THE SUBGROUPS OF ORDER A POWER OF 2

OF THE SIMPLE QUINARY ORTHOGONAL GROUP

IN THE GALOIS FIELD OF ORDER $p^{n}=8 l \pm 3^{*}$

BY

LEONARD EUGENE DICKSON

1. The group of all quinary orthogonal substitutions of determinant unity in the $G F\left[p^{n}\right], p>2$, has a subgroup O_{a} of index 2 which is simple. The latter is simply isomorphic with the quotient-group Q of the quaternary abelian group and the group composed of the identity and the substitution which merely changes the sign of each variable. The difficulty in the employment of Q is apparent, while for O_{a} there is unfortunately no known practical \dagger criterion to distinguish its substitutions from the remaining quinary orthogonal substitutions. While the abelian form seems best adapted to the determination \ddagger of the subgroups of order a power of p, the orthogonal form is found to possess advantages in the study of the subgroups of order a power of 2.

The case $p^{n}=8 l \pm 3$, namely, that in which 2 is a not-square in the $G F\left[p^{n}\right]$, is here treated on account of its simplicity (compare in particular $\S \S 2,4,5,22$) and in view of the applications to be made in subsequent papers in these Transactions to the determination of all the subgroups when $p^{n}=3$ and $p^{n}=5$.
There is established the remarkable result that, independent of the values of p and n (such that p^{n} is of the form $8 l \pm 3$), the group O_{Ω} contains the same number of distinct sets of conjugate subgroups of order each power of 2 , one set of representatives serving for every O_{Ω} (compare the diagrammatic summary in $\S 21$, the group notations being given in earlier sections in display formulæ separately numbered). Moreover, except for the subgroups of orders 2, 4, and certain types of order 8 , the order of the largest subgroup of O_{Ω} in which a group of order a power of 2 is self-conjugate is independent of p and n.

[^0]By way of check, it may be stated that the results of $\S \S 10,11$ and all after $\S 21$ were first established by other methods in the case $p^{n}=3$ and in part for $p^{n}=5$.

$$
\text { Orientation of the case } p^{n}=8 l \pm 3, \S \S 2-5 .
$$

2. The simple quinary orthogonal group O_{n} in the $G F\left[p^{n}\right], p>2$, has the order

$$
\begin{equation*}
\Omega_{n, p}=\frac{1}{2} p^{4 n}\left(p^{4 n}-1\right)\left(p^{2 n}-1\right) \tag{1}
\end{equation*}
$$

We observe the following lowest orders:
$\Omega_{1,3}=2^{6} \cdot 3^{4} \cdot 5, \quad \quad \Omega_{1,5}=2^{6} \cdot 3^{2} \cdot 5^{4} \cdot 13, \quad \Omega_{1,7}=2^{8} \cdot 3^{2} \cdot 5^{2} \cdot 7^{4}$,
$\Omega_{1,11}=2^{6} \cdot 3^{2} \cdot 5^{2} \cdot 11^{4} \cdot 61, \Omega_{1,13}=2^{6} \cdot 3^{2} \cdot 5 \cdot 7^{2} \cdot 13^{4} \cdot 17$,
$\Omega_{1,17}=2^{10} \cdot 3^{4} \cdot 5 \cdot 17^{4} \cdot 29, \Omega_{1,19}=2^{6} \cdot 3^{4} \cdot 5^{2} \cdot 19^{4} \cdot 181, \Omega_{2,3}=2^{8} \cdot 3^{8} \cdot 5^{2} \cdot 41$,
$\Omega_{2,5}=2^{8} \cdot 3^{2} \cdot 5^{8} \cdot 13 \cdot 313, \Omega_{2,7}=2^{10} \cdot 3^{2} \cdot 5^{4} \cdot 7^{8} \cdot 1201, \Omega_{3,3}=2^{6} \cdot 3^{12} \cdot 5 \cdot 7^{2} \cdot 13^{2} \cdot 73$.
Let $p^{n}=2 k+1$. Then $\frac{1}{2}\left(p^{2 n}+1\right)$ is odd, while

$$
\left(p^{2 n}-1\right)^{2}=2^{6}\left[\frac{1}{2} k(k+1)\right]^{2} .
$$

Hence $\Omega_{n, p}$ is always divisible by 2^{6}. The condition that 2^{6} shall be the highest power of 2 occurring as a factor is that $\frac{1}{2} k(k+1)$ shall be odd. According as $k=2 t$ or $k=2 t-1$, we have $k=4 j+2$ or $k=4 j+1$, upon replacing the odd number t by $2 j+1$. Hence $p^{n}=8 j+5$ or $8 j+3$, respectively.

Theorem. The highest power of 2 occurring as a factor of $\Omega_{n, p}$ is 2^{6} if and only if $p^{n}=8 l \pm 3$.
3. By Linear Groups, $\S \S 181,182,189, O_{\mathrm{a}}$ is generated by

$$
\begin{equation*}
Q_{i, j}^{a, \beta} \equiv\left(O_{i, j}^{a, \beta}\right)^{2}, \quad O_{i, j}^{\rho, \sigma} O_{i, i}^{\rho, \sigma} \quad(i, j, k, l=1, \cdots, 5), \tag{2}
\end{equation*}
$$

where α and β are arbitrary solutions of $x^{2}+y^{2}=1, \rho$ and σ fixed solutions,

$$
O_{i, j}^{a, \beta}: \quad \xi_{i}^{\prime}=\alpha \xi_{i}+\beta \xi_{j}, \quad \xi_{j}^{\prime}=-\beta \xi_{i}+\alpha \xi_{j} \quad\left(a^{2}+\beta^{2}=1\right),
$$

the cases $p^{n}=3$ and $p^{n}=5$ alone being exceptional. Let

$$
\left(\xi_{i} \xi_{j}\right): \quad \xi_{i}^{\prime}=\xi_{j}, \quad \xi_{j}^{\prime}=\xi_{i},
$$

noting that these linear substitutions do not compound as literal substitutions; for example, $\left(\xi_{1} \xi_{3}\right)\left(\xi_{1} \xi_{2}\right)=\left(\xi_{1} \xi_{2} \xi_{3}\right)$. Let

$$
C_{i}: \quad \xi_{i}^{\prime}=-\xi_{i}, \quad \xi_{j}^{\prime}=\xi_{j} \quad(j=1, \cdots, 5 ; j \neq i) .
$$

Then for $p^{n}=3$, the generators are the $C_{i} C_{j},\left(\xi_{i} \xi_{j}\right)\left(\xi_{k} \xi_{l}\right)$, and

$$
\begin{array}{lll}
W=W^{-2}: & \xi_{1}^{\prime}=\xi_{1}-\xi_{2}-\xi_{3}-\xi_{4}, & \xi_{2}^{\prime}=\xi_{1}-\xi_{2}+\xi_{3}+\xi_{4}, \\
& \xi_{3}^{\prime}=\xi_{1}+\xi_{2}-\xi_{3}+\xi_{4}, & \xi_{4}^{\prime}=\xi_{1}+\xi_{2}+\xi_{3}-\xi_{4} .
\end{array}
$$

For $p^{n}=5$, the generators are the $C_{i} C_{j},\left(\xi_{i} \xi_{j}\right)\left(\xi_{k} \xi_{l}\right)$, and

$$
R=R^{-1}: \quad \xi_{1}^{\prime}=\xi_{1}+\xi_{2}+2 \xi_{3}, \quad \xi_{2}^{\prime}=\xi_{1}+2 \xi_{2}+\xi_{3}, \quad \xi_{3}^{\prime}=2 \xi_{1}+\xi_{2}+\xi_{3} .
$$

4. The conditions that $Q_{i, j}^{a, \beta}$ shall reduce to $\left(\xi_{i} \xi_{j}\right) C_{i}$ are

$$
2 \alpha^{2}=1, \quad 2 \alpha \beta=-1,
$$

solutions of which exist in the $G F\left[p^{n}\right], p>2$, if and only if 2 is a square. Now 2 is a quadratic residue of all primes of the form $8 k \pm 1$ and a quadratic non-residue of all primes $8 k \pm 3$. Hence (Linear Groups, §62), 2 is a not square in the $G F\left[p^{n}\right], p>2$, if and only if p^{n} is of the form $8 l \pm 3$.

