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THE SUBGROUPS OF A FREE PRODUCT OF TWO
GROUPS WITH AN AMALGAMATED SUBGROUP!1)

BY

A. KARRASS AND D. SOLITAR

Abstract. We prove that all subgroups H of a free product G of two groups A, B
with an amalgamated subgroup V are obtained by two constructions from the inter-
section of H and certain conjugates of A, B, and U. The constructions are those of a
tree product, a special kind of generalized free product, and of a Higman-Neumann-
Neumann group. The particular conjugates of A, B, and U involved are given by
double coset representatives in a compatible regular extended Schreier system for G
modulo H. The structure of subgroups indecomposable with respect to amalgamated
product, and of subgroups satisfying a nontrivial law is specified. Let A and B have
the property P and U have the property Q. Then it is proved that G has the property
P in the following cases: P means every f.g. (finitely generated) subgroup is finitely
presented, and Q means every subgroup is f.g.; P means the intersection of two f.g.
subgroups is f.g., and Q means finite; P means locally indicable, and Q means cyclic.
It is also proved that if A' is a f.g. normal subgroup of G not contained in U, then
NU has finite index in G.

1. Introduction. In the case of a free product G = A * B, the structure of a
subgroup H may be described as follows (see [9, 4.3]): there exist double coset
representative systems {Da}, {De} for G mod (H, A) and G mod (H, B) respectively,
and there exists a set of elements t\, t2,... (possibly empty) such that

(1) H=gp (tu t2,..., DaADdx n H,..., D.BD^1 n H,...);
(2) tx, t2,... freely generate a free group F;
(3) DaAD~x n H,..., DßBDß1 n H,... generate their free product 5; and
(4) H is the free product of F and S.
The structure of a subgroup H of a free product G = (A * B; U) with an amal-

gamated subgroup has an analogous (although more complicated) description:
There exist double coset representatives {Da}, {Dß} for G mod (H, A) and G mod
(H, B) respectively, and there exists a set of elements tx, t2,. ■ ■ such that
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228 A. KARRASS AND D. SOLITAR [July

(5) //=gp (A A ..., DaADä1 n H,..., DgBD;1 n H,...);
(6) tx, t2,... freely generate a free group F;
(7) DaADä1 n H,. . ., DeBDjx C\H,... generate a generalized free product S

with amalgamated subgroups DaUA1 O H,..., DßUDßl O H,.. . (where S
is a special type of generalized free product which we call a "tree product"); and

(8) H is the free product of the groups T¡=gp (/¡, S) with the subgroup S amal-
gamated.

If U= 1, Ti will be the free product of gp (f¡) and 5, so that (8) reduces to (4).
Indeed for any U, the subgroup T¡ is a free product of gp (í¡, KiUKc1 n //)
and the group S with the gp (KJJKc1 n H, tJCtUKT1^1 n //) amalgamated
where K¡ is some element of G. Hence, if U= 1, or more generally, if H has trivial
intersection with each conjugate of U, then (7) reduces to (3), T¡ = gp (f¡) * S, so
that (8) reduces to (4), and so H is the free product of a free group and subgroups of
conjugates of the factors. This result is implicit in H. Neumann [13].

Now (7) refers to the notion of a generalized free product of groups with amal-
gamated subgroups. This construction was introduced by H. Neumann [12] for
the purpose of describing the structure of the subgroups of G = (A * B; U); in
fact, H. Neumann showed that this construction can be used to describe the sub-
groups of a generalized free product with amalgamated subgroups. However,
for the special case G — (A * B; U), one can describe its subgroups using a simpler
construction than the generalized free product, viz., a "tree product", which we
now proceed to define.

Let {A¡} be a collection of groups and suppose that with certain pairs of groups
Aif Aj there is associated an isomorphism 6U from a subgroup £/iy of A¡ onto a
subgroup Un of Aj, such that 6ji = dfl1. Then the partial generalized free product
of the factors A¡ is the group G having the presentation obtained by presenting
each of the amalgamated products (A¡ * A,-; Uij=U,i) with UtJ ar*d tyt amalga-
mated under 0U (using a fixed presentation for each At), and then taking the union
of these presentations. (It is easily shown that G is independent of the particular
presentation used for A¡ and the particular set of generators used for E/y.)

With each partial generalized free product G we associate a linear graph each
of whose vertices corresponds to a factor A¡ and each of whose edges joins two
vertices A¡ and A, if 6(f (and hence 0;i) exists. If this graph is a tree, then we call
G a tree product of the factors A¡ (with the subgroups Utj and Ujt amalgamated
under 6U), and denote G by

n*(Ai-, uik = elk(ujk)),
or by

U*(Ai-, Ujk = Uk])

when specific 0jk are implicit.
We shall show that the tree product of the A¡ contains each of the factors At

in the natural way, and that two factors A¡ and A¡ which are neighbors, i.e., joined
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1970] SUBGROUPS OF A FREE PRODUCT OF TWO GROUPS 229

by an edge, generate their amalgamated product. More generally, the factors in
any subtree generate their tree product.

[Note that the definition, as given by H. Neumann [12], of the generalized free
product of groups {A¡} with amalgamated subgroups is the partial generalized
free product G as defined above with the additional requirements that the isomor-
phisms On exist for all pairs i#y and that each factor /4¡ must be naturally contained
as a subgroup of G. Although the partial generalized free product exists even if
dij is specified for all pairs ¡Vy, the generalized free product may not exist. More-
over, even if it exists, in general the subgroup generated by two factors is not their
amalgamated product.]

The groups T{ in (8) and the group H itself are special cases of groups which we
call "HNN groups" (used by Higman, Neumann, and Neumann in [6]) defined
in §4. The structure of a subgroup H of G = (A * B; U) has a simple description
in terms of tree products and HNN groups (see Theorem 5).

Next we describe some of the applications we have obtained from the subgroup
theorem.

G. Baumslag [3] proved that if G = (A * B; U) where A, B are free and U is
maximal cyclic in A and in B, then any two-generator subgroup of G is free; on
the other hand, «-generator subgroups for « > 2 need not be free. He conjectured,
however, that all finitely generated subgroups are finitely related. We establish
the following generalization of his conjecture :

Let G = (A * B; U) where A, B have the property that their finitely generated
subgroups are finitely related and suppose every subgroup of U is finitely generated.
Then every finitely generated subgroup of G is finitely related (see Theorem 8).
(If U does not satisfy the maximal condition then G may have finitely generated
subgroups which are not finitely related.)

B. Baumslag [1] extended theorems of Schreier [14] and Howson [7] on finitely
generated subgroups of free groups to free products. He proved that a finitely
generated normal subgroup (^ 1) of a free product is of finite index; and if A, B
have the finitely generated intersection property (i.e., the intersection of any two
finitely generated subgroups is finitely generated), then G = A*B has the finitely
generated intersection property. We generalize his results as follows:

Let G = (A * B; U) and let H be a finitely generated normal subgroup of G not
contained in U. Then the subgroup HU is of finite index in G; in particular, H is of
finite index in G iff U n H is of finite index in U (see Theorem 10).

Let G = (A * B; U) where A, B have the finitely generated intersection property
and U is finite. Then G has the finitely generated intersection property (see Theorem
11). (On the other hand if U is infinite, even infinite cyclic, then G need not have
the finitely generated intersection property.)

D. I. Moldavanski [10] proved that an abelian subgroup of G—(A * B; U) is
either contained in a conjugate of A or B, or is the ascending union of subgroups
of conjugates of U, or is the direct product of a subgroup of a conjugate of U
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230 A. KARRASS AND D. SOLITAR [July

and an infinite cyclic group. Now an abelian group His, in particular, indecompos-
able with respect to amalgamated product (i.e., H=(C * D; V) implies C= V or
Z>= V). We extend his result to the following:

Let G = (A * B; U) and let H be an indecomposable (with respect to amalgamated
product) subgroup of G. Then H is contained in a conjugate of A or B, or H is the
countable ascending union of subgroups of conjugates of U, or H is generated by a
subgroup of a conjugate of U and an additional element not in a conjugate of a factor
(see Theorem 6).

Moreover, if H satisfies an identity not satisfied by the infinite dihedral group (the
free product of two groups of order two), then H is indecomposable and so has the
structure indicated above (indeed one can be more explicit, see Theorem 7); if H
satisfies a nontrivial identity which holds in the infinite dihedral group, then in addition
to the three possibilities above, H may be the free product of two conjugates C and
D of subgroups of A or B with a subgroup of a conjugate of U amalgamated (and this
amalgamated subgroup is of index two in C and D) (see Theorem 7).

An "indicable group" is one having an infinite cyclic factor group. (G. Higman
[4] showed that the group ring of a locally indicable group has no zero divisors
if the coefficient ring has none.) We show that if A, B are locally indicable and U
is cyclic, then G is locally indicable (see Theorem 9).

