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Abstract The paper is devoted to the classical variational problem with a
nonsmooth integrand of the functional to be minimized. The integrand is sup-
posed to be subdifferentiable. Under some natural conditions the subdiffer-
entiability of the functional considered is proved. The problem of finding the
subdifferential descent is being solved and the subdifferential descent method
is applied to solve the original problem. The algorithm developed is demon-
strated by examples.

Keywords Nonsmooth variational problem · Subdifferential · Subdifferential
descent method

1 Introduction

Most of existing numerical methods for solving problems of the calculus of
variations are developed for the case when the integrand is continuously dif-
ferentiable with respect to the variables sought. This paper is aimed at solving
the simplest variational problem under the assumption that the integrand of
the minimized functional is nonsmooth and only subdifferentiable with respect
to the unknown function and to its derivative.

To study the existence of generalized Bolza problem solution (whose partic-
ular case is the problem considered in this paper), a deep theory is constructed
in papers [1], [2], [3], which uses Fenchel-Moreau duality and other interest-
ing facts from convex analysis, as well as some nontrivial results of functional
analysis. The proof for generalized Bolza problem in the case of delay can be
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found in [4]. Some general results on solution existence are also contained in
paper [5].

Most of the works which consider nonsmooth variational problems are of
a theoretical nature and investigate necessary and sufficient conditions for a
minimum. For example, in paper [6] the necessary conditions are formulated
in terms of subgradients and generalize the well-known Euler and Weirstrass
conditions of the classical theory of the variational calculus. In paper [7] the
subdifferential of the Hamiltonian is used to formulate the necessary minimum
conditions, and the Hamiltonian is a function conjugate to the Lagrangian,
that is the duality theory is also used here. The necessary conditions (obtained
in a similar form, as well as in Erdman’s form) are investigated by qualitatively
different methods in work [8]. The general necessary optimality conditions for
the generalized Bolza problem were obtained in terms of the special differential
constructions in book [9] and for nonconvex differential inclusions — in paper
[10]. In paper [11] some sufficient conditions for a minimum are constructed
based on the strengthened Weierstrass conditions. In work [12] the minimum
conditions for various nonsmooth variational problems are obtained in terms
of codifferentials. The results on the necessary minimum conditions for both
generalized Bolza problem and the control problem of a differential inclusion
are contained in recent work [13] in a fairly general and complete form; and it is
interesting how the proof for the second problem is carried out by reducing it to
the first one by adding an integral term of a special structure. In recent paper
[14] minimum conditions have been obtained for variational problems with
isoperimetric constraints; and these conditions are (in some cases) stronger
than those known earlier.

Paper [15] considered a special case of nonsmooth variational problems
with equality and inequality constraints on integrand variables. Paper [16] also
studied optimal control problems subject to nonsmooth functional constraints.
In both of these papers some kind of smoothing technique was used in order
to construct a numerical method for solving these problems. In works [17], [18]
the methods of the subdifferential and the hypodifferential descents were ap-
plied to some classes of smooth variational problems with nonsmooth penalty
summands which take into account the restriction on the right endpoint. These
methods were also applied to constructing optimal control in problems with
the subdifferentiable quality functional in paper [19] and also to the problem
of transferring a system of differential equations from one point to another in
works [20], [21]. The finite-dimensional quasidifferential descent method was
applied to optimization of a control system with a nonsmooth objective func-
tional in Mayer form in paper [22]. Despite the fact that in the last works
listed the quality functional is subdifferentiable, it has a special structure (for
example, being the maximum of Gateaux differentiable functionals); therefore,
the calculation of its subdifferential is quite simple. In this paper the integrand
of the functional to be minimized is nondifferentiable; therefore, the technique
of the described papers is not applicable in this case. The key idea in over-
coming this difficulty and obtaining a subdifferential in a constructive form
(“ constructiveness ” here means the possibility of constructing an algorithm
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for solving a given problem) is to consider the trajectory and its derivative
as independent variables (since, in fact, these variables are, of course, related
to each other, we construct a penalty function of a special kind in order to
take this relation into account (see the section Reduction to an Unconstrained
Minimization Problem)).

2 Statement of the Problem

In the paper we will use the following notations. Cn[0, T ] is a space of n-
dimensional continuous on [0, T ] vector-functions, which are piecewise contin-
uously differentiable with bounded on its domain derivative; Pn[0, T ] is a space
of piecewise continuous and bounded on [0, T ] n-dimensional vector-functions.
Denote Lnp [0, T ], 1 6 p < ∞, the space of measurable on [0, T ] n-dimensional
vector-functions which are p-summable and Ln∞[0, T ] — the space of measur-
able on [0, T ] and almost everywhere bounded n-dimensional vector-functions.
Denote coP the convex hull of the set P . Let Br(c) (Dr(c)) denote a closed
(open) ball in corresponding space with the radius r and the center c; for some
set C in this space Br(C) (Dr(C)) denotes the union of all closed (open) balls
with the radius r and the centers from the set C. Denote 〈a, b〉 the scalar prod-
uct of the vectors a, b ∈ Rd. Let X be a normed space, then || · ||X denotes the
norm in this space and X∗ denotes the space conjugate to the space X. Finally,
for some number α ∈ R let o(α) denote such a value that o(α)/α→ 0 if α→ 0.

Let x(t) be a piecewise continuously differentiable vector-function. Let
t0 ∈ [0, T ) be a point of nondifferentiability of the vector-function x(t), then
for definiteness we assume that ẋ(t0) is a right-hand derivative of the vector-
function x(t) at the point t0. Similarly, we assume that ẋ(T ) is a left-hand
derivative of the vector-function x(t) at the point T . As the derivative ẋ(t) is
supposed to be bounded on its domain, by previous paragraph notation we
can assume that the vector-function ẋ(t) belongs to the space Pn[0, T ].

Consider the following variational problem: it is required to minimize the
functional

J(x) =

∫ T

0

f(x(t), ẋ(t), t)dt (1)

with the boundary constraints

x(0) = x0, x(T ) = xT . (2)

In formula (1) f(x, ẋ, t), t ∈ [0, T ], is a given function, T > 0 is a given finite
moment of time, x(t) is an n-dimensional continuous vector-function, which is
continuously differentiable at each t ∈ [0, T ] with the exception, possibly, of the
finite number of points, and we suppose that its derivative is bounded on its
domain. The function f(x, ẋ, t) is continuous in (x, ẋ, t) and locally Lipschitz
continuous in (x, ẋ) at each fixed point t ∈ [0, T ]. In formula (2) x0, xT ∈ Rn
are given vectors.

In this paper we use both subdifferentials of functions in a finite-dimensional
space and subdifferentials of functionals in a functional space. Despite the fact
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that the second concept generalizes the first one, for convenience we separately
introduce definitions for both of these cases and for those specific functions
(functionals) and their variables and spaces which are considered in the paper.

Consider the space Rn × Rn with the standard norm. Let
g = [g1, g2] ∈ Rn × Rn be an arbitrary vector. Suppose that at each time
moment t ∈ [0, T ] at the point (x, ẋ) ∈ Rn × Rn there exists such convex
compact set ∂f(x, ẋ, t) ⊂ Rn ×Rn that

∂f(x, ẋ, t)

∂g
= lim

α↓0

1

α

(
f(x+ αg1, ẋ+ αg2, t)− f(x, ẋ, t)

)
= max
v∈∂f(x,ẋ,t)

〈v, g〉. (3)

In this case the function f(x, ẋ, t) is called subdifferentiable at the point
(x, ẋ) and the set ∂f(x, ẋ, t) is called the subdifferential of the function f(x, ẋ, t)
at the point (x, ẋ).

