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THE SUBCOMODULE STRUCTURE OF THE
QUANTUM SYMMETRIC POWERS

LARS THAMS

In this paper we study the symmetric powers of quantum GLn • These are comod-
ules and we give a complete description of the subcomodule structure.

In [3] Doty gives a complete description of the submodule structure for the symmet-
ric powers of the natural module for GLn. We want to do the same thing for quantum
GLn, that is, determine the complete subcomodule structure of the g-symmetric powers
(defined in [2] by Dipper and Donkin).

Throughout the paper we shall look at quantum GLn defined over some field k.
From [2, Theorem 2.1.9] we get a k basis of the g-symmetric powers. Following Doty's
idea [3] we shall determine the subcomodule generated by a basis element by relating
it to the carry pattern which we shall define, and hence get a complete description of
the subcomodule structure. As one would expect, the quantum parameter q G k will
play an important role in this description.

1. PRELIMINARIES

We shall first recall the set-up from [2].
1.1 Let R be a commutative ring, q G R and 2 ^ n G Z. Let Aq(n) be defined

as the iZ-algebra generated by {cij | 1 ^ i,j ^ n} with the following relations:

Ci,kCj,i = qcj,icitk for i > j and k ^l

Ci,kCj,i = ci,fCi,jfe + (g - l)cj,fcc,,i for i > j and A; > /

Ci,jfcC,-,i = Cijc^k for all i, k and I.

1.2 For some positive integer r, we denote by I(n,r) the set of i = (ii,..-,»r)
where ij G { l , . . . ,n} (1 ^ j < r). For i,s G I{n,r) let cifi = chi#1 a2,,, ....cir,.T G
Aq(n). Let Aq(n,r) denote the subspace of Aq(n) spanned by {c\iS | i,s G I(n,r)}.
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30 L. Thams [2]

Then Aq{n) is a graded i2-algebra Aq(n) = ®o^.rAq(n,r) and it is free as an R-
module. The graded part Aq(n,r) has fl-basis {c-,iB | (i,s) G I2{n,r)+}. (See [2]
for a definition of I2(n,r) . It means that a basis element will be of the form

"11 "12 "In "21 .<>„„ w } , p r p a - > ft fnr all 4 -l and V a • • — T \

n
1.3 Aq(n) is made into a bialgebra with comultiph'cation A(cil5) = ]T] Cij<S>CjiB

and counit e(cj,,) — 6it,. For every O ^ r g Z , Aq(n,r) is a subcoalgebra of Aq(n)
1.4 Let E be the free J?-module of dimension n with basis {e i , . . . , e n } . This

means E = Re\ ©. . . © Ren. Let E®T denote the r-fold tensor product of E with itself.
For i = (ii,i2,. • • ,ir) £ I{nir) le* ei = eii®^i3® • • -®eip G E®T. Now S®r becomes
a right ^4g(n,r)-comodule with structure map rr : £®r —> E®T<g>Aq(n,r) defined by
Tr(e8) = Y, ei®ciiS. Let T(E) denote the tensor algebra T(E) = ©o r̂-E®7", which

is also a right Ag(n)-comodule.
1.5 There is also a left comodule structue on E®T, but to distinguish this from the

right comodule it is given the name V®r, that is, V is the free i2-module with basis
{«! , . . . , vn} and V®r becomes a left Aq(n, r)-comodule with structure map ar : V®7" —•
Aq(n,r)®V®r defined by <rr(va) = J] ci,8<8>«i (again vt = v,t <g»... ®i;;r G F®r for

i6/(n,r)
i = ( i i , . . . ,tp) S I(n,r)). The tensor algebra r(V) is a left j4g(n)-comodule.

1.6 The ideal (ei<g>ej - ej®ei \ 1 < i, j ^ n) is a subcomodule of T(E). By 5g(E)
we denote the factor comodule. The ideal (q(vi<3)Vj) — Vj<S>Vi \ 1 ^ i < j ^ n) is a
subcomodule of T(V). By 5g(F) we denote the factor comodule.

THEOREM. [2,2.1.9]

(i) Sq{E) is a graded algebra Sq(E) = @Q^rS^(E). The graded part S^(E)
is R-free with basis {e^ ... c,-r | ii ^ i2 ^ . . . ^ ir}.

(ii) Sq(V) is a graded algebra Sq(V) = ®o^rS^(V). The graded part S*{V)
is R-free with basis {v^ ...Vir \ii ^ t2 ^ . . . ^ i r } .