More detailed descriptions and other applications of the above results are also
included.

Finally, we wish to mention that this paper was inspired by the work of H.
Neumann [13] on the structure of the subgroups of an amalgamated product;
it arose in an attempt to make her results more explicit for the case of two factors.

2. Notations. The following notations will be used for the free product G of
two groups A, B with the subgroup Ugenerated by ux, u2,... in A and the subgroup
V generated by t>u v2,... in B amalgamated under an isomorphism <p which carries
u¡ into v¡:

(A*B;U= V),       (A *B;ut = vt),       (A * B; U = <p(U)).

Moreover, if <p is the identity mapping on U, then we use (A * B; U) or A *a B.
Similar notations are used for amalgamated or tree products involving more than
two factors, e.g., Ax *Ui2 A2 *U23 A3 is the tree product of Ax, A2, A3, with the sub-
group i/j2 amalgamated between ^4j and A2 and the subgroup U23 amalgamated
between A2 and A3; the notation U*(A¡; Ujk=Ukj) for a tree product was intro-
duced previously; n%4t; U) is the free product of the groups At with the common
subgroup U amalgamated. (Note that U*(At; U) may be viewed as a tree product
in many ways; indeed, construct any tree using the factors Ai as vertices, and let
the subgroup U correspond to each edge.)

Let K be a group with presentation

(kx, k2,... ; Rx, R2,... /
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and let <p be an isomorphism of a subgroup U into K where U is generated by
{Ui(k,)}, and vt(k}) = <p(m¡). Then the group

<x, K; reí K, xl/x"1 = <p(A)>
is the group

\X, kx, k2,... ; J\x, R2,. •., xuxX     = vx, xu2x     — v2,...}.

We define the group

<Xi, x2,..., K; rel K, Xii/xf1 = cpx(Ux), x^&ï1 = cp2(U2),.. .>

where <p¡ is an isomorphism of the subgroup Ut into A' in a similar manner.
Let H be a fixed subgroup of G; if X< G and g e G, then the subgroup gXg'1

n // will be denoted by "Xf.
The notation HNN(A {<p¡}) is explained in §4.
Notations for various types of coset representative systems will be found in §5.

3. Tree products.

Lemma 1. A graph is a tree if there exists a function which assigns to each vertex
a nonnegative integer (called the "level" of the vertex) such that

(1) the vertices of level zero together with the edges joining them form a tree, and
(2) each vertex of level n > 0 is joined by an edge to exactly one vertex of level

less than or equal to n, and the level of this vertex is n — 1.
Conversely, if the graph is a tree, such a function exists whose vertices of level zero

are a given subtree.

Proof. Suppose first such a function X(w) exists. Clearly there is a path joining
any vertex to a vertex of level zero; since any two vertices of level zero can be
joined by a path, the graph is connected. Moreover, if a closed path w = wx,
w2,..., wT = w has maximum level n>0 on its vertices, we may assume w has
level n. By (2), X(wx) > X(w2) and X(wT) > X(wr _ x), and so by (2), w2 = wT_x, so that
the closed path is not simple. Hence the given graph must be a tree.

Conversely, suppose the given graph is a tree. Choose the vertices of any subtree
to have level zero, and define the level of any vertex to be the minimum length
(number of edges) of a simple path joining the vertex to a vertex of level zero.
It is easy to show that conditions (1) and (2) hold.

Definition. If the vertices of a graph T are partitioned into subsets r(, then the
graph arising from T by contracting the r¡ to vertices is the graph whose vertices
are the r¡ and whose edges are the edges of T which join vertices of r( and ry,
/#/

It is easy to see that if T is a tree and the r¡ are subtrees, then the graph which
arises by contracting the F¡ to vertices is itself a tree.

Definition. Let

(1) (hx,h2,...;Sx(hj),S2(hi),...y
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232 A. KARRASS AND D. SOLITAR [July

be a presentation for a group H, and let

<gi, g2, • • •, hx, fh,...; Rx(g¡, h¡), R2(gu h¡),..., Sx(h¡), S2(h¡),... >,

where each Rk(gt, h,) involves some g¡, be a presentation for a group G. Then we
say that H is a subgroup of G in the natural way (relative to the given presentations
for H and G) if the subgroup of G generated by hx, h2,... has the presentation (1).

If H, G are groups which have presentations defined in terms of presentations
for other groups A, B, C,..., then when we say " H is a subgroup of G in the natural
way" without specifying presentations for H, G, we intend that the presentations
of A, B, C,... used in constructing a presentation for H be used in constructing a
presentation for G. For example, if H is the free product A * B, and G is the free
product A * B * C, then H is a subgroup of G in the natural way.

Theorem 1. Let G be a tree product IPL4,; Ufk=Uk,).
(1) Then each vertex A¡ is a subgroup of G in the natural way.
(2) Moreover, the tree product of a subtree is a subgroup of G in the natural way.
(3) Finally, if the vertices of the graph of G are partitioned into subtrees whose

tree products are Gx, G2,... and these subtrees are contracted to vertices, then G
is the tree product of the vertices Gx, G2,.. . of the resulting tree.

Proof. Consider first the special case where there is a fixed vertex of G, say Ax,
to which all the other vertices Aj of G are joined. (We then say G is a "tree product
of the Ai with amalgamations from one factor".) If the subgroups UXj coincide,
G is simply the free product of the ,4¡ with a single subgroup amalgamated, and
in this case it is well known that each of the ,4¡ is a subgroup of G in the natural
way. If the UXj do not all coincide, we first form the groups

GXj = (Aj*Ax; UjX = UXi)

which contain A¡ and Ax in the natural way; we then form W*(GXj; Ax) which
has the same presentation as G. Hence GXi and therefore all the vertices A¡ are
contained in G in the natural way.

To prove (1) in general, select any vertex, say A0, to have level zero, and define
the level of any other vertex as in the proof of Lemma 1. Then the vertices of level
á « together with the edges joining them form a connected subgraph of G and hence
a subtree. Let Ln be the tree product of the vertices of level á«. We show by in-
duction on « that each vertex of Ln is a subgroup of A in the natural way, and that
A is a subgroup of Ln + X in the natural way.

Since L0 = A0, the case « = 0 is trivial. Suppose that each vertex of A is a sub-
group of A in the natural way. Now each vertex A¡ of level n+1 can be joined to a
unique vertex of A by an edge corresponding to some subgroup U¡; and A + i is
just the tree product of the Aj of level n +1 and Ln with amalgamations from the
one factor Ln. Hence A and all the vertices of level ^«+1 are subgroups of Ln + i
in the natural way.
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Since G has a presentation which is the union of presentations for the Ln, and
Ln is a subgroup of Ln + 1 in the natural way, it follows that Ln and therefore each
vertex of Ln is a subgroup of G in the natural way (see, for example, exercise 18 on
p. 33 of [9]). This proves (1).

To prove (2), let L be the tree product of a subtree of G. Define a level function
on the vertices of G as in the proof of Lemma 1, using L as the subtree of vertices
of level zero. If again Ln is the tree product of the vertices of level g«, the same
proof as above shows that L is a subgroup of G in the natural way.

Finally, to prove (3) note that each of the vertices of G¡ is a subgroup of G¡
in the natural way. Clearly a presentation for G results when the tree product of the
G i is formed.

Definition. A group G is indecomposable (with respect to amalgamated product)
if G = (A *B; U) implies A = U or B=U.

Clearly, if G is indecomposable and G=n*(/li; U), then all A, except possibly
one of them must equal U.

Theorem 2. Let G be a tree product

11*04, ; Ujk = Uki),

and let A be a level function for the associated tree. If G is indecomposable, then
either G equals one of its factors A¡ or G is the ascending union of a chain of amal-
gamated subgroups corresponding to the edges of an infinite path determined by
distinct vertices A¡0, Atl,..., Atl,... where A(/lij)=y for each j or A(^(i) = 0 for
each j.

Proof. Suppose that G is not equal to any A¡.
We first consider the case when G has only one vertex of level zero, say A0.

Let {Aj},jeJQ, be the vertices of G which are joined to A0 by an edge. If the vertex
A0 is deleted from the graph of G each of the resulting components will be determined
by exactly one A,,jeJ0; let C0j be the tree product of the component containing
A,, and let

Goi = (Coy * A0; U0J).

Then by Theorem 1, G is the tree product of the C0¡ and A0 with amalgamations
from the factor A0; hence

G = flf(G0j; A0),      jeJ0.

Since G is indecomposable, all but one of the factors G0j must equal A0; since G
is not one of its vertices, some G0J, say G01, is different from A0. Hence G = G01
= (C01 * A0; U01), and so A0= U01<Ax<C0x = G. Moreover, each vertex of G is
either a subgroup of A0 or is a vertex of C01. Since A0 is the only vertex of level
zero in G, Ax must have level one, and all other vertices of C01 have level at least
two.