From expression (3) one can see that at each t ∈ [0, T ] the following formula

f(x+ αg1, ẋ+ αg2, t) = f(x, ẋ, t) + α
∂f(x, ẋ, t)

∂g
+ o(α, x, ẋ, g, t), (4)

o(α, x, ẋ, g, t)

α
→ 0, α ↓ 0,

holds true.
If for each number ε > 0 there exist such numbers δ > 0 and α0 > 0 that

at g ∈ Bδ(g) and α ∈ (0, α0) one has |o(α, x, ẋ, g, t)| < αε, then the function
f(x, ẋ, t) is called uniformly subdifferentiable at the point (x, ẋ). Note [23] that
if at each t ∈ [0, T ] the function f(x, ẋ, t) is subdifferentiable at the point (x, ẋ)
and locally Lipschitz continuous in the vicinity of the point (x, ẋ), then it is
uniformly subdifferentiable at the point (x, ẋ). If for the uniformly subdiffer-

entiable function f(x, ẋ, t) in expression (4) one has
o(α, x, ẋ, g, t)

α
→ 0, α ↓ 0,

uniformly in t ∈ [0, T ], then such a function is called absolutely uniformly
subdifferentiable.

Consider the set Cn[0, T ]×Pn[0, T ] with the norm Ln2 [0, T ]×Ln2 [0, T ]. Let
g = [g1, g2] ∈ Cn[0, T ]×Pn[0, T ] be an arbitrary vector-function. Suppose that
at the point (x, z) ∈ Cn[0, T ] × Pn[0, T ] there exists such a convex weakly*
compact set ∂I(x, z) ⊂

(
Cn[0, T ]× Pn[0, T ], || · ||Ln

2 [0,T ]×Ln
2 [0,T ]

)∗
that

∂I(x, z)

∂g
= lim

α↓0

1

α

(
I(x+ αg1, z + αg2)− I(x, z)

)
= max
v∈∂I(x,z)

v(g). (5)

In this case the functional I(x, z) is called subdifferentiable at the point
(x, z), and the set ∂I(x, z) is called the subdifferential of the functional I(x, z)
at the point (x, z).

From expression (5) one can see that the following formula

I(x+ αg1, z + αg2) = I(x, z) + α
∂I(x, z)

∂g
+ o(α, x, z, g), (6)
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o(α, x, z, g)

α
→ 0, α ↓ 0,

holds true.
So, it is required to find such vector-function x∗ ∈ Cn[0, T ], which mini-

mizes functional (1) and satisfies boundary conditions (2). Assume that there
exists such a solution. The difference between this problem and the classical
one of variational calculus is that the integrand in the problem under consid-
eration may not be smooth and be only subdifferentiable.

Although the paper considers only continuous trajectories with a piecewise
continuous and bounded derivative (this is due to the possibility of finding such
trajectories in practice) and integrands with sufficiently “good” properties, let
us give some known existence theorems for the considered problem with the
solution in a class of all absolutely continuous functions and less burdensome
constraints on the integrand. In literature the scheme for proving the existence
of a given variational problem solution consists of two main stages: proving
compactness of a certain level set and proving lower semicontinuity of the
considered functional in some topology. Let us give rather general results con-
tained in papers [5], [1]. The first one is formulated in terms of the integrand of
the initial functional, while the second one uses the properties of the function
conjugate to the integrand.

Theorem 1.1 Let the integrand f(x, y, t) in functional (1) satisfy the
following conditions:

1) the function f(x, y, t) maps the space Rn × Rn × [0, T ] to the interval
(−∞,∞];

2) the function f(x, y, t) is measurable with respect to the sigma algebra
generated in the space Rn × Rn × [0, T ] by the direct product of Borel mea-
surable subsets of the space Rn×Rn and Lebesgue measurable subsets of the
segment [0, T ];

3) the function f(x, y, t) is lower semicontinuous in (x, y) at each fixed
t ∈ [0, T ];

4) the function f(x, y, t) is convex in y at each fixed t ∈ [0, T ], x ∈ Rn;
5) at each x, y ∈ Rn and at almost every t ∈ [0, T ] the inequality

f(x, y, t) ≥ p(‖y‖Rn)− q(‖x‖Rn) + r(t)

holds true where
5a) p(ω) is an nonnegative convex function defined on the interval [0,∞),

and p(0) = 0;
5b) q(ω) is an nonnegative continuous and nondecreasing function on the

interval [0,∞);

5c) p(ω)
ω →∞ if ω →∞;

5d) p
(
2ω
T

)
− q(ω0 + ω)→∞ if ω →∞ where ω0 = max(‖x0‖Rn , ‖xT ‖Rn);

5e) the function r(t) is summable on [0, T ].
Then, if only for one absolutely continuous function x(t) satisfying condi-

tions (2) integral (1) is finite, then problem (1), (2) has a solution in a class
of absolutely continuous functions.
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Theorem 1.2 Let the integrand f(x, y, t) in functional (1) satisfy condi-
tions 1), 2), 3), 4) of Theorem 1.1.

Let also the function h(x,w, t) conjugate to the integrand and defined by
the formula

h(x,w, t) = sup
y
{〈w, y〉 − f(x, y, t)}

satisfy the following growth condition

h(x,w, t) ≤ µ(w, t) + ‖x‖Rn(σ(t) + ρ(t)‖w‖Rn)

where functions σ(t), ρ(t) are finite, nonnegative and summable on [0, T ], the
function µ(w, t) is finite and summable in t ∈ [0, T ] at each fixed w ∈ Rn.

Then if only for one absolutely continuous function x(t) integral (1) is finite,
then problem (1) has a solution in a class of absolutely continuous functions.

These theorems are presented here in a somewhat reduced form than in
papers [5], [1] in order to avoid introducing more general spaces and corre-
sponding metrics than those considered in this paper. As can be seen from
the formulations of these theorems, they use only the general properties of the
functions included in the formulation of the problem, such as continuity, mea-
surability, convexity, etc. It is easy to verify the fulfillment of these conditions
in a wide number of cases.

3 Reduction to an Unconstrained Minimization Problem

Construct the functional, taking into account all the restrictions in the formu-
lation of the problem. Let z(t) = ẋ(t) (as we have assumed, z ∈ Pn[0, T ]), then
by virtue of restriction on the initial state (see the first equality in formula (2)
from the section Statement of the Problem) we have

x(t) = x0 +

∫ t

0

z(τ)dτ. (7)

Construct the following functional on the space Pn[0, T ]

I(z) = J
(
x0 +

∫ t

0

z(τ)dτ
)

+ λψ(z) = (8)

=

∫ T

0

f
(
x0 +

∫ t

0

z(τ)dτ, z(t), t
)
dt+ λ

1

2

(
x0 +

∫ T

0

z(t)dt− xT

)2

.

In functional I(z) the penalty summand with some positive factor λ takes into
account restriction on the final state of the system (see the second equality in
formula (2) from the section Statement of the Problem).