Theorem. The second type of yenerators (2) may be replaced by $\left(\xi_{i} \xi_{j}\right)\left(\xi_{k} \xi_{i}\right)$ if and only if $p^{n}=8 l \pm 3$.
5. We are therefore led to the group * merely permuting $\xi_{1}^{2}, \ldots, \xi_{5}^{2}$; viz.,

$$
\begin{equation*}
G_{960}=\left\{\text { group generated by all the } C_{i} C_{i} \text { and }\left(\xi_{i} \xi_{j}\right)\left(\xi_{k} \xi_{l}\right)\right\} . \tag{3}
\end{equation*}
$$

For brevity set $C_{0}=C_{1} C_{2} C_{3} C_{4} C_{5}$. Then G_{960} has the commutative subgroup

$$
\begin{equation*}
G_{16}=\left\{I, C_{i} C_{j}(i, j=0,1,2,3,4,5 ; j>i)\right\} \tag{4}
\end{equation*}
$$

The alternating group on 5 letters is simply isomorphic with the subgroup

$$
\begin{equation*}
G_{60}=\left\{\text { group generated by all the }\left(\xi_{i} \xi_{j}\right)\left(\xi_{k} \xi_{l}\right)\right\} . \tag{5}
\end{equation*}
$$

Extending the group G_{16} by the substitutions
$B_{1}=$ identity $, \quad B_{2}=\left(\xi_{1} \xi_{2}\right)\left(\xi_{3} \xi_{4}\right), \quad B_{3}=\left(\xi_{1} \xi_{3}\right)\left(\xi_{2} \xi_{4}\right), \quad B_{4}=\left(\xi_{1} \xi_{4}\right)\left(\xi_{2} \xi_{3}\right)$, we obtain a subgroup of G_{960} whose substitutions are given uniquely thus:

$$
\begin{equation*}
G_{64}=\left\{B_{k}, B_{k} C_{i} C_{j}(k=1,2,3,4 ; i, j=0,1, \cdots, 5 ; j>i)\right\} . \tag{6}
\end{equation*}
$$

Theorem. The subgroups of O_{n} of order the highest power of 2 contained in Ω are of order 2^{6} and conjugate with G_{64} if and only if p^{n} is of the form $8 l \pm 3$; namely, if 2 is a not-square in the $G F\left[p^{n}\right], p>2$.

Representatives of the sets of conjugate subgroups of order a power of 2 within O_{a}, $\S \S 6-21$.
Distribution of the substitutions of G_{64} into sets of conjugates.
6. The substitutions in the four following sets

$$
\begin{aligned}
& \quad I, C_{1} C_{3}, C_{2} C_{4}, C_{1} C_{2} C_{3} C_{4} ; \quad C_{1} C_{5}, C_{3} C_{5}, C_{1} C_{2} C_{4} C_{5}, C_{2} C_{3} C_{4} C_{5} ; \\
& C_{2} C_{5}, C_{4} C_{5}, C_{1} C_{2} C_{3} C_{5}, C_{1} C_{3} C_{4} C_{5} ; \quad C_{1} C_{2}, C_{1} C_{4}, C_{2} C_{3}, C_{3} C_{4} ; \\
& \text { transform } B_{3} \text { into } B_{3}, B_{3} C_{1} C_{3}, B_{3} C_{2} C_{4}, B_{3} C_{1} C_{2} C_{3} C_{4}, \text { respectively. Further, }
\end{aligned}
$$

[^1]the B_{i} are commutative. Hence B_{3} is conjugate within G_{64} only with B_{3}, $B_{3} C_{1} C_{3}, B_{3} C_{2} C_{4}$ and $B_{3} C_{1} C_{2} C_{3} C_{4}$. Now ($\xi_{3} \xi_{k}$) transforms G_{64} into itself if $k=2,3$ or 4 . Hence if l and m denote the two integers left in the set $2,3,4$ after the exclusion of k, the substitutions
$$
B_{k}, B_{k} C_{1} C_{k}, B_{k} C_{i} C_{m}, B_{k i} C_{1} C_{2} C_{3} C_{4}
$$
form a complete set of conjugates within G_{64}. Next B_{i} transforms $C_{1} C_{5}$ into $C_{i} C_{5}$, so that the substitutions $C_{i} C_{5}(i=1,2,3,4)$ form a complete set of conjugates. Since B_{2}, B_{3} and B_{4} transform $C_{1} C_{2}$ into $C_{1} C_{2}, C_{3} C_{4}$ and $C_{3} C_{4}$, respectively, $C_{.} C_{0}$ is conjugate only with itself and $C_{3} C_{4}$. Likewise for $C_{1} C_{3}$ and $C_{2} C_{4}$, for $C_{1} C_{4}$ and $C_{2} C_{3}$. Evidently $C_{1} C_{2} C_{3} C_{4}$ is self-conjugate. Hence B_{2}, B_{3} and B_{4} transform $B_{k} C_{1} C_{2}$ into $B_{k} C_{1} C_{2}, B_{k} C_{3} C_{4}$ and $B_{k} C_{3} C_{4}$, respectively; while the substitutions of G_{16} transform $B_{3} C_{1} C_{2}$ into $B_{3} C_{1} C_{2}$, $B_{3} C_{2} C_{3}, B_{3} C_{1} C_{4}, B_{3} C_{3} C_{4}$ and transform $B_{3} C_{3} C_{4}$ into $B_{3} C_{3} C_{4}, B_{3} C_{1} C_{4}$, $B_{3} C_{2} C_{3}, B_{3} C_{1} C_{2}$. Hence $B_{3} C_{1} C_{3}$ is conjugate only with itself and $B_{3} C_{1} C_{4}$, $B_{3} C_{3} C_{2}, B_{3} C_{3} C_{4}$. Applying the above transformation ($\xi_{3} \xi_{k}$), we obtain the conjugates to $B_{k} C_{1} C_{i}$.

Since B_{3} is one of four conjugates and since B_{i} transforms $B_{3} C_{1} C_{5}$ into $B_{3} C_{i} C_{5}$, it follows that the substitutions of G_{64} transform $B_{3} C_{1} C_{5}$ only into $B_{3} C_{i} C_{5}^{\prime}, B_{3} C_{1} C_{3} C_{i} C_{5}, B_{3} C_{2} C_{4} C_{i} C_{5}$, or $B_{3} C_{1} C_{2} C_{3} C_{4} C_{i} C_{5} \equiv B_{3} C_{i} C_{0}$, where $i=1,2,3,4$. Hence $B_{3} C_{i} C_{5}$ is conjugate only with $B_{3} C_{i} C_{5}$ and $B_{3} C_{i} C_{0}(i=1,2,3,4)$. Applying the transformation $\left(\xi_{3} \xi_{k}\right)$, we obtain the conjugates to $B_{k} C_{1} C_{5}$.

The substitutions of G_{64} fall into the following 16 distinct sets of conjugates:
$\{I\} ;\left\{C_{1} C_{2} C_{3} C_{4}\right\} ;\left\{C_{1} C_{k}, C_{l} C_{m}\right\} ;\left\{C_{i} C_{5}(i=1,2,3,4)\right\} ;$
$\left\{B_{k}, B_{k} C_{1} C_{k}, B_{k} C_{l} C_{m}, B_{k} C_{1} C_{2} C_{3} C_{4}\right\} ;\left\{C_{i} C_{0}(i=1,2,3,4)\right\} ;$
$\left\{B_{k} C_{1} C_{l}, B_{k} C_{1} C_{m}, B_{k} C_{k} C_{l}, B_{k} C_{k} C_{m}\right\} ;\left\{B_{k} C_{i} C_{5}, B_{k} C_{i} C_{0}(i=1,2,3,4)\right\} ;$
where $k=2,3,4$, while l and m denote the two integers left in the set 2,3 , 4 after the exclusion of k, the order of l and m being immaterial.

