
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A key question is whether metastatic disease from one lesion can cross-seed anatomically

distant sites. This is difficult to distinguish from a subclinical low prevalence clone seeding two

different metastatic sites, a disseminative pattern rather than cross-seeding. All cases showed

spatially distinct lesions with very similar subclonal structures (e.g., liver lesions in ER1; para-

aortic nodal metastases in ER2; brain, lung, and liver metastases in ER3; lung metastases in

TN1). This is suggestive of metastatic cross-seeding. In addition, ER1, ER2, and TN1 showed

recurrent subclonal mixtures, raising the possibility of seeding by polyclonal clusters sustained

by clonal cooperation, in which two subclones help maintain each other’s survival and confer

novel phenotypic traits [3,44]. For such patterns to arise from dissemination alone rather than

cross-seeding, polyclonal seeding, or cooperation, multiple waves of dissemination by different

subclones from a primary tumour to the same metastatic site would be required.

Copy Number and Subclonal Evolution

In contrast to subclonal mutations, copy number changes between samples were relatively sta-

ble (Fig 7) for ER1, ER2, and TN1. Areas of LOH were particularly consistent across samples.

ER1 and ER2 displayed relatively few CNA, with overall 80%–85% of coding genes unaffected.

ER3 showed widespread copy number derangement affecting 40%–60% of coding genes, par-

ticularly on chromosomes 8 and 20. The ploidy of ER3 increased from early to late stage dis-

ease; the primary, ovarian metastasis, and lymph node biopsies all displayed diploid genomes,

with autopsy samples showing triploidy and tetraploidy in some cases (mean ploidy across

samples 3.2). There was inter-lesion copy number heterogeneity for ER3. This is reflected in

the relative abundance of subclonal copy number events in ER3 called by superFREQ, with a

mean of 22 copy number events per subclone for ER3, compared to 7 and 11 for ER1 and ER2,

respectively. Chromosomal instability (CIN) was therefore an ongoing process contributing to

subclonal evolution in ER3. TN1 showed the most deranged genome, which also had a mean

ploidy of 3.9, consistent with genome doubling, with 40%–50% of genes subject to LOH and

some form of copy number derangement affecting 70%–80% of genes. Subclonal copy number

could not be called satisfactorily for TN1. Although less deranged, in ER1, there was evidence

that the primary event was amplification of 1p, prior to driver mutations in PIK3CA (Fig 2B).

These findings are consistent with the growing body of work that extensive CIN takes place

early in the evolution of a tumour. In particular, a variety of data from single-cell sequencing of

tumours and normal cells has shown tumours contain only a few copy number states, without a

large number of intermediates, suggesting that large-scale copy number changes appear to

occur in a punctuated fashion rather than accumulating gradually over time [8]. A limitation of

studying this question in bulk sequencing is that detecting subclonal copy number changes with

high sensitivity is difficult, particularly in specimens with CIN and suboptimal purity.

Treatment Resistance

These cases present a unique opportunity to study clonal evolution during therapy. Breast can-

cer is the prototypical “treatable” solid tumour for which patients receive multiple lines of ther-

apy that usually result in a partial response or stable disease.

There was clear evidence that treatment alters subclonal structure. Disease at autopsy

showed subclones that contained mutations conferring chemotherapy resistance. In ER1 one

such mutation, TYMS V106M, is at a highly conserved residue in the binding site of thymidy-

late synthase, adjacent to two mutations known to cause resistance to 5FU in vitro (Fig 2B, yel-

low branch) [45].

Mutations in the ligand binding domain of ESR1 have recently been discovered as a com-

mon mechanism of resistance to endocrine therapy in metastatic breast cancer [46]. ER2
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Fig 7. Heatmap of copy number across all samples. x-axis shows all coding genes in order of chromosomal coordinate. Grey areas on map represent
difficulty in calling allele-specific copy number in FFPE samples. Horizontal blue lines indicate areas of LOH. Deep red is high level amplification, pale red
is amplified with four or more copies, and blue is deleted with less than two copies. White is two to three copies. Ploidy is displayed in last column on right.
y-axis terms correspond to Figs 2–5.

doi:10.1371/journal.pmed.1002204.g007

The Subclonal Architecture of Metastatic Breast Cancer

PLOSMedicine | DOI:10.1371/journal.pmed.1002204 December 27, 2016 16 / 25



displayed three different ESR1mutations all in different subclones. Furthermore, an ESR1

S463P mutation occurred in a subclone that already harboured an ESR1 E380Q, presumably in

a different allele. As ESR1mutations can be treated with alternative endocrine therapy and rep-

resent a tractable form of endocrine resistance, identifying them in patients failing endocrine

therapy is of some importance [47]. ER2 had a liver biopsy while alive that did not show any

ESR1mutations, highlighting the difficulty in managing advanced heterogeneous disease. At

the time of the liver biopsy, circulating cell-free DNA in plasma showed detectable low levels

of all three ESR1mutations (Fig 6F), which increased dramatically by the time of autopsy.

