# THE SUBCOMODULE STRUCTURE OF THE QUANTUM SYMMETRIC POWERS

## LARS THAMS

In this paper we study the symmetric powers of quantum  $GL_n$ . These are comodules and we give a complete description of the subcomodule structure.

In [3] Doty gives a complete description of the submodule structure for the symmetric powers of the natural module for  $GL_n$ . We want to do the same thing for quantum  $GL_n$ , that is, determine the complete subcomodule structure of the *q*-symmetric powers (defined in [2] by Dipper and Donkin).

Throughout the paper we shall look at quantum  $GL_n$  defined over some field k. From [2, Theorem 2.1.9] we get a k basis of the q-symmetric powers. Following Doty's idea [3] we shall determine the subcomodule generated by a basis element by relating it to the carry pattern which we shall define, and hence get a complete description of the subcomodule structure. As one would expect, the quantum parameter  $q \in k$  will play an important role in this description.

#### 1. PRELIMINARIES

We shall first recall the set-up from [2].

1.1 Let R be a commutative ring,  $q \in R$  and  $2 \leq n \in \mathbb{Z}$ . Let  $A_q(n)$  be defined as the R-algebra generated by  $\{c_{i,j} \mid 1 \leq i, j \leq n\}$  with the following relations:

$$egin{aligned} &c_{i,k}c_{j,l}=qc_{j,l}c_{i,k} & ext{ for }i>j ext{ and }k\leqslant l\ &c_{i,k}c_{j,l}=c_{j,l}c_{i,k}+(q-1)c_{j,k}c_{i,l} & ext{ for }i>j ext{ and }k>l\ &c_{i,k}c_{i,l}=c_{i,l}c_{i,k} & ext{ for all }i,k ext{ and }l. \end{aligned}$$

1.2 For some positive integer r, we denote by I(n,r) the set of  $\mathbf{i} = (i_1, \ldots, i_r)$ where  $i_j \in \{1, \ldots, n\}$   $(1 \leq j \leq r)$ . For  $\mathbf{i}, \mathbf{s} \in I(n,r)$  let  $c_{\mathbf{i},\mathbf{s}} = c_{i_1,s_1}c_{i_2,s_2}\ldots c_{i_r,s_r} \in A_q(n)$ . Let  $A_q(n,r)$  denote the subspace of  $A_q(n)$  spanned by  $\{c_{\mathbf{i},\mathbf{s}} \mid \mathbf{i}, \mathbf{s} \in I(n,r)\}$ .

Received 13th September, 1993.

I would like to thank S. Donkin for his help and for making me interested in this problem.

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9729/94 \$A2.00+0.00.

#### L. Thams

[2]

Then  $A_q(n)$  is a graded *R*-algebra  $A_q(n) = \bigoplus_{0 \leq r} A_q(n,r)$  and it is free as an *R*-module. The graded part  $A_q(n,r)$  has *R*-basis  $\{c_{i,s} \mid (i,s) \in I^2(n,r)^+\}$ . (See [2] for a definition of  $I^2(n,r)^+$ . It means that a basis element will be of the form  $c_{1,1}^{a_{1,2}} \dots c_{1,n}^{a_{1,n}} c_{2,1}^{a_{2,1}} \dots c_{n,n}^{a_{n,n}}$  where  $a_{ij} \geq 0$  for all i, j and  $\sum_{i,j} a_{i,j} = r$ .)

1.3  $A_q(n)$  is made into a bialgebra with comultiplication  $\Delta(c_{i,s}) = \sum_{j=1}^n c_{i,j} \otimes c_{j,s}$ and counit  $\varepsilon(c_{i,s}) = \delta_{i,s}$ . For every  $0 \leq r \in \mathbb{Z}$ ,  $A_q(n,r)$  is a subcoalgebra of  $A_q(n)$ 

1.4 Let E be the free R-module of dimension n with basis  $\{e_1, \ldots, e_n\}$ . This means  $E = Re_1 \oplus \ldots \oplus Re_n$ . Let  $E^{\otimes r}$  denote the r-fold tensor product of E with itself. For  $\mathbf{i} = (i_1, i_2, \ldots, i_r) \in I(n, r)$  let  $e_{\mathbf{i}} = e_{i_1} \otimes e_{i_2} \otimes \ldots \otimes e_{i_r} \in E^{\otimes r}$ . Now  $E^{\otimes r}$  becomes a right  $A_q(n, r)$ -comodule with structure map  $\tau_r : E^{\otimes r} \to E^{\otimes r} \otimes A_q(n, r)$  defined by  $\tau_r(e_s) = \sum_{\mathbf{i} \in I(n, r)} e_{\mathbf{i}} \otimes c_{\mathbf{i}, \mathbf{s}}$ . Let T(E) denote the tensor algebra  $T(E) = \bigoplus_{0 \leq r} E^{\otimes r}$ , which is also a right  $A_q(n)$ -comodule.

