THE SUBCOMODULE STRUCTURE OF THE QUANTUM SYMMETRIC POWERS

Lars Thams

Abstract

In this paper we study the symmetric powers of quantum $G L_{n}$. These are comod-

 ules and we give a complete description of the subcomodule structure.In [3] Doty gives a complete description of the submodule structure for the symmetric powers of the natural module for $G L_{n}$. We want to do the same thing for quantum $G L_{n}$, that is, determine the complete subcomodule structure of the q-symmetric powers (defined in [2] by Dipper and Donkin).

Throughout the paper we shall look at quantum $G L_{n}$ defined over some field k. From [2, Theorem 2.1.9] we get a k basis of the q-symmetric powers. Following Doty's idea [3] we shall determine the subcomodule generated by a basis element by relating it to the carry pattern which we shall define, and hence get a complete description of the subcomodule structure. As one would expect, the quantum parameter $q \in k$ will play an important role in this description.

1. Preliminaries

We shall first recall the set-up from [2].
1.1 Let R be a commutative ring, $q \in R$ and $2 \leqslant n \in \mathbf{Z}$. Let $A_{q}(n)$ be defined as the R-algebra generated by $\left\{c_{i, j} \mid 1 \leqslant i, j \leqslant n\right\}$ with the following relations:

$$
\begin{aligned}
& c_{i, k} c_{j, l}=q c_{j, l} c_{i, k} \quad \text { for } i>j \text { and } k \leqslant l \\
& c_{i, k} c_{j, l}=c_{j, l} c_{i, k}+(q-1) c_{j, k} c_{i, l} \quad \text { for } i>j \text { and } k>l \\
& c_{i, k} c_{i, l}=c_{i, l} c_{i, k} \quad \text { for all } i, k \text { and } l .
\end{aligned}
$$

1.2 For some positive integer r, we denote by $I(n, r)$ the set of $\mathbf{i}=\left(i_{1}, \ldots, i_{r}\right)$ where $i_{j} \in\{1, \ldots, n\}(1 \leqslant j \leqslant r)$. For $\mathrm{i}, \mathrm{s} \in I(n, r)$ let $c_{i, s}=c_{i_{1}, a_{1}} c_{i_{2}, s_{2}} \ldots c_{i_{r}, s_{r}} \in$ $A_{q}(n)$. Let $A_{q}(n, r)$ denote the subspace of $A_{q}(n)$ spanned by $\left\{c_{i, s} \mid \mathrm{i}, \mathrm{s} \in I(n, r)\right\}$.

Received 13th September, 1993.
I would like to thank S. Donkin for his help and for making me interested in this problem.
Copyright Clearance Centre, Inc. Serial-fee code: 0004-9729/94 \$A2.00+0.00.

Then $A_{q}(n)$ is a graded R-algebra $A_{q}(n)=\oplus_{0 \leqslant r} A_{q}(n, r)$ and it is free as an R module. The graded part $A_{q}(n, r)$ has R-basis $\left\{c_{\mathrm{i}, \mathrm{s}} \mid(\mathrm{i}, \mathrm{s}) \in I^{2}(n, r)^{+}\right\}$. (See [2] for a definition of $I^{2}(n, r)^{+}$. It means that a basis element will be of the form $c_{1,1}^{a_{11}} c_{1,2}^{a_{12}} \ldots c_{1, n}^{a_{1 n}} c_{2,1}^{a_{21}} \ldots c_{n, n}^{a_{n n}}$ where $a_{i j} \geqslant 0$ for all i, j and $\sum_{i, j} a_{i, j}=r$.)
1.3 $A_{q}(n)$ is made into a bialgebra with comultiplication $\Delta\left(c_{i, s}\right)=\sum_{j=1}^{n} c_{i, j} \otimes c_{j, s}$ and counit $\varepsilon\left(c_{i, s}\right)=\delta_{i, s}$. For every $0 \leqslant r \in \mathbf{Z}, A_{q}(n, r)$ is a subcoalgebra of $A_{q}(n)$
1.4 Let E be the free R-module of dimension n with basis $\left\{e_{1}, \ldots, e_{n}\right\}$. This means $E=R e_{1} \oplus \ldots \oplus R e_{n}$. Let $E^{\otimes r}$ denote the r-fold tensor product of E with itself. For $\mathbf{i}=\left(i_{1}, i_{2}, \ldots, i_{r}\right) \in I(n, r)$ let $e_{\mathbf{i}}=e_{i_{1}} \otimes e_{i_{2}} \otimes \ldots \otimes e_{i_{r}} \in E^{\otimes r}$. Now $E^{\otimes r}$ becomes a right $A_{q}(n, r)$-comodule with structure map $\tau_{r}: E^{\otimes r} \rightarrow E^{\otimes r} \otimes A_{q}(n, r)$ defined by $\tau_{r}\left(e_{\mathbf{s}}\right)=\sum_{\mathbf{i} \in I(n, r)} e_{\mathbf{i}} \otimes c_{\mathbf{i}, \mathbf{s}}$. Let $T(E)$ denote the tensor algebra $T(E)=\oplus_{0 \leqslant r} E^{\otimes r}$, which is also a right $A_{q}(n)$-comodule.
1.5 There is also a left comodule structue on $E^{\otimes r}$, but to distinguish this from the right comodule it is given the name $V^{\otimes r}$, that is, V is the free R-module with basis $\left\{v_{1}, \ldots, v_{n}\right\}$ and $V^{\otimes r}$ becomes a left $A_{q}(n, r)$-comodule with structure map $\sigma_{r}: V^{\otimes r} \rightarrow$ $A_{q}(n, r) \otimes V^{\otimes r}$ defined by $\sigma_{r}\left(v_{\mathbf{s}}\right)=\sum_{i \in I(n, r)} c_{i, s} \otimes v_{\mathbf{i}}$ (again $v_{\mathbf{i}}=v_{i_{1}} \otimes \ldots \otimes v_{i_{r}} \in V^{\otimes r}$ for $\left.\mathbf{i}=\left(i_{1}, \ldots, i_{r}\right) \in I(n, r)\right)$. The tensor algebra $T(V)$ is a left $A_{q}(n)$-comodule.
1.6 The ideal $\left\langle e_{i} \otimes e_{j}-e_{j} \otimes e_{i} \mid 1 \leqslant i, j \leqslant n\right\rangle$ is a subcomodule of $T(E)$. By $S_{q}(E)$ we denote the factor comodule. The ideal $\left\langle q\left(v_{i} \otimes v_{j}\right)-v_{j} \otimes v_{i} \mid 1 \leqslant i<j \leqslant n\right\rangle$ is a subcomodule of $T(V)$. By $S_{q}(V)$ we denote the factor comodule.