Determination of all the self-conjugate subgroups of G_{64}.
7. If a self-conjugate subgroup H contains one $C_{i} C_{5}$, it contains them all and hence also every $C_{i} C_{j}(i, j=1,2,3,4)$, so that H contains G_{16}. Similarly, if H contains one $C_{i} C_{0}$, it contains G_{16}. If H contains $C_{1} C_{k}$, or B_{k}, or $B_{k} C_{1} C_{l}$, it contains the respective commutative group
(7) $G_{4}^{k}=\left\{I, C_{1} C_{k}, C_{l} C_{m}, C_{1} C_{2} C_{3} C_{4}\right\}$,
(8) $G_{8}^{k}=\left\{B_{i}, B_{i} C_{1} C_{k}, B_{i} C_{l} C_{m}, B_{i} C_{1} C_{2} C_{3} C_{4}(i=1, k)\right\}$,

$$
\begin{equation*}
H_{8}^{k}=\left\{I, C_{1} C_{k}, C_{l} C_{m}, C_{1} C_{2} C_{3} C_{4}, B_{k} C_{1} C_{l}, B_{k} C_{1} C_{n}, B_{k} C_{k} C_{l}, B_{k} C_{k} C_{m}\right\} \tag{9}
\end{equation*}
$$

If H contains one $B_{k} C_{i} C_{5}$, it contains the group

$$
\begin{equation*}
H_{16}^{k}=\left\{I, C_{i} C_{i}, C_{1} C_{2} C_{3} C_{4}, B_{k} C_{i} C_{5}, B_{k} C_{i} C_{0}(i, j=1,2,3,4)\right\} \tag{10}
\end{equation*}
$$

Hence the self-conjugate subgroups of G_{64} are given by the series

$$
\begin{equation*}
I, G_{2}=\left\{I, C_{1} C_{2} C_{3} C_{4}\right\}, G_{4}^{k}, G_{8}^{k}, H_{8}^{k}, G_{16}, H_{16}^{k}(k=2,3,4), \tag{11}
\end{equation*}
$$

together with the groups resulting from the combination of two or more of them.
Now G_{2} is a subgroup* of all of order >2; while G_{4}^{l} is a subgroup of G_{8}^{k}, $H_{8}^{k}, G_{16}, H_{16}^{2}, H_{16}^{3}, H_{16}^{4}$. Any two of the groups G_{4}^{k} combine into

$$
\begin{equation*}
G_{8}=\left\{I, C_{i} C_{j}, C_{1} C_{2} C_{3} C_{4}(i, j=1,2,3,4)\right\} \tag{12}
\end{equation*}
$$

Combining H_{8}^{k} with either G_{4}^{l} or $G_{4}^{n n}$, we obtain the group (13) $J_{16}^{k}=\left\{I, C_{i} C_{j}, C_{1} C_{2} C_{3} C_{4}, B_{k}, B_{k} C_{i} C_{j}, B_{k} C_{1} C_{2} C_{3} C_{4}(i, j=1,2,3,4)\right\}$.

The same group results from the combination of G_{8}^{k} with either G_{4}^{l} or G_{4}^{m}; also from the combination of G_{8}^{k} with H_{8}^{k}. Combining H_{8}^{k} with either G_{8}^{l} or G_{8}^{m}, we get the group of all the substitutions of G_{64} which leave ξ_{5} fixed:

$$
\begin{equation*}
G_{32}=\left\{B_{t}, B_{t} C_{i} C_{j} B_{t} C_{1} C_{2} C_{3} C_{4}(t, i, j=1,2,3,4)\right\} \tag{14}
\end{equation*}
$$

Combining any two of the groups $G_{8}^{2}, G_{8}^{3}, G_{8}^{4}$, or any two of the groups $H_{8}^{2}, H_{8}^{3}, H_{8}^{4}$, we obtain G_{32}. Combining G_{16} with any one of the groups $G_{8}^{k}, H_{8}^{k}, H_{16}^{k}$, we obtain the group

$$
\begin{equation*}
J_{32}^{k}=\left\{I, C_{i} C_{j}, B_{k}, B_{k} C_{i} C_{j}(i, j=0,1,2,3,4,5 ; j>i)\right\} \tag{15}
\end{equation*}
$$

The same group results from the combination of H_{16}^{k} with either G_{8}^{k} or H_{8}^{k}. Combining H_{16}^{l} with either G_{8}^{k} or H_{8}^{k}, we obtain the group

$$
\begin{array}{r}
H_{32}^{k}=\left\{I, C_{i} C_{j}, C_{1} C_{2} C_{3} C_{4}, B_{k}, B_{k} C_{i} C_{j}, B_{k} C_{1} C_{2} C_{3} C_{4}, B_{t} C_{i} C_{5}, B_{t} C_{i} C_{0}\right\} \tag{16}\\
\\
(i, j=1,2,3,4 ; t=2,3,4 ; t \neq k) .
\end{array}
$$

We have now combined the groups (11) by pairs in every possible way.
The groups $G_{4}^{2}, G_{4}^{3}, G_{4}^{4}, G_{8}$ all lie in each of the five new groups (12)-(16), while G_{8} lies also in G_{16} and H_{16}^{k}. Now G_{8}^{k} and H_{8}^{k} lie in $J_{16}^{k}, G_{32}, J_{32}^{k}, H_{32}^{k}$, but neither lies in $J_{16}^{l}, J_{32}^{l}, H_{32}^{l}$. Also G_{16} lies in every J_{32}^{k}, but not in G_{32}, nor in any H_{32}^{k}. Finally, H_{16}^{k} lies in $J_{32}^{k}, H_{32}^{l}, H_{32}^{m}$, but not in $G_{32}, J_{32}^{l}, H_{32}^{k}$. We have therefore to consider the following compositions:

$$
\begin{array}{ll}
\left(G_{8}^{k}, G_{8}\right)=\left(H_{8}^{k}, G_{8}\right)=J_{16}^{k}, & \left(G_{8}^{k}, J_{16}^{l}\right)=\left(H_{8}^{k}, J_{16}^{l}\right)=G_{32} \\
\left(G_{8}^{k}, J_{32}^{l}\right)=\left(H_{8}^{k}, J_{32}^{l}\right)=G_{64}, & \left(G_{8}^{k}, H_{32}^{l}\right)=\left(H_{8}^{k}, H_{32}^{l}\right)=G_{64}
\end{array}
$$

[^2]$\left(G_{16}, J_{16}^{k}\right)=J_{32}^{k}, \quad\left(G_{16}, G_{32}\right)=\left(G_{16}, H_{32}^{k}\right)=\left(H_{16}^{k}, G_{32}\right)=G_{64}$, $\left(H_{16}^{k}, J_{16}^{k}\right)=J_{32}^{k}, \quad\left(H_{16}^{k}, J_{16}^{l}\right)=H_{32}^{l}, \quad\left(H_{16}^{k}, J_{32}^{l}\right)=\left(H_{16}^{k}, H_{32}^{k}\right)=G_{64}$, noting finally that any two of the groups $G_{32}, J_{32}^{k}, H_{32}^{k}, H_{32}^{l}$ combine into G_{64}.

Theorem. The group G_{64} contains, in addition to itself, exactly the 26 selfconjugate subgroups given by formulo (11)-(16).

Corollary. The only subgroups of order 32 of G_{64} are

$$
G_{32}, J_{32}^{k}, H_{32}^{k} \quad(k=2,3,4) .
$$

Remark. Any three groups marked with the affix $k(k=2,3,4)$ are conjugate in O_{a}. No two of the groups $J_{32}^{3}, H_{32}^{3}, G_{32}$ are conjugate in O in view of the number of sets of conjugate substitutions in each ($\S \S 8 \mathbf{8} \mathbf{1 0}$).

