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Abstract

We study concentration inequalities for Lipschitz functions on graphs by esti-
mating the optimal constant in exponential moments of subgaussian type. This
is illustrated on various graphs and related to the spread constant, introduced
by Alon, Boppana, and Spencer. We also settle, in the affirmative, a question of
Talagrand on a deviation inequality for the discrete cube.

1 Introduction

Let G = (V, E) be a finite, connected, undirected graph. We are interested in finding
or estimating the optimal value of the constant σ2 = σ2(G) satisfying the inequality

Eet(f−Ef) ≤ eσ2t2/2, for all t ∈ R, (1.1)

where f is an arbitrary Lipschitz function on V , and where the expectations are taken
with respect to the normalized counting measure π on V . The Lipschitz property is
taken with respect to a metric d associated with the graph, typically, d is the standard
graph distance, given by the length of the shortest path between vertices. In this case,
by f Lipschitz we mean that |f(x) − f(y)| ≤ 1, whenever {x, y} ∈ E . The quantity
σ2(G) in (??), which we call the subgaussian constant of the graph, is akin to the
so-called spread constant

c2(G) = sup
f∈F(G)

Var f,
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studied in [?] (cf. also [?]). Above, the supremum is taken over the family F(G) of
all Lipschitz functions f on V , and Var is the variance of f with respect to π. Both
constants quantify the deviation of a Lipschitz function f from from its mean Ef . The
advantage of the subgaussian constant is however the fact that it is responsible for the
subgaussian tails of Lipschitz functions: it follows from (??) that, for all h > 0,

π{f − Ef ≥ h} ≤ e−h2/(2σ2). (1.2)

The subgaussian constant is also the optimal value in a transport inequality on (V, d),

W 2
1 (π, ν) ≤ 2σ2D(ν‖π) = 2σ2

∑
x∈V

ν(x) log (card(V ) ν(x)),

relating the Kantorovich-Rubinstein (or Wasserstein) distance W1(π, ν), the minimal
“cost” needed in order to transport π to an arbitrary probability measure ν on V , to
the informational divergence D(ν‖π) also known as the relative entropy or Kullback-
Liebler “distance” of ν with respect to π (cf. [?]).

The generic inequality, E|f−m(f)| ≤
√

Var f , wherem(f) is a median of f ∈ F(G),
implies together with (1.2) that

π{f −m(f) ≥ h} ≤ e−(h−c)2/(2σ2), h ≥ c = c(G). (1.3)

These inequalities may further be connected to the isoperimetric problem on the graph
where one minimizes the measure of Ah = {x ∈ V : d(x,A) ≤ h}, the h-neighborhood
of A for the metric d, given that the set A has a prescribed size. In particular, applying
(1.3) to the Lipschitz function f(x) = d(x,A) with an arbitrary A ⊂ V such that
π(A) ≥ 1/2, and noting that, for such an f , Ef ≤ c(G) ≤ σ(G), we arrive at a
concentration type inequality

π{x : d(x,A) ≥ h} ≤ exp

{
−(h− σ)2

2σ2

}
, h ≥ σ.

For h integer, the above is just

1− π(Ah) ≤ exp

{
−(h+ 1− σ)2

2σ2

}
, h+ 1 ≥ σ, h = 0, 1, 2, . . . . (1.4)

It is in this way that we study concentration inequalities by trying to compute or bound
from above the subgaussian constants.

A first motivation for such an approach is a question raised by Talagrand as part
of his general investigations on isoperimetry in product probability spaces. (See the
remarks following the proof of Corollary 2.2.3 in [?].) Is it indeed the case that for
every A ⊂ Ωn with µ(A) ≥ 1/2,

1− µ(Ah) ≤ Ke−2h2/n, (1.5)
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where (Ωn = Ω1×· · ·×Ωn, µ = µ1×· · ·×µn) is an arbitrary product probability space,
Ah is the enlargement of A with respect to the Hamming distance d on Ωn, and K is
a universal constant? Recall that the Hamming distance between x ∈ Ωn and A ⊂ Ωn

is given by
d(x,A) = min{k : ∃y ∈ A; card{i ≤ n;xi 6= yi} ≤ k}.

Talagrand also remarked that using certain more or less standard arguments (such as
those used in [?]) it suffices to restrict to down-sets (also called hereditary sets) A
in Ωn = {0, 1}n equipped with the product measure µ, where µi = πp, i = 1, . . . , n
is the Bernoulli measure with success probability p for 0 < p < 1. Indeed, Steps 1
through 4 of the proof of Theorem 7 in [?] carry out such a reduction. (Recall also that
A ⊂ {0, 1}n is a down-set if x ∈ A and y ≤ x imply that y ∈ A. Here y ≤ x, if for every
i, yi ≤ xi.) In the following (see the end of Section ??) we settle Talagrand’s question
in the affirmative. In fact, we show that the case of the discrete cube with down-sets
follows easily from the results of Jogdeo-Samuels [?] and Bollobás-Leader [?].

A second crucial motivation is the simple observation that, for Gn the Cartesian
product graph (equipped with an `1–type metric),

σ2(Gn) = nσ2(G). (1.6)

Therefore one may say that (in contrast to (??)) the property (??) tensorizes. Com-
bining (??) and (??), we obtain concentration for the product graph in the form of an
asymptotic isoperimetric inequality:

Proposition 1.1 For all A ⊂ V n with πn(A) ≥ 1/2,

1− πn(Ah) ≤ exp

{
−(h+ 1− σ

√
n )2

2nσ2

}
, h+ 1 ≥ σ

√
n, h = 0, 1, 2, . . . . (1.7)

Inequalities such as (??) and (??) are well-known in several situations. In the
present work, we obtain inequalities of this type by computing or estimating the sub-
gaussian constant for the following graphs:

1. The weighted two point space and the weighted discrete cube (section ??);

2. Pv : a path on v-vertices (v-path) and some generalizations (section ?? and
appendix);

3. Cv : a cycle on v-vertices (v-cycle) (section ??);

4. (Sv, dv) : the symmetric group with Hamming distance, and (Sv, ρv) : the sym-
metric group under transpositions (section ??);

5. Kv : the complete graph on v-vertices (v-clique) (section ??);

6. All of the above (section ??).
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In particular, we find the exact constants σ2(Pv) and σ2(Kv), and our estimate for
σ2 of (Sv, ρv) is tight up to a multiplicative factor of 4, and that of (Sv, dv) is tight
up to a multiplicative factor of 16. Note that in general finding the extremal sets
which minimize the size of Ah for h = 1, 2, . . . is an extremely nontrivial problem;
in particular, for the examples 4 above, this is still an open problem; while for Kn

v

(rather than Kv) this has only been very recently solved by Harper (see [?]). Bollobás
and Leader found the extremal sets for the n-dimensional grid graph P n

v (see [?]),
while for the n-dimensional discrete torus Cn

v , v even, this is due to Karakhanyan [?],
Bollobás and Leader [?] and Riordan [?]. (To the best of our knowledge, for v odd this
isoperimetric problem for Cn

v is still open.) One of the purposes of the present paper
is to illustrate the fact that using a more functional analytic approach, it is possible
to provide essentially best possible concentration inequalities without knowing the
extremal sets. This is also compared to concentration inequalities obtained via log-
Sobolev inequalities.

Since for every f , Var f = limt→0 E et(f−Ef)−1
t2/2

, c2(G) ≤ σ2(G). In general, this in-
equality is strict, it would however be worthwhile to describe those graphs for which
c2(G) and σ2(G) coincide. We will show cases of equality for some of the above exam-
ples. To start with, introduce the functions

LG(t, f) = Eet(f−Ef), LG(t) = sup
f∈F(G)

Eet(f−Ef), t ∈ R.

Clearly, LG(−t) = LG(t). More precise information is contained in LG than in σ2(G),
so it is reasonable to first try to find LG and then to consider the analytical problem
of computing the subgaussian constant via the relation

σ2(G) = sup
t>0

logLG(t)

t2/2
.

Note also that LGn(t) = LG(t)n, for all t ∈ R, (see [?] for a proof) and thus σ2(Gn) =
nσ2(G).

2 Two point and Hamming spaces

The simplest graph of interest is the two point space V = {0, 1} with uniform measure

π =
δ0 + δ1

2
which is a particular case of all of the above examples 2–4 when v = 2. It is

well known, and due to Hoeffding, that for this graph σ2 = 1/4 (cf. e.g., [?]). Moreover,
since the seminal work of Harper [?], the solution to the isoperimetric problem is also
known for {0, 1}n with the uniform measure. In the sequel, we will however need V to
be equipped with an arbitrary probability measure µ = µp assigning the mass p ∈ (0, 1)
to the point 1 and the mass q = 1 − p to the point 0. The subgaussian constant for
(V, µ) has been computed in [?], and for the sake of completeness it is also given here.
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Proposition 2.1 Given a function f on {0, 1}, the optimal value of σ2 in the inequal-
ity

Eet(f−Ef) ≤ eσ2t2/2, (2.1)

where t ∈ R is arbitrary, is given by

2σ2 =
p− q

log p− log q
(f(1)− f(0))2. (2.2)

Here and throughout this section, the expectations and the other integral quantities,
like the variance, on {0, 1} are understood with respect to the Bernoulli measure µp =
pδ1 + qδ0. The discrete cube {0, 1}n is itself equipped with the product probability
measure µn

p .
For p = q = 1/2, the value of 2σ2 is defined, as the limit as p → 1/2, to be

(f(1) − f(0))2/2. This value maximizes the right hand side of (??) over all p’s. In
particular,

Eet(f−Ef) ≤ et2/8,

for all t ∈ R, as soon as 0 ≤ f ≤ 1.

Introducing the entropy functional

Ent g = Eg log g − Eg log Eg, g ≥ 0,

the proof of Proposition ?? relies on:

Lemma 2.2 The optimal constant c = cp in the inequality

cVar g ≤ Eg Ent g, (2.3)

where g is an arbitrary nonnegative function on {0, 1}, is given by

cp = pq
log p− log q

p− q
.