Theorem. [2, 2.1.9]
(i) $S_{q}(E)$ is a graded algebra $S_{q}(E)=\oplus_{0} \leqslant r S_{q}^{r}(E)$. The graded part $S_{q}^{r}(E)$ is R-free with basis $\left\{e_{i_{1}} \ldots e_{i_{r}} \mid i_{1} \leqslant i_{2} \leqslant \ldots \leqslant i_{r}\right\}$.
(ii) $S_{q}(V)$ is a graded algebra $S_{q}(V)=\oplus_{0 \leqslant r} S_{q}^{r}(V)$. The graded part $S_{q}^{r}(V)$ is R-free with basis $\left\{v_{i_{1}} \ldots v_{i_{r}} \mid i_{1} \leqslant i_{2} \leqslant \ldots \leqslant i_{r}\right\}$.
(Here $e_{i_{1}} \ldots e_{i_{r}}$ (respectively $v_{i_{1}} \ldots v_{i_{r}}$) denotes the image of $e_{i_{1}} \otimes \ldots \otimes e_{i_{r}} \quad(r e-$ spectively $v_{i_{1}} \otimes \ldots \otimes v_{i_{r}}$) in $S_{\boldsymbol{q}}^{r}(E)$ (respectively $S_{\boldsymbol{q}}^{r}(V)$).

We shall call $S_{q}^{r}(E)$ and $S_{q}^{r}(V)$ the q-symmetric powers of E and V.

2. Calculations

We want to give a complete description of the subcomodule structure of $S_{q}^{r}(E)$ and $S_{q}^{r}(V)$. To do so we shall, following Doty [3], determine the subcomodule generated by some basis element $e_{i_{1}} \ldots e_{i_{r}} \in S_{q}^{r}(E)$ (respectively $\boldsymbol{v}_{i_{1}} \ldots v_{i_{r}} \in S_{q}^{r}(V)$). From now on we shall assume that R is some field k.
2.1 For $s \in Z$ let $[s]=\left(q^{s}-1\right) /(q-1) \in k$. We have that $[s]=1+q+\ldots q^{s-1}$. For $s, t \in \mathbf{N}$ let $\left[\begin{array}{l}s \\ t\end{array}\right]=([s][s-1] \ldots[s-t+1]) /([1][2] \ldots[t])$ (called the Gaussian polynomial). Now we get:

Lemma. Let $s, t \in \mathbf{N}$.
(i) If q is a non root of unity then $\left[\begin{array}{l}s \\ t\end{array}\right] \neq 0$ for all $t \leqslant s$.
(ii) If q is an $l^{\text {th }}$ root of unity, then write $s=s_{1} l+s_{0}, t=t_{1} l+t_{0}$ where $0 \leqslant t_{0}, s_{0}<l$. Then we have

$$
\left[\begin{array}{c}
s \\
t
\end{array}\right]=\binom{s_{1}}{t_{1}}\left[\begin{array}{l}
s_{0} \\
t_{0}
\end{array}\right]
$$

where $\binom{s_{1}}{t_{1}}$ is the ordinary binomial coefficient. Furthermore we have that

$$
\left[\begin{array}{l}
s_{0} \\
t_{0}
\end{array}\right] \neq 0 \Leftrightarrow s_{0} \geqslant t_{0} .
$$

Proof:
(i) This is clear.
(ii) This is proved by induction on t using that

$$
\left[\begin{array}{l}
s \\
t
\end{array}\right]\left[\begin{array}{l}
t \\
1
\end{array}\right]=\left[\begin{array}{c}
s \\
t-1
\end{array}\right]\left[\begin{array}{c}
s-t+1 \\
1
\end{array}\right] .
$$