(Here e^ ... eiT (respectively v^ ...Vir) denotes the image of e^® .. .®eir (re-
spectively vit (8)... ®vir ) in Sq(E) (respectively Sq(V)).

We shall call Sq(E) and Sq(V) the g-symmetric powers of E and V.

2. CALCULATIONS

We want to give a complete description of the subcomodule structure of S^{E) and
Sq(V). To do so we shall, following Doty [3], determine the subcomodule generated by
some basis element e,x . . . ejr G Sq(E) (respectively v^ ... v,-r G 5J(F)). From now on
we shall assume that R is some field k.
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[3] Subcomodule structure 31

2 .1 For s e Z let [a] = (q' - l)/{q - 1) £ k. We have t ha t [s]=l + q + ... 9 ' " 1 .

For s,t e N let [*] = ([«][« - 1 ] . . . [a - t + 1]) / ([1][2] . . . [t]) (called the Gaussian

polynomial). Now we get:

L E M M A . Let s,t e N .

(i) If q is a non root of unity then / 0 for all t ^ s.

(ii) If q is an I™ root of unity, then write a = aiZ + so, t = til + to where
0 ^ to, so < / . Tien we iave

J

where I 1 is the ordinary binomial coefficient. Furthermore we have

that

Jo

PROOF:

(i) This is dear,
(ii) This is proved by induction on t using that

D

For more information about Gaussian polynomials see [1].
n

2.2 We shall first consider the right comodule. As T\{ej) — £) ei®ci,j (1 ^ j ^ n)

we have that e"1 . . . e°" € S*(E) is sent to
(*)

+ ... + en®cnil)
01'

by TT . So we shall determine the term in (*) involving some arbitrary basis element

n

LEMMA 2 . 3 . Let Y, h - aj (b* e N for ali i j . The term involving ej1 e? ... e*n

t = i

in (c i®ci j + e2®c2,j + . . . + en®cn,,-)0' is equal to

aj - bx - b2 ... - 6 n _! ] 6 l bi

bn
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32 L. Thams [4]

PROOF: Assume first n — 2. So we shall look at (ei®ci,j + e2®C2,j)°J for 1 ^
j ^ 2. If a.j = 1 the lemma is true, so by induction we shall assume that the lemma is
true for aj — 1. Hence the term involving ej1 e2

2 is equal to

— ex e2 C
*2

h-1

ci!;c2?;

as 62 == ° j — "l •

Now for the general case. Using the same argument as above we can first move
Cij to the left, that is, the term involving e^ . . . e^n will be of the form

where ( . . . ) does not include Cij . Now using the same argument on ( . . . ) we can move

f °i - bi 1C2 ,• to the left in (...) and we have to multiply by . By repeating this we
L °2 i

get the lemma. U

COROLLARY 2 . 4 . Let e a = e j l . . . e £ » , e b = e j ' . - . c * " G S*{E). The term

involving eb in

i,i + . . . + en®cn, i)° l (ei<8»ci,2 + . . .

is a sum of elements of the form

e l e 2 • • • e n < * ) a 9 c l , l c l , 2 • • • C l , n C 2 , l •

wliere 53 ^t,j = °i> 53 ^»,i — *« > s 1S so™e integer and

3

l - ^ l . l l [ai -dl.l ^n- l . l l [ tt2
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[5] Subcomodule structure 33

PROOF: From the lemma it follows that we have a sum of elements of the form

e l e 2 • • • e n Q 9 O C X 1 C 2 1 . . . C n l C 1 2 . . . C n , n •

And as c^jC,^ = qCf^Cij for i > s and j < t the corollary follows. D
n

2.5 Now consider the left comodule case. As (TI(VJ) = 53 cj,i®vi (1 ^ j ^ n ) we
«=i

have that v"1 . . . v£ n G 5J(V) is sent to

(*)
(cM<g>t;i + . . . + c1>n®vn)

ai (c2)i<8iui + . . . + C2,n®Wn)°2 . . . (cn,i®t;i + . . . + cn,n®i;n)On

by <rr. So we shall describe the term in (*) involving some arbitrary basis element

n
LEMMA 2 . 6 . Let J2 bi = OJ ("6,- 6 N for all i). Then the term involving

i=l
v1

1v2
2 ... v£n in (CJ,I(8)WI + Cjt2<g>v2 + ... + c;-iB®wn)°' is equai to

V-V-

PROOF: Assume first n — 2. If a;- = 1 the lemma is true, so by induction we shall

assume that the lemma is true for CLJ — 1. Hence the term involving v1
1v2

2 is equal to

as &2 = Oj — bi.