When p = q = 1/2, the value of cp becomes limp→1/2 cp = 1/2. As we will also see,
(??) becomes equality for the function g such that g(0) = p/q, g(1) = q/p.

The inequality (??) can be viewed as a converse to the general inequality Var g ≥
Eg Ent g which holds on an arbitrary probability space. As for the constant, it is the
same as the the optimal c in

Ent g2 ≤ cE|∇g|2,
where |∇g| = |g(1)− g(0)| (cf. [?], [?]); however, the relationship with (??) is not that
transparent.

Proof Set g(1) = a ≥ 0, g(0) = b ≥ 0, and without loss of generality assume that in
(??)

Eg = pa+ qb = 1, (2.4)
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so that (??) takes the form

c pq(b− a)2 ≤ pa log a+ qb log b.

By symmetry, we also assume that p ≥ 1/2, a ≤ b, so that a ≤ 1 ≤ b ≤ 1/q. Let

ϕ(b) =
pa log a+ qb log b

(b− a)2
, 1 ≤ b ≤ 1/q,

where a depends on b according to (??). At b = 1 (which is the only case where a = b)
p is extended by continuity to be pq/2. We prove below that ϕ has only one point of
minimum b = p/q (and thus a = q/p). To this end, it will suffice to show that this
point is the only solution of the equation ϕ′(b) = 0 in the interval 1 < b < 1/q when
p > 1/2. Differentiating in b and recalling that a′(b) = −q/p, we find:

ϕ′(b) =
pq(b− a)(log b− log a)− 2(pa log a+ qb log b)

p(b− a)3
.

It is easy to verify that ϕ′(p/q) = 0. Now let

ψ(b) = pq(b− a)(log b− log a)− 2(pa log a+ qb log b), 1 ≤ b ≤ 1/q,

so that ϕ′(b) = 0 ⇐⇒ ψ(b) = 0, for b > 1. Two more differentiations give:

ψ′(b) = q
[(

1

a
+ log a

)
−
(

1

b
+ log b

)]
, ψ′′(b) =

q

(pab)2
(b− 1)(2qb− 1).

Consequently, ψ is strictly concave in [1, 1/(2q)] and strictly convex in [1/(2q), 1/q]. In
addition, ψ(1) = ψ′(1) = 0. Therefore, for some b0 ∈ (1, 1/q), this function is strictly
decreasing on the interval [1, b0] and strictly increasing on [b0, 1/q]. In particular, the
equation ψ(b) = 0 has at most one solution on (1, 1/q) and, as we know, this solution
exists and is given by b = p/q. When p = q = 1/2, the interval of concavity of ψ
degenerates to the point b = 1 = p/q. Lemma ?? is proved.

Proof of Proposition ?? We may assume that Ef = 0 and that f(0) 6= f(1) so
that a priori σ > 0. The entropy functional has the following well-known general
representation:

Ent g = sup{Eug : Eeu ≤ 1}.
Hence, the inequality Eeu ≤ 1 is equivalent to Eug ≤ Ent g, where g ≥ 0 is arbitrary.
Applying this to u = tf − σ2t2/2, we see that (??) is equivalent to

E(tf − σ2t2/2) g ≤ Ent g, g ≥ 0, t ∈ R. (2.5)

For a fixed g with Eg > 0, the above left hand side is maximized for

t =
Efg

σ2 Eg
, (2.6)

6



and (??) becomes
(Efg)2 ≤ 2σ2 Eg Ent g, g ≥ 0.

But, on the two point space, since Ef = 0, we have (Efg)2 = pq(f(1) − f(0))2 Var g.
Hence, the above inequality can be rewritten as

pq(f(1)− f(0))2

2σ2
Var g ≤ Eg Ent g,

where g is an arbitrary nonnegative function on {0, 1}. It remains to apply Lemma ??
to obtain Proposition ??.

We may now summarize:

Proposition 2.3 Let 0 < p < 1. For the discrete cube V = {0, 1}n equipped with the
product measure µn

p , the subgaussian constant is given by

σ2 =
n(p− q)

2 (log p− log q)
.

Applying Proposition ?? to the Lipschitz function f(x) = x1 + . . . + xn on V ,
implies via (??) a subgaussian deviation inequality for the number Sn of successes in
n independent Bernoulli trials with success probability p:

Pr

{
Sn − np√

n
≥ h

}
≤ exp

{
− log p− log q

p− q
h2

}
≤ exp{−2h2}, h ≥ 0. (2.7)

We now return to Talagrand’s question mentioned in the introductory section and
further study concentration on the Hamming space. Before removing the question
mark after (??), and for the sake of completeness we first state the results of Jogdeo-
Samuels and Bollobás–Leader we need. Theorem 3.2 and Corollary 3.1 of [?] assert the
following: Consider n independent Bernoulli trials, the ith trial with success probability
0 < pi < 1. Then

(i) if the mean number of successes is an integer k then the median is also k,
(ii) if the mean number of successes is between the integers k and k + 1 then the

median is either k or k + 1.

On the other hand, one of the main results (Corollary 5) of [?] asserts that for any

down-set A in the discrete cube {0, 1}n, if µn
p (A) ≥ ∑k

i=0

(
n
i

)
pi(1− p)n−i, then

µn
p (Ah) ≥

k+h∑
i=0

(
n

i

)
pi(1− p)n−i. (2.8)
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Proposition 2.4 For n ≥ 1, let µ = µn
p , with µp({1}) = p and µp({0}) = 1 − p, for

0 < p < 1. Then for every A ⊂ {0, 1}n, with µ(A) ≥ 1/2, and for every integer h ≥ 1,
we have

1− µ(Ah) ≤ Ke−2h2/n, (2.9)

where K > 0 is an absolute constant, and Ah = {x ∈ {0, 1}n : d(x,A) ≤ h}, d being
the Hamming distance.

Proof. As indicated before, we can take A to be a down-set with µ(A) ≥ 1/2. In light
of the results of [?], observe that

µ(A) ≥ 1/2 ≥
bnpc−1∑

i=0

(
n

i

)
pi(1− p)n−i,

also assuming that bnpc > 0. (The second inequality follows from the fact that a
median is either bnpc or bnpc+1.) Even if bnpc = 0, it is still true that µ(A) ≥ (1−p)n,
since every down-set contains (0, . . . , 0). Now using (??) and also the fact that only
the values h ≤ n− 1 need to be considered, we conclude that

1− µ(Ah) ≤
n∑

i=bnpc+h

(
n

i

)
pi(1− p)n−i

= Pr{Sn ≥ bnpc+ h} ≤ Ke−2h2/n,

where the last inequality is standard and also easily follows from the second subgaussian
inequality in (??). This proves the result with K = e4. Actually, using the first

inequality in (??) and for p 6= 1

2
, the exponent −2 can be improved to − log p− log q

p− q
.

Since for {0, 1}n, with p = 1/2, we have σ2 = n/4, (??) can be rewritten as

1− µ(Ah) ≤ Ke−h2/(2σ2), (2.10)

with K = e4. Therefore, one may wonder whether or not this last inequality remains
valid for an arbitrary (weighted) graph, or equivalently whether or not the spread
constant c(G) in the deviation inequality (??), can be removed at the expense of an
absolute multiplicative constant K. A positive answer to this query would also easily
settle Talagrand’s question since the subgaussian constant of any Hamming space is at
most n/4. However, the weighted discrete cube (of increasing dimension n) provides a
counterexample to such an intriguing question (and although the particular case n = 1
is affirmatively solved by Proposition ??).

Indeed, assume (1 − p)n = 1/2 so that p is of order
log 2

n
+ O

(
1

n2

)
, as n → ∞.

By Proposition ??, the inequality (??), for which we are seeking a counterexample,
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becomes

1− µ(Ah) ≤ K exp

{
− log p− log q

n (p− q)
h2

}
.

Now, the only set of µ–measure 1/2 is the one point set A = {(0, . . . , 0)}. For h = n−1,
we thus have Ah = {0, 1}n \ {(1, . . . , 1)} and the last inequality simplifies to

log p− log q

p− q

(
1− 1

n

)2

− log
1

p
≤ logK

n
. (2.11)

But, a simple Taylor expansion shows that the main term on the left of (??) is 2p log
1

p

which is of order
2 log 2 log n

n
, and so cannot be bounded by the right hand side of

(??).

It is standard that (??), for p =
1

2
, implies

µ{f −m(f) ≥ h} ≤ Ke−h2/2n, (2.12)

for any f , Lipschitz (with constant 1) with respect to the Hamming distance on {0, 1}n

and again K = e4. It is thus also natural to wonder if this last inequality can be
sharpened by replacing 1/2n with 2/n, possibly worsening the absolute constant K.
This would then match the deviation inequality from the mean, up to the universal
constant K. On {0, 1} this is indeed immediately true from (??) (and with K = e11/2),
and on {0, 1}n for p small (p ≤ 1/(e8 + 1) will do) or p close to 1 this is also true by

Proposition ??. Now, in general, e−2h2/n ≤ e5e−2(h+1)2/n for all h ≤ n, n ≥ 2. Thus
(??) admits a small improvement:

1− µ(Ah−1) ≤ e9e−2h2/n,

for all h ≥ 1, integer and all A ⊂ {0, 1}n with µ(A) ≥ 1/2 where µ is the weighted
product probability measure as in Proposition ??. Given a Lipschitz function f on V ,
applying the above inequality to A = {x : f(x) ≤ m(f)}, and since Ah−1 is contained
in {f ≤ m(f) + (h− 1)}, gives

µ{f −m(f) ≥ h} ≤ e9e−2h2/n. (2.13)

3 v-path

v-path is the graph G = Pv with V = {1, 2, . . . , v} where {x, x+ 1} (x = 1, . . . , v − 1)
are the only pairs of connected vertices. Let us find the function LG in this case,
assuming that v ≥ 2. An element of F(G) is an arbitrary function f on V such that

|f(x+ 1)− f(x)| ≤ 1, for all x = 1, . . . , v − 1.
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We want to show that, whenever t ∈ R, in the class F(G) the value of Eet(f−Ef) is
maximized for the identity function

f ∗(x) = x.