Transition to the “space of derivatives” z ∈ Pn[0, T ] has been used in many
works of V. F. Demyanov and his students to study various variational and
control problems. Under some natural additional assumptions (namely: the
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function f(x, z, t) is continuous in (x, z, t), absolutely uniformly subdifferen-
tiable and the mapping t→ ∂f(x(t), z(t), t) is upper semicontinuous) one can
prove the subdifferentiability of the functional I(z) in the space Pn[0, T ] as a
normed space with the norm Ln2 [0, T ]. However, the subdifferential of this func-
tional has a rather complicated structure, which makes it practically unsuitable
for constructing numerical methods. Therefore, it is proposed to consider some
modification of this functional, “forcibly” considering the points z and x to be
“independent” variables. Since, in fact, there is relationship (7) between these
variables (which naturally means that the function z(t) is a derivative of the
function x(t)), let us take this into account by adding the corresponding (last)
term when constructing the new functional on the space Cn[0, T ]× Pn[0, T ]

I(x, z) = J(x, z) + λψ(z) + λϕ(x, z) = (9)

=

∫ T

0

f(x(t), z(t), t)dt+

+λ
1

2

(
x0 +

∫ T

0

z(t)dt− xT

)2

+ λ
1

2

∫ T

0

(
x(t)− x0 −

∫ t

0

z(τ)dτ
)2
dt.

Despite the fact that the dimension of functional I(x, z) arguments is n
more the dimension of functional I(z) arguments, the structure of its subd-
ifferential (in the space Cn[0, T ] × Pn[0, T ] as a normed space with the norm
Ln2 [0, T ]×Ln2 [0, T ]), as will be seen from what follows, is much simpler than the
structure of the functional I(z) subdifferential. This will allow us to construct
a numerical method for solving the original problem.

It is known [24] that when the value λ is sufficiently large, the solution
of problem (1), (2) is arbitrarily close (with regard to the metric Ln2 [0, T ]) to
the trajectory x(t) where (x, z) is a point of the global minimum of func-
tional (9) with the fixed value λ. So, finding an approximate solution of
the original problem is reduced to minimizing functional (9) on the space
Cn[0, T ]×Pn[0, T ]. In practice one solves this problem for the fixed number λ.
If the solution of this problem (at λ = λ) satisfies the constraints in the form
of differential relation (7) and right endpoint condition from (2) with the re-
quired accuracy (i. e. the value of the functional ψ + ϕ on this solution is
sufficiently small), then the process terminates; otherwise, increase the value
λ and repeat the process with this new value.

Thus, the initial problem has been reduced to finding the unconditional
global minimum point of the functional I(x, z) (for sufficiently large value λ)
on the space

X =
(
Cn[0, T ]× Pn[0, T ], || · ||Ln

2 [0,T ]×Ln
2 [0,T ]

)
. (10)

Remark 1. Note the following fact. Since, as is known, the space(
Cn[0, T ], || · ||Ln

2 [0,T ]

)
is everywhere dense in the space Ln2 [0, T ] and the space(

Pn[0, T ], || · ||Ln
2 [0,T ]

)
is also everywhere dense in the space Ln2 [0, T ], then the

space X∗ conjugate to the space X (see (10)) is isometrically isomorphic to
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the space Ln2 [0, T ]× Ln2 [0, T ] [28]; therefore, henceforth, we will identify these
spaces (X∗ and Ln2 [0, T ]× Ln2 [0, T ]).

Remark 2. If we consider the problem with the free right endpoint, then
in formula (9) one should put ψ(z) = 0 identically. If the minimized func-
tional does not depend on the derivative ẋ, then in formula (9) one should
also put ϕ(x, z) = 0 identically. Since, by assumption, there exists a solu-
tion of the original problem, then the set of the trajectories x satisfying the
necessary minimum condition of the functional I(x, z) (see the next section)
will include those that satisfy boundary conditions (2). However, despite the
fact that the minimized functional does not depend on the derivative in the
case under consideration, one can also solve the problem “fully” by finding
both unknowns in the pair (x, ẋ) simultaneously, i. e. minimize functional (9)
including all its summands. Then (since, by assumption, there exists a solu-
tion of the original problem) among the trajectories x satisfying the necessary
minimum condition of the functional I(x, z) there will be those that satisfy
boundary conditions (2).

4 Minimum Conditions of the Functional I(x, z)

In order to obtain the constructive minimum condition useful for constructing
numerical methods for solving the posed problem, first, let us investigate the
differential properties of the functional I(x, z).

Using classical variation, it is easy to show Gateaux differentiability of the
functional ψ(z), we have

∇ψ(z) = x0 +

∫ T

0

z(t)dt− xT .

Using classical variation and integrating by parts, it is also not difficult to
check Gateaux differentiability of the functional ϕ(x, z), we obtain

∇ϕ(x, z, t) =

 x(t)− x0 −
∫ t

0

z(τ)dτ

−
∫ T

t

(
x(τ)− x0 −

∫ τ

0

z(s)ds
)
dτ

 .

Let us now study the differential properties of the functional∫ T

0

f(x(t), z(t), t)dt. Insofar as in this functional x and z are considered as

independent variables, put ξ(t) = (x(t), z(t)) for brevity and prove the follow-
ing theorem retaining the previous notation for the functional J(x, z).

Theorem 2. Consider the functional

J(ξ) =

∫ T

0

f(ξ(t), t)dt,
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where ξ ∈ Cn[0, T ]×Pn[0, T ], the function f(ξ, t) is continuous in (ξ, t) and is
absolutely uniformly subdifferentiable and its subdifferential is ∂f(ξ, t). Sup-
pose also that the mapping t→ ∂f(ξ(t), t) is upper semicontinuous.

Then the functional J(ξ) is subdifferentiable, i. e.

∂J(ξ)

∂g
= lim

α↓0

1

α

(
J(ξ + αg)− J(ξ)

)
= max
v∈∂J(ξ)

∫ T

0

〈v(t), g(t)〉dt, (11)

where g ∈ Cn[0, T ]× Pn[0, T ] and the set ∂J(ξ) is defined as follows:

∂J(ξ) =
{
v(t) ∈ L2n

∞ [0, T ]
∣∣ v(t) ∈ ∂f(ξ(t), t) ∀t ∈ [0, T ]

}
. (12)

Proof. In accordance with definition (5) of a subdifferentiable functional, to
prove the theorem one has to check that:

1) the derivative of the functional J(ξ) in the direction g exists and is
actually of form (11),

2) herewith, the set ∂J(ξ) is a convex and weakly* compact subset of the
space

(
Cn[0, T ]× Pn[0, T ], || · ||Ln

2 [0,T ]×Ln
2 [0,T ]

)∗
.

Prove statement 1). As the function f(ξ, t) is subdifferentiable by assump-
tion, then for every g ∈ Cn[0, T ]× Pn[0, T ] and for every α > 0 we have

J(ξ + αg)− J(ξ) =

∫ T

0

max
v∈∂f(ξ,t)

〈v, αg〉dt+

∫ T

0

o(α, ξ, g, t)dt, (13)

o(α, ξ, g, t)

α
→ 0, α ↓ 0.