For more information about Gaussian polynomials see [1].
2.2 We shall first consider the right comodule. As $\tau_{1}\left(e_{j}\right)=\sum_{i=1}^{n} e_{i} \otimes c_{i, j}(1 \leqslant j \leqslant n)$ we have that $e_{1}^{a_{1}} \ldots e_{n}^{a_{n}} \in S_{q}^{r}(E)$ is sent to
$\left(e_{1} \otimes c_{1,1}+\ldots+e_{n} \otimes c_{n, 1}\right)^{a_{1}}\left(e_{1} \otimes c_{1,2}+\ldots+e_{n} \otimes c_{n, 2}\right)^{a_{2}} \ldots\left(e_{1} \otimes c_{1, n}+\ldots+e_{n} \otimes c_{n, n}\right)^{a_{n}}$ by τ_{r}. So we shall determine the term in (*) involving some arbitrary basis element $e_{1}^{b_{1}} \ldots e_{n}^{b_{n}} \in S_{q}^{r}(E)$.

Lemma 2.3. Let $\sum_{i=1}^{n} b_{i}=a_{j}\left(b_{i} \in \mathbf{N}\right.$ for all $\left.i\right)$. The term involving $e_{1}^{b_{1}} e_{2}^{b_{2}} \ldots e_{n}^{b_{n}}$ in $\left(e_{1} \otimes c_{1, j}+e_{2} \otimes c_{2, j}+\ldots+e_{n} \otimes c_{n, j}\right)^{a_{j}}$ is equal to

$$
e_{1}^{b_{1}} e_{2}^{b_{2}} \ldots e_{n}^{b_{n}} \otimes\left[\begin{array}{l}
a_{j} \\
b_{1}
\end{array}\right]\left[\begin{array}{c}
a_{j}-b_{1} \\
b_{2}
\end{array}\right]\left[\begin{array}{c}
a_{j}-b_{1}-b_{2} \\
b_{3}
\end{array}\right]
$$

$$
\cdots\left[\begin{array}{c}
a_{j}-b_{1}-b_{2} \ldots-b_{n-1} \\
b_{n}
\end{array}\right] c_{1, j}^{b_{1}} c_{2, j}^{b_{2}} \ldots c_{n, j}^{b_{n}}
$$

Proof: Assume first $n=2$. So we shall look at $\left(e_{1} \otimes c_{1, j}+e_{2} \otimes c_{2, j}\right)^{a_{j}}$ for $1 \leqslant$ $j \leqslant 2$. If $a_{j}=1$ the lemma is true, so by induction we shall assume that the lemma is true for $a_{j}-1$. Hence the term involving $e_{1}^{b_{1}} e_{2}^{b_{2}}$ is equal to

$$
\begin{aligned}
\left(e_{1}^{b_{1}} e_{2}^{b_{2}-1} \otimes\right. & {\left.\left[\begin{array}{c}
a_{j}-1 \\
b_{1}
\end{array}\right]\left[\begin{array}{l}
b_{2}-1 \\
b_{2}-1
\end{array}\right] c_{1, j}^{b_{1}} c_{2, j}^{b_{2}-1}\right)\left(e_{2} \otimes c_{2, j}\right) } \\
& +\left(e_{1}^{b_{1}-1} e_{2}^{b_{2}} \otimes\left[\begin{array}{l}
a_{j}-1 \\
b_{1}-1
\end{array}\right]\left[\begin{array}{l}
b_{2} \\
b_{2}
\end{array}\right] c_{1, j}^{b_{1}-1} c_{2, j}^{b_{2}}\right)\left(e_{1} \otimes c_{1, j}\right) \\
& =e_{1}^{b_{1}} e_{2}^{b_{2}} \otimes\left(\left[\begin{array}{c}
a_{j}-1 \\
b_{1}
\end{array}\right]\left[\begin{array}{l}
b_{2}-1 \\
b_{2}-1
\end{array}\right]+q^{b_{2}}\left[\begin{array}{l}
a_{j}-1 \\
b_{1}-1
\end{array}\right]\left[\begin{array}{l}
b_{2} \\
b_{2}
\end{array}\right]\right) c_{1, j}^{b_{1}} c_{2, j}^{b_{2}} \\
& =e_{1}^{b_{1}} e_{2}^{b_{2}} \otimes\left[\begin{array}{l}
a_{j} \\
b_{1}
\end{array}\right]\left[\begin{array}{l}
b_{2} \\
b_{2}
\end{array}\right] c_{1, j}^{b_{1}} c_{2, j}^{b_{2}}
\end{aligned}
$$

as $b_{2}=a_{j}-b_{1}$.
Now for the general case. Using the same argument as above we can first move $c_{1, j}$ to the left, that is, the term involving $e_{1}^{b_{1}} \ldots e_{n}^{b_{n}}$ will be of the form

$$
e_{1}^{b_{1}} \ldots e_{n}^{b_{n}} \otimes\left[\begin{array}{l}
a_{j} \\
b_{1}
\end{array}\right] c_{1, j}^{b_{1}}(\ldots)
$$

where (...) does not include $c_{1, j}$. Now using the same argument on (...) we can move $c_{2, j}$ to the left in (...) and we have to multiply by $\left[\begin{array}{c}a_{j}-b_{1} \\ b_{2}\end{array}\right]$. By repeating this we get the lemma.