ER3 demonstrated discordant clinical responses on several occasions, with disease in the

lung responding while disease in the liver progressed and left and right hilar lymph nodes

responding differentially to chemotherapy. Fig 5C shows the divergent subclonal structure of

lung, liver, and hilar lymph nodes, although this may be a consequence of heterogeneous treat-

ment responses rather than the cause. Fig 7 also shows that differences in copy number can be

discerned between sample pairs in ER3, more so than the other cases, as discussed in the previ-

ous section.

We found additional evidence of this effect when considering the evolutionary trajectory in

the context of dominant oncogenic drivers. In ER2 and ER3, there were multiple subclones

with alterations in genes that interact with the truncal drivers in each case, AKT1 and TP53,

respectively (Fig 8). For ER2, alterations occurred in genes involved in the regulation of phos-

phatidylinositide phohsphates and PI3K signalling (PLPP4, PNPLA6, and PIK3R5), negative

Fig 8. Evolution of augmented oncogenic signalling in (A) ER2 and (B) ER3. Subclonal phylogenies with private subclones are displayed with
alterations that are expected to modulate oncogenic signalling.

doi:10.1371/journal.pmed.1002204.g008
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regulators of AKT1 signalling (PLEKHO1, PHLPP1, PID1, and USP12), and downstream effec-

tors of AKT1 (MFN1). For ER3, alterations occurred in coactivators and facilitators of TP53

activity (BACH2, ANKRD11,TP53I11,MYO10,WDR3, and NDUFAF6), negative regulators of

TP53 function (G3BP2), and downstream effectors (CD82). These findings suggest that resis-

tance to chemotherapy agents may arise from augmentation of existing oncogenic or tumour

suppressor signalling pathways rather than direct resistance through altered drug targets or

drug metabolism. This could be one explanation why increasing lines of treatment become

progressively less effective, despite having non-overlapping mechanisms of action.

Mutational Signatures Drive Heterogeneity and Treatment Resistance

Due to relatively low numbers of mutations, clear mutational signatures could be established

only in ER2 and TN1. The pattern of mutational signatures in these two cases were robust and

maintained a stable prevalence even when the starting mutation pool was down sampled to

10% of the total.

TN1 had an unusual composition of mutational signatures (Fig 6A–6C). There was a strong

signal from signature 17 in the COSMIC classification [38,39]. This signature has been

reported in breast cancer as well as oesophageal, liver, lung, and stomach cancers, melanoma,

and B-cell lymphoma [38]. The aetiology is unknown. As signature 17 produces a characteris-

tic T> G transversion that has relatively little overlap with other signatures, the contribution

of the signature to the mutations in subclones can be tracked. Mutations arising from this sig-

nature were found primarily in metastatic lesions from autopsy, comprising between 9%–45%

of the private mutations in four spatially distinct lesions in the lung and liver. The signature

was not active in the primary lesions or premortem liver biopsy. These private signature 17

mutations have subclonal fractions in the 0.2–0.6 range and cluster with other mutations to

form private subclones. Assuming that it is extremely unlikely a mutational process could

cause the same mutation in multiple cells within a single lesion, each private subclone with a

relatively high subclonal fraction of the signature 17 mutations must have arisen from a very

restricted population of single cells that expanded in each lesion. In addition, as a mutational

process per se confers no proliferative advantage, the prevalence of this signature may repre-

sent cells that were able to survive a treatment bottleneck, sustaining DNA damage in the pro-

cess. The only treatment the patient received after the liver biopsy (which did not contain

signature 17) was a pan aurora kinase inhibitor. There was no evidence of response to this

therapy. It is unclear how an aurora kinase inhibitor could cause this mutational signature. Sig-

natures 24 and 29 also show activity in TN1 samples. Signature 29 has been associated with the

mutagenic effect of tobacco chewing on the oral mucosa, and, although distinct from the clas-

sic smoking associated signature 4, there is a high degree of overlap. Signature 24 is reported

to occur with aflatoxin exposure. The significance of these carcinogen-induced signatures in a

triple negative breast cancer is unclear.