1.5 There is also a left comodule structue on  $E^{\otimes r}$ , but to distinguish this from the right comodule it is given the name  $V^{\otimes r}$ , that is, V is the free *R*-module with basis  $\{v_1, \ldots, v_n\}$  and  $V^{\otimes r}$  becomes a left  $A_q(n, r)$ -comodule with structure map  $\sigma_r : V^{\otimes r} \to A_q(n, r) \otimes V^{\otimes r}$  defined by  $\sigma_r(v_{\mathsf{B}}) = \sum_{i \in I(n, r)} c_{i,\mathsf{s}} \otimes v_i$  (again  $v_i = v_{i_1} \otimes \ldots \otimes v_{i_r} \in V^{\otimes r}$  for  $i \in I(n, r)$ ). The tensor shares T(V) is a left  $A_q(n)$  corrected.

 $\mathbf{i} = (i_1, \dots, i_r) \in I(n, r)$ ). The tensor algebra T(V) is a left  $A_q(n)$ -comodule.

1.6 The ideal  $\langle e_i \otimes e_j - e_j \otimes e_i | 1 \leq i, j \leq n \rangle$  is a subcomodule of T(E). By  $S_q(E)$  we denote the factor comodule. The ideal  $\langle q(v_i \otimes v_j) - v_j \otimes v_i | 1 \leq i < j \leq n \rangle$  is a subcomodule of T(V). By  $S_q(V)$  we denote the factor comodule.

**THEOREM.** [2, 2.1.9]

- (i)  $S_q(E)$  is a graded algebra  $S_q(E) = \bigoplus_{0 \le r} S_q^r(E)$ . The graded part  $S_q^r(E)$  is R-free with basis  $\{e_{i_1} \dots e_{i_r} \mid i_1 \le i_2 \le \dots \le i_r\}$ .
- (ii)  $S_q(V)$  is a graded algebra  $S_q(V) = \bigoplus_{0 \le r} S_q^r(V)$ . The graded part  $S_q^r(V)$  is R-free with basis  $\{v_{i_1} \dots v_{i_r} \mid i_1 \le i_2 \le \dots \le i_r\}$ .

(Here  $e_{i_1} \ldots e_{i_r}$  (respectively  $v_{i_1} \ldots v_{i_r}$ ) denotes the image of  $e_{i_1} \otimes \ldots \otimes e_{i_r}$  (respectively  $v_{i_1} \otimes \ldots \otimes v_{i_r}$ ) in  $S^r_q(E)$  (respectively  $S^r_q(V)$ ).

We shall call  $S_q^r(E)$  and  $S_q^r(V)$  the q-symmetric powers of E and V.

### 2. CALCULATIONS

We want to give a complete description of the subcomodule structure of  $S_q^r(E)$  and  $S_q^r(V)$ . To do so we shall, following Doty [3], determine the subcomodule generated by some basis element  $e_{i_1} \ldots e_{i_r} \in S_q^r(E)$  (respectively  $v_{i_1} \ldots v_{i_r} \in S_q^r(V)$ ). From now on we shall assume that R is some field k.

2.1 For  $s \in \mathbb{Z}$  let  $[s] = (q^s - 1)/(q - 1) \in k$ . We have that  $[s] = 1 + q + \dots q^{s-1}$ . For  $s, t \in \mathbb{N}$  let  $\begin{bmatrix} s \\ t \end{bmatrix} = ([s][s-1]\dots[s-t+1])/([1][2]\dots[t])$  (called the Gaussian polynomial). Now we get:

LEMMA. Let  $s, t \in \mathbb{N}$ .

- (i) If q is a non root of unity then  $\begin{bmatrix} s \\ t \end{bmatrix} \neq 0$  for all  $t \leq s$ .
- (ii) If q is an  $l^{th}$  root of unity, then write  $s = s_1 l + s_0$ ,  $t = t_1 l + t_0$  where  $0 \le t_0, s_0 < l$ . Then we have

$$\begin{bmatrix} s \\ t \end{bmatrix} = \begin{pmatrix} s_1 \\ t_1 \end{pmatrix} \begin{bmatrix} s_0 \\ t_0 \end{bmatrix}$$

where  $\binom{s_1}{t_1}$  is the ordinary binomial coefficient. Furthermore we have that

$$\begin{bmatrix} s_0 \\ t_0 \end{bmatrix} \neq 0 \Leftrightarrow s_0 \geqslant t_0.$$

PROOF:

- (i) This is clear.
- (ii) This is proved by induction on t using that

$$\begin{bmatrix} s \\ t \end{bmatrix} \begin{bmatrix} t \\ 1 \end{bmatrix} = \begin{bmatrix} s \\ t-1 \end{bmatrix} \begin{bmatrix} s-t+1 \\ 1 \end{bmatrix}.$$

| - 1 |   |
|-----|---|
|     |   |
|     |   |
|     | _ |

For more information about Gaussian polynomials see [1].