Determination of all the self-conjugate subgroups of J_{32}^{3}.
8. Proceeding as in $\S 6$, we readily find that the substitutions of J_{32}^{3} fall into the following 14 distinct sets of conjugates:

$$
\begin{aligned}
& \{I\} ;\left\{C_{1} C_{2} C_{3} C_{4}\right\} ;\left\{C_{1} C_{3}\right\} ;\left\{C_{2} C_{4}\right\} ;\left\{C_{1} C_{2}, C_{3} C_{4}\right\} ;\left\{C_{1} C_{4}, C_{2} C_{3}\right\} ; \\
& \left\{C_{1} C_{5}^{\prime}, C_{3} C_{5}\right\} ;\left\{C_{2} C_{5}, C_{4} C_{5}\right\} ;\left\{C_{1} C_{2} C_{3} C_{5}, C_{1} C_{3} C_{4} C_{5}\right\} ;\left\{C_{1} C_{2} C_{4} C_{5}, C_{2} C_{3} C_{4} C_{5}\right\} ; \\
& \left\{B_{3}, B_{3} C_{1} C_{3}, B_{3} C_{2} C_{4}, B_{3} C_{1} C_{2} C_{3} C_{4}\right\} ;\left\{B_{3} C_{1} C_{2}, B_{3} C_{2} C_{3}, B_{3} C_{1} C_{4}, B_{3} C_{3} C_{4}\right\} ; \\
& \left\{B_{3} C_{1} C_{5}, B_{3} C_{3} C_{3}, B_{3} C_{1} C_{0}, B_{3} C_{3} C_{0}\right\} ;\left\{B_{3} C_{2} C_{5}, B_{3} C_{4} C_{5}, B_{3} C_{2} C_{0}, B_{3} C_{4} C_{0}\right\}
\end{aligned}
$$

If a self-conjugate subgroup H contains $C_{1} C_{2}$ or $C_{1} C_{4}$, it contains the group G_{4}^{2} or the group G_{4}^{ℓ}, respectively. If H contains $C_{1} C_{5}$ or $C_{2} C_{5}$, it contains one or the other of the commutative groups

$$
\begin{equation*}
K_{4}=\left\{I, C_{1} C_{5}, C_{3} C_{5}, C_{1} C_{3}\right\}, \quad K_{4}^{\prime}=\left\{I, C_{2} C_{5}, C_{4} C_{5}, C_{2} C_{4}\right\} \tag{17}
\end{equation*}
$$

If H contains $C_{1} C_{2} C_{3} C_{5}$ or $C_{1} C_{2} C_{4} C_{5}$, it contains one or the other of

$$
\begin{align*}
K_{4}^{\prime \prime} & =\left\{I, C_{1} C_{2} C_{3} C_{5}, C_{1} C_{3} C_{4} C_{5}, C_{2} C_{4}\right\}, \\
K_{4}^{\prime \prime \prime} & =\left\{I, C_{1} C_{2} C_{4} C_{5}^{\prime}, C_{2} C_{3} C_{4} C_{5}, C_{1} C_{3}\right\} \tag{18}
\end{align*}
$$

If H contains B_{3}, it contains G_{8}^{3}. If H contains $B_{3} C_{1} C_{2}$, it contains H_{8}^{3}. If H contains $B_{3} C_{1} C_{5}$ or $B_{3} C_{2} C_{5}$, it contains the respective commutative group:
(19) $K_{8}=\left\{I, C_{1} C_{3}, C_{2} C_{4}, C_{1} C_{2} C_{3} C_{4}, B_{3} C_{1} C_{5}, B_{3} C_{3} C_{5}, B_{3} C_{1} C_{0}, B_{3} C_{3} C_{0}\right\}$,
(20) $K_{8}^{\prime}=\left\{I, C_{1} C_{3}, C_{2} C_{4}, C_{1} C_{2} C_{3} C_{4}, B_{3} C_{2} C_{5}, B_{3} C_{4} C_{5}, B_{3} C_{2} C_{0}, B_{3} C_{4} C_{0}\right\}$.

Hence the self-conjugate subgroups of J_{32}^{3} are given by the series

$$
\begin{gather*}
I, G_{2}, G_{2}^{\prime}=\left\{I, C_{1} C_{3}\right\}, G_{2}^{\prime \prime}=\left\{I, C_{2} C_{4}\right\}, G_{4}^{2}, G_{4}^{4} \\
K_{4}, K_{4}^{\prime}, K_{4}^{\prime \prime}, K_{4}^{\prime \prime \prime}, G_{8}^{3}, H_{8}^{3}, K_{8}, K_{8}^{\prime} \tag{21}
\end{gather*}
$$

together with the groups resulting from their composition. Now

$$
\left(G_{2}, G_{2}^{\prime}\right)=\left(G_{2}, G_{2}^{\prime \prime}\right)=\left(G_{2}^{\prime}, G_{2}^{\prime \prime}\right)=G_{4}^{3}
$$

Also, G_{2} lies in every $G_{4}^{k}, G_{8}^{k}, H_{8}^{k}, K_{8}, K_{8}^{\prime} ;\left(G_{2}, K_{4}\right)$ and $\left(G_{2}, K_{4}^{\prime}\right)$ give

$$
\begin{align*}
G_{8}^{\prime} & =\left\{I, C_{1} C_{3}, C_{2} C_{4}, C_{1} C_{2} C_{3} C_{4}, C_{1} C_{5}, C_{3} C_{5}, C_{1} C_{0}, C_{3} C_{0}\right\}, \tag{22}\\
G_{8}^{\prime \prime} & =\left\{I, C_{1} C_{3}, C_{2} C_{4}, C_{1} C_{2} C_{3} C_{4}, C_{2} C_{5}, C_{4} C_{5}, C_{2} C_{0}, C_{4} C_{0}\right\}, \tag{23}
\end{align*}
$$ respectively. Also,

$$
\begin{gathered}
\left(G_{2}, K_{4}^{\prime \prime}\right)=G_{8}^{\prime \prime},\left(G_{2}, K_{4}^{\prime \prime \prime}\right)=G_{8}^{\prime},\left(G_{2}^{\prime}, G_{4}^{2}\right)=\left(G_{2}^{\prime}, G_{4}^{4}\right)=G_{8} \\
\left(G_{2}^{\prime}, K_{4}^{\prime \prime}\right)=G_{8}^{\prime \prime},\left(G_{2}^{\prime}, K_{4}^{\prime \prime}\right)=G_{8}^{\prime \prime}
\end{gathered}
$$

while G_{2}^{\prime} lies in $K_{4}, K_{4}^{\prime \prime \prime}, G_{8}^{3}, H_{8}^{3}, K_{8}, K_{8}^{\prime}, G_{8}^{\prime}, G_{8}^{\prime \prime}, G_{8}$. Since

$$
C_{2} C_{4}=C_{1} C_{3} \cdot C_{1} C_{2} C_{3} C_{4},
$$

nothing new results from a combination by $G_{2}^{\prime \prime}$, By $\S 9$, the groups $G_{4}^{2}, G_{4}^{3}, G_{4}^{4}, G_{8}^{3}, H_{8}^{3}$ and G_{8} combine to give only the additional group J_{16}^{3}. Now G_{4}^{2}, G_{4}^{4} or G_{8} combine with any of the groups $K_{4}, K_{4}^{\prime}, K_{4}^{\prime \prime}, K_{4}^{\prime \prime \prime}, G_{8}^{\prime}, G_{8}^{\prime \prime}$ to give G_{16}. Combining G_{4}^{2} or G_{4}^{4} with either K_{8} or K_{8}^{\prime}, we get H_{16}^{3}. Combining G_{4}^{3} with either K_{4} or $K_{4}^{\prime \prime \prime}$, we get G_{8}^{\prime}; G_{4}^{3} with either $K_{4}^{\prime \prime}$ or $K_{4}^{\prime \prime}$, we get $G_{8}^{\prime \prime}$. Now G_{4}^{3} is a subgroup of $K_{8}, K_{8}^{\prime}, G_{8}, G_{8}^{\prime}$ and $G_{8}^{\prime \prime}$. Next, K_{4} with K_{4}^{\prime} or $K_{4}^{\prime \prime}$ gives G_{16}, K_{4}^{\prime} or $K_{4}^{\prime \prime}$ with $K_{4}^{\prime \prime \prime}$ gives G_{16}, K_{4} with $K_{4}^{\prime \prime \prime}$ gives G_{8}^{\prime}, K_{4}^{\prime} with $K_{4}^{\prime \prime}$ gives $G_{8}^{\prime \prime}$. Next, $\left(K_{4}, G_{8}^{3}\right)$ and $\left(K_{4}^{\prime}, G_{8}^{3}\right)$ are respectively