ER2 was dominated by signatures 2 and 13 in the COSMIC classification [39], which both

relate to the well-known phenomenon of APOBEC deaminase activity (Fig 6D). This signature

was present consistently in both early and late clones and allows us to study how APOBEC

may contribute to the evolution of breast cancer. Key driver mutations AKT1 E17K, SPEN,

and the ESR1 E380Q mutation are consistent with those induced by APOBEC. However, the

ARID1A and the TP53 truncating mutations have a low probability of arising from the APO-

BEC signature, and the ESR1 S463P and D538G mutations are not consistent with APOBEC.

In this case, therefore, APOBEC-related activity alone was able to furnish most of the putative

driver mutations and resulted in an ESR1mutation that causes resistance to endocrine therapy

but could not explain all of the ESR1mutations.
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Discussion

In this study, we analyse four cases chosen to represent difficult clinical scenarios in the con-

temporary management of advanced breast cancer. We took the approach of extensively sam-

pling metastatic disease at the time of autopsy, performing whole exome sequencing and SNP

arrays coupled with high depth validation of discovered mutations. We also analysed samples

taken from the primary tumour and, where available, metastatic lesions biopsied whilst

patients were still alive. In line with other work utilising the CASCADE program, we found

studying advanced disease at the time of death to be highly informative [48]. We found signifi-

cant heterogeneity present across multiple metastatic sites, and by performing subclonal infer-

ence, it was possible to understand the key processes that drive tumour evolution over time.

We have shown several novel findings, including how treatment shapes clonal evolution, the

importance of mutational processes over a disease course, and augmentation of oncogenic sig-

nalling as a mechanism of treatment failure.

Late relapse is a significant problem for ER-positive disease, which continues to show a

decline in survival beyond 10 years from diagnosis. In case ER1 with a long clinical latency, we

observed that the subclone giving rise to metastatic disease was not detectable at diagnosis

with standard sequencing and sampling measures. This has important implications for geno-

mic determinism, or the expectation that genomic assays from a single time point are able to

predict clinical outcome and guide therapy. In this case, additional oncogenic drivers from

mutations and CNA accumulated before metastatic disease occurred. The long time to recur-

rence may be because micrometastatic disease remained dormant until acquiring additional

drivers, or that the intermediate clone was present early in the natural history but was sup-

pressed by tamoxifen. Although these possibilities cannot be distinguished here, other studies

have found evidence that the primary tumour population contains low-frequency subclones

that may give rise to metastatic or recurrent disease [49]. Our results are similar to those

obtained in another case of recurrent disease after a long latency in lobular breast cancer [1].

Assuming a model in which infrequent subclones may give rise to eventual relapse 5 years or

more after initial therapy, prolonging adjuvant endocrine therapy is expected to be beneficial,

as has been shown in clinical trials [50,51]. Detecting and eliminating these rare subclones is a

difficult proposition, but targeting known clonal driver alterations could be one strategy.

These driver alterations could also be used to monitor for disease recurrence via ctDNA.

To our knowledge, ER2 is the first case of de novo metastatic ER-positive/HER2-negative

disease to undergo longitudinal sampling of metastases and autopsy along with ctDNA assess-

ments. In contrast to ER1, ER2 showed less divergence between the primary and metastatic

lesions. The most likely explanation for this pattern is that metastatic potential was available

early in the evolutionary history of this case. Another explanation for this could be reseeding

of the primary tumours from a metastatic niche, as has been reported elsewhere [52]. This case

did display subclonal patterns consistent with metastatic reseeding between para-aortic nodal

sites. That this mechanism exists in breast cancer highlights the difficulties in accurately profil-

ing the cancer genome, because even a lesion once biopsied may significantly change its sub-

clonal structure. Circulating tumour DNA is one method to avoid sampling bias, as was

illustrated in this case, in which biopsy of a liver lesion did not reveal any of the three ESR1

mutations that were detectable in plasma at the time.

In addition to ESR1, all three ER-positive cases showed alterations in SPEN after exposure to

endocrine therapy. SPEN has recently been implicated as a novel tumour suppressor that regu-

lates cell proliferation and inhibits oestrogen receptor downstream signalling, with a role in

resistance to tamoxifen [53]. The truncal location of SPEN alterations in three different cases

suggests this is a bona fide tumour suppressor and mediator of resistance to endocrine therapy.
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In ER3, there was the unexpected finding that the earliest subclone was able to metastasise

to the ovary. This case is also notable for the widespread copy number derangement that was

present in all samples, and, similar to TN1, this may have conferred the metastatic phenotype.