As ξ, g ∈ Cn[0, T ]×Pn[0, T ] and the function f(ξ, t) is continuous, one has
that for each α > 0 the functions t → f(ξ(t), t) and t → f(ξ(t) + αg(t), t)
belong to the space L1

∞[0, T ].
Under the assumption made, the mapping t → ∂f(ξ(t), t) is upper semi-

continuous. Then due to the piecewise continuity of the function g(t) and due
to the continuity of the scalar product in its variables we obtain that for each
α > 0 the mapping t → maxv∈∂f(ξ(t),t)〈v, αg(t)〉 is upper semicontinuous [25]
and then it is also measurable [26]. During the proof of statement 2) it will
be shown that under the assumptions made, the set ∂f(ξ, t) is uniformly in
t ∈ [0, T ] bounded; from here, taking into account the piecewise continuity
of the function g(t) it is easy to check that for each α > 0 the mapping
t → maxv∈∂f(ξ(t),t)〈v, αg(t)〉 is also uniformly in t ∈ [0, T ] bounded. So we
finally have that for each α > 0 the mapping t → maxv∈∂f(ξ(t),t)〈v, αg(t)〉
belongs to the space L1

∞[0, T ].
Then for every α > 0 one has t → o(α, ξ(t), g(t), t) ∈ L1

∞[0, T ] and due to
the absolutely uniformly subdifferentiability of the function f(ξ, t) we have

o(α, ξ(t), g(t), t)

α
=:

o(α)

α
→ 0, α ↓ 0. (14)
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Consider the functional

∫ T

0

max
v∈∂f(ξ,t)

〈v, αg〉dt in detail. For each α > 0 and

for each t ∈ [0, T ] we have the obvious equality

max
v∈∂f(ξ,t)

〈v(t), αg(t)〉 > 〈v(t), αg(t)〉,

where v(t) is a measurable selector of the mapping t → ∂f(ξ(t), t) (due to
the noted boundedness property of the set ∂f(ξ, t) uniformly in t ∈ [0, T ] we
have v ∈ L2n

∞ [0, T ]) and by virtue of formula (12) for every α > 0 one has the
inequality ∫ T

0

max
v∈∂f(ξ,t)

〈v, αg〉dt > max
v∈∂J(ξ)

∫ T

0

〈v(t), αg(t)〉dt.

As for every α > 0 and for each t ∈ [0, T ] one has

max
v∈∂f(ξ,t)

〈v(t), αg(t)〉 ∈
{
〈v(t), αg(t)〉

∣∣ v(t) ∈ ∂f(ξ(t), t)
}
,

and the set ∂f(ξ, t) is closed and bounded at each fixed t by the definition of
subdifferential and the mapping t → ∂f(ξ(t), t) is upper semicontinuous by
assumption and also because the scalar product is continuous in its arguments
and the function g(t) is piecewise continuous, then due to Filippov lemma [30]
there exists such measurable selector v(t) of the mapping t→ ∂f(ξ(t), t) that
for each α > 0 and for each t ∈ [0, T ] we have

max
v∈∂f(ξ,t)

〈v(t), αg(t)〉 = 〈v(t), αg(t)〉,

so we have found the element v from the set ∂J(ξ) which brings the equality
in the previous inequality. Thus, finally we obtain∫ T

0

max
v∈∂f(ξ,t)

〈v, αg〉dt = max
v∈∂J(ξ)

∫ T

0

〈v(t), αg(t)〉dt. (15)

From (13), (14), (15) we obtain expression (11).
Let us prove statement 2). The convexity of the set ∂J(ξ) immediately

follows from the convexity of the set ∂f(ξ, t) at each fixed t ∈ [0, T ].
Prove the boundedness of the set ∂f(ξ, t) uniformly t ∈ [0, T ]. Due to up-

per semicontinuity of the mapping t → ∂f(ξ(t), t) at each t ∈ [0, T ] there
exists such number δ(t) that under the condition |t − t| < δ(t) the inclu-
sion ∂f(ξ(t), t) ⊂ Br(∂f(ξ(t), t)) holds true at t ∈ [0, T ] where r is some
fixed finite positive number. The intervals Dδ(t)(t), t ∈ [0, T ], form open
cover of the segment [0, T ], so by Heine-Borel lemma one can take a finite
subcover from this cover. Hence, there exists such number δ > 0 that for
every t ∈ [0, T ] the inclusion ∂f(ξ(t), t) ⊂ Br(∂f(ξ(t), t)) holds true once
|t − t| < δ and t ∈ [0, T ]. This means that for the segment [0, T ] there exists
a finite partition t1 = 0, t2, . . . , tN−1, tN = T with the diameter δ such that
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∂f(ξ, t) ⊂
N⋃
i=1

Br(∂f(ξ(ti), ti)) for all t ∈ [0, T ]. It remains to notice that the

set
N⋃
i=1

Br(∂f(ξ(ti), ti)) is bounded due to the compactness of the set ∂f(ξ, t)

at each fixed t ∈ [0, T ].
Prove that the set ∂J(ξ) is weakly closed. As shown in statement 1) proof

and at the beginning of statement 2) proof, the set ∂J(ξ) is convex and its
elements v belong to the space L2n

∞ [0, T ]. Then all the more the set ∂J(ξ)
is a convex subset of the space L2n

2 [0, T ]. Let us prove that the set ∂J(ξ)
is closed in the weak topology of the space L2n

2 [0, T ]. Let {vn}∞n=1 be the
sequence of functions from the set ∂J(ξ) converging to the function v∗ in the
strong topology of the space L2n

2 [0, T ]. It is known [27] that this sequence has
the subsequence {vnk

}∞nk=1 converging pointwise to v∗ almost everywhere on
[0, T ], i. e. there exists such subset T ′ ⊂ [0, T ] having the measure T that for
every point t ∈ T ′ we have vnk

(t) ∈ ∂f(ξ(t), t) and vnk
(t) converges to v∗(t),

nk = 1, 2, . . . . But the set ∂f(ξ(t), t) is closed at each t ∈ [0, T ] by the definition
of the subdifferential, hence for every t ∈ T ′ we have v∗(t) ∈ ∂f(ξ(t), t). So the
set ∂J(ξ) is closed in the strong topology of the space L2n

2 [0, T ], but it is also
convex, so it is also closed in the weak topology of the space L2n

2 [0, T ] [29].
Recall that by virtue of Remark 1 it is sufficient to consider the space

L2n
2 [0, T ]. The weak* compactness of the set ∂J(ξ) in the space L2n

2 [0, T ] fol-
lows from its weak compactness (in L2n

2 [0, T ]) by virtue of these topologies
definitions [28]. The space L2n

2 [0, T ] is reflexive [29], so the set there is weakly
compact if and only if it is bounded in norm and weakly closed [29] in this
space. These required properties have been proved in the previous two para-
graphs. The theorem is proved.

Thus, as one can see from Theorem 2, the subdifferential of the func-
tional J(ξ) is completely defined by the subdifferential of its integrand (at
each time moment t ∈ [0, T ]). So in order to calculate the subdifferential of
the functional J(x, z), one has to calculate the set ∂f(x, ẋ, t) for each t ∈ [0, T ]
via subdifferential calculus [23] . Book [23] contains a detailed description of
the rules for calculating the subdifferential for a rich class of functions. Let us
recall some of these rules which are required while calculating the subdiffer-
ential of the functional I(x, z).

Let ξ ∈ Rl. If the function ϕ(ξ) is subdifferentiable at the point ξ0 ∈ Rl
and λ is some nonnegative number, then one has

∂(λϕ(ξ0)) = λ∂ϕ(ξ0).

If the function ϕ(ξ) is differentiable at the point ξ0 ∈ Rl, then its subdifferential
at this point is expressed by the formula

∂ϕ(ξ0) = ϕ′(ξ0),

where ϕ′(ξ0) is a gradient of the function ϕ(ξ) at the point ξ0. Note that the
subdifferential of the sum of the finite number of subdifferentiable functions is
the that of the subdifferentials of the summands, i. e. if the functions ϕk(ξ),
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k = 1, r, are subdifferentiable at the point ξ0 ∈ Rl, then the subdifferential of
the function ϕ(ξ) =

∑r
k=1 ϕk(ξ) at this point is expressed by the formula

∂ϕ(ξ0) =

r∑
k=1

∂ϕk(ξ0).