2.2 We shall first consider the right comodule. As  $\tau_1(e_j) = \sum_{i=1}^n e_i \otimes c_{i,j} \ (1 \leq j \leq n)$ we have that  $e_1^{a_1} \dots e_n^{a_n} \in S_q^r(E)$  is sent to (\*)

 $(e_1\otimes c_{1,1}+\ldots+e_n\otimes c_{n,1})^{a_1}(e_1\otimes c_{1,2}+\ldots+e_n\otimes c_{n,2})^{a_2}\ldots(e_1\otimes c_{1,n}+\ldots+e_n\otimes c_{n,n})^{a_n}$ 

by  $\tau_r$ . So we shall determine the term in (\*) involving some arbitrary basis element  $e_1^{b_1} \dots e_n^{b_n} \in S_q^r(E)$ .

LEMMA 2.3. Let  $\sum_{i=1}^{n} b_i = a_j$  ( $b_i \in \mathbb{N}$  for all *i*). The term involving  $e_1^{b_1} e_2^{b_2} \dots e_n^{b_n}$ in  $(e_1 \otimes c_{1,j} + e_2 \otimes c_{2,j} + \dots + e_n \otimes c_{n,j})^{a_j}$  is equal to

$$e_1^{b_1}e_2^{b_2}\dots e_n^{b_n}\otimes \begin{bmatrix} a_j\\b_1\end{bmatrix}\begin{bmatrix} a_j-b_1\\b_2\end{bmatrix}\begin{bmatrix} a_j-b_1-b_2\\b_3\end{bmatrix}\\\dots\begin{bmatrix} a_j-b_1-b_2\dots-b_{n-1}\\b_n\end{bmatrix}c_{1,j}^{b_1}c_{2,j}^{b_2}\dots c_{n,j}^{b_n}$$

#### L. Thams

[4]

ł

**PROOF:** Assume first n = 2. So we shall look at  $(e_1 \otimes c_{1,j} + e_2 \otimes c_{2,j})^{a_j}$  for  $1 \leq j \leq 2$ . If  $a_j = 1$  the lemma is true, so by induction we shall assume that the lemma is true for  $a_j - 1$ . Hence the term involving  $e_1^{b_1} e_2^{b_2}$  is equal to

$$\begin{pmatrix} e_{1}^{b_{1}} e_{2}^{b_{2}-1} \otimes \begin{bmatrix} a_{j}-1\\ b_{1} \end{bmatrix} \begin{bmatrix} b_{2}-1\\ b_{2}-1 \end{bmatrix} c_{1,j}^{b_{1}} c_{2,j}^{b_{2}-1} \end{pmatrix} (e_{2} \otimes c_{2,j}) \\ + \begin{pmatrix} e_{1}^{b_{1}-1} e_{2}^{b_{2}} \otimes \begin{bmatrix} a_{j}-1\\ b_{1}-1 \end{bmatrix} \begin{bmatrix} b_{2}\\ b_{2} \end{bmatrix} c_{1,j}^{b_{1}-1} c_{2,j}^{b_{2}} \end{pmatrix} (e_{1} \otimes c_{1,j}) \\ = e_{1}^{b_{1}} e_{2}^{b_{2}} \otimes \left( \begin{bmatrix} a_{j}-1\\ b_{1} \end{bmatrix} \begin{bmatrix} b_{2}-1\\ b_{2}-1 \end{bmatrix} + q^{b_{2}} \begin{bmatrix} a_{j}-1\\ b_{1}-1 \end{bmatrix} \begin{bmatrix} b_{2}\\ b_{2} \end{bmatrix} \right) c_{1,j}^{b_{1}} c_{2,j}^{b_{2}} \\ = e_{1}^{b_{1}} e_{2}^{b_{2}} \otimes \begin{bmatrix} a_{j}\\ b_{1} \end{bmatrix} \begin{bmatrix} b_{2}\\ b_{2} \end{bmatrix} c_{1,j}^{b_{1}} c_{2,j}^{b_{2}}$$

as  $b_2 = a_j - b_1$ .

Now for the general case. Using the same argument as above we can first move  $c_{1,j}$  to the left, that is, the term involving  $e_1^{b_1} \dots e_n^{b_n}$  will be of the form

$$e_1^{b_1} \dots e_n^{b_n} \otimes \begin{bmatrix} a_j \\ b_1 \end{bmatrix} c_{1,j}^{b_1} (\ldots)$$

where (...) does not include  $c_{1,j}$ . Now using the same argument on (...) we can move  $c_{2,j}$  to the left in (...) and we have to multiply by  $\begin{bmatrix} a_j - b_1 \\ b_2 \end{bmatrix}$ . By repeating this we get the lemma.