$$
G_{16}^{\prime}=\left\{\begin{array}{c}
B_{i}, B_{i} C_{1} C_{3}, B_{i} C_{2} C_{4}, B_{i} C_{1} C_{2} C_{3} C_{4}, \\
B_{i} C_{1} C_{5}, B_{i} C_{3} C_{5}, B_{i} C_{1} C_{0}, B_{i} C_{3} C_{0}(i=1,3) \tag{25}
\end{array}\right\},
$$

Also, $K_{4}^{\prime \prime}$ with G_{8}^{3} gives $G_{16}^{\prime \prime}, K_{4}^{\prime \prime \prime}$ with G_{8}^{3} gives G_{16}^{\prime}, K_{4} and K_{4}^{\prime} with H_{8}^{3} give

$$
\begin{gather*}
H_{16}^{\prime}=\left\{I, C_{1} C_{3}, C_{2} C_{4}, C_{1} C_{2} C_{3} C_{4}, C_{1} C_{5}, C_{3} C_{5}, C_{1} C_{0}, C_{3} C_{0}, B_{3} C_{1} C_{2},\right. \tag{26}\\
\left.B_{3} C_{1} C_{4}, B_{3} C_{2} C_{3}, B_{3} C_{3} C_{4}, B_{3} C_{2} C_{5}, B_{3} C_{4} C_{5}, B_{3} C_{2} C_{0}, B_{3} C_{4} C_{0}\right\}, \\
H_{16}^{\prime \prime}=B_{2}^{-1} H_{16}^{\prime} B_{2}, \tag{27}
\end{gather*}
$$

respectively. Next, $K_{4}^{\prime \prime}$ with H_{8}^{3} gives $H_{16}^{\prime \prime}, K_{4}^{\prime \prime \prime}$ with H_{8}^{3} gives H_{16}^{\prime},

$$
\left(K_{4}, K_{8}\right)=\left(K_{4}^{\prime \prime \prime}, K_{8}\right)=G_{16}^{\prime},\left(K_{4}^{\prime}, K_{8}\right)=\left(K_{4}^{\prime \prime}, K_{8}\right)=H_{16}^{\prime \prime} .
$$

Interchanging the subscripts 1 with 2 and 3 with 4 , we obtain as the compounds of K_{8}^{\prime} with $K_{4}, K_{4}^{\prime}, K_{4}^{\prime \prime}, K_{4}^{\prime \prime \prime}$, the groups H_{16}^{\prime} and $H_{16}^{\prime \prime}$. Next,

$$
\begin{aligned}
& \left(G_{8}^{3}, K_{8}\right)=G_{16}^{\prime},\left(G_{8}^{3}, K_{8}^{\prime}\right)=G_{16}^{\prime \prime},\left(H_{8}^{3}, K_{8}\right)=H_{16}^{\prime \prime},\left(H_{8}^{3}, K_{8}^{\prime}\right)=H_{16}^{\prime}, \\
& \left(K_{8}, K_{8}^{\prime}\right)=H_{16}^{3},\left(G_{8}^{\prime}, G_{8}^{3}\right)=G_{16}^{\prime},\left(G_{8}^{\prime}, H_{8}^{3}\right)=H_{16}^{\prime},\left(G_{8}^{\prime \prime}, G_{8}^{3}\right)=G_{16}^{\prime \prime},
\end{aligned}
$$

and $\left(G_{8}^{\prime \prime}, H_{8}^{3}\right)=H_{16}^{\prime \prime}$. Finally, a combination of a group of order 16 with a group not a subgroup of it evidently gives J_{32}^{3}.

Theorem. The group J_{32}^{3} contains exactly 26 self-conjugate subgroups :

$$
\begin{aligned}
& I, G_{2}, G_{2}^{\prime}, G_{2}^{\prime \prime}, G_{4}^{2}, G_{4}^{3}, G_{4}^{4}, K_{4}, K_{4}^{\prime}, K_{4}^{\prime \prime}, K_{4}^{\prime \prime \prime}, G_{8}^{3}, H_{8}^{3} \\
& K_{8}, K_{8}^{\prime}, G_{8}^{\prime}, G_{8}^{\prime}, G_{8}^{\prime \prime}, G_{16}, G_{16}^{\prime}, G_{16}^{\prime \prime}, H_{16}^{\prime}, H_{16}^{\prime \prime}, J_{16}^{3}, H_{16}^{3}, J_{32}^{3}
\end{aligned}
$$

Corollary. There are exactly 7 subgroups of order 16 of J_{32}^{3}.

Determination of all the self-conjugate subgroups of H_{32}^{3}.
9. Its substitutions fall into the following 11 distinct sets of conjugates:

$$
\begin{aligned}
& \{I\} ;\left\{C_{1} C_{2} C_{3} C_{4}\right\} ;\left\{C_{1} C_{2}, C_{3} C_{4}\right\} ;\left\{C_{1} C_{3}, C_{2} C_{4}\right\} ;\left\{C_{1} C_{4}, C_{2} C_{3}\right\} \\
& \left\{B_{3}, B_{3} C_{1} C_{3}, B_{3} C_{2} C_{4}, B_{3} C_{1} C_{2} C_{3} C_{4}\right\} ;\left\{B_{3} C_{1} C_{2}, B_{3} C_{1} C_{4}, B_{3} C_{2} C_{3}, B_{3} C_{3} C_{4}\right\} \\
& \left\{B_{2} C_{1} C_{5}, B_{2} C_{3} C_{5}, B_{2} C_{1} C_{0}, B_{2} C_{3} C_{0}\right\} ;\left\{B_{2} C_{2} C_{5}, B_{2} C_{4} C_{5}, B_{2} C_{2} C_{0}, B_{2} C_{4} C_{0}\right\} \\
& \left\{B_{4} C_{1} C_{5}, B_{4} C_{3} C_{5}, B_{4} C_{1} C_{0} ; B_{4} C_{3} C_{0}\right\} ;\left\{B_{4} C_{2} C_{5}, B_{4} C_{4} C_{5}, B_{4} C_{2} C_{0}, B_{4} C_{4} C_{0}\right\}
\end{aligned}
$$

Forming the group generated by each substitution and its conjugates, we get

$$
I, G_{2}, G_{4}^{2}, G_{4}^{3}, G_{4}^{4}, G_{8}^{3}, H_{8}^{3}, H_{16}^{2}, H_{16}^{2}, H_{16}^{4}, H_{16}^{4}
$$

respectively. Combining two or more of them, we obtain the additional groups

$$
G_{8}, J_{16}^{3}, H_{32}^{3}
$$

Theorem. The only self-conjugate subgroups of H_{32}^{3}, aside from itself and the identity, are $G_{2}, G_{4}^{2}, G_{4}^{3}, G_{4}^{4}, G_{8}^{3}, H_{8}^{3}, G_{8}, H_{16}^{2}, H_{16}^{4}, J_{16}^{3}$.

Corollary. There are exactly 3 subgroups of order 16 in H_{32}^{3}.