The subdifferential of the maximum of the finite number of continuously dif-
ferentiable functions is the convex hull of the active functions gradients, i. e.
if ϕ(ξ0) = max{ϕ1(ξ0), . . . , ϕr(ξ0)}, then one has

∂ϕ(ξ0) = co{ϕ′k(ξ0)}, if ϕk(ξ0) = ϕ(ξ0), k ∈ {1..r},

where ϕ′k(ξ0) is a gradient of the function ϕk(ξ) at the point ξ0, k ∈ {1..r}.
Using formula (12) and these rules of subdifferential calculus, one obtains

the final expression for calculating the subdifferential of the functional I(x, z)
at the point (x, z)

∂I(x, z) =

3∑
k=1

∂Ik(x, z), (16)

where formally I1(x, z) = J(x, z), I2(x, z) = λψ(z), I3(x, z) = λϕ(x, z).
The known necessary minimum condition of the functional I(x, z) at the

point (x, z) in terms of subdifferential is as follows [12]

02n ∈ ∂I(x, z),

where 02n is a zero element of the space L2n
2 [0, T ]. Hence, we conclude that

the following theorem is true.
Theorem 3. For the point (x, z) to minimize functional (9), it is necessary

that for almost every t ∈ [0, T ] the inclusion

02n ∈ ∂I(x(t), z(t)) (17)

is satisfied, where 02n is a zero element of the space R2n, and the expression
for the subdifferential ∂I(x, z) is given by formula (16).

Remark 3. Theorem 3 contains a constructive minimum condition since on
its basis it is possible to construct the subdifferential descent method which is
described in the next section. Although the principle algorithm of this method
is well-known, its application to functional I(z) in formula (8) is impossible in
practice since the structure of this functional subdifferential is too complicated
and it is unclear how to solve the important subproblems of the algorithm. So
the key idea of this paper is “forcibly” considering the points z and x to be
“independent” variables and to applicate the subdifferential descent method to
the constructed functional I(x, z) in formula (9). (See additional explanations
after formulas (8) and (9) in the section Reduction to an Unconstrained Mini-
mization Problem.) This idea makes it possible (see the next section) to solve
each of the arising subproblems of the method via known effective algorithms.
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5 The Subdifferential Descent Method

Describe the following subdifferential descent algorithm for finding stationary
points of the functional I(x, z).

Fix the arbitrary initial point (x(1), z(1)) ∈ Cn[0, T ] × Pn[0, T ]. Let the
point (x(k), z(k)) ∈ Cn[0, T ] × Pn[0, T ] be already constructed. If minimum
condition (17) is satisfied (in practice with some fixed accuracy ε), then the
point (x(k), z(k)) is a stationary point of the functional I(x, z) and the process
terminates. Otherwise, put

(x(k+1), z(k+1)) = (x(k), z(k)) + γ(k)G
(
x(k), z(k)

)
,

where the vector-function G
(
x(k), z(k)

)
is a subdifferential descent direction of

the functional I(x, z) at the point (x(k), z(k)), and the value γ(k) is a solution
of the following one-dimensional problem

min
γ>0

I
(

(x(k), z(k))+γG
(
x(k), z(k)

))
= I
(

(x(k), z(k))+γ(k)G
(
x(k), z(k)

))
. (18)

Then, as it will be shown in this section,

I
(
x(k+1), z(k+1)

)
< I
(
x(k), z(k)

)
. (19)

As seen from this algorithm, one has to solve three subproblems in order to
realize the k-th iteration. The first problem is calculating the subdifferential of
the functional I(x, z) at the point (x(k), z(k)). With the help of subdifferential
calculus rules the solution of this problem is obtained in formula (16). The
second problem is finding the subdifferential descent direction G

(
x(k), z(k)

)
;

two next paragraphs are devoted to this problem. Finally, the third problem
is one-dimensional minimization (18); there exist many effective methods [24]
to solve this problem.

In order to find the vector-function G
(
x(k), z(k)

)
, consider the problem

min
v∈∂I(x(k),z(k))

||v||2Ln
2 [0,T ]×Ln

2 [0,T ] = min
v∈∂I(x(k),z(k))

∫ T

0

v2(t)dt. (20)

Denote v(k) the solution of this problem. The vector-function v(k)(t), of course,
depends on the point (x(k), z(k)), but we omit this dependence in the notation
for brevity. Then the vector-function

G
(
x(k)(t), z(k)(t), t

)
= −

v(k)
(
x(k)(t), z(k)(t), t

)
||v(k)||L2n

2 [0,T ]

is a subdifferential descent direction of the functional I(x, z) at the point
(x(k), z(k)). Recall that we are seeking the direction G

(
x(k), z(k)

)
in the case

when the point (x(k), z(k)) does not satisfy minimum condition in Theorem 3,
so ||v(k)||L2n

2 [0,T ] > 0.
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Note that we have the equality

∂I(xk, zk)

∂G(xk, zk)
= max
v∈∂I(xk,zk)

∫ T

0

〈v(t), G(xk(t), zk(t), t)〉 dt =

= max
v∈∂I(xk,zk)

∫ T

0

〈
v(t),

−v(k)(t)
||v(k)||L2n

2 [0,T ]

〉
dt =

=
−1

||v(k)||L2n
2 [0,T ]

(
− max
v∈∂I(xk,zk)

∫ T

0

〈
−v(t), v(k)(t)

〉)
dt =

=
−1

||v(k)||L2n
2 [0,T ]

(
min

v∈∂I(xk,zk)

∫ T

0

〈
v(t), v(k)(t)

〉)
dt = −||v(k)||L2n

2 [0,T ],

which considering (6) and the inequality ||v(k)||L2n
2 [0,T ] > 0 implies (19).

It is easy to check that in this case the solution of this problem is such
selector of the multivalued mapping t→ ∂I

(
x(k)(t), z(k)(t), t

)
which minimizes

the distance from zero to the set ∂I
(
x(k)(t), z(k)(t), t) at each time moment

t ∈ [0, T ]. In other words, to solve problem (20) means to solve the following
problem

min
v(t)∈∂I(x(k)(t),z(k)(t),t)

v2(t) (21)

for each t ∈ [0, T ]. Actually, for every t ∈ [0, T ] we have the obvious inequality

min
v∈∂I(x(k)(t),z(k)(t),t)

v2(t) 6 v2(t),

where v(t) is a measurable selector of the mapping t → ∂I
(
x(k)(t), z(k)(t), t

)
(by virtue of the noted property of the set ∂I

(
x(k)(t), z(k)(t), t

)
boundedness

uniformly in t ∈ [0, T ] we have v ∈ L2n
∞ [0, T ]), then we obtain the inequality∫ T

0

min
v∈∂I(x(k)(t),z(k)(t),t)

v2(t)dt 6 min
v∈∂I(x(k),z(k))

∫ T

0

v2(t)dt.

Insofar as for every t ∈ [0, T ] we have

min
v∈∂I(x(k)(t),z(k)(t),t)

v2(t) ∈
{
v2(t)

∣∣ v(t) ∈ ∂I(x(k)(t), z(k)(t), t)
}

and the set ∂I
(
x(k)(t), z(k)(t), t

)
is closed and bounded at every fixed t by

definition of the subdifferential and the mapping t → ∂I
(
x(k)(t), z(k)(t), t

)
is

upper semicontinuous by assumption and besides, the norm is continuous in
its argument, then due to Filippov lemma [30] there exists such a measurable
selector vk(t) of the mapping t→ ∂I

(
x(k)(t), z(k)(t), t

)
that for every t ∈ [0, T ]

one obtains

min
v∈∂I(x(k)(t),z(k)(t),t)

v2(t) = v2k(t),
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so we have found the element vk of the set ∂I
(
x(k), z(k)

)
which brings the

equality to the previous inequality. Hence, finally we obtain∫ T

0

min
v∈∂I(x(k)(t),z(k)(t),t)

v2(t)dt = min
v∈∂I(x(k),z(k))

∫ T

0

v2(t)dt.