In fact, there is a general principle involving this statement:

Proposition 3.1 Let µ be a Borel probability measure on R such that the half-axes
(−∞, x] are extremal in the isoperimetric problem for µ, i.e., for all p ∈ (0, 1) and
h > 0, the infimum

inf{µ(A+ (−h, h)) : A Borel, µ(A) ≥ p}

is attained at the half-axis A = (−∞, x], for some x ∈ R. Then, for any Lipschitz
function f on R (with Lipschitz constant at most 1), and for all t ∈ R,

Eµe
t(f−Eµf) ≤ Eµe

t(f∗−Eµf∗). (3.1)

The proof of this proposition and of the following one are given at the end of this
section. It should be clear that the uniform measure µ = π on V satisfies the condition
of Proposition ??. Therefore, LG(t) = LG(t, f ∗), and since Eπf

∗ = (v+1)/2, it follows
that

LG(t, f ∗) =
1

v

v∑
x=1

etx e−t(v+1)/2 = et evt − 1

v(et − 1)
e−t(v+1)/2

=
evt/2 − e−vt/2

v(et/2 − e−t/2)
=

sh(vt/2)

v sh(t/2)
.

Thus:

Proposition 3.2 For any Lipschitz function f on the v-path Pv and for all t ∈ R,

Eet(f−Ef) ≤ sh(vt/2)

v sh(t/2)
,

where the expectations are with respect to the uniform measure. In particular,

σ2(Pv) =
v2 − 1

12
.

Remark 3.3 For every probability measure µ on R and every Lipschitz function f on
R,

Varµ(f) =
1

2

∫∫
R2

(f(x)− f(y))2 dµ(x)dµ(y) ≤ 1

2

∫∫
R2

(x− y)2 dµ(x)dµ(y) = Varµ(f ∗).

Therefore, the spread constant of the v-path is

c2(Pv) = Varπ(f ∗) =
1

v

v∑
x=1

x2 −
(
v + 1

2

)2

=
v2 − 1

12
.

Thus, c2(Pv) = σ2(Pv). According to (??)–(??), we obtain:
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Proposition 3.4 Let P n
v be the n-th power of the v-path Pv with the uniform measure

πn on the set of vertices V n. For all A ⊂ V n, such that πn(A) ≥ 1/2,

1− πn(Ah) ≤ exp

−
6
(
h+ 1−

√
v2−1
12

n
)2

n (v2 − 1)

 , h+ 1 ≥
√
v2 − 1

12
n, h = 0, 1, 2 . . . .

(3.2)

As shown by Bollobás and Leader, a result stronger than Proposition ?? is true for
the n-th power of any graph G. (Their result has an h in place of h+ 1− σ

√
n in the

right hand side of (??).) Using Corollary 14 of [?], we can also write Proposition ?? for
arbitrary Gn. For completeness, let us state their Corollary 14 here. (In plain words,
it states that Gn has the worst isoperimetry, or minimum vertex boundary, when G is
a path.) Let V n = {0, 1, . . . , v − 1}n denote the set of vertices of the n-th power of a
v-path, let

B(n)
v (r) =

{
x ∈ V n :

∑
i

xi ≤ r

}
, r = 0, 1, . . . ,

and let b(n)
v (r) = |B(n)

v (r)| (here and below, | · | denotes cardinality). Then

Lemma 3.5 ([?]) Let G1, . . . , Gn be arbitrary connected graphs, each on v vertices,
and let 2 denote Cartesian product. Then for all A ⊂ G12G2 · · ·2Gn, with |A| ≥
b(n)
v (r),

|Ah| ≥ b(n)
v (r + h), for all h.

Together Proposition ?? and Lemma ?? imply as claimed:

Proposition 3.6 Let Gn = G12 · · ·2Gn. Then for all A ⊂ Gn such that πn(A) ≥ 1/2,

1−πn(Ah) ≤ exp

−
6
(
h+ 1−

√
v2−1
12

n
)2

n(v2 − 1)

 , h+ 1 ≥
√
v2 − 1

12
n, h = 0, 1, 2, . . . .

Perhaps it is to be remarked that Bollobás and Leader obtain their stronger version
of Proposition ?? by actually finding the extremal sets minimizing π(Ah) for all h ≥ 1,
whereas the proof (of our weaker result) is simpler since we derive Proposition ??
directly, with a functional-analytic approach, without having to find the extremal sets.

Finally, we note that Proposition ?? guarantees that the v-path is extremal for the
subgaussian constant (and hence the spread constant) among all graphs on v vertices:

Corollary 3.7 For any connected undirected graph G on v vertices, σ2(G) ≤ v2 − 1

12
.
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Proof The point is that any function which is Lipschitz with respect to an arbitrary
G on v vertices is also Lipschitz with respect to Pv. To be formal, let t ∈ R be fixed,
and let g be Lipschitz with respect to G = (V,E) with |V | = v vertices. Without loss
of generality let minx∈V g(x) = 1. Then clearly we may order g as follows:

1 = g(τ1) ≤ g(τ2) ≤ · · · ≤ g(τv),

where τ is an appropriate permutation of V , and furthermore, g(τi) ≤ i. Thus for
each t ∈ R, we may indeed view g as a Lipschitz function on the path on {1, 2, . . . , v}.
Now the result follows from Proposition ??, which establishes the extremality of the
identity function f ∗ on Pv (see in particular (??)).

Note that it also follows now that the v-path is extremal for c2(G) among all graphs
on v-vertices – one can either use the above argument or simply appeal to the fact that
c2(G) ≤ σ2(G) for all G.

Remark 3.8 Noga Alon pointed out to us that the above argument extends to im-
plying that the maximum over all 2-connected graphs1 G of σ2(G) is achieved by Cv,
the v-cycle.

We can now pass to the proofs of Propositions ?? and ??. As shown in [?], the
extremal property of the half-axes in the isoperimetric problem for µ on the real line
implies that µ has a finite exponential moment. In particular, f ∗ and thus all Lipschitz
functions on R are µ-integrable. Hence, both sides of the inequality (??) are well-
defined. First we establish this inequality for monotone Lipschitz functions.

Lemma 3.9 Let µ be a probability measure on R with finite first moment, i.e., Eµ|f ∗|=∫
R |x|dµ(x) < +∞. Then, (??) holds true for any non-decreasing Lipschitz function f

on R and for all t ≥ 0. If the measure µ is symmetric about a point, then (??) holds
for all t ∈ R.

In general (??) is not true for all Lipschitz functions f on R, even if µ is symmetric.
A simple counterexample to (??) is given by the function f(x) = |x| with respect to
measures of the form µ = pδx + pδ−x + qδ0 with sufficiently small p and large x. Thus,
in order to obtain an extremal property for the function f ∗ in the class of all Lipschitz
functions, an extra condition on µ is required. Such an extra condition, based on the
extremal property of the half-axes as stated in Proposition ??, will be used.

1Recall that a graph is 2-connected if the removal of any single vertex still leaves the graph
connected.
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Proof of Lemma ?? We use the following version of the well-known functional rep-
resentation of the entropy: for every measurable function h defined on some probability
space,

log Eeh = sup
Eg=1

[Egh− Eg log g] , (3.3)

where the sup is taken over all measurable non-negative (and for simplicity bounded)
functions g with Eg = 1. Clearly, this supremum is attained at g = eh/Eeh. Thus,
when the measure µ and the functions g, h are considered on the real line R, and h
is non-decreasing on R, the extremal g is non-decreasing, as well. Hence in this case,
it suffices to restrict ourselves to non-decreasing functions g in (??). In particular,
applying (??) to the nondecreasing function h = t(f −Eµf), we have a representation
in terms of the covariances covµ(f, g) = Efg − EfEg:

log Eµe
t(f−Ef) = sup

Eg=1
[t cov(f, g)− Eg log g] , g nondecreasing. (3.4)

Now use

cov(f, g) =
1

2

∫∫
R2

(f(x)− f(y))(g(x)− g(y)) dµ(x)dµ(y).

Moreover, if both f and g are non-decreasing and if f is Lipschitz, then for all x, y ∈ R,

(f(x)− f(y))(g(x)− g(y)) ≤ (x− y)(g(x)− g(y)) = (f ∗(x)− f ∗(y))(g(x)− g(y)).

Hence, covµ(f, g) ≤ covµ(f ∗, g), and thus, by (??), log Eµe
t(f−Ef) ≤ log Eµe

t(f∗−Ef∗).
This proves Lemma ?? (the second statement is trivial since then f ∗ − Eµf

∗ and
Eµf

∗ − f ∗ are identically distributed).

Clearly, Lemma ?? can equivalently be formulated as follows: Let ξ and η be inte-
grable random variables on some probability space (Ω, µ). If, for some non-decreasing
Lipschitz function f from R to R, η and f(ξ) are identically distributed, then, for all
t ≥ 0,

Eµe
t(η−Eµη) ≤ Eµe

t(ξ−Eµξ). (3.5)

In order to check the assumptions of this statement and thus get (??), one may use
the following characterization proved in [?] (Proposition 2.6 therein):

Lemma 3.10 Given two random variables ξ and η on (Ω, µ), the existence of a non-
decreasing Lipschitz map f from R to R such that η and f(ξ) are identically distributed
is equivalent to the inequality

µ{η ≤ mp(η) + h} ≥ µ{ξ ≤ mp(ξ) + h}, (3.6)

holding for all p ∈ (0, 1) and h > 0, and where mp denotes the minimal quantile (of
order p) of a random variable.