Corollary 2.4. Let $e^{a}=e_{1}^{a_{1}} \ldots e_{n}^{a_{n}}, e^{b}=e_{1}^{b_{1}} \ldots e_{n}^{b_{n}} \in S_{q}^{r}(E)$. The term involving e^{b} in

$$
\left(e_{1} \otimes c_{1,1}+\ldots+e_{n} \otimes c_{n, 1}\right)^{a_{1}}\left(e_{1} \otimes c_{1,2}+\ldots+e_{n} \otimes c_{n, 2}\right)^{a_{2}} \ldots\left(e_{1} \otimes c_{1, n}+\ldots+e_{n} \otimes c_{n, n}\right)^{a_{n}}
$$

is a sum of elements of the form

$$
e_{1}^{b_{1}} e_{2}^{b_{2}} \ldots e_{n}^{b_{n}} \otimes d q^{s} c_{1,1}^{d_{1,1}} c_{1,2}^{d_{1,2}} \ldots c_{1, n}^{d_{1, n}} c_{2,1}^{d_{2,1}} \ldots c_{n, n}^{d_{n, n}}
$$

where $\sum_{i} d_{i, j}=a_{j}, \sum_{j} d_{i, j}=b_{i}, s$ is some integer and

$$
\begin{aligned}
d=\left[\begin{array}{c}
a_{1} \\
d_{1,1}
\end{array}\right]\left[\begin{array}{c}
a_{1}-d_{1,1} \\
d_{2,1}
\end{array}\right] \cdots\left[\begin{array}{c}
a_{1}-d_{1,1}-\cdots-d_{n-1,1} \\
d_{n, 1}
\end{array}\right] & {\left[\begin{array}{c}
a_{2} \\
d_{1,2}
\end{array}\right] } \\
& \cdots\left[\begin{array}{c}
a_{n}-d_{1, n}-\ldots d_{n-1, n} \\
d_{n, n}
\end{array}\right] .
\end{aligned}
$$

Proof: From the lemma it follows that we have a sum of elements of the form

$$
e_{1}^{b_{1}} e_{2}^{b_{2}} \ldots e_{n}^{b_{n}} \otimes d c_{1,1}^{d_{1,1}} c_{2,1}^{d_{2,1}} \ldots c_{n, 1}^{d_{n, 1}} c_{1,2}^{d_{1,2}} \ldots c_{n, n}^{d_{n, n}}
$$

And as $c_{i, j} c_{a, t}=q c_{s, t} c_{i, j}$ for $i>s$ and $j<t$ the corollary follows.
2.5 Now consider the left comodule case. As $\sigma_{1}\left(v_{j}\right)=\sum_{i=1}^{n} c_{j, i} \otimes v_{i}(1 \leqslant j \leqslant n)$ we have that $v_{1}^{a_{1}} \ldots v_{n}^{a_{n}} \in S_{q}^{r}(V)$ is sent to
$\left(c_{1,1} \otimes v_{1}+\ldots+c_{1, n} \otimes v_{n}\right)^{a_{1}}\left(c_{2,1} \otimes v_{1}+\ldots+c_{2, n} \otimes v_{n}\right)^{a_{2}} \ldots\left(c_{n, 1} \otimes v_{1}+\ldots+c_{n, n} \otimes v_{n}\right)^{a_{n}}$
by σ_{r}. So we shall describe the term in (*) involving some arbitrary basis element $v_{1}^{b_{1}} \ldots v_{n}^{b_{n}} \in S_{q}^{r}(V)$.

Lemma 2.6. Let $\sum_{i=1}^{n} b_{i}=a_{j}\left(b_{i} \in \mathrm{~N}\right.$ for all $\left.i\right)$. Then the term involving $v_{1}^{b_{1}} v_{2}^{b_{2}} \ldots v_{n}^{b_{n}}$ in $\left(c_{j, 1} \otimes v_{1}+c_{j, 2} \otimes v_{2}+\ldots+c_{j, n} \otimes v_{n}\right)^{a_{j}}$ is equal to

$$
\begin{aligned}
& c_{j, 1}^{b_{1}} c_{j, 2}^{b_{2}} \ldots c_{j, n}^{b_{n}} \otimes\left[\begin{array}{c}
a_{j} \\
b_{1}
\end{array}\right]\left[\begin{array}{c}
a_{j}-b_{1} \\
b_{2}
\end{array}\right]\left[\begin{array}{c}
a_{j}-b_{1}-b_{2} \\
b_{3}
\end{array}\right] \\
& \cdots\left[\begin{array}{c}
a_{j}-b_{1}-b_{2} \ldots-b_{n-1} \\
b_{n}
\end{array}\right] v_{1}^{b_{1}} v_{2}^{b_{2}} \ldots v_{n}^{b_{n}} .
\end{aligned}
$$