COROLLARY 2.4. Let  $e^{\mathbf{a}} = e_1^{a_1} \dots e_n^{a_n}$ ,  $e^{\mathbf{b}} = e_1^{b_1} \dots e_n^{b_n} \in S_q^r(E)$ . The term involving  $e^{\mathbf{b}}$  in

$$(e_1 \otimes c_{1,1} + \ldots + e_n \otimes c_{n,1})^{a_1} (e_1 \otimes c_{1,2} + \ldots + e_n \otimes c_{n,2})^{a_2} \dots (e_1 \otimes c_{1,n} + \ldots + e_n \otimes c_{n,n})^{a_n}$$

is a sum of elements of the form

$$e_1^{b_1}e_2^{b_2}\ldots e_n^{b_n}\otimes dq^*c_{1,1}^{d_{1,1}}c_{1,2}^{d_{1,2}}\ldots c_{1,n}^{d_{1,n}}c_{2,1}^{d_{2,1}}\ldots c_{n,n}^{d_{n,n}}$$

where  $\sum_{i} d_{i,j} = a_j$ ,  $\sum_{j} d_{i,j} = b_i$ , s is some integer and

$$d = \begin{bmatrix} a_1 \\ d_{1,1} \end{bmatrix} \begin{bmatrix} a_1 - d_{1,1} \\ d_{2,1} \end{bmatrix} \cdots \begin{bmatrix} a_1 - d_{1,1} - \cdots - d_{n-1,1} \\ d_{n,1} \end{bmatrix} \begin{bmatrix} a_2 \\ d_{1,2} \end{bmatrix} \cdots \begin{bmatrix} a_n - d_{1,n} - \cdots - d_{n-1,n} \\ d_{n,n} \end{bmatrix}.$$

33

Π

PROOF: From the lemma it follows that we have a sum of elements of the form

$$e_1^{b_1}e_2^{b_2}\ldots e_n^{b_n}\otimes d\ c_{1,1}^{d_{1,1}}c_{2,1}^{d_{2,1}}\ldots c_{n,1}^{d_{n,1}}c_{1,2}^{d_{1,2}}\ldots c_{n,n}^{d_{n,n}}$$

And as  $c_{i,j}c_{s,t} = qc_{s,t}c_{i,j}$  for i > s and j < t the corollary follows.

2.5 Now consider the left comodule case. As  $\sigma_1(v_j) = \sum_{i=1}^n c_{j,i} \otimes v_i$   $(1 \leq j \leq n)$  we have that  $v_1^{a_1} \dots v_n^{a_n} \in S_q^r(V)$  is sent to (\*)  $(c_{1,1} \otimes v_1 + \dots + c_{1,n} \otimes v_n)^{a_1} (c_{2,1} \otimes v_1 + \dots + c_{2,n} \otimes v_n)^{a_2} \dots (c_{n,1} \otimes v_1 + \dots + c_{n,n} \otimes v_n)^{a_n}$  by  $\sigma_r$ . So we shall describe the term in (\*) involving some arbitrary basis element

by  $\sigma_r$ . So we shall describe the term in (\*) involving some arbitrary basis element  $v_1^{b_1} \dots v_n^{b_n} \in S_q^r(V)$ .

LEMMA 2.6. Let  $\sum_{i=1}^{n} b_i = a_j$  ( $b_i \in \mathbb{N}$  for all *i*). Then the term involving  $v_1^{b_1}v_2^{b_2}\ldots v_n^{b_n}$  in  $(c_{j,1}\otimes v_1 + c_{j,2}\otimes v_2 + \ldots + c_{j,n}\otimes v_n)^{a_j}$  is equal to

$$c_{j,1}^{b_{1}}c_{j,2}^{b_{2}}\ldots c_{j,n}^{b_{n}}\otimes \begin{bmatrix} a_{j}\\ b_{1} \end{bmatrix} \begin{bmatrix} a_{j}-b_{1}\\ b_{2} \end{bmatrix} \begin{bmatrix} a_{j}-b_{1}-b_{2}\\ b_{3} \end{bmatrix}$$
$$\dots \begin{bmatrix} a_{j}-b_{1}-b_{2}\ldots -b_{n-1}\\ b_{n} \end{bmatrix} v_{1}^{b_{1}}v_{2}^{b_{2}}\ldots v_{n}^{b_{n}}.$$