ER3 displayed ongoing copy number changes that segregated with subclones in our analysis.

This was in contrast to the other ER-positive cases, in which mutational processes dominated.

The presence of CIN has been shown in vitro to be associated with drug resistance, and there

is some evidence that aneuploidy is an adaptive response in lower eukaryotes [54,55]. There is

increasing evidence for punctuated evolution of copy number in cancers [8,56]. This fits well

with our data for ER1, ER2, and TN1. The situation for ER3 is less clear cut, as there is ongoing

acquisition of copy number changes beyond increases in ploidy. In some cancers, therefore,

“active” CIN is likely to be an important mechanism driving evolution, treatment resistance,

and heterogeneity. Notably, during treatment with tamoxifen and chemotherapy, ER3 showed

discordant responses between lesions in liver and lung. This could be explained by the signifi-

cant copy number heterogeneity seen in this case, although it is not possible to trace a premor-

tem lesion on imaging to a lesion at autopsy.

Understanding mutational signatures provided valuable insights for ER2 and TN1. In TN1,

the late emergence of signature 17 implies rapid rescaling of the subclonal structure of several

metastatic lesions. The aetiology of signature 17 is unknown, but the activity of this signature

in unrelated subclones at different anatomical sites suggests it can be chemically induced. Fur-

thermore, the presence of apparent carcinogen-induced mutational signatures in TN1 also

raises questions about the aetiology of aggressive triple negative breast cancers. In ER2, APO-

BEC was responsible for many important alterations of functional significance, including the

key founding driver mutation. It has been previously noted that APOBEC may give rise to

clonal and subclonal driver mutations [57,58], but we demonstrate here that this mutational

activity is maintained during treatment and throughout the natural history of the disease.

Arresting the activity of APOBEC may be a potential strategy to restrain progression and evo-

lution of APOBEC-enriched cancers.

We identified a potentially novel mechanism of broad treatment resistance to chemother-

apy, which arises from augmentation of existing oncogenic signalling. This implies that onco-

genic signalling remains essential even in heavily pretreated disease and raises the possibility

that combining targeted therapies with chemotherapy may severely restrict the fitness land-

scape that a tumour can access to achieve treatment resistance. The superior efficacy of such

combination therapy is well known, and this approach has been used with great success in

HER2-positive breast cancer, for example [59]. Other studies have shown that driver alter-

ations influence response to chemotherapy [7]. Our findings extend these concepts to define

augmented oncogenic signalling as a resistance mechanism that is widespread in advanced dis-

ease and may be therapeutically tractable.

There are several limitations to this study. WES alone may result in poor resolution to

detect subclones, which could underestimate the subclonal diversity present. In contrast to

mutations, detection of subclonal copy number events remains difficult, and important subclo-

nal amplifications or deletions may have been missed. Newer technologies, such as single-cell

approaches or long read sequencing, will be required to overcome these limitations. In addi-

tion, we did not analyse structural variants, the transcriptome, the epigenome, or the prote-

ome, which along with noncoding elements such as long noncoding RNAs or microRNAs

could make important contributions to subclonal evolution and phenotypic diversity not

captured by WES. Although we have analysed a small number of cases in detail, it is unclear

whether our findings are representative of the broader patient population.

In conclusion, we demonstrate the feasibility and value of subclonal inference in under-

standing the biology and evolutionary history of lethal breast cancer. This approach also
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provided insight into difficult clinical scenarios in breast cancer. Extension of the whole

exome approach to whole genome, transcriptome, and methylome studies, as well as more

novel single-cell and long read sequencing technology, is expected to provide further insights,

particularly when used in the setting of rapid autopsy studies, which afford the unprecedented

ability to sample multiple evolutionary trajectories comprehensively. It is notable that each

case studied was unique in the processes that ultimately resulted in death. It is unclear if pat-

terns will be found that can generalize across patient subgroups: for this, we will need large

cohorts for which we can track genomic evolution from diagnosis to death. To that end, our

prospective rapid autopsy program, which continues to accrue in breast cancer and other can-

cer types [9], as well as other international efforts will be essential to help us understand how

cancer disseminates and ultimately becomes resistant to treatment [60].
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