Proof: Assume first $n=2$. If $a_{j}=1$ the lemma is true, so by induction we shall assume that the lemma is true for $a_{j}-1$. Hence the term involving $v_{1}^{b_{1}} v_{2}^{b_{2}}$ is equal to

$$
\begin{aligned}
\left(c_{j, 1}^{b_{1}-1} c_{j, 2}^{b_{2}}\right. & \left.\otimes\left[\begin{array}{l}
a_{j}-1 \\
b_{1}-1
\end{array}\right]\left[\begin{array}{l}
b_{2} \\
b_{2}
\end{array}\right] v_{1}^{b_{1}-1} v_{2}^{b_{2}}\right)\left(c_{j, 1} \otimes v_{1}\right) \\
& +\left(c_{j, 1}^{b_{1}} c_{j, 2}^{b_{2}-1} \otimes\left[\begin{array}{c}
a_{j}-1 \\
b_{1}
\end{array}\right]\left[\begin{array}{l}
b_{2}-1 \\
b_{2}-1
\end{array}\right] v_{1}^{b_{1}} v_{2}^{b_{2}-1}\right)\left(c_{j, 2} \otimes v_{2}\right) \\
& =c_{j, 1}^{b_{1}} c_{j, 2}^{b_{2}} \otimes\left(\begin{array}{l}
q^{b_{2}}
\end{array}\left[\begin{array}{c}
a_{j}-1 \\
b_{1}-1
\end{array}\right]\left[\begin{array}{l}
b_{2} \\
b_{2}
\end{array}\right]+\left[\begin{array}{c}
a_{j}-1 \\
b_{1}
\end{array}\right]\left[\begin{array}{l}
b_{2}-1 \\
b_{2}-1
\end{array}\right]\right) v_{1}^{b_{1}} v_{2}^{b_{2}} \\
& =c_{j, 1}^{b_{1}} c_{j, 2}^{b_{2}} \otimes\left[\begin{array}{l}
a_{j} \\
b_{1}
\end{array}\right]\left[\begin{array}{l}
b_{2} \\
b_{2}
\end{array}\right] v_{1}^{b_{1}} v_{2}^{b_{2}}
\end{aligned}
$$

as $b_{2}=a_{j}-b_{1}$.
Now for the general case the lemma follows by the same argument as in 2.3.
Corollary 2.7. Let $v^{\mathrm{a}}=v_{1}^{a_{1}} \ldots v_{n}^{a_{n}}, v^{b}=v_{1}^{b_{1}} \ldots v_{n}^{b_{n}} \in S_{q}^{r}(V)$. The term involving v^{b} in
$\left(c_{1,1} \otimes v_{1}+\ldots+c_{1, n} \otimes v_{n}\right)^{a_{1}}\left(c_{2,1} \otimes v_{1}+\ldots+c_{2, n} \otimes v_{n}\right)^{a_{2}} \ldots\left(c_{n, 1} \otimes v_{1}+\ldots+c_{n, n} \otimes v_{n}\right)^{a_{n}}$
is a sum of elements of the form

$$
c_{1,1}^{d_{1,1}} c_{1,2}^{d_{1,2}} \ldots c_{1, n}^{d_{1, n}} c_{2,1}^{d_{2,1}} \ldots c_{n, n}^{d_{n, n}} \otimes d q^{s} v_{1}^{b_{1}} v_{2}^{b_{2}} \ldots v_{n}^{b_{n}}
$$

where $\sum_{j} d_{i, j}=a_{i}, \sum_{i} d_{i, j}=b_{j}, s$ is some integer and

$$
\begin{aligned}
d=\left[\begin{array}{c}
a_{1} \\
d_{1,1}
\end{array}\right]\left[\begin{array}{c}
a_{1}-d_{1,1} \\
d_{1,2}
\end{array}\right] \cdots\left[\begin{array}{c}
a_{1}-d_{1,1}-\ldots-d_{1, n-1} \\
d_{1, n}
\end{array}\right] & {\left[\begin{array}{c}
a_{2} \\
d_{2,1}
\end{array}\right] } \\
& \ldots\left[\begin{array}{c}
a_{n}-d_{n, 1}-\ldots d_{n, n-1} \\
d_{n, n}
\end{array}\right] .
\end{aligned}
$$

Proof: From the lemma it follows that we have a sum of elements of the form

$$
c_{1,1}^{d_{1,1}} c_{1,2}^{d_{1,2}} \ldots c_{1, n}^{d_{1, n}} c_{2,1}^{d_{2,1}} \ldots c_{n, n}^{d_{n, n}} \otimes d v_{1}^{d_{1,1}} v_{2}^{d_{1,2}} \ldots v_{n}^{d_{1, n}} v_{1}^{d_{2,1}} \ldots v_{n}^{d_{n, n}}
$$

And as $v_{i} v_{j}=q v_{j} v_{i}$ for $1 \leqslant j<i \leqslant n$ the corollary follows.
2.8 Let $e^{\mathbf{a}}, e^{\mathbf{b}}$ (respectively $v^{\mathbf{a}}, v^{\mathbf{b}}$) be basis elements of $S_{q}^{r}(E)$ (respectively $S_{q}^{\tau}(V)$). From 2.4 and 2.7 it follows that

$$
e^{\mathbf{b}} \in\left\langle e^{\mathbf{a}}\right\rangle \Leftrightarrow v^{\mathbf{b}} \in\left\langle v^{\mathbf{a}}\right\rangle
$$

where $\left\langle e^{\mathbf{a}}\right\rangle$ (respectively $\left\langle v^{\mathrm{a}}\right\rangle$) is the subcomodule of $S_{q}^{r}(E)$ (respectively $S_{q}^{r}(V)$) generated by $e^{\mathbf{a}}$ (respectively $v^{\mathbf{a}}$). Hence the subcomodule structure of $S_{q}^{r}(E)$ and $S_{q}^{r}(V)$ is the same. From now on we shall only consider the right comodule case.