The self-conjugate subgroups of G_{32}.

10. Its substitutions fall into exactly 17 distinct sets of conjugates. Indeed, aside from the self-conjugate substitutions I and $C_{1} C_{2} C_{3} C_{4}$, any substitution S is conjugate only with itself and $S C_{1} C_{2} C_{3} C_{4}$. Now every substitution of G_{32} is of period 2 except identity and the following 12 :

$$
B_{k} C_{1} C_{l}, \quad B_{k} C_{k} C_{l} \quad(k, l=2,3,4 ; k \neq l)
$$

the square of any one of which is $C_{1} C_{2} C_{3} C_{4}$. It follows that, if S ranges over a set of 15 substitutions obtained by taking one and only one of each pair of conjugates within G_{32}, the groups

$$
\begin{equation*}
I, G_{2}=\left\{I, C_{1} C_{2} C_{3} C_{4}\right\} ; K_{4}^{S}=\left\{I, C_{1} C_{2} C_{3} C_{4}, S, S C_{1} C_{2} C_{3} C_{4}\right\} \tag{28}
\end{equation*}
$$

together with the groups resulting from their composition, give all the self-conjugate subgroups of G_{32}.

It is more convenient to proceed by a different method. From what precedes, the quotient-group $Q_{16}=G_{32} / G_{2}$ is a commutative group all of whose operators, aside from the identity, are of period 2. The quotient of

$$
(16-1)(16-2)(16-4) \quad \text { by } \quad(8-1)(8-2)(8-4)
$$

gives 15 as the number of subgroups of order 8 of Q_{16}. Likewise, it contains 35 subgroups of order 4 and 15 of order 2 . To every self-conjugate subgroup of G_{32}, necessarily containing $C_{1} C_{2} C_{3} C_{4}$ (as shown above), there corresponds an unique subgroup of Q_{16}, and inversely. We may thus readily obtain all the self-conjugate subgroups of G_{32}. Those of orders $1,2,4$ are given by (28). We desire in particular those of order 16.

Denote by a, b, c, d a set of generators of Q_{16}. As generators of its 15 subgroups of order 8 , we may take

$$
\begin{gathered}
(a, b, c) ;(a, b, d) ;(a, c, d) ;(b, c, d) ;(a, b, c d) \\
(a, c, b d) ;(a, d, b c) ;(b, c, a d) ;(b, d, a c) ;(c, d, a b) \\
(a, b d, c d) ;(b, a d, c d) ;(c, a d, b d) ;(d, a c, b c) ;(a d, b d, c d)
\end{gathered}
$$

For the generators of Q_{16} we may take

$$
a=C_{1} C_{2}, \quad b=C_{1} C_{3}, \quad c=B_{3}, \quad d=B_{2}
$$

understanding in this section that S and $S_{1} C_{2} C_{3} C_{4}$ are identical operators.
The analytic substitution $\left(\xi_{1} \xi_{3} \xi_{2}\right)$ transforms the group (a, b, c) into

$$
\left(C_{2} C_{3}, C_{1} C_{2}, B_{2}\right)=(a b, a, d)=(a, b, d)
$$

Likewise, $\left(\xi_{1} \xi_{3} \xi_{4}\right)$ transforms (a, b, c) into

$$
\left.\left(C_{4} C_{2}, C_{4} C_{1}, B_{4}\right)=(b, a b, c d)=a, b, c d\right)
$$

As shown in $\S 11, G_{\Omega}$ contains a substitution Σ which transforms
$C_{1} C_{2}, C_{1} C_{4}, B_{2}, B_{3} C_{1} C_{4} \quad$ into $\quad B_{4} C_{2} C_{3}, B_{3} C_{2} C_{4}, C_{2} C_{3}, B_{3} C_{1} C_{4}$,
respectively. Hence Σ transforms a into $a b c d, b$ into $a d, c$ into a, d into $a b$.
It follows that Σ transforms (a, b, d) into ($a b c d, a d, a b$), identical with ($a d, b d, c d$), and transforms the latter into $(c d, b d, b)=(b, c, d)$. Again, Σ transforms (a, b, c) into $(a, d, b c)$, and the latter into $(c, d, a b)$. Also, Σ transforms ($a, b, c d$) into ($b, c, a d$), and the latter into (a, c, d).

Hence the following 9 groups are conjugate within G_{0} :

$$
\begin{gathered}
(a, b, c),(a, b, d),(a, b, c d),(a d, b d, c d),(b, c, d) \\
(a, d, b c),(c, d, a b),(b, c, a d),(a, c, d)
\end{gathered}
$$

It is next shown that the remaining 6 subgroups are conjugate. Now $C_{1} C_{5}$, which transforms B_{i} into $B_{i} C_{1} C_{i}$, transforms

$$
(a, c, b d) \quad \text { into } \quad(a, c b, b d a)=(a, b d, c d)
$$

But Σ transforms $(a, b d, c d)$ into ($b, d, a c)$, and the latter into ($c, a d, b d)$. Again, $C_{1} C_{5}$ transforms $(c, a d, b d)$ and $(b, d, a c)$ into respectively

$$
\begin{gathered}
\left(B_{3} C_{1} C_{3}, B_{2}, B_{2} C_{2} C_{3}\right)=(d, a c, b c), \\
\left(C_{1} C_{3}, B_{2} C_{1} C_{3}, B_{3} C_{1} C_{4}\right)=(b, a d, c d)
\end{gathered}
$$

To the representatives (a, b, c) and ($a, c, b d$) of the two sets of conjugate subgroups of G_{16}, we adjoin $C_{1} C_{2} C_{3} C_{4}$ and obtain respectively

$$
\begin{aligned}
& \left(C_{1} C_{2}, C_{1} C_{3}, B_{3}, C_{1} C_{2} C_{3} C_{4}\right) \\
& \quad=\left\{B_{t}, B_{t} C_{i} C_{j}, B_{t} C_{1} C_{2} C_{3} C_{4}(i, j=1,2,3,4 ; t=1,3)\right\} \\
& \left(C_{1} C_{2}, B_{3}, C_{1} C_{3} B_{2}, C_{1} C_{2} C_{3} C_{4}\right)=F_{16}
\end{aligned}
$$

the former being J_{16}^{3} and the latter defined as follows:

$$
F_{16}=\left\{\begin{array}{l}
B_{t}, B_{i} C_{1} C_{2}, B_{t} C_{3} C_{4}, B_{t} C_{1} C_{2} C_{3} C_{4} \tag{29}\\
B_{i} C_{1} C_{3}, B_{i} C_{2} C_{3}, B_{i} C_{1} C_{4}, B_{i} C_{2} C_{4}(t=1,3 ; i=2,4)
\end{array}\right\}
$$

Theorem. Within O_{Ω} the 15 subgroups of order 16 of G_{32} are conjugate with the groups J_{16}^{3} and F_{16}, the latter being not conjugate (§ 13).
11. Theorem. The group O_{Ω} contains one and but one substitution of period 3 which transforms $B_{3} C_{1} C_{4}$ into itself and transforms $C_{1} C_{4}, C_{1} C_{2}$, B_{2} into $B_{5} C_{2} C_{4}, B_{4} C_{2} C_{3}, C_{2} C_{3}$, respectively.