Repeating the above argument using the graph of C01 in place of the graph of
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G and Ax in place of A0, we obtain A0=U01<Ax= U12<A2<C12 = G, G =
(CX2 * Ax; Ux2), and every vertex of G is either contained in Ax or is a vertex of
C12. Since Ax is the only vertex of level at most one in Cox, A2 must have level two,
and all the other vertices of Cx2 have level at least three.

Continuing in this way, we obtain an infinite sequence of distinct vertices

^o = U01 < Ax = UX2 < A2 = U23 < A3 = C/34 < Aé- ■ • ;

and G = (Cn>n + 1 * An; A.n + i); moreover every vertex of G is either a subgroup of
An or is a vertex of C„,n + 1. Also An is the only vertex of level at most n in C„_1>n,
so that An + 1 has level n+\ and all the other vertices of Cn>n+1 have level at least
« + 2.

Since every vertex of G has a finite level, each vertex is a subgroup of some
An= A,n + i ! consequently G is the ascending union of the amalgamated subgroups
A,n + i where « = 0, 1,2,.... This completes the argument for the first case.

Suppose now that G has several vertices of level zero. Let L0 be the tree product
of the subtree of G determined by the vertices of level zero. Contract LQ to a vertex ;
then G is the tree product of a tree with a unique vertex L0 of level zero. Since G
is indecomposable and not equal to any At, by the first case either G=L0 or G
is the ascending union.

A = U01 < Ax = U12 < A2 < • ■ ■.

In the latter case, if A0 is the vertex of L0 joined to Ax by an edge, G is the ascending
union

A0 = U01 < Ax = U12 < A2- ■ ■.

If G=L0, we may assign new levels to the vertices of A so that there is a single
vertex of new level zero. The first case then shows that G is again an ascending
union

Aq = Uqx < Ax = Ux2 < A2- • •

where now each An has old level zero.
Definition. A group G is simply decomposable if whenever G = A *a B *v C,

then A = U or C= V or B= U= V.
Clearly, if G=II*(,4i; U) and G is simply decomposable, then all but possibly

two of the Ai are equal to U.
Suppose a group G satisfies a nontrivial identity; then G is simply decomposable.

For, if G = (A * B; U) with A=£U¥=B, then U has index two in both A and B
(indeed if 1, ax, a2 determine different cosets of U in A and be B—U, then a1~1ba2
and A " 1al xba2b generate a free subgroup of rank two, contrary to G satisfying
a nontrivial identity). But if G = A *v B *v C where A^U, C# V, and 5/ V, then
G = A *v (B *v C), and U would have infinite index in B *v C. Thus G is simply
decomposable.
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Theorem 3. Let G be a tree product

n*(Ai-, uik = ukj),
and let X be a level function for the associated tree. If G is simply decomposable,
then G equals one of its factors Au or G is an ascending union of a chain of amal-
gamated subgroups as in Theorem 2, or G is the free product (A¡ * A¡; U) of two
of its factors Ah A¡ with a subgroup U amalgamated where U corresponds to each
edge in the simple path joining Ai to A¡ and all the other vertices of the path are
equal to U.

Proof. Suppose G is not equal to any A¡.
As before we first consider the case when G has only one vertex of level zero.

We start to construct the sequence A0, Ax, A2,... as in the proof of Theorem 2 and
note that we only used the indecomposability of G to infer that when A„ was
deleted from the graph of Cn_1>n only one of the resulting components, namely,
C„,n + i» was not a subgroup of An; and also to infer that An was a subgroup of
i/„tn + j. Hence we can show that Gis an ascending union of a chain of amalgamated
subgroups as in Theorem 2 unless for some « one of the following occurs when An
is deleted from the graph of Cn_j,n: at least two of the resulting components are
not subgroups of An (since G is simply decomposable, at most two components can
fail to be subgroups of An); or only one component, namely, Cn>n + 1, is not a
subgroup of An but An is not a subgroup of t/nn + 1. For notational convenience
we assume that one of these two possibilities first occurs when « = 0

Suppose that when A0 is deleted from the graph of G, two components, say
C0jl and C_ ji0, arise which are not subgroups of A0. Then

(2) G = C_1>0 *{/_li0 ^o *[/0,i Gq.x',

hence G may be viewed as the tree product of A0 and the vertices in C_j-0, C0>1.
Let Ax be the vertex of C0>1 to which A0 is joined by an edge. If Ax is deleted from
the vertices in the tree product (2), the subtree determined by the vertices of C_1-0
and A0 will be one component whose tree product is not a subgroup of Ax', hence
there can be at most one other component, say Cli2, not a subgroup of Ax- Hence

G = C_lj0 *t/_10 A0 *t/0 x ^4j *uí¡2 w.i-

Similarly, working with the left component C_1>0 we obtain

G = C_2,-i *f7-2>_1 A_x *(/-i,o A0 *(/0 j Ax *t/la Clj2.

Continuing in this way, we can show that

G   =    •  •  •   *U-3,_2 A-2  *U-2_-x  A-x  *C7_1-0 ^0 *[/0,l   "-X  *(/12 A2  *U2,3   '  '  '

(where the sequence may have finitely many positive or negative indices); indeed,
the vertices of G which are not subgroups of

gp (A_n,..., A_x, A0, Ax,..., An)

have levels greater than n.
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Now, C_1>0 = gp 04-1, A_2,...), and C0,i = gp (Ax, A2,...); hence for some
smallest positive integers k, m, we have A_k<A0 and Am<A0. Then

G = C-k-Xi-k *y A-k *u A0 *w Am*x Gm-m + i
where

V= £/_,_!,_„        U=U.k_.k + x,        W=Um.Um,   and    * = Um,m + X.

Clearly, A.k=¿ U and Am=¿ W. Writing G as

G = C_fci_fc + 1*u-<4o*w Cm_1>m,

we see that U=A0= W. Hence

G = C-k-1¡-k*yA-k*üAm*x Cm>m + i

= C-k¡-k + x *[/ ,4m *x Cm,m + 1

= G-fe-i^fc *v ^4-fc *u Gm_lim.

Hence Cm>m + 1 = Ar and C_k_i>_JC=K. Thus G = A_k*v Am where U^A^k, Am.
Since U=A0= W, it follows that the vertices ,4; for —k<j<m are all equal to U.

This completes the argument for the case of two components.
Suppose next that only one component C0,i not a subgroup of A0 arises when

A0 is deleted from the graph of G, and that A0 is not a subgroup of t/0,i- This
case is treated in a manner similar to the preceding one except that here one obtains

G = A0 *u0wl Ax *C7lt2 ^2 *U2.3  " ■ ■

which is infinite in at most one direction. Arguing as above, one shows that
G = A0 *u An where U= i/n-i,n and « is the smallest positive integer y such that
Aj<A0. It follows that all other vertices on the simple path joining A0 to An are
equal to U.

Finally, suppose that G has several vertices of level zero. Contract the subtree
of vertices of level zero to a single vertex L0. Then the above arguments show that
either

(3) G = A,
G is the ascending union of

(4) L0 < Ax < A2 < ■■-,

(5) G = (Ai*Aj-,U),       U*Ai,Aj,

or

(6) G = (Ak*L0;U),       U # Ak,L0.

In (3), redefine the levels of the vertices in A so that there is a unique vertex of
level zero. In (4), replace L0 by its vertex A0 which is joined by an edge to Ai. In
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(6), redefine levels of the vertices Ak and those of L0 so that Ak is the unique vertex
of level zero.

This completes the proof of Theorem 3.

Theorem 4. Let G be a tree product

11*04,; Uik = Uki),

and suppose each amalgamated subgroup Ujk is finitely generated. If G is finitely
generated, then each factor Ai is finitely generated and G is the tree product of
finitely many of its factors.

Proof. Since G is finitely generated, G is generated by finitely many A¿, say
Ax,..., An which are the vertices of a subtree. Now this finite tree has an extremal
vertex, say An, which is joined by an edge to exactly one vertex. Then the vertices
Ax, ■ ■ -, An_x form a subtree with tree product Gn, and G is the free product of An
and Gn with a finitely generated subgroup amalgamated (by Theorem 1). It follows
that An and Gn are finitely generated. For, if (C * D; V) is finitely generated and V
is finitely generated, but say C were not finitely generated, then C would be a
proper ascending union of finitely generated subgroups Cy each of which contains
V; hence (C * D; V) would be the ascending union of (C¡ * D; V), which is proper
since (C¡* D;V)n C=C¡.

Repetition of this argument shows that An-lt • • •» Ax are also finitely generated.
Since any factor Ak could have been included in Ai,..., An, each factor Ak

is finitely generated.