**PROOF:** Assume first n = 2. If  $a_j = 1$  the lemma is true, so by induction we shall assume that the lemma is true for  $a_j - 1$ . Hence the term involving  $v_1^{b_1}v_2^{b_2}$  is equal to

$$\begin{pmatrix} c_{j,1}^{b_1-1}c_{j,2}^{b_2} \otimes \begin{bmatrix} a_j - 1\\ b_1 - 1 \end{bmatrix} \begin{bmatrix} b_2\\ b_2 \end{bmatrix} v_1^{b_1-1}v_2^{b_2} \end{pmatrix} (c_{j,1} \otimes v_1) \\ + \begin{pmatrix} c_{j,1}^{b_1}c_{j,2}^{b_2-1} \otimes \begin{bmatrix} a_j - 1\\ b_1 \end{bmatrix} \begin{bmatrix} b_2 - 1\\ b_2 - 1 \end{bmatrix} v_1^{b_1}v_2^{b_2-1} \end{pmatrix} (c_{j,2} \otimes v_2) \\ = c_{j,1}^{b_1}c_{j,2}^{b_2} \otimes \begin{pmatrix} q^{b_2} \begin{bmatrix} a_j - 1\\ b_1 - 1 \end{bmatrix} \begin{bmatrix} b_2\\ b_2 \end{bmatrix} + \begin{bmatrix} a_j - 1\\ b_1 \end{bmatrix} \begin{bmatrix} b_2 - 1\\ b_2 - 1 \end{bmatrix} ) v_1^{b_1}v_2^{b_2} \\ = c_{j,1}^{b_1}c_{j,2}^{b_2} \otimes \begin{bmatrix} a_j\\ b_1 \end{bmatrix} \begin{bmatrix} b_2\\ b_2 \end{bmatrix} v_1^{b_1}v_2^{b_2}$$

as  $b_2 = a_j - b_1$ .

Now for the general case the lemma follows by the same argument as in 2.3. **COROLLARY 2.7.** Let  $v^{\mathbf{a}} = v_1^{a_1} \dots v_n^{a_n}, v^{\mathbf{b}} = v_1^{b_1} \dots v_n^{b_n} \in S_q^r(V)$ . The term involving  $v^{\mathbf{b}}$  in

$$(c_{1,1}\otimes v_1+\ldots+c_{1,n}\otimes v_n)^{a_1}(c_{2,1}\otimes v_1+\ldots+c_{2,n}\otimes v_n)^{a_2}\ldots(c_{n,1}\otimes v_1+\ldots+c_{n,n}\otimes v_n)^{a_n}$$

is a sum of elements of the form

$$c_{1,1}^{d_{1,1}}c_{1,2}^{d_{1,2}}\ldots c_{1,n}^{d_{1,n}}c_{2,1}^{d_{2,1}}\ldots c_{n,n}^{d_{n,n}}\otimes d q^{s} v_{1}^{b_{1}}v_{2}^{b_{2}}\ldots v_{n}^{b_{n}}$$

where  $\sum_{j} d_{i,j} = a_i$ ,  $\sum_{i} d_{i,j} = b_j$ , s is some integer and

$$d = \begin{bmatrix} a_1 \\ d_{1,1} \end{bmatrix} \begin{bmatrix} a_1 - d_{1,1} \\ d_{1,2} \end{bmatrix} \cdots \begin{bmatrix} a_1 - d_{1,1} - \cdots - d_{1,n-1} \\ d_{1,n} \end{bmatrix} \begin{bmatrix} a_2 \\ d_{2,1} \end{bmatrix} \cdots \begin{bmatrix} a_n - d_{n,1} - \cdots + d_{n,n-1} \\ d_{n,n} \end{bmatrix}.$$

PROOF: From the lemma it follows that we have a sum of elements of the form

$$c_{1,1}^{d_{1,1}}c_{1,2}^{d_{1,2}}\ldots c_{1,n}^{d_{1,n}}c_{2,1}^{d_{2,1}}\ldots c_{n,n}^{d_{n,n}}\otimes d v_1^{d_{1,1}}v_2^{d_{1,2}}\ldots v_n^{d_{1,n}}v_1^{d_{2,1}}\ldots v_n^{d_{n,n}}.$$

And as  $v_i v_j = q v_j v_i$  for  $1 \leq j < i \leq n$  the corollary follows.

**2.8** Let  $e^{\mathbf{a}}, e^{\mathbf{b}}$  (respectively  $v^{\mathbf{a}}, v^{\mathbf{b}}$ ) be basis elements of  $S_q^r(E)$  (respectively  $S_q^r(V)$ ). From 2.4 and 2.7 it follows that

$$e^{\mathbf{b}} \in \langle e^{\mathbf{a}} \rangle \Leftrightarrow v^{\mathbf{b}} \in \langle v^{\mathbf{a}} \rangle$$

where  $\langle e^{\mathbf{a}} \rangle$  (respectively  $\langle v^{\mathbf{a}} \rangle$ ) is the subcomodule of  $S_q^r(E)$  (respectively  $S_q^r(V)$ ) generated by  $e^{\mathbf{a}}$  (respectively  $v^{\mathbf{a}}$ ). Hence the subcomodule structure of  $S_q^r(E)$  and  $S_q^r(V)$  is the same. From now on we shall only consider the right comodule case.