If S is commutative with $\left(B_{3} C_{1} C_{4}\right)^{2}=C_{1} C_{2} C_{3} C_{4}$, it replaces ξ_{5} by $\pm \xi_{5}$ ($\S 25$). Denoting the matrix of S by $\left(\alpha_{i j}\right)$, we find that $B_{3} C_{1} C_{4} S=S B_{3} C_{1} C_{4}$ leads to the conditions:

$$
\begin{gathered}
\alpha_{31}=-\alpha_{13}, \alpha_{32}=\alpha_{14}, \alpha_{33}=\alpha_{11}, \alpha_{34}=-\alpha_{12}, \alpha_{41}=\alpha_{23}, \alpha_{42}=-\alpha_{24} \\
\alpha_{43}=-\alpha_{21}, \alpha_{44}=\alpha_{22}
\end{gathered}
$$

Hence S is commutative with $B_{3} C_{1} C_{4}$ if and only if it has the form

$$
S^{\prime}=\left(\begin{array}{ccccr}
\alpha_{11} & \alpha_{12} & \alpha_{13} & \alpha_{14} & 0 \\
\alpha_{21} & \alpha_{22} & \alpha_{23} & \alpha_{24} & 0 \\
-\alpha_{13} & \alpha_{14} & \alpha_{11} & -\alpha_{12} & 0 \\
\alpha_{23} & -\alpha_{24} & -\alpha_{21} & \alpha_{22} & 0 \\
0 & 0 & 0 & 0 & \pm 1
\end{array}\right)
$$

The conditions for $C_{1} C_{4} S^{\prime \prime}=S^{\prime} B_{3} C_{2} C_{4}$ are

$$
\alpha_{13}=\alpha_{11}, \quad \alpha_{14}=\alpha_{12}, \quad \alpha_{23}=\alpha_{21}, \quad \alpha_{24}=\alpha_{22}
$$

The conditions for $C_{1} C_{2} S^{\prime}=S^{\prime} B_{4} C_{2} C_{3}$ and $B_{2} S^{\prime \prime}=S^{\prime} C_{2} C_{3}$ then reduce to

$$
\alpha_{12}=\alpha_{11}, \quad \alpha_{21}=-\alpha_{11}, \quad \alpha_{22}=\alpha_{11}
$$

The resulting substitution is orthogonal if and only if $4 \alpha_{11}^{2}=1$. Its determinant is $\pm 16 \alpha_{11}^{4}$. Hence must ± 1 equal +1 . With these conditions satisfied, $S^{\prime}=S^{\prime 2}$ if and only if $\alpha_{11}=-\frac{1}{2}$. Then S^{\prime} becomes

$$
\Sigma=\left(\begin{array}{rrrrr}
-\frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} & 0 \\
\frac{1}{2} & -\frac{1}{2} & \frac{1}{2} & -\frac{1}{2} & 0 \\
\frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} & \frac{1}{2} & 0 \\
\frac{1}{2} & \frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right)
$$

It has been shown that Σ belongs to the group of all orthogonal substitutions of determinant unity. It remains to show that Σ belongs to O_{Ω}. For $p^{n}=3$, $\Sigma=W^{2}\left(\xi_{2} \xi_{3} \xi_{4}\right)$ and hence is in O_{Ω}. For $p^{n}=5$,

$$
\Sigma=C_{3} C_{4}\left(\xi_{2} \xi_{4} \xi_{3}\right) R_{234} C_{3} C_{5} R_{124} R_{312} C_{2} C_{5}\left(\xi_{1} \xi_{4} \xi_{2}\right)
$$

and hence belongs to O_{Ω}. For $p^{n}=11$, we find that

$$
\Sigma=O_{1,3}^{5,-3} O_{1,2}^{5,-3}\left(\xi_{1} \xi_{3} \xi_{4}\right) O_{1,4}^{5,-3} O_{1,3}^{5,-3}\left(\xi_{1} \xi_{3} \xi_{4}\right) C_{3} C_{4}\left(O_{2,3}^{5,3} O_{2,4}^{5,3}\right)^{2}\left(\xi_{2} \xi_{4} \xi_{3}\right) C_{2} C_{4}
$$

and hence belongs to G_{Ω}.
We next treat the general case in which -1 is the square of a mark i of the $G F\left[p^{n}\right]$, proceeding as in Linear Groups, pp. 179-180. Making the transformation of variables there defined, we find that Σ becomes

	Y_{12}	Y_{13}	Y_{14}	Y_{23}	Y_{24}	Y_{34}
$Y_{12}^{\prime}=$	1/4	$(1+i) / 4$	$-i / 4$	$-i / 4$	$(1-i) / 4$	3/4
$Y_{13}^{\prime}=$	$(-1+i) / 4$	$(-1-i) / 2$	$(1-i) / 4$	$(1-i) / 4$	0	$(1-i) / 4$
$Y_{14}^{\prime}=$	$-i / 4$	$(-1-i) / 4$	1/4	$-3 / 4$	$(1-i) / 4$	$i / 4$
$Y_{23}^{\prime}=$	$-i / 4$	$(-1-i) / 4$	$-3 / 4$	1/4	(1-i)/4	$i / 4$
$Y_{24}^{\prime}=$	$(-1-i) / 4$	0	$(-1-i) / 4$	$-1-i) / 4$	$(-1+i) / 2$	$(1+i) / 4$
$Y_{34}^{\prime}=$	3/4	$(-1-i) / 4$	$i / 4$	$i / 4$	$(-1+i) / 4$	1/4

This substitution is found to be the second compound of

$$
\left[\begin{array}{cccc}
(1-i) / 4 & (1-i) / 4 & (3+i) / 4 & (-1+i) / 4 \\
(-1-i) / 4 & (1+i) / 4 & (1+i) / 4 & (3-i) / 4 \\
(3+i) / 4 & (-1+i) / 4 & (1-i) / 4 & (1-i) / 4 \\
(1+i) / 4 & (3-i) / 4 & (-1-i) / 4 & (1+i) / 4
\end{array}\right]
$$

which is a special abelian substitution. Hence Σ belongs to G_{Ω}.

Determination of all the self-conjugate subgroups of J_{16}^{3}.

12. Its substitutions fall into the following 10 distinct sets of conjugates:
$\{I\} ;\left\{C_{1} C_{2} C_{3} C_{4}\right\} ;\left\{C_{1} C_{3}\right\} ;\left\{C_{2} C_{4}\right\} ;\left\{C_{1} C_{2}, C_{3} C_{4}\right\} ;\left\{C_{1} C_{4}, C_{2} C_{3}\right\} ;$
$\left\{B_{3}, B_{3} C_{1} C_{2} C_{3} C_{4}\right\} ;\left\{B_{3} C_{1} C_{2}, B_{3} C_{3} C_{4}\right\} ;\left\{B_{3} C_{1} C_{3}, B_{3} C_{2} C_{4}\right\} ;\left\{B_{3} C_{1} C_{4}, B_{3} C_{2} C_{3}\right\}$.
The only substitutions of period 4 are $B_{3} C_{1} C_{2}, B_{3} C_{3} C_{4}, B_{3} C_{1} C_{4}, B_{3} C_{2} C_{3}$.
The self-conjugate subgroups of J_{16}^{3} are

$$
\begin{equation*}
I, G_{2}, G_{2}^{\prime}, G_{2}^{\prime \prime}, G_{4}^{4}, G_{4}^{s} \quad\left(S=B_{3}, B_{3} C_{1} C_{2}, B_{3} C_{1} C_{3}, B_{2} C_{1} C_{4}\right) \tag{30}
\end{equation*}
$$

together with all their combinations. Now G_{2} lies in all these groups of order >2. As shown in $\S \S 7-8$, the groups $G_{2}, G_{2}^{\prime}, G_{2}^{\prime \prime}, G_{4}^{2}, G_{4}^{4}$ combine to give only the additional groups G_{4}^{3} and G_{8}. Either G_{2}^{\prime} or $G_{2}^{\prime \prime}$ combines with K_{4}^{s} for $S=B_{3}$ or $B_{3} C_{1} C_{3}$ to give G_{8}^{3}. Either G_{2}^{\prime} or $G_{2}^{\prime \prime}$ combines with K_{4}^{s} for $S=B_{3} C_{1} C_{2}$ or $B_{3} C_{1} C_{4}$ to give H_{8}^{3}. Combining K_{4}^{s} and $K_{4}^{s^{s}}$ for the following pairs