4. HNN groups. Two constructions enter our description of the subgroups of
G = (A * B; U). The first, the tree product, has already been discussed. The second
has been used by several authors: Higman, Neumann and Neumann [6] use the
construction to establish certain embedding properties; Higman [5] uses it in his
paper on subgroups of finitely presented groups; Moldavanski [10] uses it to ob-
tain properties about groups with one defining relation; W. W. Boone has informed
us that this construction is used in various proofs of the unsolvability of the word
problem, see, in particular, J. L. Britton's paper on the word problem in Ann. of
Math. (2) 77 (1963), 16-32, MR #5891.

Definition. Let A" be a group and let {<p(} be a collection of isomorphisms of
subgroups L( into K. Then we call the group

G = <fj, t2,...,K; rel K, iiLjij-1 = cpi(Lx), t2L2t21 = cp2(L2),.. .>,

the HNN group with base K and associated isomorphisms {mj, and denote it by
HNN^, {cpi}); the associated subgroups are {Lu <p¡(L()} and the free part of G is the
subgroup generated by tt, t2,...,

It is easy to see that the free part of G is a free group freely generated by U, t2,...,
has trivial intersection with the normal subgroup of G generated by K, and hence
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is a homomorphic image of G. (Conversely, if a group G has a free group as a
homomorphic image, G is an HNN group whose base and associated subgroups
all equal the kernel, and whose free part is a properly chosen representative
system.)

A basic property of HNN groups is the following:
Let {x¡}, {y¡} be sets of the same cardinality as {<p,}, and let X, Y be the free groups

on {Xi} and on {^¡j, respectively. Then the free product X * HNN(A, {<p¡}) is iso-
morphic to the amalgamated product

((X*K)*(Y* K); K*x1L1x1-1 * • •• = K*y1cpx(L1)yI1 * •••)

where t¡ is mapped onto yí 1x¡, and X, K are mapped identically onto themselves.
It follows that A" is a subgroup of HNN(A", {<p}) in the natural way. Hence,

HINN^, {cpi}) with nontrivial free part is decomposable (as an amalgamated
product) in a nontrivial manner unless its free part is cyclic and its base K is
generated by its associated subgroups {L¡, <Pi(Lt)}; indeed

HNN(K, {*}) = n,*(HNN(A-, fc); K) = K*. HNN(K", (>,})
where K' is the subgroup of K generated by {L¡, 9>¡(F¡)}- (In particular, any group
having a noncyclic free group as a homomorphic image is nontrivially decomposable
as an amalgamated product.) Moreover, if K> M>K', then gp (tx, t2,..., M)
equals HNN(M, {c>¡}) and intersects K in M; for,

HNN(A\ {,,,}) = K% HNN(A/, fa}).
Lemma 2. Let G = HNN(K, {<pt}) and let tlt t2,... freely generate the free part

of G. Then the normal subgroup N of G generated by K is a tree product whose
vertices correspond to the conjugates of K by the freely reduced words in the /¡ ;
an edge joins Wt[KtfeW~1 to WKW'1, and this edge corresponds to the subgroup
Wt!Lltr°W-1=Wcpi(Li)W-1   if e=\,   and   to    Wt?cplLi)trsW-1=WLiW-1   if
8=-l.

Proof. Using the Reidemeister-Schreier method with the freely reduced words
in /( as a Schreier representative system for G mod N, we have that N is a partial
generalized free product with the vertices and edges as specified. To show that N
is a tree product, define the level of a vertex WKW'1 to be the word length of W.
Then the conditions of Lemma 1 are satisfied.

Note that in the special case when the free part of G is infinite cyclic, then the
tree product N reduces to a stem (path) infinite in both directions. This type of
tree product arises in the study of groups with one defining relation and knot
groups.

A simple consequence of Lemma 2 and the above is that the center of HNN(A", {<p¡})
whose free part is noncyclic is the center of K intersected with the fixed sets of each
of the cp¡. For, a central element must be in K and each Lu since the center of a
nontrivial amalgamated product is in its amalgamated subgroup.
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Lemma 3. Let H=HNN(K, fa}) be finitely generated. Then the number of <p¡ is
finite. If each of the associated subgroups Lf is finitely generated, then K is finitely
generated. If K is a tree product and each of the associated subgroups L¡ and <p¡(/.i)
is a subgroup of a vertex of K, then K is the tree product of finitely many of its
vertices.

Proof. The free part of H is a homomorphic image of H whose rank is the
number of <p¡, and so this number must be finite.

Let K' be the subgroup of K generated by the associated subgroups {A <p4(A)}-
Suppose each L¡ is finitely generated. If K were not finitely generated, then K

would be a proper ascending union of finitely generated subgroups K¡ each of
which contains K'. Hence H would be the ascending union of subgroups H¡
= HNN(A, toi}); this chain is proper (since H¡ O K=K,), contrary to H being
finitely generated. Thus K is finitely generated if the L¡ are.

To prove the last assertion, suppose K were a tree product not generated by
finitely many of its vertices. Clearly, since H is finitely generated, K is generated
by countably many of its vertices. Hence A" is a proper ascending union of sub-
groups Kj where K¡ is a tree product of finitely many vertices of K including the
finitely many which have {A <Pi(Z.¡)} as subgroups. Theri K} > K' and H would be
the proper ascending union of HNN(A, fa}), contrary to H being finitely generated.

5. Compatible regular extended Schreier systems. Our proof of the subgroup
theorem makes use of a specially chosen coset representative system which is a
generalization of a regular extended Schreier system as defined in [9, p. 239].

Let G be a group generated by two of its subgroups A, B whose intersection is U.
Suppose ult u2,... are generating symbols for U; ax, a2,..., ux, u2,... are
generating symbols for A ; and bx, b2,..., vx, v2,... are generating symbols for
B where p, defines the same element of U as u¡. We call ax, a2,... a-generators ;
A-, m-, ^-generators are defined similarly; also a- or w-generators are called a-
generators; A- or ^-generators, /S-generators. An x-symbol means an x-generator
or its inverse where x is a, b, u, v, a or ß.

Let H be a subgroup of G. By a compatible regular extended Schreier system
(cress) for G mod H (on the given generators for G), we mean a pair of right coset
representative functions for G mod H, called the a- and ^-representative functions
respectively, with the following properties :

(1) The representative functions forrn a regular extended Schreier system for
G mod H (where we choose the a-type representatives to be the neutral repre-
sentatives), i.e.,

(1.1) if a representative N=Mz (where z is an a- or jS-symbol), then N and M
are both representatives of the same type (a- or /?-) as the symbol z;

(1.2) if the a-symbols are deleted completely from the ends of the a-representa-
tives, the resulting words form a double coset representative system for G mod (H, A)
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which we call the associated a-double coset representative system, and analogous
demands are made for the /^-representatives.

(2) When the «-symbols (['-symbols) are deleted completely from the ends of the
a-representatives (jS-representatives), the resulting words form a double coset
representative system for G mod (H, U) called the associated u-double coset
(v-double coset) representative system.

(3) An oc-representative does not end in a ^-symbol, and a /3-representative does
not end in a «-symbol.

(4) If K is both a u- and a odouble coset representative, then KP(u¡) is an
«-representative iff KP(v¡) is a ^-representative (where P(u¡) is a word in the u-
generators and P(Vi) is the corresponding word in the u-generators).

Lemmas 4 and 5 are used in constructing a cress for G mod H.

Lemma 4. Let {£¡} be a double coset representative system for a group C mod a
pair of subgroups (J, U). Then a collection of words {E¡P¡j} where P¡, is in U is a
coset representative system for C mod J iff {Pa} is a coset representative system for
U mod i/n Er1JEi. More generally, if N is a subgroup of U, then the collection
{EiPi,} is a double coset representative system for C mod (/, A^) iff {Pi,} is a double
coset representative system for U mod (U d Ef 1JEl, N).

Lemma 5. Let C be a group with generators Cx,c2,...,ux,u2,..., let U=
gp («j, u2,...), and let J be any subgroup of C. Then there exists a Schreier system
for C mod J such that when the u-symbols are completely deleted from the ends of the
representatives, the resulting words form a double coset representative system for
C mod (/, U).

Proof. Define the length of a double coset in C mod (J, U) as the minimum
length of a word contained in the double coset.

We construct our Shreier system inductively, selecting double coset representa-
tives £¡ for C mod (J, U), and then supplementing E¡ with any Schreier system for
•7 mod UnEfVEi.

For the double coset JU of length zero, we select 1 as its double coset representa-
tive. Assume we have selected representatives for the cosets of J contained within
the double cosets of (/, U) of length less than r; and let JWU be a double coset
of length r > 0 with W of length r; then W does not end in a w-symbol. If W= Qx
where x is a c-symbol, then Q is in a double coset JQU of length less than r; hence
the representative Q of Q has been selected: set the double coset representative
F¿ of JWU to be the word Qx, which clearly does not end in a «-symbol.