3. The main result

In this section we shall give a complete description of the subcomodule structure of the q-symmetric powers. In 2.4 we have described the subcomodule of $S_{q}^{r}(E)$ generated by some basis element. Now we want to know when the coefficient d in 2.4 is non zero. We shall do so by introducing the carry pattern. If the quantum parameter $q \in k$ is a non root of unity, then there is no work to be done (see 3.1). If, however, q is a root of unity, then we shall consider two cases: when k is of characteristic 0 (see 3.2-3.6) and when k is of prime characteristic (see 3.7-3.10).

THEOREM 3.1. Let q be a non root of unity. Then $S_{q}^{r}(E)$ is irreducible for each $r \geqslant 0$.

Proof: By 2.1 and 2.4 it follows that the subcomodule generated by some arbitrary basis element $e^{\mathrm{a}} \in S_{q}^{r}(E)$ is equal to $S_{q}^{r}(E)$.

From now on we shall assume that q is an l 'th root of unity ($l \geqslant 1$).
3.2 Assume first that k is of characteristic 0 . Let $e^{a}=e_{1}^{a_{1}} e_{2}^{a_{2}} \ldots e_{n}^{a_{n}} \in S_{q}^{r}(E)$. For each $1 \leqslant i \leqslant n$ write $a_{i}=a_{i}^{1} l+a_{i}^{0}$ where $0 \leqslant a_{i}^{0}<l$. Futhermore let $r=r_{1} l+r_{0}$ where $0 \leqslant r_{0}<\boldsymbol{l}$.

Definition: $C\left(e^{\mathbf{a}}\right)$ is defined by

$$
\sum_{i=1}^{n} a_{i}^{0}=C\left(e^{\mathrm{a}}\right) l+r_{0}
$$

Following [3], we call $C\left(e^{\mathbf{a}}\right)$ the carry pattern of $e^{\mathbf{a}}$.
Proposition 3.3. Let $e^{\mathbf{a}}=e_{1}^{a_{1}} e_{2}^{a_{2}} \ldots e_{n}^{a_{n}}, e^{b}=e_{1}^{b_{1}} e_{2}^{b_{2}} \ldots e_{n}^{b_{n}} \in S_{q}^{r}(E)$. Then $C\left(e^{\mathbf{a}}\right) \geqslant C\left(e^{\mathbf{b}}\right)$ if and only if there exists $d_{i, j} \in \mathbf{N}(1 \leqslant i, j \leqslant n)$ such that $\sum_{i=1}^{n} d_{i, j}=a_{j}, \sum_{j=1}^{n} d_{i, j}=b_{i}$ and

$$
\begin{aligned}
{\left[\begin{array}{c}
a_{1} \\
d_{1,1}
\end{array}\right]\left[\begin{array}{c}
a_{1}-d_{1,1} \\
d_{2,1}
\end{array}\right] \ldots\left[\begin{array}{c}
a_{1}-d_{1,1}-\ldots-d_{n-1,1} \\
d_{n, 1}
\end{array}\right] } & {\left[\begin{array}{c}
a_{2} \\
d_{1,2}
\end{array}\right] } \\
& \ldots\left[\begin{array}{c}
a_{n}-d_{1, n}-\ldots d_{n-1, n} \\
d_{n, n}
\end{array}\right] \neq 0
\end{aligned}
$$

Proof: Assume $C\left(e^{\mathbf{a}}\right) \geqslant C\left(e^{\mathbf{b}}\right)$. This means that $\sum_{i=1}^{n} a_{i}^{0} \geqslant \sum_{i=1}^{n} b_{i}^{0}$. For $1 \leqslant i, j \leqslant$ n we shall define $d_{i, j}$. If $b_{i} \leqslant a_{i}$ set $d_{i, i}=b_{i}^{1} l+b_{i}^{0}$ if $b_{i}^{0} \leqslant a_{i}^{0}$ and set $d_{i, i}=b_{i}^{1} l+a_{i}^{0}$ otherwise. If $b_{i}>a_{i}$ set $d_{i, i}=a_{i}^{1} l+a_{i}^{0}$ if $b_{i}^{0}>a_{i}^{0}$ and set $d_{i, i}=a_{i}^{1} l+b_{i}^{0}$ otherwise. As $\sum_{i=1}^{n} a_{i}^{0} \geqslant \sum_{i=1}^{n} b_{i}^{0}$ we see by 2.1 (ii) that we can choose $d_{i, j}(i \neq j)$ such that we get the statement in the proposition.