Problem (21) at each fixed t ∈ [0, T ] is a finite-dimensional problem of
finding the distance from zero to a convex compact (the subdifferential). This
problem can be effectively solved for a wide class of functions; the next para-
graph describes its solution. In practice one makes a (uniform) partition of the
interval [0, T ], and this problem is solved for every point of the partition, i. e.
one has to calculate G

(
x(k)(ti), z(k)(ti), ti

)
, where ti ∈ [0, T ], i = 1, N , are the

points of discretization (see notation in Lemma 1 below). Under some natu-
ral additional assumption Lemma 1 below guarantees that the vector-function
obtained with the help of piecewise linear interpolation of the subdifferential
descent directions evaluated at every point of such partition of the interval
[0, T ] converges to the sought vector-function G

(
x(k)(t), z(k)(t), t

)
in the space

L2n
2 [0, T ] when the discretization rank tends to infinity.

As noted in the previous paragraph, for the algorithm realization it is re-
quired to find the distance from zero to the subdifferntial of the functional
I(x(t), z(t)) at each moment of time of a (uniform) partition of the interval
[0, T ]. Let us discuss some methods for solving this subproblem (for a wide
class of functions) for the fixed time moment t ∈ [0, T ]. It is known [23] that in
many practical cases the subdifferential ∂I(x(t), z(t)) is the convex polyhedron
A(t) ⊂ R2n. For example, if the integrand is a maximum of the finite number
of continuously differentiable functions, then the subdifferential ∂I(x(t), z(t))
is a convex polyhedron at each t ∈ [0, T ]. Herewith, of course, the set A(t) de-
pends on the point (x, z). We will omit this dependence in the notation in this
paragraph for simplicity. This problem of finding the Euclidean distance from
a point to a convex polyhedron can be effectively solved by various methods
(see, e. g., [31], [32]). In a more general case the subdifferential at each moment
t ∈ [0, T ] of time may be a convex compact set (for example, if the integrand
depends on the norm of some coordinates of the vector-functions x(t), z(t),
then the subdifferential at some points t ∈ [0, T ] may be an ellipsoid (with its
interior points), lying in some subspace of the space R2n). In this case it is
required to solve the problem of finding the Euclidean distance from a point
to a convex compact set, and if (for example) ellipsoids are considered, then
some methods for solving this problem can be found in [33].

Prove one lemma with a simple condition, which on the one hand, is rather
natural for applications and on the other hand, guarantees that the function
L(t) obtained with the help of piecewise linear interpolation of the sought
function p ∈ L1

∞[0, T ] converges to this function in the space L1
2[0, T ] when

the rank of a (uniform) partition of the interval [0, T ] tends to infinity.
Lemma 1. Let the function p ∈ L1

∞[0, T ] satisfy the following condition:
for every δ > 0 the function p(t) is piecewise continuous on the set [0, T ]
with the exception of only the finite number of the intervals

(
t1(δ), t2(δ)

)
, . . . ,(

tr(δ), tr+1(δ)
)

whose union length does not exceed the number δ.
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Choose the (uniform) finite splitting t1 = 0, t2, . . . , tN−1, tN = T of the
interval [0, T ] and calculate the values p(ti), i = 1, N , at these points. Let L(t)
be the function obtained with the help of piecewise linear interpolation with
the nodes (ti, p(ti)), i = 1, N . Then for every ε > 0 there exists such number
N(ε) that for every N > N(ε) one has ||L− p||2

L1
2[0,T ]

6 ε.

Proof. Denote M(δ) :=
r⋃

k=1

(
tk(δ), tk+1(δ)

)
. We have

||L− p||2L1
2[0,T ] =

∫
M(δ)

(
L(t)− p(t)

)2
dt+

∫
[0,T ]\M(δ)

(
L(t)− p(t)

)2
dt.

Fix the arbitrary number ε > 0. By lemma condition the function p(t) is
bounded, the function L(t) is also bounded by construction for all (uniform)
finite partitions of the interval [0, T ]. Hence, there exists such δ(ε) that the
first summand does not exceed the value ε/2 for all (uniform) finite partitions
of the interval [0, T ]. As assumed, the function p(t) is piecewise continuous
and bounded on the set [0, T ] \M(δ(ε)), then there exists [34] such number
N(ε) that for every (uniform) finite partition of the interval [0, T ] of the rank
N > N(ε) the second summand (with such δ(ε)) does not exceed the value
ε/2. This implies the proof of the lemma.

Remark 4. The problem of a rigorous proof of the above method con-
vergence is rather complicated and remains open; it is beyond the scope of
this paper. The convergence of some modifications (related to the choice of
a descent step and a descent direction from the set of subgradients) of the
subdifferential descent method described in this section was studied in the
finite-dimensional case in papers [23], [31]. Strictly speaking, in presented pa-
per only the problem of finding the direction of the steepest (subdifferential)
descent in the problem posed is completely solved. The examples below show
the adequacy of the method used; nevertheless, as has been just noted, its
convergence (in whatever sense) requires additional rigorous justification.

6 Numerical Examples

In this section the examples of the subdifferential descent method implemen-
tation are presented. These particular examples are chosen in order to demon-
strate the described method processing in some standard cases considering
such typical subdifferential functions as modules, square roots, maxima of con-
tinuously differentiable functions, etc. The stopping criteria of the algorithm
was the inequality ||v(k)||2Ln

2 [0,T ]×Ln
2 [0,T ] 6 ε (see problem (20)). In different

examples the value ε was taken equal to 3× 10−2 — 9× 10−2. Such a choice
of accuracy is due to a compromise between the permissible for practice ac-
curacy of the optimal value of the considered functional and a not very great
number of iterations. Herewith, the error of the minimized functional and the
restrictions on the right endpoint in the examples below did not exceed the
value 10−3 — 5 × 10−3 (in those examples where it was possible to compare
the values obtained with the known solution).



The Subdifferential Descent Method in a Nonsmooth Variational Problem 17

Example 1. Consider minimization of the simplest functional

J(x) =

∫ 1

0

|x(t)|dt,

x(0) = 0,

with the only obvious solution x∗(t) = 0 ∀t ∈ [0, 1] and J(x∗) = 0. In ac-
cordance with Remark 2, the functionals ψ(z) and ϕ(x, z) are absent here.
Take x(1)(t) = 2t− 1 as the initial point and discretize the segment [0, 1] with
rank two (i. e. consider the points 0, 0.5, 1 for further subdifferential descent
direction interpolation). In accordance with the paper algorithm, separately
calculate the descent directions at these points. Then at the point t1 = 0
the function |x(1)(t)| is differentiable, hence its subdifferential is of the form
∂x(1)(0) = {−1}, find the distance from zero to the set {−1} and obtain
the subdifferential descent direction G(x(1), 0) = 1. In a similar way we have
G(x(1), 1) = −1. At the point t2 = 0.5 the function |x(1)(t)| is subdifferentiable,
hence its subdifferential is of the form ∂x(1)(0.5) = [−1, 1], find the distance
from zero to the set [−1, 1] and obtain the subdifferential descent direction
G(x(1), 0.5) = 0. Interpolating with the nodes (0, 1), (0.5, 0), (1,−1), obtain the

subdifferential descent direction of the functional J at the point x(1), namely
G(x(1)) = −2t+ 1. Construct the next point x(2)(t) = 2t− 1 + γ(−2t+ 1) and

solving the one-dimensional problem minγ>0

∫ 1

0

|x(2)(t)|dt, we have γ(1) = 1,

hence x(2)(t) = 0 ∀t ∈ [0, 1], i. e. in this case the method leads to the exact
solution in one step. Of course, the initial point and the discretization rank
are artificially chosen here in order to demonstrate the essence of the method.
If we take a different initial point and some other discretization rank, then the
solution will not be obtained (in general case) in a finite number of steps.