#### 3. THE MAIN RESULT

In this section we shall give a complete description of the subcomodule structure of the q-symmetric powers. In 2.4 we have described the subcomodule of  $S_q^r(E)$  generated by some basis element. Now we want to know when the coefficient d in 2.4 is non zero. We shall do so by introducing the carry pattern. If the quantum parameter  $q \in k$  is a non root of unity, then there is no work to be done (see 3.1). If, however, q is a root of unity, then we shall consider two cases: when k is of characteristic 0 (see 3.2-3.6) and when k is of prime characteristic (see 3.7-3.10).

**THEOREM 3.1.** Let q be a non root of unity. Then  $S_q^r(E)$  is irreducible for each  $r \ge 0$ .

**PROOF:** By 2.1 and 2.4 it follows that the subcomodule generated by some arbitrary basis element  $e^{\mathbf{a}} \in S_q^r(E)$  is equal to  $S_q^r(E)$ .

From now on we shall assume that q is an l'th root of unity  $(l \ge 1)$ .

0

**3.2** Assume first that k is of characteristic 0. Let  $e^{\mathbf{a}} = e_1^{a_1} e_2^{a_2} \dots e_n^{a_n} \in S_q^r(E)$ . For each  $1 \leq i \leq n$  write  $a_i = a_i^1 l + a_i^0$  where  $0 \leq a_i^0 < l$ . Furthermore let  $r = r_1 l + r_0$  where  $0 \leq r_0 < l$ .

DEFINITION:  $C(e^{\mathbf{a}})$  is defined by

$$\sum_{i=1}^n a_i^0 = C(e^{\mathbf{a}})l + r_0$$

Following [3], we call  $C(e^{\mathbf{a}})$  the carry pattern of  $e^{\mathbf{a}}$ .

PROPOSITION 3.3. Let  $e^{\mathbf{a}} = e_1^{a_1} e_2^{a_2} \dots e_n^{a_n}$ ,  $e^{\mathbf{b}} = e_1^{b_1} e_2^{b_2} \dots e_n^{b_n} \in S_q^r(E)$ . Then  $C(e^{\mathbf{a}}) \ge C(e^{\mathbf{b}})$  if and only if there exists  $d_{i,j} \in \mathbf{N}$   $(1 \le i, j \le n)$  such that  $\sum_{i=1}^n d_{i,j} = a_j$ ,  $\sum_{j=1}^n d_{i,j} = b_i$  and  $\begin{bmatrix} a_1 \\ d_{1,1} \end{bmatrix} \begin{bmatrix} a_1 - d_{1,1} \\ d_{2,1} \end{bmatrix} \dots \begin{bmatrix} a_1 - d_{1,1} - \dots - d_{n-1,1} \\ d_{n,1} \end{bmatrix} \begin{bmatrix} a_2 \\ d_{1,2} \end{bmatrix}$  $\dots \begin{bmatrix} a_n - d_{1,n} - \dots - d_{n-1,n} \\ d_{n,n} \end{bmatrix} \ne 0.$ 

PROOF: Assume  $C(e^{\mathbf{a}}) \ge C(e^{\mathbf{b}})$ . This means that  $\sum_{i=1}^{n} a_i^0 \ge \sum_{i=1}^{n} b_i^0$ . For  $1 \le i, j \le n$  we shall define  $d_{i,j}$ . If  $b_i \le a_i$  set  $d_{i,i} = b_i^1 l + b_i^0$  if  $b_i^0 \le a_i^0$  and set  $d_{i,i} = b_i^1 l + a_i^0$  otherwise. If  $b_i > a_i$  set  $d_{i,i} = a_i^1 l + a_i^0$  if  $b_i^0 > a_i^0$  and set  $d_{i,i} = a_i^1 l + b_i^0$  otherwise. As  $\sum_{i=1}^{n} a_i^0 \ge \sum_{i=1}^{n} b_i^0$  we see by 2.1 (ii) that we can choose  $d_{i,j}$   $(i \ne j)$  such that we get the statement in the proposition.