Proof of Proposition ?? The extremal property of the half-axes implies that

13



1) µ is symmetric about some point;

2) for every Lipschitz function on R, there exists a non-decreasing Lipschitz function
on R with the same distribution (with respect to µ).

The property 2) is stronger than 1) which in turn follows from 2) applied to the
function f = −f ∗. In order to derive 2) from the extremality of the half-axes, we use
Lemma ??. Indeed, given a Lipschitz function f on R, let

Ap = {x ∈ R : f(x) ≤ mp(f)}, 0 < p < 1,

where mp is the minimal quantile of f with respect to µ. By assumption, there exists
x ∈ R such that µ((−∞, x]) ≥ p and µ(Ap + (−h, h)) ≥ µ((−∞, x+ h)), for all h > 0.
The minimal value of x with the property µ((−∞, x]) ≥ p is x = mp(f

∗) in which case
µ((−∞, x+ h)) = µ{f ∗ −mp(f

∗) < h}. Thus,

µ(Ap + (−h, h)) ≥ µ{f ∗ −mp(f
∗) < h}.

But since f is Lipschitz, Ap + (−h, h) ⊂ {x ∈ R : f(x) < mp(f) + h}. Therefore,

µ{f −mp(f) < h} ≥ µ{f ∗ −mp(f
∗) < h}, h > 0, 0 < p < 1.

So, (??) and thus (??) hold for η = f and ξ = f ∗. Proposition ?? is proved.

Proof of Proposition ?? It remains to show that the optimal value of σ2 = σ2(Pv)
in

sh(vt/2)

v sh(t/2)
≤ eσ2t2/2, t ∈ R, (3.7)

is σ2(Pv) =
v2 − 1

12
. Taking logarithm of both sides in (??) and setting s = t/2, we

need to find the optimal constant σ2 satisfying the inequality

ϕ(s) = log(sh(vs))− log(sh(s))− 2σ2s2 ≤ log v, s ≥ 0, (3.8)

where by continuity, ϕ(0) = log v. Next, for s > 0,

ϕ′(s) = v
ch(vs)

sh(vs)
− ch(s)

sh(s)
− 4σ2s,

ϕ′′(s) = − v2

sh2(vs)
+

1

sh2(s)
− 4σ2,

1

2
ϕ′′′(s) =

v3ch(vs)

sh3(vs)
− ch(s)

sh3(s)
.

Using Taylor’s expansion for the hyperbolic functions, we easily find that

ϕ′(0+) = lim
s→0+

ϕ′(s) = 0, ϕ′′(0+) =
v2 − 1

3
− 4σ2.

14



Therefore, (??) implies ϕ′′(0+) ≤ 0, i.e., for the optimal σ2 in (??), we have σ2 ≥
v2 − 1

12
. It remains to show that σ2 =

v2 − 1

12
satisfies (??). To do so, it is enough to

show that ϕ is concave, i.e., ϕ′′(s) ≤ 0, for all s > 0. Since ϕ′′(0+) = 0, it is sufficient
to show that, for all s > 0, ϕ′′′(s) ≤ 0, i.e.,

(vs)3ch(vs)

sh3(vs)
≤ s3ch(s)

sh3(s)
.

Clearly, this inequality follows if the function ψ(s) =
s3ch(s)

sh3(s)
is non-increasing in s > 0.

That is, if the function

θ(s) = logψ(s) = 3 log s+ log ch(s)− 3 log sh(s),

is non-increasing in s > 0. So, let us verify that

θ′(s) =
3

s
+

sh(s)

ch(s)
− 3 ch(s)

sh(s)
=

3

s
− 1 + ch2(s)

sh(s)ch(s)
≤ 0,

which can be rewritten as

u(s) = 3 sh(s)ch(s)− s(1 + ch2(s)) ≤ 0, s ≥ 0. (3.9)

Since u(0) = 0 and u′(s) = 4 sh(s) (sh(s) − s ch(s)) ≤ 0, u is non-increasing in s ≥ 0.
This proves (??) and thus Proposition ??.

4 v-cycle and discrete torus

The v-cycle G = Cv can be viewed as the subset V of the complex plane C given by

V = {xk = e2πi k/v : k = 0, 1, . . . , v − 1}

where {xk, xk+1} (k = 0, 1, . . . , v − 1) are the only pairs of connected points (with the
agreement that xv = x0). For example, a 2-cycle is also a 2-path, but for v ≥ 3, a
v-cycle is not a v-path. The graph distance on the v-cycle is up to a constant the
geodesic distance on V considered as a subset of the unit circle S1 ⊂ R2. Thus, an
element of F(G) is an arbitrary function f on V such that

|f(xk)− f(xk−1)| ≤ 1, (4.1)

for all k = 1, . . . , v. In analogy with the v-path, one can suggest the following.

Conjecture 4.1 In the class F(G) of all Lipschitz function f on the v-cycle G = Cv,
for all t ∈ R, the value of

LG(t, f) = Eet(f−Ef)

is maximized for the function f(x) = d(x, x0) or f(x) = −d(x, x0), x ∈ V (the expec-
tations are with respect to the normalized counting measure π on V ).
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We verified that the conjecture is true for v ≤ 4; we present below a proof for the
case v = 3, and compute the corresponding constant σ2(C3). Moreover, see Remark ??
below which observes that the conjecture is true when v is even. As a result, this will
allow us to compute the corresponding constants σ2(Cv).

First, let us simplify the problem of maximization of the functional f → LG(t, f),
f ∈ F(G). This functional is translation invariant, LG(t, f + c) = LG(t, f), so we can
always assume that f(x0) = 0. Denote the set of such Lipschitz functions by F0(G).
Next, this functional is clearly convex. Therefore, since F0(G) is a convex and compact
set, LG(t, f) is maximized for some extremal function f of F0(G). In order to describe
the extremal functions, we associate every function f ∈ F0(G), according to (??), with
the vector

y = (y1, · · · , yv) ∈ [−1, 1]v, yk = f(xk)− f(xk−1), k = 1, · · · , v,

such that
y1 + · · ·+ yv = 0. (4.2)

Thus, the map T : y → f allows us to identify F0(G) with the intersection M0 of the
cube [−1, 1]v with the hyperplane defined by (??). But, as easily seen (and proved),
when v = 2n is even, the extremal points of M0 are the sequences

y = (±1, · · · ,±1) (4.3)

with the number of pluses equal to the number of minuses (= n). When v = 2n+ 1 is
odd, the extremal points of M0 are the sequences of the form

y = (±1, · · · ,±1, 0,±1, · · · ,±1) (4.4)

also with the number of pluses equal to the number of minuses (= n), but with 0
at some place. Thus, in order to maximize LG(t, f) in the class F(G), it suffices to
consider the functions f on V with the property that

f(xk)− f(xk−1) = ±1, (4.5)

for all k = 1, . . . , v in case v = 2n, and in case v = 2n+ 1, with the property that (??)
holds for all k = 1, . . . , v except one value of k for which f(xk)− f(xk−1) = 0, with in
addition in both cases the number of +1 equal to n.

Now, denote by S the shift operator on Rv: (Sy)k = yk+1 with the agreement that
yv+1 = y1. Then, T (Sy) = T (y) + c, so LG(t, T (Sy)) = LG(t, T (y)). Therefore, maxi-
mizing LG(t, T (y)) among all y ∈ M0, we can restrict ourselves to extremal sequences
y ∈ ex(M0) as in (??)–(??) whose transforms by shift operation form the whole set
ex(M0).

For example, when v = 3, up to the shift transformation there exist only two
extremal sequences

(0, 1,−1) and (0,−1, 1),
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and the rest of the sequences (1,−1, 0), (−1, 1, 0), (1, 0,−1), (−1, 0, 1) can be obtained
from the first two sequences using the shift operator possibly applied twice. The
sequence y = (0, 1,−1) corresponds to the function f = T (y) such that f(x0) = 0,
f(x1) = 1, f(x2) = 0, that is f(x) = 1−d(x, x1) which, up to an additive constant, has
the same distribution as the function −d(x, x0). The second sequence y = (0,−1,−1)
corresponds to the function f = T (y) such that f(x0) = 0, f(x1) = −1, f(x2) = 0,
that is, f(x) = d(x, x1) − 1 which up to a summand has the same distribution as the
function d(x, x0). This proves the conjecture in the case v = 3:

LG(t) = max{LG(t, f), LG(−t, f)}, where f(x) = d(x, x0), x ∈ V. (4.6)

Now, Ef =
f(x0) + f(x1) + f(x1)

3
=

2

3
,

LG(t, f) = Eetf e−2t/3 =
1 + 2et

3
e−2t/3 =

e−2t/3 + 2et/3

3
.

As is easily seen, LG(t, f) ≤ LG(−t, f), for all t ≥ 0, in which case the function
f(x) = −d(x, x0) maximizes LG(t, f), while for t ≤ 0, the function f(x) = d(x, x0)
maximizes LG(t, f). We can now summarize:

Proposition 4.2 For the 3-cycle G = C3, we have

LG(t) =
e2|t|/3 + 2e−|t|/3

3
, t ∈ R.

In particular,

σ2(C3) =
1

6 log 2
.

Proof It only remains to find the optimal constant σ2 satisfying the inequality

LG(t) =
1

3
e2t/3 +

2

3
e−t/3 ≤ eσ2t2/2, t ≥ 0.

Note that LG(t) = Eet(ξ−Eξ) where ξ is a Bernoulli random variable taking the values
1 and 0 with probabilities p = 1/3 and q = 2/3, respectively. But by Proposition ??,

2σ2 =
p− q

log p− log q
. (4.7)

When p = 1/3, 2σ2 =
1

3 log 2
. Proposition ?? is proved.