Example 2. Consider minimization of the functional

J(x) =

∫ 1

0

|x(t)−max {t− 0.5, 0}| dt,

x(0) = 0,

with the only obvious solution x∗(t) = max{t−0.5, 0} ∀t ∈ [0, 1] and J(x∗) = 0.
In accordance with Remark 2, the functionals ψ(z) and ϕ(x, z) are absent here.
Take x(1) = 2t − 1 as the initial point, then I(x(1)) = 0.375. As the iteration
number increased, the discretization rank gradually increased during the so-
lution of the auxiliary problem of finding the direction of the subdifferential
descent described in the algorithm and in the end the discretization step was
equal to 10−1. At the 28-th iteration the point x(28) =

14.1565t5 − 13.6885t4 + 3.7699t3 − 0.0789t2 − 0.0739t+ 0.0049, 0 6 t < 0.5,

6.0666t5− 19.4749t4 + 23.4983t3− 12.9012t2 + 3.9828t− 0.6695, 0.5 6 t 6 1,

was obtained and the value of the functional J(x(28)) = I(x(28)) ≈ 0.00116, so
the error does not exceed the value 10−3. For the convenience of presentation,
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the Lagrange interpolation polynomial has been given, which quite accurately
approximates (that is, the interpolation error does not affect the value of the
functional presented with a given accuracy but (insignificantly) affects the
given value of the norm of the smallest subgradient) the resulting trajectory.
Herewith, ||v(28)||L1

2
[0, T ] ≈ 0.032.

Example 3. Minimize the functional

J(x) =

∫ 1

0

max
{
ẋ21(t)− x21(t)− 2tx1(t), x2(t)

}
dt,

x1(0) = 0, x2(0) = 0,

x1(1) = 0, x2(1) = 0.

So, one has to minimize the functional

I(x, z) =

∫ 1

0

max
{
ẋ21(t)− x21(t)− 2tx1(t), x2(t)

}
dt+

+λ
1

2

(∫ 1

0

z1(t)dt

)2

+ λ
1

2

(∫ 1

0

z2(t)dt

)2

+ λ
1

2

∫ 1

0

(
x(t)−

∫ t

0

z(τ)dτ
)2
dt.

The point (x(1), z(1)) = (0, 0, 0, 0, 0, 0)′ was taken as the initial one, and
I(x(1), z(1)) = 0. As the iteration number increased, the discretization rank
gradually increased during the solution of the auxiliary problem of finding the
direction of the subdifferential descent described in the algorithm and in the
end the discretization step was equal to 5×10−2; the penalty parameter value
also increased and in the end we had λ = 300. At the 56-th iteration the point
(x(56), z(56)) was constructed with the following coordinates:

x1 = 27.83995t5−18.272210t4+4.163818t3−0.47695t2+0.153284t, 0 ≤ t ≤ 0.25,

0.763217t5− 0.923994t3 + 0.457991t2 + 0.018469t+ 0.009833, 0.25 ≤ t ≤ 0.5,

2.02681t5−3.01454t4−0.62533t3+3.13597t2−1.81301t+0.36767, 0.5 ≤ t ≤ 0.75,

−0.155737t4 + 0.420485t2 − 0.429341t+ 0.169993, 0.75 ≤ t ≤ 1,

x2 = 1.934618t5−2.059840t4+0.821448t3−0.169958t2−0.073440t, 0 ≤ t ≤ 0.5,

0.463557t4 − 1.012055t3 + 1.092861t2 − 0.647782t+ 0.103397, 0.5 ≤ t ≤ 1,

z1 = −0.043907t4 + 0.217162t3 − 0.337550t2 − 0.126702t+ 0.132179,

z2 = −0.035801t4 + 0.661239t3 − 0.132123t2 − 0.066889t− 0.080925,

and the functional value I(x(56), z(56)) ≈ −0.02175, x1(1) ≈ 0.0054, x2(1) ≈ 0.
For the convenience of presentation, the function has been given that consists
of Lagrange interpolation polynomials separately calculated on several time
intervals and approximating quite accurately (that is the interpolation error
does not affect the value of the functional presented with a given accuracy but
(insignificantly) affects the given value of the norm of the smallest subgradient)
the resulting trajectory. Herewith, ||v(56)||L2

2[0,T ]×L2
2[0,T ] ≈ 0.0915.
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Insofar as in fact one has z(t) = ẋ(t), t ∈ [0, 1], then the point (x(56), z(56))
may be taken with the coordinates

x1 = 27.83995t5−18.272210t4+4.163818t3−0.476947t2+0.153284t, 0 ≤ t ≤ 0.25,

0.763217t5− 0.923994t3 + 0.457991t2 + 0.018469t+ 0.009833, 0.25 ≤ t ≤ 0.5,

2.02681t5−3.01454t4−0.625326t3+3.13597t2−1.81301t+0.36767, 0.5 ≤ t ≤ 0.75,

−0.155737t4 + 0.420485t2 − 0.429341t+ 0.169993, 0.75 ≤ t ≤ 1,

x2 = 1.934618t5−2.059840t4+0.821448t3−0.169958t2−0.073440t, 0 ≤ t ≤ 0.5,

0.463557t4 − 1.012055t3 + 1.092861t2 − 0.647782t+ 0.103397, 0.5 ≤ t ≤ 1,

z1 = 139.199755t4−73.88839t3+12.491454t2−0.953894t+0.153284, 0 ≤ t ≤ 0.25,

3.816084t4 − 2.771981t2 + 0.915982t+ 0.018469, 0.25 < t ≤ 0.5,

10.134052t4−12.058139t3−1.875979t2+6.271932t−1.813011, 0.5 < t ≤ 0.75,

−0.622947t3 + 0.840969t− 0.429341, 0.75 < t ≤ 1,

z2 = 9.673089t4−8.239360t3+2.464344t2−0.339916t−0.073440, 0 ≤ t ≤ 0.5,

1.854229t3 − 3.036168t2 + 2.185722t− 0.647782, 0.5 < t ≤ 1,

then I(x(56), z(56)) ≈ −0.01827 and J(x(56)) ≈ −0.02264, x1(1) ≈ 0.0054,
x2(1) ≈ 0, i. e. the error of the trajectory value at the right endpoint does not
exceed the magnitude 5× 10−3.