Assume now that there exist $d_{i, j} \in \mathbf{N}(1 \leqslant i, j \leqslant n)$ as required in the proposition. For each $d_{i, j}$ we write $d_{i, j}=d_{i, j}^{1} l+d_{i, j}^{0}$ where $0 \leqslant d_{i, j}^{0}<l$. For each $1 \leqslant j \leqslant n$

$$
\left[\begin{array}{c}
a_{j} \\
d_{1, j}
\end{array}\right]\left[\begin{array}{c}
a_{j}-d_{1, j} \\
d_{2, j}
\end{array}\right] \cdots\left[\begin{array}{c}
a_{j}-d_{1, j}-\ldots-d_{n-1, j} \\
d_{n, j}
\end{array}\right] \neq 0
$$

Hence by 2.1 (ii) we have $a_{j}^{0} \geqslant d_{1, j}^{0}+\ldots+d_{n, j}^{0}$. But as $\sum_{i=1}^{n} d_{i, j}=a_{j}$ we must then have that

$$
a_{j}^{0}=d_{1, j}^{0}+\ldots+d_{n, j}^{0}
$$

for each $1 \leqslant j \leqslant n$. Now as $\sum_{j=1}^{n} d_{i, j}=b_{i}$ we have (for $1 \leqslant i \leqslant n$) that $\sum_{j=1}^{n} d_{i, j}^{0}=n_{i} l+b_{i}^{0}$ where $n_{i} \geqslant 0$. Hence

$$
\sum_{j=1}^{n} a_{j}^{0}=\sum_{j=1}^{n} \sum_{i=1}^{n} d_{i, j}^{0}=\sum_{i=1}^{n} \sum_{j=1}^{n} d_{i, j}^{0}=\sum_{i=1}^{n}\left(n_{i} l+b_{i}^{0}\right)=\sum_{i=1}^{n} n_{i} l+\sum_{i=1}^{n} b_{i}^{0}
$$

that is,

$$
C\left(e^{\mathrm{a}}\right) \geqslant C\left(e^{\mathrm{b}}\right)
$$

3.4 From 2.4 and 3.3 we immediately get

Corollary. Let $e^{\mathrm{a}}, e^{\mathrm{b}}$ be basis elements in $S_{q}^{r}(E)$. Then

$$
e^{\mathbf{b}} \in\left\langle e^{\mathbf{a}}\right\rangle \Leftrightarrow C\left(e^{\mathbf{b}}\right) \leqslant C\left(e^{\mathbf{a}}\right)
$$

3.5 Let $C(r)$ denote the set of numbers which occur as the carry pattern for some $\mathbf{e}^{\mathbf{a}} \in S_{q}^{r}(E)$. For $c \in C(r)$ let $L(c)$ denote the span of all $e^{\mathbf{a}} \in S_{q}^{r}(E)$, where $C\left(e^{\mathbf{a}}\right)=c$. Let $T(c)=\sum_{c^{\prime} \leqslant c} L\left(c^{\prime}\right)$. The complete description of the subcomodule structure of $S_{q}^{r}(E)$ is then an easy consequence of 3.4:

ThEOREM. We have a 1-1 correspondence

$$
c \leftrightarrow T(c)
$$

between the set of carry patterns $C(r)$ and the set of subcomodules of $S_{q}^{r}(E)$.
In particular, the irreducible composition factors of $S_{q}^{r}(E)$ are in one-to-one correspondence with $L(c)$ for $c \in C(r)$. It follows that all composition factors must have multiplicity one. (In fact we know this already by [2], as all weight multiplicities are 0 or 1.$)$
3.6 It is easy to determine the carry patterns which occur: Let $r=r_{1} l+r_{0}$ where $0 \leqslant r_{0}<l$. Let $M=r_{1}$ if $r<(n-1)(l-1)$ and otherwise let

$$
M= \begin{cases}n-1 & \text { if } r_{0}+n-1<l \\ n-2 & \text { otherwise }\end{cases}
$$

Then we have that $C(r)=\{0,1, \ldots, M\}$. By 3.5 the subcomodule structure of $S_{q}^{r}(E)$ can then be described by

3.7 Let now k be of prime characteristic p. Let $e^{a}=e^{a_{1}} \ldots e^{a_{n}} \in S_{q}^{r}(E)$, and for each $1 \leqslant i \leqslant n$ write $a_{i}=a_{i}^{1} l+a_{i}^{0}$ where $0 \leqslant a_{i}^{0}<l$. Furthermore let $a_{i}^{1}=\sum_{j} c_{i}^{1, j} p^{j}$ where $0 \leqslant a_{i}^{1, j}<p$ for all i, j. Let $r=r_{1} l+r_{0}, 0 \leqslant r_{0}<l$ and $r_{1}=\sum_{j} r_{1}^{j} p^{j}, 0 \leqslant r_{1}^{j}<p$ for all j.

Let $C_{0}\left(e^{\mathbf{a}}\right)$ be defined by

$$
\sum_{i=1}^{n} a_{i}^{0}=C_{0}\left(e^{\mathbf{a}}\right) l+r_{0}
$$

and for $t \geqslant 1$ define $C_{t}\left(e^{\mathbf{a}}\right)$ by

$$
C_{t-1}\left(e^{\mathbf{a}}\right)+\sum_{i=1}^{n} a_{i}^{1, t-1}=C_{t}\left(e^{\mathbf{a}}\right) p+r_{1}^{t-1}
$$

Definition: The carry pattern of $e^{\mathbf{a}}$ is defined to be

$$
C\left(e^{\mathbf{a}}\right)=\left(C_{0}\left(e^{\mathbf{a}}\right), C_{1}\left(e^{\mathbf{a}}\right), \ldots, C_{m}\left(e^{\mathbf{a}}\right)\right)
$$

where m is the biggest j such that $r_{1}^{j}>0$.
The carry pattern is defined as a mixture of the carry pattern in characteristic 0 , and the carry pattern defined in [3].