We refer to a Schreier representative system of the kind described in Lemma 5
as a special Schreier system for C mod J with respect to U.

Lemma 6. Let G, A, B, U, H be as described at the beginning of this section.
Then there exists a cress for G mod H on the given generators.

Proof. Given two representative systems for G mod H, called a- and ß-repre-
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sentative systems, express each a-representative " W as a product of three words
aW= DaEuP where P is the maximal terminal segment of "W containing only
w-symbols and EUP is the maximal terminal segment containing only a-symbols;
similarly, express each ^-representative as a product of three words DßEvQ.

It is easy to show that the following conditions (5)-(9) are equivalent to conditions
(l)-(3) in the definition of a cress:

(5) The collection {Da} is a double coset representative system for G mod (H, A)
and each Da is a ^-representative ending in a A-symbol (unless Da = 1) ; an analogous
statement for the collection {DB}.

(6) The collection {DaEu} is a double coset representative system for
G mod (H, U); an analogous statement for the collection {DeEv}.

(7) For a fixed Da, the collection {EUP} of words which go with this Da is a
Schreier system for A mod A n /)„1//A; an analogous statement for a fixed De.

(8) For a fixed Da, the associated collection {A} is a double coset representative
system for A mod (A O Dä1HDa, U); an analogous statement for a fixed Ds.

(9) For a fixed DaEu, the collection {/•} of words which go with this DaEu is a
Schreier system for Umod U n E~1D¿1HDaEu; an analogous statement for a
fixed DeEv.

Conditions (7), (8), and (9) merely state that for a fixed Da the associated col-
lection {EUP} is a special Schreier system for A mod A n Da 1HDa with respect to
U and analogously for fixed De.

We construct a cress by an inductive procedure similar to that used in con-
structing a regular extended Schreier system (see, for example, [9, p. 241]). By the
syllable length of a double coset of (H, A) or of (H, B) we mean the minimum
syllable length (with respect to a- and /J-syllables) of a word in the double coset.

The inductive procedure consists in selecting a-representatives (and jS-representa-
tives) for all cosets of H within those double cosets HWA (and HWB) of length «;
to do this we first select double coset representatives of minimum syllable length
and then supplement these with a special Schreier system.

For « = 0, choose 1 as both the a- and ^-double coset representatives of HA and
HB respectively. To obtain the a-representatives for the cosets of H in HA we
supplement the a-double coset representative 1 with a special Schreier system for
A mod An H (which is A n 1 _1//1) with respect to U. Similarly for ¡S-representa-
tives for cosets of H in HB.

Assume we have selected a-representatives (^-representatives) for all cosets of H
contained in a double coset of (H, A) (of (H, B)) of syllable length less than r.
Let HWA and IT have syllable length r>0. Now IT ends in a ß-symbol; hence the
double coset HWB has syllable length less than r. Thus "H7 has been selected and
"ITcan be written ßW= DeEvQ; choose DßEv as the a-double coset representative
Da of HWA. Since the syllable length of De^r-l while the syllable length of
DBEv^r, we must have A/1 and so Ev ends in a A-symbol. We then supplement
A with a special Schreier system for A mod Ar\ D~ xHDa with respect to U.
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In analogous fashion select ^-representatives for all cosets of H within a double
coset of (H, B) of syllable length r.

From the construction of the a- and ^-representative systems it is clear that
conditions (5)-(9) and hence (l)-(3) are satisfied. To satisfy condition (4), note
that if K is both a u- and a r-double coset representative, then in the course of the
above construction, K was supplemented by a Schreier system in «-generators and
one in ^-generators for U mod U n K'1HK; once one of these Schreier systems
has been chosen, select the second one to be the corresponding set of words
obtained by interchanging «¡ and vt.

Corollary. Let G, A, B, U, H be as above. Suppose K is a u- or v-double coset
representative in a cress for G mod H on the given generators. If K=KXK2- ■ ■ Kn
is the factorization of K into a- and ß-syllables, then no K¡ defines an element of U.
In particular, if G = (A * B; U), then the syllable length of K and the length of the
element defined by K in G coincide.

Proof. It is clear from the definition of a cress than an a- or ¿S-double coset
representative is both a u- and a u-double coset representative ; hence if the last
syllable (a- or ß-) of any representative is deleted, then the resulting word is both
a «- and a u-double coset representative. It therefore suffices to show that the last
syllable Kn of K is not in U. Suppose Kn were in U. Since ATj- • • ATn_j is both a
u- and a y-double coset representative, Kx- ■ Kn-x = K, contrary to Kn being the
last syllable of K and hence nonempty.

Lemma 7. Let G and H be as above, and let r be a Kuros rewriting process using a
cress for G mod H. Then in the presentation obtained for H using r, the following hold:

(10) the subgroup of H generated by the symbols sKiX where K ranges over the
a-representative with a fixed double coset representative Da and x ranges over all
a-generators is DaADâ1 n H=A%«;

(11) the subgroup of H generated by the symbols sKiU¡ where K ranges over the
a-representatives with a fixed u-double coset representative DaEu and ut ranges over
all u-generators is Uh"b<'.

Assertions analogous to (10) and (11) hold for s-generators associated with ß-
representatives, ß-generators and v-generators.

(12) H is itself generated by the s-generators and the t-generators tL where L
ranges over the v-double coset representatives.

Proof. (10) follows from Lemma 4.8 of [9, p. 240].
(11) follows from the fact that the a-representative of DaEuPut is

DaEuPÛ~i
where

PUi
is the Schreier representative of Pu{ in U mod U r\ E¿1D¿1HDaEu.
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We know that H is generated by all the i-generators and all the r-generators.
We now wish to show that we may restrict the f-generators to those associated
with y-double coset representatives. Since the neutral representatives are the
a-representatives, we need only the /-generators associated with ^-representatives.
We show that tDsEvQiVj) can be solved for in terms of tDeE<1 and i-generators of the
form sDaEttP¡Ul where DaEu is the «-double coset representative of DBEV. Specifically
suppose that "(DgEv) = DaEuM. Then we show that

(13) tD,SvWVji = tDiEvr(DaEuMQ(Uj)MQAMÎ)-lE^D^)

where
MQÔH)

is the Schreier representative of MQ(u,) in i/mod U n E~1D~1HDaEu.
To show that the LHS and RHS of (13) define the same element of H, note that

>DBEvQivi) defines the element

DßEvQ(Vjy(DßEvQ(Vj))-x = DlEvQtMtf(DaEvtMQ{ul))-í

= DtEvQíuMDaEuM&j$)-í

= DßEv(DaEuM) - xDaEuMQ(Uj)MQ(u,)- \DaEu) "1

which defines the same element as

tDeEv ■ r(DaEuMQ(u,)MWiï) ' lKi A"l).

6. The subgroup theorem.    We shall prove that every subgroup H of

G = (A * B; U)

is an HNN group of the form

H = (tx, t2,...,S; rel S, hUfrt^ = Ctfi, t2U^t2x = Ufr,...y

where 5 is a tree product whose vertices are conjugates of A or B intersected with
H, and whose amalgamated subgroups are conjugates of U intersected with H.
Thus H is an HNN group (with possibly trivial free part) whose base is S and
whose associated subgroups are conjugates of U intersected with H. Moreover,
each of these associated subgroups is contained in a vertex of the tree product S.

Theorem 5. Let G=(A * B; U) and let H be a subgroup of G. Suppose {DaEuP}
and {DßEvQ} are the a- and ß-representatives of a cress for G mod //. Then H is
generated by those tDßEv such that DßEv is neither an a- nor ß-double coset repre-
sentative together with all the subgroups A%« and B^e. Moreover, the following
hold:

(1) TAe tD/¡Ev such that DßEv is not an a- or ß-double coset representative freely
generate a free group F.
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(2) All the subgroups A°« and B°B generate a tree product S in which /4g« and B^'
are neighboring vertices whenever Da = Dß=l, or Da and De are "a syllable apart",
i.e., Da is obtained by deleting the last syllable from Dß or vice versa; if A^" and
Bh" are neighbors and D is the longer of Da, De, then U§ is the subgroup amalgamated
between them under the identity mapping.

(3) H is the HNN group

(..., tDßEv, ...,S;re\S,..., t^Ug^ts^ = Ufr\ ... >

where DBEV is as in (1) and DaEu is the u-double coset representative of DeEv.

Proof. Let G be presented by

(au a2,..., «j, M2,..., bx, b2,..., vu v2,... ; Rxxfa, u}), Rx2(au u¡) ■ ■ ■
R2i(bi, V,), R22(bi, v,), ...,Ux = Vx,u2 = v2,...y

where
A = (ax, a2,..., «j, u2,... ; Rxx(at, u¡), Rx2(a¡, «i), • • • >,

B = (bu b2,..., Vx, v2,...; R2x(b¡, v¡), R22(b¡, v,),... >,

and C/=gp («j, «2,.. ,) = gp (vx, v2,...). Let t be the Kuros rewriting process using
the given cress for G mod H.