Remark 4.3 The functional f → Var f is convex, hence it attains its maximum in
F(G) at the function f(x) = d(x, x0) (since Var(−f) = Var f and since the functions
f and −f are the only functions to be considered as explained above). Thus,

c2(C3) =
2

9
< σ2(C3).
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Also, recall that, for the 3-path P3, σ
2(P3) =

v2 − 1

12
=

2

3
, which is greater than the

corresponding constant for the 3-cycle.

Let us now pass to the (more symmetric) case of the 4-cycle C4. When v = 4, up
to the shift operation the number of extremal sequences in ex(M0) is larger than in
the case v = 3, but since the reflection y → −y in M0 corresponds to the map f → −f
and since LG(t,−f) = LG(−t, f), we need only consider extremal sequences up to
reflections. Up to these two types of transformations, there exist only three sequences
(recall (??)):

(1, 1,−1,−1), (1,−1, 1,−1), (1,−1,−1, 1).

The first sequence corresponds to the function f such that f(x0) = 0, f(x1) = 1,
f(x2) = 2, f(x3) = 1, that is to the function f(x) = d(x, x0). In this case, Ef = 1 and

LG(t, f) =
1 + 2et + e2t

4
e−t =

1 + ch(t)

2
.

The third sequence corresponds to the function f such that f(x0) = 0, f(x1) = 1,
f(x2) = 0, f(x3) = −1 in which case Ef = 0 and therefore f(x) = 1 + d(x, x3) (and

thus again LG(t, f) =
1 + ch(t)

2
). The second sequence corresponds to the function f

such that f(x0) = 0, f(x1) = 1, f(x2) = 0, f(x3) = 1 in which case Ef = 1/2 and

LG(t, f) =
1 + et

2
e−t/2 = ch

(
t

2

)
.

Since ch
(
t

2

)
≤ 1 + ch(t)

2
for all t ∈ R, this last function is not a “point” of maximum

of the functional LG(t, ·). Thus, we verified Conjecture ?? in the case v = 4.

Proposition 4.4 For the 4-cycle C4, we have

LG(t) =
1 + ch(t)

2
, t ∈ R.

In particular,

c2(C4) = σ2(C4) =
1

2
.

Proof It only remains to find an optimal constant σ2 satisfying the inequality

ϕ(t) = log
1 + ch(t)

2
− σ2t2

2
≤ 0, t ≥ 0.

We have ϕ(0) = 0,

ϕ′(t) =
sh(t)

1 + ch(t)
− σ2t, ϕ′′(t) =

1

1 + ch(t)
− σ2.

18



Since ϕ(0) = ϕ′(0) = 0, the condition ϕ(t) ≤ 0 for all t ≥ 0 implies ϕ′′(0) ≤ 0,
that is, σ2 ≥ 1/2. On the other hand, with the value σ2 = 1/2, ϕ′′(t) ≤ 0, for all
t ∈ R. Hence ϕ is concave and thus non-positive. It is also clear that, for the function
f(x) = d(x, x0), Var f = 1/2. Thus c2(C4) = 1/2. Proposition ?? is proved.

Remark 4.5 While the above is self-contained, we could have deduced using the ten-
soring property that σ2(C4) = 2σ2(P2) = 1/2, since C4 = P22P2, the Cartesian product
graph of P2 with itself.

Remark 4.6 Colin McDiarmid pointed out to us that in the case of even v, the above
conjecture is true and follows from an elementary argument based on some of the above
observations. Suppose that v is even and that the conjecture is not true. Fix t ∈ R
and consider an arbitrary Lipschitz f . Further suppose (without loss of generality,
see e.g. the discussion leading to (??) above) that we restrict ourselves to Lipschitz
f whose range lies in R = {0, 1, . . . , v/2}. Then either every value in R has precisely
two pre-images or there exists an i ∈ R with at least three pre-images. In either case,
it is easy to see that we can define (by simply permuting the values of f) a Lipschitz g
so that Eet(g−Eg) = Eet(f−Ef), and that g(xk)− g(xk−1) = 0, for some 1 ≤ k ≤ v; but
now (??) shows that such a g can not be extremal!

Unfortunately, the above argument does not seem to extend to the odd case. It is
rather interesting that it is also the odd case in which the characterization of extremal
sets is still unsolved for the discrete isoperimetric problem on the n-dimensional discrete
torus. However, see Remark ?? below.

Finally to conclude this section, we state an analog of Conjecture ?? when maxi-
mizing the variance, and postpone the proof to the Appendix.

Proposition 4.7 In the class of all Lipschitz functions f on the v-cycle G = Cv, Var f
is maximized for the function f(x) = d(x, x0), x ∈ V (the variance is with respect to
the normalized counting measure π on V ). In particular,

c2(Cv) =



v2 + 8

48
, if v is even,

(v2 − 1)(v2 + 3)

48v2
, if v is odd.

(4.8)

Remark 4.8 Very recently the last author and Marcus Sammer showed [?], using
the transport formulation of the subgaussian (mentioned in the introduction) that for
v ≥ 3,

σ2(Cv) = (1 + o(1))σ2(Pdv/2e) = (1 + o(1))
v2

48
,

where the o(1) goes to zero as v goes to infinity.
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5 Symmetric group

In the following we consider two natural metrics on Sv, the symmetric group of all
permutations of elements in the sequence (1, · · · , v). Any element x of Sv may be
viewed as a bijection of the set Iv = {1, · · · , v} onto itself. For x, y ∈ Sv, the product
xy is the bijection such that (xy)(i) = y(x(i)), for all i = 1, · · · , v. As usual, we also
write xi instead of x(i). The canonical metric dv on Sv (cf. [?]) is induced from the
Hamming space Iv

v (of which Sv is a subspace):

dv(x, y) = card{i ≤ v : xi 6= yi}, x, y ∈ Sv. (5.1)

Proposition 5.1 For all v ≥ 2,

σ2(Sv, dv) ≤ v − 1.

In other words, for every dv-Lipschitz function f on Sv and all t ∈ R,

Eet(f−Ef) ≤ e(v−1) t2/2, (5.2)

where the expectations are with respect to the normalized counting measure πv on Sv.
In particular, for all A ⊂ Sv with πv(A) ≥ 1/2, and all integer h ≥

√
v − 1,

πv{x ∈ Sv : dv(A, x) ≥ h} ≤ exp

{
−(h−

√
v − 1)2

2(v − 1)

}
. (5.3)

A concentration inequality for (Sv, dv) was first obtained by Maurey in [?] who
proved that for all A ⊂ Sv with πv(A) ≥ p,

πv{x ∈ Sv : dv(x,A) ≥ h} ≤ exp

−
(

h
2
− 2

√
v log(1/p)

)2

4v

 . (5.4)

When p = 1/2, (??) slightly improves upon (??).

Denote by si,j the transposition of i, j ∈ Iv: (si,j)i = j, (si,j)j = i, and (si,j)k = k,
for k 6= i, j. In particular, si,i is the identity permutation, and we also have s−1

i,j =
si,j = sj,i. Given x ∈ Sv, the permutations y = si,jx (i < j) are at the least dv-distance
from x and could be considered as its neighbors. Note however that dv(x, si,jx) = 2
(and that the metric cannot take the value 1). In this sense, the metric dv is not
the usual graph metric, since the distance between any two neighbors in the graph
is 1. The inner graph metric ρv(x, y), if we consider {si,jx : i 6= j} as the set of all
neighbors of x, should be defined as the least number of transpositions z1, · · · , zk such
that z1 · · · zkx = y. In particular, a function f on Sv is ρv-Lipschitz if and only if, for
all x ∈ Sv and all 1 ≤ i < j ≤ v,

|f(si,jx)− f(x)| ≤ 1. (5.5)
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We are thus faced with another problem: To get a concentration inequality for (Sv, ρv).
In general,

ρv(x, y) ≤ dv(x, y)− 1, x 6= y,

from which it follows that ρv(A, x) ≤ dv(A, x)− 1, x /∈ A. Hence, for h ≥ 1, we have

{x ∈ Sv : ρv(x,A) ≥ h} ⊂ {x ∈ Sv : dv(x,A) ≥ h+ 1}

so that, by (??),

πv{x ∈ Sv : ρv(x,A) ≥ h} ≤ exp

{
−(h+ 1−

√
v − 1)2

2(v − 1)

}
, h = 1, 2, . . . .

Thus, concentration for (Sv, dv) implies concentration for (Sv, ρv). For the converse,
the Hamming distance dv is at most twice the transposition distance ρv (trivially, every
transposition displaces at most two elements, increasing the Hamming distance by at
most two). Just as ρv ≤ dv − 1 can be tight, dv ≤ 2ρv can also be tight: consider
(123456..(v − 1)v) and (214365...v(v − 1)), for v even. Then dv = v and ρv = v/2.
Thus (??) implies (??). Indeed, the sharper concentration inequality for (Sv, ρv) can
be obtained as shown next (this is similar to a corresponding property of the discrete
cube {0, 1}v−1):

Proposition 5.2 For all v ≥ 2,

v − 1

16
≤ c2(Sv, ρv) ≤ σ2(Sv, ρv) ≤

v − 1

4
.

In other words, the upper bound shows that for every ρv-Lipschitz function f on Sv and
all t ∈ R,

Eet(f−Ef) ≤ e(v−1) t2/8, (5.6)

where the expectations are with respect to the normalized counting measure πv on Sv.
In particular, for all A ⊂ Sv with πv(A) ≥ 1/2, and all integer h ≥ 1

2

√
v − 1,

πv{x ∈ Sv : ρv(A, x) ≥ h} ≤ exp

{
−(2h−

√
v − 1)2

2(v − 1)

}
. (5.7)

The inequality (??) is not new. It appears in a paper of McDiarmid [?] inside a
martingale-based proof of a version of the concentration inequality (??) (see the proof of
Theorem 6.7 and Example 7.1 there). The inequality (??) can also be proved using the
method of bounded differences as in [?]. The method goes back to the work of Maurey
[?] and has been used since then by many authors, cf. e.g., [?], [?], [?]. To date, the best
estimate obtained by this method seems to be given by σ2(Sv, dv) ≤ 4(v− 1). Versions
of Maurey’s concentration result have also been recovered (using a different method)
by Talagrand (see Section 5 in [?]). However, we would like to present below a related
but direct inductive proof of (??) without having to introduce the notion of martingale.
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We also remark that (Sv, ρv) was considered in the context of card-shuffling, and in
particular, in the estimation of log-Sobolev constants of Markov kernels by [?]. (See
Section ?? for a more detailed analysis of the interplay between the log–Sobolev and
subgaussian constants in the context of graphs.)