Example. Let $n=3, r=99, p=3$ and $l=5$. Let $e^{\mathbf{a}}=e_{1}^{29} e_{2}^{37} e_{3}^{33}$ and $e^{\mathbf{b}}=$ $e_{1}^{26} e_{2}^{52} e_{3}^{21}$. Then we have that

$$
C\left(e^{\mathbf{a}}\right)=(1,1,2) \text { and } C\left(e^{\mathbf{b}}\right)=(0,1,1)
$$

3.8 Let $C(r)$ be the set of carry patterns which occur as carry pattern for some $e^{\mathbf{a}} \in S_{q}^{r}(E)$. We let $C(r)$ be partially ordered by $c \leqslant c^{\prime}$ if and only if $c_{i} \leqslant c_{i}^{\prime}$ for all i (where $c=\left(c_{0}, c_{1}, \ldots c_{m}\right)$ and $c^{\prime}=\left(c_{o}^{\prime}, c_{1}^{\prime}, \ldots, c_{m}^{\prime}\right)$).

Proposition. Let e^{a}, e^{b} be basis elements of $S_{q}^{r}(E)$. Then

$$
e^{\mathbf{b}} \in\left\langle e^{\mathbf{a}}\right\rangle \Leftrightarrow C\left(e^{\mathbf{b}}\right) \leqslant C\left(e^{\mathbf{a}}\right) .
$$

Proof: The proposition can be proved as in 3.3. If $s, t \in \mathbf{N}$ then by 2.1

$$
\left[\begin{array}{l}
s \\
t
\end{array}\right]=\binom{s_{1}}{t_{1}}\left[\begin{array}{c}
s_{0} \\
t_{0}
\end{array}\right]
$$

where $s=s_{1} l+s_{0}, t=t_{1} l+t_{0}, 0 \leqslant s_{0}, t_{0}<l$.
$C_{0}\left(e^{\mathbf{a}}\right)$ plays exactly the same role as the carry pattern does in the characteristic 0 case, and can be handled as in the proof of 3.3. But we have to be a bit more careful with the binomial coefficient. We have that

$$
\binom{s_{1}}{t_{1}} \equiv\binom{s_{1}^{m}}{t_{1}^{m}}\binom{s_{1}^{m-1}}{t_{1}^{m-1}} \cdots\binom{s_{1}^{0}}{t_{1}^{0}} \quad \bmod p
$$

where $s_{1}=\sum_{j} s_{1}^{j} p^{j}, t_{1}=\sum_{j} t_{1}^{j} p^{j}, 0 \leqslant s_{1}^{j}, t_{1}^{j}<p$ for all j.
The proof of 3.3 uses the fact that $\left[\begin{array}{c}s_{0} \\ t_{0}\end{array}\right] \neq 0 \Leftrightarrow s_{0} \geqslant t_{0}$. As $\binom{s_{1}^{j}}{t_{1}^{j}} \neq 0 \Leftrightarrow t_{1}^{j} \leqslant s_{1}^{j}$ the present proposition can be proved using the proof of 3.3 on each level of the p-adic expansion.
3.9 For $c \in C(r)$ let $L(c)$ denote the span of all $e^{\mathbf{a}} \in S_{q}^{r}(E)$, where $C\left(e^{\mathbf{a}}\right)=c$. For a subset $B \subset C(r)$ let $T(B)=\sum_{c \in B} L(c)$. We say that the subset B is order closed if it contains the predecessors of all its elements under the given order relation. As a consequence of 3.8 we now have a complete description of the subcomodule structure of $S_{q}^{\boldsymbol{r}}(E)$.

Theorem. We have a 1 -1 correspondence

$$
B \leftrightarrow T(B)
$$

between the set of order closed subsets of $C(r)$ and the set of subcomodules of $S_{q}^{r}(E)$.
In particular, the irreducible composition factors of $S_{q}^{r}(E)$ are in one-to-one correspondence with $L(c)$ for $c \in C(r)$, and all composition factors have multiplicity one.
3.10 We can determine $C(r)$ and hence the order closed subsets of $C(r)$ by combining 3.6 with Lemma 3 in [3].

Example. Let $n=3, l=5, p=7$ and $r=51=(1 p+3) l+1$.
Then $C(r)=\{(0,0),(0,1),(1,0),(1,1),(2,0),(2,1)\}$. Hence by 3.9 the subcomodule structure of $S_{q}^{51}(E)$ can be described by

References

[1] G.E. Andrews, The theory of partitions, Encyclopedia Math. 2 (Addison-Wesley, 1976).
[2] R. Dipper, S. Donkin, 'Quantum $G L_{n}$ ', Proc. London Math. Soc. 63 (1991), 165-211.
[3] S. Doty, 'Submodules of symmetric powers of the natural module for $G L_{n}$ ', in Contemp. Math. 88 (American Mathematical Society, Providence, R.I., 1989), pp. 185-191.

School of Mathematics and Statistics
The University of Sydney
New South Wales 2006
Australia