Assume now that there exist  $d_{i,j} \in \mathbb{N}$   $(1 \leq i, j \leq n)$  as required in the proposition. For each  $d_{i,j}$  we write  $d_{i,j} = d_{i,j}^1 l + d_{i,j}^0$  where  $0 \leq d_{i,j}^0 < l$ . For each  $1 \leq j \leq n$ 

$$\begin{bmatrix} a_j \\ d_{1,j} \end{bmatrix} \begin{bmatrix} a_j - d_{1,j} \\ d_{2,j} \end{bmatrix} \cdots \begin{bmatrix} a_j - d_{1,j} - \cdots - d_{n-1,j} \\ d_{n,j} \end{bmatrix} \neq 0.$$

Hence by 2.1 (ii) we have  $a_j^0 \ge d_{1,j}^0 + \ldots + d_{n,j}^0$ . But as  $\sum_{i=1}^n d_{i,j} = a_j$  we must then have that

$$a_j^0 = d_{1,j}^0 + \ldots + d_{n,j}^0$$

for each  $1 \leq j \leq n$ . Now as  $\sum_{j=1}^{n} d_{i,j} = b_i$  we have (for  $1 \leq i \leq n$ ) that  $\sum_{j=1}^{n} d_{i,j}^0 = n_i l + b_i^0$  where  $n_i \geq 0$ . Hence

$$\sum_{j=1}^{n} a_{j}^{0} = \sum_{j=1}^{n} \sum_{i=1}^{n} d_{i,j}^{0} = \sum_{i=1}^{n} \sum_{j=1}^{n} d_{i,j}^{0} = \sum_{i=1}^{n} \left( n_{i}l + b_{i}^{0} \right) = \sum_{i=1}^{n} n_{i}l + \sum_{i=1}^{n} b_{i}^{0},$$

that is,

$$C(e^{\mathbf{a}}) \ge C(e^{\mathbf{b}})$$

3.4 From 2.4 and 3.3 we immediately get

**COROLLARY.** Let  $e^{\mathbf{a}}, e^{\mathbf{b}}$  be basis elements in  $S^{r}_{a}(E)$ . Then

$$e^{\mathbf{b}} \in \langle e^{\mathbf{a}} \rangle \Leftrightarrow C(e^{\mathbf{b}}) \leqslant C(e^{\mathbf{a}}).$$

**3.5** Let C(r) denote the set of numbers which occur as the carry pattern for some  $e^{\mathbf{a}} \in S_q^r(E)$ . For  $c \in C(r)$  let L(c) denote the span of all  $e^{\mathbf{a}} \in S_q^r(E)$ , where  $C(e^{\mathbf{a}}) = c$ . Let  $T(c) = \sum_{c' \leq c} L(c')$ . The complete description of the subcomodule structure of  $S_q^r(E)$  is then an easy consequence of 3.4:

**THEOREM.** We have a 1-1 correspondence

 $c \leftrightarrow T(c)$ 

between the set of carry patterns C(r) and the set of subcomodules of  $S_a^r(E)$ .

In particular, the irreducible composition factors of  $S_q^r(E)$  are in one-to-one correspondence with L(c) for  $c \in C(r)$ . It follows that all composition factors must have multiplicity one. (In fact we know this already by [2], as all weight multiplicities are 0 or 1.)

**3.6** It is easy to determine the carry patterns which occur: Let  $r = r_1 l + r_0$  where  $0 \le r_0 < l$ . Let  $M = r_1$  if r < (n-1)(l-1) and otherwise let

$$M = \left\{egin{array}{ccc} n-1 & ext{if } r_0+n-1 < k \ n-2 & ext{otherwise} \end{array}
ight.$$

Then we have that  $C(r) = \{0, 1, ..., M\}$ . By 3.5 the subcomodule structure of  $S_q^r(E)$  can then be described by

$$S_q^r(E) = T(M)$$

$$T(M - 1)$$

$$\vdots$$

$$T(0)$$

36

Π

37

3.7 Let now k be of prime characteristic p. Let  $e^{\mathbf{a}} = e^{a_1} \dots e^{a_n} \in S_q^r(E)$ , and for each  $1 \leq i \leq n$  write  $a_i = a_i^1 l + a_i^0$  where  $0 \leq a_i^0 < l$ . Furthermore let  $a_i^1 = \sum_j c_i^{1,j} p^j$ where  $0 \leq a_i^{1,j} < p$  for all i, j. Let  $r = r_1 l + r_0$ ,  $0 \leq r_0 < l$  and  $r_1 = \sum_j r_1^j p^j$ ,  $0 \leq r_1^j < p$ for all j.

Let  $C_0(e^{\mathbf{a}})$  be defined by

$$\sum_{i=1}^{n} a_i^0 = C_0(e^{\mathbf{a}})l + r_0,$$

and for  $t \ge 1$  define  $C_t(e^{\mathbf{a}})$  by

$$C_{t-1}(e^{\mathbf{a}}) + \sum_{i=1}^{n} a_i^{1,t-1} = C_t(e^{\mathbf{a}})p + r_1^{t-1}.$$

DEFINITION: The carry pattern of  $e^{\mathbf{a}}$  is defined to be

$$C(e^{\mathbf{a}}) = (C_0(e^{\mathbf{a}}), C_1(e^{\mathbf{a}}), \dots, C_m(e^{\mathbf{a}}))$$

where m is the biggest j such that  $r_1^j > 0$ .