Remark 5.3 The following argument due to Schechtman and communicated to us by
Kwapień also provides an estimate of the subgaussian constant of (Sv, dv) equipped with
the normalized counting measure πv. Let Iv = {1, 2, . . . , v} and let λv be the normalized
counting measure on Iv. Let Jv = Iv × Iv−1×· · ·× I1 and let νv = λv ×λv−1×· · ·×λ1.
Then νv is the normalized counting measure on Jv which is equipped with the Hamming
distance. Then, there exists a Lipschitz map T : Jv → Sv which is one-to-one and onto
and of Lipschitz constant 3. As a result, for any Lipschitz (with constant 1) function
f : (Sv, dv) → R,

πv{f − Eπvf ≥ h} = νv{T−1f − Eνv(T
−1f) ≥ h}.

It follows that σ2(Sv, dv) ≤ 9σ2(Jv, dv), and any estimate on σ2(Jv, dv) gives an estimate
on σ2(Sv, dv). The rough bound, σ2(Jv, dv) ≤ v, is easily verified and in turn, it implies
that σ2(Sv, dv) ≤ 9v. This is of the same order in v as known estimates, e.g., 4(v− 1),
but also less precise than (??). Let us now describe (recursively) T . If x ∈ Jv, then
y = T (x) is defined by y(k) = x(k) if x(j) 6= x(k) for all j < k. Otherwise, take
j1 = max{j : j < k, x(j) = x(k)}, x1 = n + 1 − j1 and put y(k) = x1 if x(j) 6= x1 for
all j < j1. Otherwise, take j2 = max{j : j < j1, x(j) = x1}, x2 = n + 1− j1, then set
y(k) = x2 if x(j) 6= x2 for all j < j2. Otherwise let j3 = max{j < j2 : x(j) = x2},
x3 = n+ 1− x2, and put y(k) = x3 if x(j) 6= x3 for j < j3. Continue this way until we
find xs such that xs 6= xj for j < js and then set y(k) = xs.

Proof of Proposition ?? The case v = 2 is trivial. Let v ≥ 3 and assume that (??)
holds for Sv−1. Set H = {x ∈ Sv : xv = v}. Thus, H realizes a natural embedding of
Sv−1 in Sv, and we may think of H as a copy of Sv−1. In particular, one may apply
the induction hypothesis to dv−1-Lipschitz functions on H. Set ei = sv,i and introduce

Hi = Hei = {xei : x ∈ H} = {x ∈ Sv : xv = i}, i = 1, . . . , v.

In particular, Hv = H. The family (Hi)1≤i≤v forms a partition of Sv: Hi ∩Hj = ∅, for
all 1 ≤ i < j ≤ v and ∪v

i=1Hi = Sv.

We note the following property of the metric dv:

1) dv(x
−1, y−1) = dv(x, y), for all x, y ∈ Sv.

Indeed,

{i ≤ v : x−1(i) = y−1(i)} = {i ≤ v : i = x(y−1(i))} = {y(j) ≤ v : y(j) = x(j)}.
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Hence, card{i ≤ v : x−1
i = y−1

i } = card{j ≤ v : xj = yj} which proves 1). It follows
from this property that:

2) dv(xei, yei) = dv(eix, eiy) = dv(x, y), for all x, y ∈ H.

There is nothing to prove when i = v. If i < v, to see the second equality, let us write
the elements of x, y, eix and eiy, recalling that xv = yv = v:

x = (x1, · · · , xv−1, v) eix = (x1, · · · , xi−1, v, xi+1, · · · , xv−1, xi)

y = (y1, · · · , yv−1, v) eiy = (y1, · · · , yi−1, v, yi+1, · · · , yv−1, yi).

According to (??), we obtain that dv(eix, eiy) = dv(x, y). To prove the first equality in
2), we may combine 1) and the second equality in 2):

dv(xei, yei) = dv((xei)
−1, (yei)

−1) = dv(eix
−1, eiy

−1) = dv(x
−1, y−1) = dv(x, y).

We also note the following analogue of 2) for the metric ρv (needed for the proof of
Proposition ??):

3) ρv(xei, yei) = ρv(x, y), for all x, y ∈ H.

It suffices to check this property assuming that the elements x, y ∈ H are neighbors.
In this case, y = sα,βx, for some 1 ≤ α < β ≤ v − 1. Hence, yei = sα,β(xei), so, xei

and yei are neighbors. In fact, conversely, given x, y ∈ H, if xei and yei are neighbors
in Sv, then, yei = sα,β(xei), for some 1 ≤ α < β ≤ v. Hence, y = sα,βx. In particular,
β < v since otherwise yα = xv = v contradicting the condition y ∈ H. Thus, x and y
are neighbours in H as in Sv−1.

Finally, we need:

4) For all 1 ≤ i < j ≤ v, there is a bijection ϕi,j : Hi → Hj such that

ρv(x, ϕi,j(x)) = 1, that is, dv(x, ϕi,j(x)) = 2.

Indeed, one may take ϕi,j(x) = si,x−1(j)x which replaces only two coordinates of x.

We are now ready to perform the induction step to prove (??). Given a Lipschitz
function f on Sv, introduce the functions fi(x) = f(xei) defined on H (1 ≤ i ≤ v).
From property 4), these functions are dv−1-Lipschitz on H. Hence, by the induction
hypothesis, for all t ∈ R,

Eπv−1e
tfi ≤ e(v−2)t2/2 etEπv−1fi . (5.8)

Denote by µi the normalized counting measure on Hi. In particular, µv is the normal-
ized counting measure on H which was denoted in (??) by πv−1. Clearly,

πv =
1

v

v∑
i=1

µi. (5.9)
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Since Eπv−1e
tfi = Eµi

etf , it follows from (??) and (??) that

Eπve
tf =

1

v

v∑
i=1

Eµi
etf ≤ e(v−2)t2/2 1

v

v∑
i=1

etEπv−1fi . (5.10)

In terms of the function

g(i) = Eπv−1fi = Eµi
f =

∫
Hi

f(x) dµi(x), i ∈ Iv,

the relation (??) has the form

Eπve
tf ≤ e(v−2)t2/2

∫
Iv

etg(i) λ(i), (5.11)

where λ is the normalized counting measure on Iv. Now, we use the property 4) for
dv. As a bijection, ϕi,j transforms µi into µj, so,

g(j) =
∫

Hi

f(ϕi,j(x)) dµi(x).

Hence, since f is dv-Lipschitz,

|g(i)− g(j)| =
∣∣∣∣∫

Hi

(f(x)− f(ϕi,j(x)) dµi(x)
∣∣∣∣ ≤ ∫

Hi

dv(x, ϕi,j(x)) dµi(x) ≤ 2.

Therefore, since the function g has Lipschitz seminorm at most 2 with respect to the
metric 1{i6=j} on Iv, for all t ∈ R,

Eλe
t(g−Eλg) ≤ e(2t)2/8. (5.12)

Combining (??) and (??), we obtain that

Eπve
tf ≤ e(v−2)t2/2 e4t2/8 etEλg = e(v−1)t2/2 etEλg. (5.13)

It remains to note that, by (??),

Eλg =
1

v

v∑
i=1

Eµi
f = Eπvf.

Thus, (??) is exactly (??). Proposition ?? is proved.

Proof of Proposition ??

(i) upper bound. The proof of (??) uses the same induction line: introduce the
functions fi, g and the probability measures µi, λ as above. From the property 3)
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and since f is ρv-Lipschitz, the functions fi are ρv−1-Lipschitz on H. Hence, by the
induction hypothesis, we have an analogue of (??) and (??):

Eπve
tf ≤ e(v−2)t2/8

∫
Iv

etg(i) λ(i). (5.14)

Also, by the property 4) for ρv,

|g(i)− g(j)| =
∣∣∣∣∫

Hi

(f(x)− f(ϕi,j(x)) dµi(x)
∣∣∣∣ ≤ ∫

Hi

ρv(x, ϕi,j(x)) dµi(x) ≤ 1.

That is, the function g has Lipschitz seminorm at most 1 with respect to the metric
1{i6=j} on Iv. Hence, for all t ∈ R,

Eλe
t(g−Eλg) ≤ et2/8. (5.15)

Therefore, combining (??) and (??) and recalling that Eλg = Eπvf , we obtain that

Eπve
tf ≤ e(v−2)t2/8 et2/8 etEλg = e(v−1)t2/8 etEπv f . (5.16)

Thus, (??) is exactly (??).

(ii) lower bound. It suffices to give a specific Lipschitz function f with Var f ≥
v − 1

16
. The cases v = 1 and v = 2 are obvious since c1(S1, ρ1) = 0, c2(S2, ρ2) = 1/4.

Assume v ≥ 3. For x ∈ Sv, consider a function f(x) = card{i ≤ a : xi ≤ b},
where the integers a, b ∈ [2, v] will be chosen later. First note that f is ρv-Lipschitz
with constant 1. Then simple calculations yield the following, with respect to the

normalized counting measure: Ef =
ab

v
, and since f 2(x) =

∑
i,j≤a 1xi≤b1xj≤b, we also

have Ef 2 =
ab

v
+
ab(a− 1)(b− 1)

v(v − 1)
. The above clearly yields

c2(Sv, ρv) ≥ Var f =
ab (ab− (a+ b)v + v2)

v2(v − 1)
.