Now for the general case the lemma follows by the same argument as in 2.3. D

COROLLARY 2 . 7 . Let v* = v°1...v%n,vb = v^...v^ e S'J(V). The term

involving vb in

. . . + cn,n<g>i;n)
0"
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is a sum of elements of the form

where £} ̂ »,i = at> 2 ^i,j = bj, s is some integer and

J — \ Ul 1 \ai ^1>1] [°1 ^1,1 . . . d l , n - l l [ O.2
d2,i

a-n — dn<i — . . . dn<n-i

dn,n

PROOF: From the lemma it follows that we have a sum of elements of the form

C l , l C l , 2 • • • C l , n C 2 , l • • • C n . A ® O « i 1>2 • • • « n Wj • • • Vn .

And as ViVj = qvjVi for 1 ^ j < i ^ n the corollary follows. D

2.8 Let ett, eb (respectively va,vb) be basis elements of Sg(E) (respectively
From 2.4 and 2.7 it follows that

eb E (ea> «» ub e (utt)

where (ea) (respectively (wa)) is the subcomodule of 5,(E) (respectively Sg(V)) gen-
erated by ea (respectively va). Hence the subcomodule structure of Sg(E) and Sg(V)
is the same. From now on we shall only consider the right comodule case.

3. THE MAIN RESULT

In this section we shall give a complete description of the subcomodule structure of
the g-symmetric powers. In 2.4 we have described the subcomodule of Sg(E) generated
by some basis element. Now we want to know when the coefficient d in 2.4 is non zero.
We shall do so by introducing the carry pattern. If the quantum parameter q £ k is a.
non root of unity, then there is no work to be done (see 3.1). If, however, q is a root
of unity, then we shall consider two cases: when k is of characteristic 0 (see 3.2—3.6)
and when k is of prime characteristic (see 3.7—3.10).

THEOREM 3 . 1 . Let q be a non root of unity. Then S*(E) is irreducible for each
r ^ O .

PROOF: By 2.1 and 2.4 it follows that the subcomodule generated by some arbi-
trary basis element ea G S*(E) is equal to S*(E). D

From now on we shall assume that q is an /'th root of unity (/ ^ 1).
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[7] Subcomodule structure 35

3.2 Assume first that k is of characteristic 0. Let ea = e^e? ... e£" G S'(E).

For each 1 ^ i ^ n write aj = a\l + aj where 0 ^ aj < /. Futhermore let r = r-^l + r0

where 0 ^ ro < I.

DEFINITION: C(ett) is defined by

Following [3], we call C(ea) the carry pattern of ea .

PROPOSITION 3 . 3 . Let ea = e^ e\2 ... e%n, eb = e\le?...ehf G S£(£) .
T i e n C(e t t ) > C ( e b ) if and only if there exists d^j G N (1 ^ i,j ^ n ) suc i t i a t

a2

, „

n nn n
PROOF: Assume C(e°) ̂  C ( e b ) . This means that £ oj > X) 6° • For 1 ^ i , j ^

i=i i=i
n we shall define di,j . If b{ < a,- set <£,,; = 6JI + 6? if 6? ^ aj and set difi - b\l + a?
otherwise. If 6,- > a* set dj^ = oj / + aj if 6j > a? and set d^i = a\l + b° otherwise. As
n n

52 a* > X) 6? we see by 2.1 (ii) that we can choose <£<,,- (i ^ j) such that we get the
»=i i=i
statement in the proposition.

Assume now that there exist dij G N (1 ^ i, j ^ n) as required in the proposition.
For each ditj we write ditj = d\jl + dj;- where 0 ^ d% j < 1. For each 1 < j < n

n
Hence by 2.1 (ii) we have a° ^ dj^- + . . . + d°n^. But as J^ ^»,i = ° ; w e must then have

i= l
that

a) =

for each 1 ^ j < n . Now as ^ di j — 6< we have (for 1 ^ i < n ) that JZ ^? ,• — rcW+ &J
i=i i=i 'J

where n, ~£ 0. Hence

t = l
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that is,
C(ea) > C(eb).

D
3.4 From 2.4 and 3.3 we immediately get

COROLLARY. Let ett,eb be basis elements in Sg(E). Then

eb € (ea) O C(eb) < C(ea).