By Theorem 4.8 of [9], H has generators {sN,x} and {tN} where N ranges over the
a- and jS-representatives and x ranges over the generators of the same type (a- or
ß-) as the representative N; and H has as defining relators

(4) SNtX whenever Nx is freely equal to a representative,
(5) tN if N is an a-representative,
(6) ^(NRxnN'1) where N ranges over the a-representatives,
(7) r(NR2nN 'x) where N ranges over the ^-representatives, and
(8) t(Nuíví~1N'1) where N ranges over the ^-representatives.
A relator in (6) simplifies to a word in ¿-generators alone each of the form

s<hnw),x where IF is an initial segment of Rln and x is an a-generator; the a-double
coset representative of a(N W) is the same as that of 7Y. Thus if we collect those
relators in (6) according to the a-double coset representative Da of N, we obtain
the relators T(DccEuPRlnP~1E¿1D¿1) where {EUP} is a Schreier system for
A mod An D~1HDa. Now if r' is the Reidemeister-Schreier rewriting process
associated with the Schreier system {EUP} for A mod A n Da 1HDa, it is clear that
the sEt¡PyX such that

together with r'(EuPRlnP-1E^1) form a set of defining relators for A n D¿1HDCC
on the generators sEuP¡x. The element in H defined by sDaEuPtX is just the conjugate
by Da of the element in A n D¿1HDa defined by sEuP¡x. Hence, those sNtX where x
is any a-generator and N has a-double coset representative Da together with the
relators in (4) and (6) involving such N give a presentation for A%«. Analogous
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remarks with regard to the relators in (4) and (7) show that (4), (6) and (7) can be
partitioned into sets of defining relators for the groups A%» and Bfr.

Next we consider the relators in (8). If aN=DaEuP and N=DßEvQ, then (8)
reduces to

(") SDBE„Q,vi   =   ^DßE^DaEuP.lifDßE^Qvl

where Qv¡ is the Schreier representative of Qvt in [/mod Ur\(DßEv)~yHDßEi,.
From the relators (4)-(8) one can derive the formula (see (13) in the proof of
Lemma 7)

(10) lo,*.™,) = W. • r(DaEuMQ(u,)MQ(^) - lE^D¡¿l)

where a(DBEv) = DaEuM. (Clearly, P = MQ(u,).) Using (10), (9) can be replaced by

sDßEvQ.vt - tDßEv ■ T(DaEuMQ(Uj)MQ^) ' XE~1 Ajl) • r(DaEuPuiPu~rx A ' A" *)

(11) ■ r(DaEuMQ(Uj)UiQ(Uj)ur lM " *E;lD; l) ■ Í5,1*.

= tD$Ev■ r(DaEuMQ(Uj)utMQ(Uj)ur xMQ(Uj)UiQ(u,)ur XM"xE^D~a x)t^Ev

which has the form

(12) tDfiEvW(sDaEuLiU¡)tDl¡Ev = sd¡¡Evq¡Ví.

Thus by a Tietze transformation we may eliminate the generators tDeEvQ(Vl) where
Q(Vj)^l, provided we replace the relations (9) by (12); note that the /-generators
we are eliminating do not occur in (5) since an a-representative cannot end in a
u-symbol. Consequently, the only defining relations of H that now involve r-
generators are those in (5) and (12).

Hence, when H is divided by the normal subgroup generated by all the s-
generators, the resulting group is freely generated by those tDßEv such that DßEv
is not an a-representative. Now DßEv is an a-representative iff DBEV is either an
a- or ß-double coset representative ; indeed, if Ev=\ then DB Ev is an a-double
coset representative, and if Ev ̂  1 then DeEv is an a-representative ending in a ß-
generator and hence is an a-double coset representative. This proves assertion (1).

In order to show (2), we first show that the ¿-generators in our presentation for
H together with those defining relations which involve only ¿-generators, namely
(4), (6), (7) and those relations in (12) for which tDßE"v=\, present a group S"
which is the tree product described in (2); we show subsequently that this group
S" is a subgroup of H in the natural way, i.e., S" = S.

As we have already observed, the defining relators that enter our presentation for
S" from (4), (6) and (7) can be partitioned to yield sets of defining relators for the
groups A%« and B%e. Moreover, the defining relations that enter from (12) simplify
to

(13) Sd,,EuQ{.u,),Ui   — SDSEVQ(.V¡ ),«,•
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For, tDßEv=\ iff DßEv= DaEu, and also Ev or Eu is 1 ; hence in (11), M = 1 and (13)
follows from condition (4) of the definition of a cress. If DßEv is fixed, then the
right-hand sides of (13) generate the subgroup U%be« of Bfy while the left-hand
sides generate the (same) subgroup U%«E* of A^; the pairing in (13) is an iso-
morphism (the identity mapping) between these subgroups. Moreover, A%° and
B%b are connected by relations in (13) iff DaEu = DßEv for some Eu, Ev iff Fu=l
and Da = DßEv, or Ev = 1 and Dß = DaEu iff Da = DB = 1 or Da and Dß are a syllable
apart; hence, if A%« and £$" are connected by relations in (13), Eu and Ev are
uniquely determined. It follows that S" is a partial generalized free product of the
groups A%° and Bfin.

In order to show that the graph of S" is a tree, we use Lemma 1. Define the level
of a vertex Af,« (or Bge) to be the syllable length of Da (or /)„). The vertices of level
zero are A n H and B n H and these are joined by an edge corresponding to
U r\ H. Moreover, condition (2) of Lemma 1 is clearly satisfied. Therefore S" is
the tree product as described in (2).

To show (3), let fDflE„^l, and consider those defining relations in (12) which
involve tDßEv. We must show that the mapping

(14) SDßEvQ,Vi —>  "(SD^EvL,u¡)

of an ¿-generator in the right-hand side of (12) into the word in ¿-generators on the
left-hand side of (12) is an isomorphism between two subgroups of 5"'. Now the
¿-generators on the left-hand sides of (14) generate the subgroup UgeE» in Bge;
therefore the words in the ¿-generators on the right-hand sides of (14) generate the
subgroup

t5g\US^tDsEv = Ug°E»

in H and therefore also in A%«. Moreover, the mapping in (14) is just the iso-
morphism between [/#«*» and US"E" induced by conjugation by t¿B\ in H. Since A%°
and Bfie are subgroups of their tree product S" in the natural way, it follows that
(14) is an isomorphism between the subgroups {/#>*» and U%«E" of 5". Hence H is
an HNN group with base S", and so S=S". Consequently, (2) and (3) follow and
the theorem is proved.

Corollary. The free part F of H above is a retract of H with normal complement
N, the normal subgroup of H generated by S. In particular, if H is generated by its
intersections with conjugates of A and B, then F= 1 and H is the tree product S.

Proof. Since H is an HNN group with base S, the first assertion follows.
Suppose H is generated by its intersections with conjugates of A and B. Since

A% = AhHD°a=hA%°h-1<N, and similarly B%<N, we have H=N; hence F=l,
and so Ä=gp (F, S) = S.
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Corollary. Let G, A, B, U, H be as above. Then the rank of the free part F of
His

G:(H, U)-G:(H, A)-G:(H, B) + l

where G:(H, X) is the number of double cosets of(H, X) in G.

Proof. The rank of F is the number of r-double coset representatives DBEV
which are not a- or /3-double coset representatives. Now every a- and /3-double coset
representative is a tvdouble coset representative, and only 1 is simultaneously an
a- and a /3-double coset representative.

Corollary. If G, A, B, U, H are as above and H intersects the conjugates of U
trivially, then H is the free product of the free group F and all the factors A%«, Bfa.

The next corollary follows from the remarks on HNN groups preceding Lemma
2 of §4.

Corollary. Let DßEv and DaEu be as in (3) above, and let TDßEv = gp (tDeEv, S).
Then TDßEv is the HNN group

(tDßEv, S; rel S, tD,B.UgAtE¡Ev = t#A>,
and

H = fl*(TDeEv; S)

where DßEv ranges over all DßEv described in (1). Moreover, if we let SoßEv
= gp (Uh«e", U%eE»), then TDoEv is the free product of the HNN group

ToeE„ = vdse„) SDßEv; rel SDßEii, tDßEJJH« uißflB„ = U%* v

and S with their common subgroup S'DßEv amalgamated.

7. Indecomposable subgroups and subgroups satisfying an identity.

Theorem 6. Let G=(A* B; U). Then an indecomposable subgroup H of G is
either

(1) a subgroup of a conjugate of A or B,
(2) a countable ascending union US' where each D¡ (í = 0, 1,2,...) is an a- or

ß-double coset representative and is obtained from Di + X by deleting the last syllable
of Di + x, or

(3) an HNN group of the form

T - (t, S'; rel S', tUfr-1 = U%y

where 8 and 8' are distinct u- and v-double coset representatives for the same (H, U)
coset, S' = gp(U&, U%), and t = 8'P8 "x with P in U.