In order to assess the adequacy of the result obtained, let us turn to the ex-
ample considered in paper [18]. There the smooth functional

J0(x1) =

∫ 1

0

ẋ21(t)− x21(t)− 2tx1(t)dt has been minimized with the bound-

ary conditions x1(0) = 0, x1(1) = 0 and the exact solution x1(t) =
sin(t)

sin(1)
− t

has been given and the corresponding minimum value J0(x1) = −0.02457.
It is, however, easy to observe that the minimum values of the functionals
J0(x1) and J(x1, x2) (with the given boundary conditions) coincide. Indeed,
since max

{
ẋ21(t)− x21(t)− 2tx1(t), x2(t)

}
≥ ẋ21(t) − x21(t) − 2tx1(t) for arbi-

trary values of the variables in this inequality, then one obtains the inequality
J(x1, x2) ≥ J0(x1) ≥ J0(x1) ∀x1, x2 ∈ C1[0, T ]. Having taken the arbitrary
trajectory x2 ∈ C1[0, 1], x2(0) = 0, x2(1) = 0, such that

x2(t) ≤ ẋ
2
1(t) − x21(t) − 2tx1(t) (it is possible since the values of the func-

tion in the right-hand side of this inequality are positive at t = 0 and at
t = 1), we obtain the proof of the statement. Since the minimum value of the
functional obtained with the help of the method of this paper is approximately
equal to −0.02264, then one can see that the error of the functional value does
not exceed the magnitude 2× 10−3.

Despite the fact that, as just noted, the minimal value of the functional
in this example may be achieved at any function x2(t) satisfying the given
boundary conditions and not exceeding (at every t ∈ [0, 1]) the integrand of the
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functional J0(x1) at the most iterations of the method described in the paper
the values of the function x2(t) and of the integrand of the functional J0(x1)
coincided on a subset of the interval [0, 1] of nonzero measure, i. e. both of
the functions under the maximum in the functional J(x) were active on this
subset, hence the functional J(x) turned out to be nondifferentiable at these
functions and during the operation of the paper method, the “complete” sub-
differential of the given functional was calculated. Figure 1 with the functions
z21(t) − x21(t) − 2tx1(t) and x2(t) depicted illustrates the described situation
for some iterations.

Table 1 Example 3

k I(x(k), z(k)) ||v(x(k), z(k))|| λ
1 0 0.6733 20
20 −0.01289 0.2274 100
40 −0.01833 0.1389 200
56 −0.02175 0.0915 300

Fig. 1 Example 3

Example 4. Consider the minimization problem of the functional

J(x) =

∫ 5

0

√
(ẋ1(t)− 1)2 + x22(t) + (x1(t)− x3(t)− sin(t))2dt,

x1(0) = 0, x2(0) = 0, x3(0) = 0,

with the only obvious solution x∗1(t) = t, x∗2(t) = 0, x∗3(t) = t−sin(t), t ∈ [0, 5],
and J(x∗) = 0. In accordance with Remark 2, the functional ψ(z) here is
absent. So, it is required to minimize the functional

I(x, z) =

∫ 5

0

√
(ẋ1(t)− 1)2 + x22(t) + (x1(t)− x3(t)− sin(t))2dt+

+

∫ 5

0

(
x(t)−

∫ t

0

z(τ)dτ
)2
dt,
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where the value λ = 2 is taken. It is obvious that z∗1(t) = 1, z∗2(t) = 0,
z∗3(t) = 1− cos(t), t ∈ [0, 5], I(x∗, z∗) = 0.

Take (x(1), z(1)) = (0, 0, 0, 1, 0, 0)′ as the initial point, then
I(x(1), z(1)) = 44.30267. As the iteration number increased, the discretiza-
tion rank gradually increased during the solution of the auxiliary problem of
finding the direction of the subdifferential descent described in the algorithm
and in the end the discretization step was equal to 2.5 × 10−2. At the 178-st
iteration the point

x(178) = (−0.0000056t5 + 0.000071t4 − 0.000336t3 + 0.000783t2 + 0.999079t,

0, 0.00002217t9 − 0.0005342t8 + 0.0050314t7 − 0.023074t6 + 0.053894t5−

−0.097232t4 + 0.261281t3 − 0.070276t2 + 0.0352t)′,

z(178) = (0.000004t3 − 0.000145t2 + 0.000744t+ 0.999079,

0, 0.0001996t8−0.0042738t7+0.035220t6−0.138441t5+0.269469t4−0.388926t3+

+0.783842t2 − 0.14055t+ 0.0352)′

was constructed and the functional value I(x(178), z(178)) = 0.0015. For the
convenience of presentation, the Lagrange interpolation polynomial has been
given which quite accurately approximates (that is the interpolation error
does not affect the value of the functional presented with a given accuracy but
(insignificantly) affects the given value of the norm of the smallest subgradient)
the resulting trajectory. Herewith, ||v(178)||L3

2[0,T ]×L3
2[0,T ] ≈ 0.0324.

Since, in fact, z(t) = ẋ(t), t ∈ [0, 5], then one may put

x(178) = (−0.0000056t5 + 0.000071t4 − 0.000336t3 + 0.000783t2 + 0.999079t,

0, 0.00002217t9 − 0.0005342t8 + 0.0050314t7 − 0.023074t6 + 0.053894t5−

−0.097232t4 + 0.261281t3 − 0.070276t2 + 0.0352t)′,

z(178) = (−0.000028t4 + 0.000284t3 − 0.001009t2 + 0.001565t+ 0.999079,

0, 0.0001996t8−0.0042738t7+0.035220t6−0.138441t5+0.269469t4−0.388926t3+

+0.783842t2 − 0.14055t+ 0.0352)′

and then J(x(178)) = I(x(178), z(178)) ≈ 0.00147, i. e. the error of the functional
value does not exceed the magnitude 10−3.

It is interesting to consider the “behavior” of the function z1(t) while in-
creasing the number of iterations. This trajectory is at a “far” distance from
the true value and insignificantly changes over most of the time interval and
noticeably “improves” only on a short period of time starting from the finite
moment T = 5. Gradually, the function “flattens out” approaching the true
value at smaller moments of time and finally becomes close to the solution on
the whole time interval. The typical “behavior” of the function z1(t) − 1 is
illustrated in Figure 2 for some iterations.
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Table 2 Example 4

k I(x(k), z(k)) ||v(x(k), z(k))|| ||x(k) − x∗||
1 44.3027 19.7852 9.5249
50 0.8549 0.5605 2.6881
100 0.0203 0.1292 0.2327
150 0.0033 0.0401 0.0201
178 0.0015 0.0324 0.0189

Fig. 2 Example 4, function: z1(t) − 1, iterations: 12, 68, 87

Remark 5. The examples considered show that in some cases it is required
to take a sufficiently large value of the penalty parameter λ, which can lead
to additional computational difficulties. In order to overcome this problem, in
future investigations it is planned to consider the functional

ϕ(x, z) =

∫ T

0

∣∣∣x(t)− x0 −
∫ t

0

z(τ)dτ
∣∣∣dt

instead of the functional ϕ(x, z) which will improve the accuracy of fulfillment
of this constraint and will significantly decrease the value λ. For example, let
one consider the functional λ1ϕ(x, z) (see formula 9) and take ε1 as the ac-
ceptable error, that is λ1ϕ(x, z) = ε1. Then if we put λ2ϕ(x, z) = ε2, then
with the help of Hölder’s inequality it is easy to check that the penalty param-

eters are related by the following relation λ1 =
ε1T

2λ22
2ε22

, so in most practical

cases the value of λ can be reduced by several orders of magnitude. (Take,
e.g., λ1 = 100, ε1 = ε2 = 10−2, T = 1, then λ2 =

√
2.) The hypothesis is

that the functional I(x, z) (with the functional ϕ(x, z)) may turn out to be an
exact penalty one [35], which means (speaking not strictly and without formal
definitions) the possibility to take even the finite value of the parameter λ∗

such that for all λ > λ∗ the minimizer of this functional will strictly satisfy
the corresponding constraint.
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