If v = 3, take a = b = 2, so that Var f =
2

9
≥ 1

8
. If v ≥ 4 is even, take a = b = v/2,

and if v ≥ 4 is odd, take a = (v − 1)/2, b = (v + 1)/2. In both cases a + b = v,
ab ≥ (v − 1)(v + 1)/4. Hence,

Var f =
(ab)2

v2(v − 1)
≥
(
v + 1

v

)2 v − 1

16
.

Proposition ?? is proved.
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Remark 5.4 McDiarmid [?] considers another graph denoted by Sv,k, which is a gener-
alization of the above permutation graph (Sv, ρv). The k-tuple graph Sv,k (Example 7.3
of [?]) has vertices the k-tuples of distinct members of {1, 2, . . . , v}, and two vertices
are adjacent if and only if either they differ in exactly one coordinate or they differ
in exactly two coordinates. The induction argument of the upper bound of Proposi-
tion ?? easily extends to yield σ2(Sv,k) ≤ k/4. This graph is of interest since it is

closely related to the k-subset graph Ŝv,k, a graph of special interest to combinatori-
alists. In particular, as observed in the proof of Proposition 7.13 of [?], they have the
same concentration phenomenon. The vertices of the k-subset graph are the k-subsets
of an v-set, and two vertices are adjacent if and only if their intersection is exactly
k − 1, i.e. they are obtainable from each other by removing one element and adding
another element.

6 Complete graph

Let Kv = (V, E) be the complete graph: V is a non-empty finite set of cardinality v,
and

E = {{x, y} : x, y ∈ V, x 6= y}.

The graph metric here is d(x, y) = 1{x 6=y}. Thus, a function f on V is Lipschitz if and
only if, for all x, y ∈ V ,

|f(x)− f(y)| ≤ 1. (6.1)

Assume V is equipped with a probability measure µ and define

p(µ) = inf{µ(A) : A ⊂ V, µ(A) ≥ 1/2}.

Proposition 6.1

σ2(Kv, µ) =
p− q

2(log p− log q)
, (6.2)

where p = p(µ) and q = 1− p.

If p = 1/2, the above expression is defined to be 1/4 by continuity. In the particular
case where µ = π, the normalized counting measure, when v = cardV = 2r, we have
p(π) = 1/2, and when v = 2r + 1, we have p(π) = (r + 1)/(2r + 1). Therefore:

Corollary 6.2 For the completely connected graph V of cardinality v equipped with
the normalized counting measure, σ2(Kv) = 1/4, if v = 2r, and

σ2(Kv) =
1

2(2r + 1) log r+1
r

, if v = 2r + 1.
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Thus, if Kn
v (on the set of vertices V n) is the n-th power of Kv, with v = 2r + 1,

with the Hamming distance d and the normalized counting measure πn, for every set

A ⊂ V n of measure πn(A) ≥ 1/2, and for h ≥
√

n

2(2r + 1) log r+1
r

,

πn{x ∈ V n : d(x,A) ≥ h} ≤
(

r

r + 1

) (2r+1)
n

(
h−
√

n

2(2r+1) log r+1
r

)2

. (6.3)

When v = 3, we thus recover (the second part of) Proposition ??, since the 3-cycle
is completely connected. If v = 2r, the inequality (??) should be replaced by the
slightly weaker inequality

πn{x ∈ V n : d(x,A) ≥ h} ≤ exp

{
−(2h−

√
n)2

2n

}
, 2h ≥

√
n. (6.4)

Note that since the complete graph is a Hamming space, (??) is slightly better
than (??). Note also that c2(Kv, µ) = p(µ)(1 − p(µ)). Hence, with respect to the
normalized counting measure on Kv, c

2(Kv) = σ2(Kv) = 1/4, if v is even, and c2(Kv) <
σ2(Kv), otherwise. Finally note that the general bound, σ2 ≤ D2/4 (which follows
from Corollary 3.3 in [?]), where D is the diameter of the graph G, can be tight as the
computation of σ2 of the complete graph shows.

Proof of Proposition ?? The functional f → L(t, f) = Eµe
t(f−Eµf) is translation

invariant, so maximizing this functional in the class of functions satisfying (??), we
can restrict ourselves to 0 ≤ f ≤ 1. The class F0 of such functions is compact and
convex, and the functional f → L(t, f) is convex. Hence, it attains its maximum on F0

at some extremal “point” of F0. But the extremal functions in F0 are just indicator
functions f = 1A, A ⊂ V . Thus,

sup
f∈F(G)

L(t, f) = sup
A⊂V

L(t, 1A).

Therefore, the optimal constant σ2 = σ2(Kv, µ) in the inequality

L(t, f) ≤ eσ2t2/2, f ∈ F(G), t ∈ R,

satisfies σ2 = supA⊂V σ
2
A, where σ2

A is the optimal constant in the inequality

L(t, 1A) ≤ eσ2
At2/2, t ∈ R.

Any function f = 1A is a Bernoulli random variable on the probability space (V, µ),
taking the values 1 and 0 with probabilities µ(A) and µ(B), respectively, where B =
V \ A = Ac. Hence by Proposition ??,

σ2
A =

µ(A)− µ(B)

2(log µ(A)− log µ(B))
.
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Since σ2
A = σ2

B, we may restrict ourselves to the cases µ(A) ≥ µ(B), i.e, µ(A) ≥ 1/2.
Thus,

σ2 = sup
µ(A)=p≥1/2

p− q

2(log p− log q)
,

where q = 1− p, p = µ(A), and the sup is taken over all A ⊂ V with µ(A) ≥ 1/2. To

prove (??), it remains to show that the function u(p) =
p− q

log p− log q
is decreasing in

(1/2, 1). Let

v(p) =
log p− log q

p− q
, 1/2 < p < 1.

We have: v′(p) > 0 iff
p− q

pq
≥ 2(log p− log q) which can be rewritten as

w(p) = 2pq(log p− log q)− (p− q) < 0, 1/2 < p < 1.

Since w′ = −2(p−q)(log p−log q) < 0, the function w is decreasing. But w(1/2) = 0, so
w is negative on (1/2, 1). Thus, v is increasing, that is, u is decreasing. Proposition ??
is proved.

7 Log-Sobolev and subgaussian constants

As shown by Aida, Masuda and Shigekawa ([?]) and by Ledoux ([?]) (with an argument
going back to Herbst), it is also possible to derive concentration inequalities, whenever
a log-Sobolev inequality holds. Based on these works and on ([?]), such derivations
under log-Sobolev as well as Poincaré inequalities were given for products of Markov
kernels and graph products in ([?]). It is thus quite appropriate to try to compare
the log-Sobolev and subgaussian approaches. Since studying graphs and Lipschitz
functions on them, a natural notion of discrete gradient of f at the point x ∈ V is

∇+
∞f(x) = sup

y:{x,y}∈E
(f(x)− f(y))+,

with a matching definition for ∇−
∞, i.e., ∇−

∞f(x) = sup
y:{x,y}∈E

(f(x) − f(y))−. Then, the

corresponding log-Sobolev inequality (with the optimal constant ρ+
∞ > 0), is

ρ+
∞

[
Ef 2 log f 2 − Ef 2 log Ef 2

]
≤ E(∇+

∞f)2,

where expectation is with respect to any measure π on V .

Proposition 7.1 Let f be a function on G, then

Eet(f−Ef) ≤ e
t2‖∇+

∞f‖2∞
4ρ+
∞ , t ≥ 0. (7.1)

In particular,

σ2(G) ≤ 1

2ρ+
∞(G)

. (7.2)
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Proof Note that if g = etf/2, t ≥ 0, then

(g(x)− g(y))+2 ≤ t2

4
(f(x)− f(y))+2etf(x).

Hence,

ρ+
∞

[
Eetf log etf − Eetf log Eetf

]
≤ t2

4
E(∇+

∞f)2etf . (7.3)

Now applying Herbst’s method, i.e., differentiating H(t) = t−1 log Eetf , H(0) = Ef ,
(see [?]), lead to (??), where ‖∇+

∞f‖∞ = sup
x∈V

∇+
∞f(x). For (??), just note that if t ≤ 0,

then (??) hence (??) continue to hold with ∇+
∞ replaced by ∇−

∞ and that moreover if
f is Lipschitz with respect to the graph distance, then

sup
y:{x,y}∈E

(f(x)− f(y))± ≤ sup
y:{x,y}∈E

|f(x)− f(y)| ≤ 1.

Again, (??) implies deviation from the mean, i.e., for any Lipschitz function f and
h > 0,

π{f ≥ Ef + h} ≤ exp

{
− ρ+

∞h
2

‖∇+
∞f‖2

∞

}
≤ exp

{
−ρ+

∞h
2
}
. (7.4)

Next, since the graph distance is also the natural distance, (e.g., see [?])

d(x, y) = sup
|∇∞f |≤1

|f(x)− f(y)|, x, y ∈ V,

where |∇∞f(x)| = supy:{x,y}∈E |f(x) − f(y)|, it easily follows from (??) that for all
A ⊂ V ,

1− π(Ah) ≤ e−ρ+
∞(π(A))2(h+1)2 , h = 0, 1, 2, . . . . (7.5)

We now return to the examples analyzed in the previous sections and show that for
the normalized counting measure, (??) often provides a good estimate of σ2. So, for
the rest of the section, π is the normalized counting measure.

• G = Pv. Modifying the computations in Example 3.6 in [?] and since the maximal
degree of Pv is 2, it is easy to see that:

1

2v2
≤ ρ+

∞(Pv) ≤
π2

2v2
.

• G = Cv. Using Example 4.2 in [?], and since the maximal degree of Cv is also 2,
we get

8π2

25v2
≤ ρ+

∞(Cv) ≤
4π2

v2
.
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• G = (Sv, ρv). Below, the upper bound follows from the computations in Exam-
ple 4.3 in [?] while the lower bound is easily obtained via generic lower bounds
given in [?], [?].