Proof. We apply Theorem 5 to H.
Suppose first that each tDßEv = l. Then H is the tree product S. Since S is in-

decomposable and has two vertices of level zero, we may infer from Theorem 2
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that H is either a vertex of S, or H is the countable ascending union of amalga-
mated subgroups corresponding to an infinite path determined by distinct vertices
of increasing levels. This yields possibilities (1) and (2).

Suppose the free part of H is nontrivial; then by the last corollary to Theorem 5,
H=U*(TDßEv; S). Since H is indecomposable, all factors TDßEv except one must
equal S; hence H=TDßEii for some DßEv. Now TD/¡Ev = (T¿eEv* S; S'DßEv). Since
TDßEv is indecomposable, H=ToßExi which by the last corollary to Theorem 5 has
the form alledged in (3) above.

Corollary. If U is countable, then any noncountable indecomposable subgroup
H of G —(A * B; U) is in a conjugate of a factor.

Corollary (Moldavanski). Any abelian subgroup H of G has the form (1),
(2), or is the direct product of an infinite cyclic group and a subgroup of a conjugate
ofU.

Proof. An abelian subgroup is, of course, indecomposable. It therefore suffices
to show that (3) reduces to a direct product. If T' in (3) is abelian, then U„=U^
= S'. Hence by Tietze transformations 7" is the direct product of gp (t) and U£.

Theorem 7. Let G = (A * B; U). Suppose H is a subgroup of G satisfying a non-
trivial identity. Then H is one of the following:

(1) a subgroup of a conjugate of A or B;
(2) an ascending union as in (2) of Theorem 6 ;
(3) an HNN group as in (3) of Theorem 6 where U„ < U¡¡' or vice versa, and

therefore H is an infinite cyclic extension of U¿', U¿, or of a proper ascending union
{Uiï*}or{U'Hk°}(k = 0,l,2,...);

(4) an amalgamated product

(Afc*Bge;Ug),        D= Da    or    Dß,

(Afr*A°°;Ug),       D = Da   or   D'a,
or

(Bfr*Bg¿;Ug),        D=Dß    or    D'e,
and, moreover, Ug is of index two in both factors ofH.

Proof. If H satisfies a nontrivial identity, then the free part F of H generated
by the r's must be infinite cyclic or trivial. Suppose first Fis trivial. Then H=S,
a tree product. Hence by Theorem 3 possibilities (1), (2) or (4) hold.

Suppose then F is infinite cyclic. In that case, H=TDßEv (as defined in the last
Corollary to Theorem 5), which equals (T¿sBv * S; SoßEv). Since S'DßEv has infinite
index in T'DßEv, we have that H— T'DßEv. Now it is easy to see from Lemma 2 applied
to the HNN group T' = ToßEv that the normal subgroup N of T generated by
S' = S'DßEii is the tree product of the groups S'k = tKS't~k (where t = tDßEv and k
is any integer), where the factors S'k and S'k + 1 are neighbors with the subgroups
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Uh6'= U£+la amalgamated. As in the proof of Lemma 2, we may assign \k\ as
the level of S'k. Since N satisfies a nontrivial identity, N=S'k, or N is the ascending
union S'0<S'e< S'2£ < ■•• (e= + 1), or N=gp (S'k, S^) with k<m. Since N is normal,
it follows that So < S[ or So <S'_X. This is immediate if either of the first two possi-
bilities on N holds; the third possibility implies the first. For, if N=gp (S'k, S„),
then N is the tree product of S'k, S'k + X,..., S^ which is the tree product of S'0,
Si,..., S„-k which is the tree product of S'k-m-x,..., S'_x; but the intersection
of these last two tree products is U„ and so N=S0.

Suppose S'0<S[. Then S'0=U%, so that U¿,<U%; moreover, S'k=Ug0'. If
S'0<S'_X, interchange 8 and 8'. Hence possibility (3) holds.

8. Finitely generated subgroups.

Theorem 8. Suppose G = (A * B; U) where A, B have the property that their
finitely generated subgroups are finitely related, and U has the property that each
of its subgroups is finitely generated. Then all finitely generated subgroups of G are
finitely related.

Proof. Let H be a finitely generated subgroup of G. Now by Theorem 5, H is an
HNN group with base S and associated subgroups which are intersections of H
with conjugates of U. Hence these associated subgroups of H are finitely generated.
Therefore by Lemma 3, the free part of H and S are both finitely generated.
Moreover, S is a tree product whose vertices are subgroups of conjugates of A, B
and whose amalgamated subgroups are subgroups of conjugates of U; hence S
is the tree product of finitely many of its vertices each of which is finitely generated.
But finitely generated subgroups of A or B are finitely related ; therefore 5 is finitely
related, and so H is finitely related.

Corollary. Let G = (A * B; U) where A, B are as above, and suppose that H
is a finitely generated subgroup of G whose intersection with each conjugate of U
is finitely generated. Then H is a finitely related group.

Proof. Since the associated subgroups of H and the amalgamated subgroups of
S in the above argument are intersections of H with conjugates of U, the result
follows as above.

If A, B are as in Theorem 8, but U does not satisfy the maximal condition, then
(A * B; U) may have finitely generated subgroups which are not finitely related.
For example, let

A = (x, y; x2 = j3>,       B = Ax = (xx, yx; x% « yf>,

let U be the commutator subgroup of A, which is a free group generated by
xyx~1y~1 and xy2x~1y~2, and let Ä^be the free subgroup of A freely generated by
yxy and xvxjx"1; similarly, let A and Kx be the corresponding subgroups of Ax.
Now by Theorem 8, the finitely generated subgroups of A and Ax are finitely
related. On the other hand, the subgroup H of (A * Ax; U= A) generated by K
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and Kx is (K* Kx\ Un K= Ut n Kx) (see [11, p. 512]), which is finitely generated.
However, H is not finitely related; to show this it suffices to show that U n K is
infinitely generated (see G. Baumslag [2]). Now U n K is a nontrivial normal
subgroup of the free group K; U n K is of infinite index in K since A"/(i/ n AT)
S UKjU, which is an infinite cyclic subgroup of -4/t/; hence, U C\ K is infinitely
generated (see, e.g., [9, p. 104]).

Theorem 9. Let G = (A * B; U) where A, B are locally indicable and U is cyclic.
Then G is locally indicable.

Proof. We first observe that if A, B are indicable, then G is indicable. For, if
A, B can be mapped homomorphically onto the infinite cyclic groups generated
by x and y, respectively, then G can be mapped homomorphically onto the group

(x,y;xr = ysy

for suitable r, ¿. This group in turn can be mapped homomorphically onto an
infinite cyclic group: namely, if ¿ = 0, map x—*-l, y —> v, and otherwise map
x -*■ ys, y -*• yr.

Suppose now A, B are locally indicable, and H is a finitely generated subgroup
of G. If the free part of H is nontrivial, H is clearly indicable. Otherwise, H is the
tree product S of Theorem 5. By Theorem 4 above, H is the tree product of finitely
many finitely generated subgroups of conjugates of A or B with cyclic amalga-
mated subgroups. Therefore H is the tree product of finitely many indicable
groups with cyclic amalgamated subgroups. A simple inductive argument using
the first remark shows that H is indicable.

If A, B are locally indicable but the amalgamated subgroup U is not cyclic,
then (A * B; U) need not be locally indicable. For example, let

A = <x,>;9ry>r* = y-xy,
and

B = (z,w; zwz'1 = vf_1>.

Then A, B are locally indicable (since they are locally indicable extensions of
locally indicable groups). Moreover, the torsion free subgroups

U=gp(x\y),        V=gp(w,z*)

are each free abelian of rank two, and so we may form the amalgamated product
G = (A*B; x2 = w, y = z2). G is not indicable, since the commutator quotient
group is finite.

In this counterexample, U is free abelian of rank two. A counterexample in
which U is a free group of rank two is provided by taking

A = (x,y; xyx'1 = ^_1> *y=2 (z, w; zwz'1 = h>_1>,

B = <P,^;pgp~1 = q'1y*q=r <r,s; rsr'1 = ¿-1),

and G = (A * B; x = s, w=p).
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The following definition and lemma generalize corresponding ones for free
products (see B. Baumslag [1]).

Definition. Let G = (A * B; U). Then a set of words in generators of A and B is
double ended if there exist two words in the set whose a- and /3-syllables do not
define elements of U, and such that one of the two words ends in an a-syllable
and the other ends in a jS-syllable. A set of elements of G is double ended if there
exists a double ended set of words defining these elements.