The carry pattern is defined as a mixture of the carry pattern in characteristic 0, and the carry pattern defined in [3].

EXAMPLE. Let n = 3, r = 99, p = 3 and l = 5. Let  $e^{a} = e_1^{29} e_2^{37} e_3^{33}$  and  $e^{b} = e_1^{26} e_2^{52} e_3^{21}$ . Then we have that

$$C(e^{\mathbf{a}})=(1,1,2) \ \, ext{and} \ \, Cig(e^{\mathbf{b}}ig)=(0,1,1).$$

**3.8** Let C(r) be the set of carry patterns which occur as carry pattern for some  $e^{\mathbf{a}} \in S_q^r(E)$ . We let C(r) be partially ordered by  $c \leq c'$  if and only if  $c_i \leq c'_i$  for all *i* (where  $c = (c_0, c_1, \ldots, c_m)$  and  $c' = (c'_o, c'_1, \ldots, c'_m)$ ).

**PROPOSITION.** Let  $e^{\mathbf{a}}, e^{\mathbf{b}}$  be basis elements of  $S_q^r(E)$ . Then

$$e^{\mathbf{b}} \in \langle e^{\mathbf{a}} \rangle \Leftrightarrow C(e^{\mathbf{b}}) \leqslant C(e^{\mathbf{a}}).$$

**PROOF:** The proposition can be proved as in 3.3. If  $s, t \in \mathbb{N}$  then by 2.1

$$\begin{bmatrix} s \\ t \end{bmatrix} = \begin{pmatrix} s_1 \\ t_1 \end{pmatrix} \begin{bmatrix} s_0 \\ t_0 \end{bmatrix}$$

where  $s = s_1 l + s_0$ ,  $t = t_1 l + t_0$ ,  $0 \le s_0, t_0 < l$ .

L. Thams

 $C_0(e^{\mathbf{a}})$  plays exactly the same role as the carry pattern does in the characteristic 0 case, and can be handled as in the proof of 3.3. But we have to be a bit more careful with the binomial coefficient. We have that

$$\binom{s_1}{t_1} \equiv \binom{s_1^m}{t_1^m} \binom{s_1^{m-1}}{t_1^{m-1}} \dots \binom{s_1^0}{t_1^0} \mod p$$

where  $s_1 = \sum_j s_1^j p^j$ ,  $t_1 = \sum_j t_1^j p^j$ ,  $0 \leq s_1^j, t_1^j < p$  for all j.

The proof of 3.3 uses the fact that  $\begin{bmatrix} s_0 \\ t_0 \end{bmatrix} \neq 0 \Leftrightarrow s_0 \ge t_0$ . As  $\begin{pmatrix} s_1^j \\ t_1^j \end{pmatrix} \neq 0 \Leftrightarrow t_1^j \le s_1^j$  the present proposition can be proved using the proof of 3.3 on each level of the *p*-adic expansion.

**3.9** For  $c \in C(r)$  let L(c) denote the span of all  $e^{\mathbf{a}} \in S_q^r(E)$ , where  $C(e^{\mathbf{a}}) = c$ . For a subset  $B \subset C(r)$  let  $T(B) = \sum_{c \in B} L(c)$ . We say that the subset B is order closed if it contains the predecessors of all its elements under the given order relation. As a consequence of 3.8 we now have a complete description of the subcomodule structure of  $S_q^r(E)$ .

**THEOREM.** We have a 1-1 correspondence

$$B \leftrightarrow T(B)$$

between the set of order closed subsets of C(r) and the set of subcomodules of  $S_q^r(E)$ .

In particular, the irreducible composition factors of  $S_q^r(E)$  are in one-to-one correspondence with L(c) for  $c \in C(r)$ , and all composition factors have multiplicity one.

**3.10** We can determine C(r) and hence the order closed subsets of C(r) by combining 3.6 with Lemma 3 in [3].

EXAMPLE. Let n = 3, l = 5, p = 7 and  $r = 51 = (1 \ p + 3)l + 1$ . Then  $C(r) = \{(0,0), (0,1), (1,0), (1,1), (2,0), (2,1)\}$ . Hence by 3.9 the subcomodule structure of  $S_q^{51}(E)$  can be described by



References

- [1] G.E. Andrews, The theory of partitions, Encyclopedia Math. 2 (Addison-Wesley, 1976).
- [2] R. Dipper, S. Donkin, 'Quantum GL<sub>n</sub>', Proc. London Math. Soc. 63 (1991), 165-211.
- [3] S. Doty, 'Submodules of symmetric powers of the natural module for GL<sub>n</sub>', in Contemp. Math. 88 (American Mathematical Society, Providence, R.I., 1989), pp. 185-191.

School of Mathematics and Statistics The University of Sydney New South Wales 2006 Australia