1

v − 1
≤ ρ+

∞(Sv) ≤
2

v − 1
.

• G = Kv. It is easy to show that ρ+
∞ of the complete graph can be bounded above

and below independently of v. In fact, using bounds obtained in [?], [?], it also
easily follows that:

1

4 + (2 + 2
√

2) log 2
≤ ρ+

∞(Kv) ≤ 2,

if v is even and

r + 1

4(r + 1) + (2 + 2
√

2)r log 2r+1
r

≤ ρ+
∞(Kv) ≤

(2r + 1)2

2r(r + 1)
,

if v = 2r + 1 is odd.

Although in all the above examples, σ2 and 1/ρ+
∞ are of the same order in v, for

non uniform measures, they can be quite different. A case at hand is the weighted

two point space with probability of success p, then ρ+
∞ = min

(
1

p
,
1

q

)(
p− q

log p− log q

)
,

which, for p small, is of the same order 1/(− log p) as σ2 given in (??). Hence, in
that case, the concentration inequality obtained via the subgaussian constant is much
stronger that the one obtained via the log–Sobolev constant.

Appendix

Proof of Proposition ?? Let V = {x0, . . . , xv−1} denote the vertices of the v-cycle.
Let f be an extremal function, achieving the spread constant c2 of the v-cycle. We
make crucial use of Theorem 2.1 of [?], which we state here (as Fact 1) for the sake
of completeness. This theorem is about the extremal Lipschitz functions defined on
any undirected graph which maximize the variance, thus achieving the so-called spread
constant of the corresponding graph. (Although the following theorem is stated (in [?])
in the context of the normalized counting measure, it holds true under an arbitrary
probability measure on the set of vertices of the undirected graph.)

Fact 1 ([?]). There is an integer-valued optimal f , and moreover there is a subset of
vertices U , and an assignment of a sign s(C) ∈ {−1, 1} to every connected component
C of V \U so that for every vertex z ∈ U , we have f(z) = 0, and for every vertex x in
a component C as above, f(x) is the product of s(C) and the (graph) distance between
x and U .
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For the rest of the proof we specialize to the case of a v-cycle, and all the expecta-
tions and the variances are with respect to the normalized counting measure. In view
of Fact 1, we may assume that an optimal f is integer-valued, and also that Ef ≥ 0,
since Var f = Var(−f).

Let U be the set of vertices, as in Fact 1, such that f(z) = 0, for z ∈ U . The proof
of Proposition ?? consists in showing that if |U | = 1 or 2, then f can be translated to
become d(x, x0) or −d(x, x0), and that |U | ≥ 3 is not possible.

Case 1. Note that if |U | = 1, then we may assume by symmetry that U = {x0}, and
then the only connected component is a path on x1, . . . , xv−1, and we are done in view
of Fact 1.

Case 2. Let |U | = 2. Without loss of generality, let U = {x0, xk}, where k ≤ (v− 1)/2.

(a) Suppose v is odd. If k = 1, then we still have only one connected component
as in Case 1, and by using Fact 1, f is (1, 2, . . . , (v − 1)/2), . . . , 2, 1) (it cannot be
(−1,−2, . . . ,−(v − 1)/2, . . . ,−2,−1), since we assumed that Ef ≥ 0), on the compo-
nent. Replacing f by f − (v − 1)/2, we get f(x) = −d(x, x(v−1)/2), and we are done
by the symmetry of the v-cycle, in particular, by treating x(v−1)/2 as x0. If k > 1, then
we have two connected components, and since we assumed Ef ≥ 0, we know that f
is positive on the (larger) component consisting of xk+1 through xv−1. Moreover, f is
negative on the other component – otherwise define g = −f , on this component, and
g = f everywhere else, then it is easy to see that Var g > Var f . Also note that since
v is odd and |U | = 2, exactly one of the connected components has an odd number of
vertices – depending on whether k is odd or even. This leaves two possible sequences
for f on (x0, x1, . . . , xk, . . . , xv−1) : either

(0,−1, . . . ,−(k − 1)/2,−(k − 1)/2, . . . ,−1, 0, 1, . . . , (v − k)/2, . . . , 1),

or
(0,−1, . . . ,−k/2, . . . ,−1, 0, 1, . . . , (v − k − 1)/2, (v − k − 1)/2, . . . , 1).

Replacing f by f − (v − k)/2 in the first case, and by f + k/2 in the second case, and
by using the symmetry of the cycle, we are done.

(b) Suppose v is even. Then we claim that there has to be an odd number of vertices
between x0 and xk. For otherwise, there would be an even number of vertices in the
connected components (one of them might have size zero). If k = 1, then one of
them has size zero, and in view of Fact 1, the other one has f -values, (1, 2, . . . , (v −
2)/2, (v− 2)/2, . . . , 2, 1); an easy calculation shows that this is not extremal, since the
function g with the sequence of values (1, 2, . . . , (v − 2)/2, v/2, (v − 2)/2, . . . , 2, 1) has
Var g = Var f +1/4. If k > 1, then the two connected components must have f -values,

(−1,−2, . . . ,−(k − 1)/2,−(k − 1)/2, . . . ,−2,−1),
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and
(1, 2, . . . , (v − k − 1)/2, (v − k − 1)/2, . . . , 2, 1).

Replacing f by f + (k − 1)/2, gives a sequence with two 0’s next to each other, and
reduces to the case of k = 1, which we handled already.

Thus if there are two 0’s then they have to be separated by an odd number of
vertices. This means that the f -values of the two connected components are

(−1,−2, . . . ,−k/2 + 1,−k/2,−k/2 + 1 . . . ,−2,−1),

and
(1, 2, . . . , (v − k)/2− 1, (v − k)/2, (v − k)/2− 1, . . . , 2, 1).

Replacing f by f + k/2, results in f(x) = d(x, xk/2), and we are done by symmetry.

Case 3. Suppose |U | ≥ 3. First note that there cannot be three consecutive 0’s in
the sequence of f -values. Indeed, if f assigns three consecutive 0’s, and assuming as
before Ef > 0, define g to be equal to −1 in place of the middle zero, and otherwise
to be identical to f . Then Eg = Ef − 1/v, and Eg2 = Ef 2 + 1/v, Then Var g =
Var f + 1/v − 1/v2 + 2(Ef)/v > Var f , since Ef > 0 and v ≥ 2.

To finish the proof, we know there must be at least two connected components,
once we delete the vertices in U , and we may also assume there is a vertex in U which
sees negative f -values on one side and positive f -values on the other side. This is
because, if f were non-negative everywhere, then changing the sign of every value on
the smallest connected component will then yield a function with a smaller mean (since
Ef > 0 to begin with), and larger variance.

Thus, without loss of generality, let f(x0) = 0, and let xk and xl with 0 < k < l,
be the closest vertices (with respect to the graph distance) to x0 such that f(xk) =
f(xl) = 0. We can also assume that the connected component C− between xl and x0

has negative f -values, (−1,−2, . . . ,−l1,−l1 + 1, . . . ,−2,−1), and the component C+

between x0 and xk has positive f -values, (1, 2, . . . , k1, k1 − 1, . . . , 2, 1), where l1 and
k1 are easily computable constants depending on l and k. Note that |C−| > 0, and
furthermore, we can easily dispense with the case that |C+| = 0 : suppose that on
the vertices xv−1, x0, x1, f takes the values −1, 0, 0, respectively, then define g to be
−1,−1, 0 on the same vertices, and otherwise to be identical to f . Then it is easy to
see that Var g > Var f .

Case 3(a). First assume f(xk+1) ∈ {0, 1}. Then define g on the sequence of vertices,
(xv−1, x0, x1, . . . , xk−1, xk), to take the values, (−1,−1, 0, 1, . . . , 2, 1), and to be identical
to f on the rest of the vertices. (Note that we have essentially introduced an extra −1,
and “adjusted” the rest of the sequence to the right by one position to maintain the
Lipschitz property. In the process we moved the zero at x0 to x1 and we lost the zero
at xk.) Now note that Eg2 = Ef 2 + (−1)2/v, and Eg = Ef + (−1)/v. Thus,

Var g = Var f +
1

v
− 1

v2
+

2

v
Ef > Var f,
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since, v ≥ 2, and Ef ≥ 0.

Case 3(b). To finish Case 3, we need to consider the possibility that f(xk+1) = −1.
Note that at this stage we must have at least four components, alternating positive and
negative valued, since two negative components cannot be next to each other. Indeed,
otherwise the sequence . . . ,−1, 0,−1, . . . can be replaced by . . . − 1,−1,−1, . . ., thus
introducing an extra −1, and it can be checked that this increases the variance, since
Ef > 0. Thus, starting from xv−1, f takes the sequence of values,

(−1, 0, 1, 2, . . . , k1, k1 − 1, . . . , 2, 1, 0,−1, . . . ,−k2,−k2 + 1, . . . ,−1, 0, 1, . . .).

Define g to be f , except with the above underlined portion reflected over as follows:

(−1, 0,−1, . . . ,−k2 + 1,−k2, . . . ,−1, 0, 1, 2, . . . , k1 − 1, k1, . . . , 2, 1, 0, 1 . . .).

Clearly, Var g = Var f , but crucially, we introduced two −1’s surrounding a zero. This
cannot be extremal since, as mentioned before, replacing the zero by a −1 increases
the variance. 2
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[B-H2] Bobkov, S.G., Houdré, C. A characterization of Gaussian measures via the
isoperimetric properties of half-spaces. Zap. Nauchn. Semin. S.-Petersburg.
Otdel. Mat. Inst. im. V.A.Steklova RAN. 228 (1996), 31–38 (in Russian).
English translation: J. Math. Sciences.

[B-L] Bobkov, S.G., Ledoux, M. Poincaré’s inequalities and Talagrand’s concen-
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