3.5 Let C(r) denote the set of numbers which occur as the carry pattern for some
ea G S*(E). For c G C(r) let Z(c) denote the span of all ea G S'(E), where C(ea) = c.
Let T(c) = 53 -£(c')- The complete description of the subcomodule structure of Sg(E)

is then an easy consequence of 3.4:

THEOREM. We Aave a 1-1 correspondence

between the set of carry patterns C[r) and the set of subcomodules of ^

In particular, the irreducible composition factors of Sg(E) are in one-to-one cor-
respondence with L(c) for c £ C(r). It follows that all composition factors must have
multiplicity one. (In fact we know this already by [2], as all weight multiplicities are 0
or 1.)

3.6 It is easy to determine the carry patterns which occur: Let r = ril + ro where
0 < r0 < I. Let M = n if r < (n - l)(l - 1) and otherwise let

M { n - 1 i f r o + 7 i - l < {

n — 2 otherwise .

Then we have that C(r) = {0,1, . . . ,M}. By 3.5 the subcomodule structure of Sg(E)
can then be described by

T(M -1)

T(0)
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3.7 Let now Jfe be of prime characteristic p . Let ea = e°l . . . ea" G Sg(E), and for

each 1 < t ^ n write OJ = a\l + a? where 0 ^ a? < I. Furthermore let a\ = £ c,- 'V
i

where 0 < aJ'J < p for all i,j. Let r = ril+rQ, 0 < r0 < / and ri — J^rjVi 0 < rj < p

for all j .
Let C0(ea) be denned by

and for t ^ 1 define Ct(ea) by

DEFINITION: The carry pattern of ea is defined to be

C(ea) = (C0(ea), d (e t t ) , . . . ,Cm(ea))

where m is the biggest j such that r ' > 0.

The carry pattern is defined as a mixture of the carry pattern in characteristic 0,
and the carry pattern defined in [3].

EXAMPLE. Let n = 3, r = 99, p = 3 and / = 5. Let ea = e?9eij7ei|3 and eb =
efe^e l 1 . Then we have that

C(ea) = (1,1,2) and C(eb) = (0,1,1).

3.8 Let C(r) be the set of carry patterns which occur as carry pattern for some
ea £ S*(E). We let C{r) be partially ordered by c ^ c' if and only if a ^ c\ for all i
(where c = (co,Ci,.. .cm) and c' = {c'o,c[,... ,c'm)).

PROPOSITION. Let ea,eb be basis elements of S*(E). Then

eb G (ea) «• C(eb) < C(ea) .

PROOF: The proposition can be proved as in 3.3. If s,t G N then by 2.1

where a = BiZ + so> i = M + <o> 0 < so,to < I-

https://doi.org/10.1017/S0004972700009539 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700009539


38 L. Thams [10]

Co(ea) plays exactly the same role as the carry pattern does in the characteristic
0 case, and can be handled as in the proof of 3.3. But we have to be a bit more careful
with the binomial coefficient. We have that

W-Gr/Grv •"(«?)

where aj = ^B^p3', t\ = ^2 tip', 0 ^ s[,t{ < p for all j .
i i

The proof of 3.3 uses the fact that ' ° ^ 0 «• s0 ^ t0. As ( *) J ^ 0 «• t{' ^ s{
[to \ Khz

the present proposition can be proved using the proof of 3.3 on each level of the p-adic
expansion. D

3.9 For c £ C{r) let L(c) denote the span of all ea G S'(E), where C(ea) = c.

For a subset BcC(r) let T(B) = X) Lic)- W e say that the subset B is order closed
c€B

if it contains the predecessors of all its elements under the given order relation. As a

consequence of 3.8 we now have a complete description of the subcomodule structure

of S;(E).

THEOREM. We Aave a 1-1 correspondence

B «-> T(B)

between the set of order closed subsets of C(r) and the set of subcomodules of

In particular, the irreducible composition factors of S^(E) are in one-to-one cor-

respondence with L(c) for c £ C(r), and all composition factors have multiplicity one.

3.10 We can determine C(r) and hence the order closed subsets of C(r) by com-

bining 3.6 with Lemma 3 in [3].

EXAMPLE. Let n = 3, / = 5, p = 7 and r = 51 - (1 p + 3)/ + 1.

Then C(r) = {(0,0), (0,1),(1,0), (1,1), (2,0),(2,1)}. Hence by 3.9 the subcomodule
structure of Sg1(E) can be described by
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T({(0,0), (0,1), (1,0)}) T({(0,0), (1,0), (2,0)})
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