Lemma 8. Let G, A, B, U, H, F, S be as in Theorem 5. Then the number of double
ended (H, U) cosets in G is finite iff F is finitely generated and S is the tree product
of finitely many of its vertices.

Proof. Clearly F is finitely generated iff the number of DBEV such that tDßEv # 1
is finite.

Moreover, S is the tree product of finitely many of its vertices iff the number of
double coset representatives Da, Dß such that A%«+US« or BS6i=USB is finite.
For, if the number of such Da and DB is finite, then the set J of corresponding
vertices together with the vertices of level zero is finite. Using induction on the
level of a vertex of S, it is easy to see that every vertex of 5 is a subgroup of a
vertex in J, so that S is the tree product of finitely many of its vertices. Conversely,
if S is the tree product of finitely many of its vertices including the vertices of level
zero, then by Theorem 1 each vertex not in this finite subtree is equal to the
amalgamated subgroup corresponding to the first edge in a path joining the vertex
to the subtree. But if a vertex A„« or B& is not in the finite subtree, then the first
edge on a path joining the vertex to a vertex of level zero corresponds to US« or
Uga, respectively. Hence, there are only finitely many Da and DB such that A%« / US«
or Bfr^U%i>.

(i) Suppose now there are only finitely many (H, U) cosets which are double
ended. We first show that the number of DBEVsuch that tDßEv=£l is finite by show-
ing that if tDßEv^l, then HDßEvUis double ended. For, clearly A/1- Moreover,
if a(DßEv) = DaEuP, then Eu^l; otherwise

AA - 1 DeEv\ = "\DaP\ = "|Da\ = Da,

contrary to DßEv not being an a-representative (where v| IT| is the r-double coset
representative of W). Thus the two words DBEV and DaEuP end in a ß- and in an
a-syllable, respectively. Since different DBEV determine different (H, U) cosets,
the number of DBEV such that tDßEv^\ is finite, so that Fis finitely generated.

Next consider those Da and Dß such that A%« / US« or BSB # Ufa- Suppose
Ah-^US«, Dali\. Then there exists aeA-U such that DaaD^eH. Clearly,
HDaU=HDaaU, and the pair Da, Daa end in opposite type syllables, so that
HDaU is double ended. Similarly, if Bg^US", B$*l, then HDBU is double
ended. But different Da, DB determine different (H, U) cosets; hence, there are
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only finitely many such Da and Dß. Consequently, S is the tree product of finitely
many of its vertices.

(ii) Conversely, suppose that (1) the number of DßEv such that íD/¡Bü#l is
finite and (2) the number of Da and De such that Afr^ ug« or Bge=£ Uge is finite.

If a double coset HWU is double ended we show that "| W\ is an initial segment
of the a- or /J-representative of some DßEv in (1) or is an initial segment of some
Da or Dß in (2). For suppose otherwise. If HWU is double ended, then there exists
he H such that "| W\ and hv\ W\ end in opposite type syllables. Choose W and «
so that "| W\ is not an initial segment as claimed, "| W\ and h-v\ W\ end in opposite
type syllables, and «"|rF| has minimum length (as an element of (A * B; U))
subject to the preceding two conditions.

Clearly, "|1F|#1 and r„|W| = l. Therefore V\W\ is either an a-double coset
representative Da or a /J-double coset representative Dß. Assume v|ff|=Z)e (an
analogous argument can be used if "| W\ = Dß). Then "\W\ ends in a ß-syliable,
and the element h-"\ W\ ends in an a-syllable. Therefore

«-1 = Da(hD^x = DaaL

where aeA—U and L begins with a ß-syllable (F^l, since otherwise DaaeH
and so Da = a\Daa\ = 1). Thus h~1 = DaabM where beB-U, and M=\ or M
begins with an a-syllable. Let a(Daa) = DaEuP. Then

A"1 = DaaP'1E-1D-1DaEub'M

where b'=Pb. Since A%«=Ug«,

«-1 = D¿uD¿1-DttEvb'M = DauEub'M

where we U. Since the length of«"1 is X(Da) + 2 + X(M) (where "A" denotes the
length of an element in (A * B; U)), it follows that Fu^l. Let k~1 = DaEub'M;
then k e H. We show that DaEu is a ß-double coset representative Dß ; it would
then follow that Dß and kDß end in opposite type syllables, Dß is not an initial
segment of an a- or ^-representative of a representative in (1) or (2) (for otherwise,
Da would be such an initial segment), and yet kDß has smaller length than hDa,
contrary to the minimality assumption on the length of hDa.

To show DaEu is a ^-double coset representive, let v\DaEu\ = DßEv. Then
'ds£„=1, since Da is an initial segment of a(DßEv); indeed a(DßEv) = u\DßEv\P'
= DaEuP' where P' e U. Thus DßEv=DaEuP'; since Eu^\, Ev and P' must equal 1,
and hence Dß = DaEu.

Consequently, the number of double ended (H, U) cosets is finite.

Corollary. Suppose G = (A * B; U), and H is a finitely generated subgroup ofG.
Then the number of double ended (H, U) cosets in G is finite.

Proof. Since H is finitely generated, its free part F is also finitely generated.
Moreover, each of the associated subgroups of the HNN group H as given in
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Theorem 5 is contained in a vertex of the tree product S, the base of H. Hence by
Lemma 3, S is the tree product of finitely many of its vertices. Therefore by the
preceding lemma, (H, U) has finitely many double ended cosets in G.

Theorem 10. Let G = (A * B; U) and let H be a finitely generated subgroup of
G containing a normal subgroup N ofG, N<U. Then (H, U) is of finite index in G.
Moreover, H is of finite index in G iff the intersection of U with each conjugate of H
is of finite index in U; in particular, if U is finite, then H has finite index in G.

Proof. Assume that U is not of index two in both A and B. We show that each
(H, U) coset is double ended; since H is finitely generated the preceding corollary
would then show that (H, U) has finite index in G.

Now it is easy to show that N contains an element of G which begins and ends
with an a-syllable and an element which begins and ends with a ^-syllable. Then
each double coset HwU with w $ U can be written HwxU where xe N and w, x
end in opposite type syllables; hence, HwU is double ended.

On the other hand, if U is of index two in both A and in B, then the index of
(H, U) in G is the index of HU/U in G/U = (A/U) * (B/U), the infinite dehedral
group. Moreover, HU/U contains the nontrivial subgroup NU/U which is normal
in G/i/and hence of finite index in G/U.

Finally, since the number of H cosets in HwU is the index of U n w~xHw in U,
the last part of the theorem follows.

Corollary. Suppose G = (A * B; U) where A, B are free and U is cyclic. If H
is finitely generated and contains a normal subgroup N of G where N is not free,
then H is of finite index in G ; in particular, a finitely generated normal subgroup of G
is either free or of finite index in G.

Proof. N intersects U nontrivially; for otherwise by the third corollary to
Theorem 5, N would be a free product of free groups and hence free. Therefore
each conjugate of H intersects U nontrivially and the intersection is of finite
index in the cyclic group U.

Theorem 11. Let G = (A * B; U). If A, B have the finitely generated intersection
property, and U is finite, then G has the finitely generated intersection property.

Proof. Let H, K be finitely generated subgroups of G. Then the number of
double ended cosets of (H, U) and of (K, U) in G is finite. Since U is finite, the
intersection of an (H, U) coset with a (K, U) coset contains only finitely many
(H n K, U) cosets ; hence there are only finitely many double ended (H n K, U)
cosets in G. Therefore by Lemma 8, F is finitely generated and S is generated by
finitely many of its vertices.

Moreover, applying Lemma 3 and Theorem 4 to H (given as an HNN group
as in Theorem 5), we see that XS is finitely generated where X is A or B and D
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is a double coset representative; hence the intersection of H with any conjugate
of A or B is finitely generated. Similarly, the intersection of K with any conjugate
of A or B is finitely generated. Since A, B have the finitely generated intersection
property, the intersection of H n K with any conjugate of A or Bis finitely generated.

Consequently, H n K is finitely generated.
The following corollary can be proved using a similar argument.

Corollary. Let G = (A * B; U) where A, B are as above, and U is finitely
generated. Let H, K be finitely generated subgroups of G with the property that the
intersection of each conjugate of H with U and of each conjugate of K with U is of
finite index in U. Then H n K is finitely generated.

The group G = (x, y; x2=y3y shows that even if the factors and the amalga-
mated subgroup are cyclic, a finitely generated N < G, N< U, need not be of
finite index in G, and the intersection of two finitely generated subgroups H, K
need not be finitely generated. Specifically, let N=H=gp (xyx~1y~1, xy2x~1y~2)
= the commutator subgroup of G, and let K=gp (yxy, xyxyx'1). As in the ex-
ample following the corollary to Theorem 8, H n Kis infinitely generated; more-
over, the commutator quotient group G/N is infinite cyclic.
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