$$
\begin{aligned}
& \left(S, S^{\prime}\right)=\left(B_{3}, B_{3} C_{1} C_{3}^{\prime}\right),\left(B_{3} C_{1} C_{2}, B_{3} C_{1} C_{4}\right),\left(B_{3}, B_{3} C_{1} C_{2}\right), \\
& \left(B_{3}, B_{3} C_{1} C_{4}\right),\left(B_{3} C_{1} C_{2}, B_{3} C_{1} C_{3}\right),\left(B_{3} C_{1} C_{3}, B_{3} C_{1} C_{4}\right),
\end{aligned}
$$

we get the respective groups $G_{8}^{3}, H_{8}^{3}, J_{8}, J_{8}^{\prime}, J_{8}^{\prime \prime}, J_{8}^{\prime \prime \prime}$, where
$J_{8}=\left\{I_{,} C_{1} C_{2}, C_{3} C_{4}, C_{1} C_{2} C_{3} C_{4}, B_{3}, B_{3} C_{1} C_{2}, B_{3} C_{3} C_{4}, B_{3} C_{1} C_{2} C_{3} C_{4}\right\}$, (33) $J_{8}^{\prime \prime}=\left\{I, C_{1} C_{4}, C_{2} C_{3}, C_{1} C_{2} C_{3} C_{4}, B_{3} C_{1} C_{2}, B_{3} C_{1} C_{3}, B_{3} C_{2} C_{4}, B_{3} C_{3} C_{4}\right\}$, (34) $J_{8}^{\prime \prime \prime}=\left\{I, C_{1} C_{2}, C_{3} C_{4}, C_{1} C_{2} C_{3} C_{4}, B_{3} C_{1} C_{3}, B_{3} C_{1} C_{4}, B_{3} C_{2} C_{3}, B_{3} C_{2} C_{4}\right\}$, each of the groups J being non-commutative. Finally G_{4}^{2} combines with the four K_{4}^{s}, in order, to give $J_{8}, J_{8}, J_{8}^{\prime \prime \prime}, J_{8}^{\prime \prime \prime}$; while G_{4}^{4} combines with them to give $J_{8}^{\prime}, J_{8}^{\prime \prime}, J_{8}^{\prime \prime}, J_{8}^{\prime}$.

Theorem. The self-conjugate subgroups of J_{16}^{3} are the groups (30)-(34), together with $G_{4}^{3}, G_{8}, G_{8}^{3}, H_{8}^{3}, J_{16}^{3}$.

Corollary. The only subgroups of order 8 of J_{16}^{3} are $G_{s}, G_{8}^{3}, H_{8}^{3}$, $J_{8}, J_{8}^{\prime}, J_{8}^{\prime \prime}, J_{8}^{\prime \prime \prime}$, of which the first three only are commutative groups.

Determination of all the self-conjugate subgroups of \boldsymbol{F}_{16}.
13. Its substitutions fall into the $\mathbf{1 0}$ distinct sets of conjugates

$$
\begin{aligned}
& \{I\} ;\left\{C_{1} C_{2} C_{3} C_{4}\right\} ;\left\{B_{2} C_{1} C_{3}\right\} ;\left\{B_{2} C_{2} C_{4}\right\} ;\left\{C_{1} C_{2}, C_{3} C_{4}\right\} ;\left\{B_{2} C_{2} C_{3}, B_{2} C_{1} C_{4}\right\} ; \\
& \left\{B_{3}, B_{3} C_{1} C_{2} C_{3} C_{4}\right\} ;\left\{B_{3} C_{1} C_{2}, B_{3} C_{3} C_{4}\right\} ;\left\{C_{4} C_{1} C_{3}, B_{4} C_{2} C_{4}\right\} ;\left\{B_{4} C_{1} C_{4}, B_{4} C_{2} C_{3}\right\} .
\end{aligned}
$$

Since $B_{2} C_{1} C_{3}$ is of period 4 , it follows that F_{16} and J_{16}^{3} are not isomorphic.
The self-conjugate subgroups of F_{16} are the groups

$$
\begin{equation*}
I, G_{2}, C_{4}=\left(B_{2} C_{1} C_{3}\right), G_{4}^{2}, K_{4}^{s}\left(S=B_{2} C_{2} C_{3}, B_{3}, B_{3} C_{1} C_{2}, B_{4} C_{1} C_{3}, B_{4} C_{1} C_{4}\right), \tag{35}
\end{equation*}
$$ together with all their combinations. Now G_{2} lies in all those of order 4. Combining C_{4} with the last six groups (35) in turn, we get the commutative groups $H_{8}^{2}, H_{8}^{2}, F_{8}, F_{8}^{\prime}, F_{8}, F_{8}^{\prime}$, where

(36) $F_{8}=\left\{I, C_{1} C_{2} C_{3} C_{4}, B_{3}, B_{3} C_{1} C_{2} C_{3} C_{4}, B_{i} C_{1} C_{3}, B_{i} C_{2} C_{4}(i=2,4)\right\}$,
(37) $F_{8}^{\prime}=\left\{I, C_{1} C_{2} C_{3} C_{4}, B_{2} C_{1} C_{3}, B_{2} C_{2} C_{4}, B_{3} C_{1} C_{2}, B_{3} C_{3} C_{4}, B_{4} C_{1} C_{4}, B_{4} C_{2} C_{3}\right\}$.

Combining every pair of the K_{4}^{s}, we get $\boldsymbol{F}_{8}^{\prime}, F_{8}^{\prime}, J_{8}$ and \boldsymbol{F}_{8}^{*} each one, and $F_{8}^{\prime \prime}$ and $F_{8}^{\prime \prime \prime}$ each three times, where
$F_{8}^{\prime \prime}=\left\{I, C_{1} C_{2} C_{3} C_{4}, B_{3}, B_{3} C_{1} C_{2} C_{3} C_{4}, B_{i} C_{1} C_{4}, B_{i} C_{2} C_{3}(i=2,4)\right\}$,
(39) $F_{8}^{\prime \prime \prime}=\left\{I, C_{1} C_{2} C_{3} C_{4}, B_{2} C_{1} C_{4}, B_{2} C_{2} C_{3}, B_{3} C_{1} C_{2}, B_{3} C_{3} C_{4}, B_{4} C_{1} C_{3}, B_{4} C_{2} C_{4}\right\}$, (40) $F_{8}^{*}=\left\{I, C_{1} C_{2}, C_{3} C_{4}, C_{1} C_{2} C_{3} C_{4}, B_{4} C_{1} C_{3}, B_{4} C_{1} C_{4}, B_{4} C_{2} C_{3}, B_{4} C_{2} C_{4}\right\}$.

Finally, G_{4}^{2} combines with the K_{4}^{s}, in order, to give $H_{8}^{2}, J_{8}, J_{8}, F_{8}^{*}, F_{8}^{*}$.
Тнеовем.* The self-conjugate subgroups of F_{16} are the groups (35)-(40), $H_{8}^{2}, J_{8}, F_{8}^{*}$ and F_{16}.
Corollary. The group F_{16} has exactly 7 subgroups of order 8 . Of them H_{8}^{2}, F_{8} and F_{8}^{\prime} are all commutative groups, while $J_{8}, F_{8}^{*}, F_{8}^{\prime \prime}$ and $F_{8}^{\prime \prime \prime}$ are not.

Determination of all the self-conjugate subgroups of H_{16}^{3}.
14. Its substitutions fall into the 10 distinct sets of conjugates:

$$
\begin{aligned}
\{I\} ;\left\{C_{1} C_{2} C_{3} C_{4}\right\} ;\left\{C_{1} C_{3}\right\} ;\left\{C_{2} C_{4}\right\} ;\left\{C_{1} C_{2}, C_{3} C_{4}\right\} ; & \left\{C_{1} C_{4}, C_{2} C_{3}\right\} ; \\
\left\{B_{3} C_{i} C_{5}, B_{3} C_{i} C_{0}\right\} & (i=1,2,3,4) .
\end{aligned}
$$

It contains exactly 8 substitutions of period 4 :

[^3]and
$$
B_{3} C_{1} C_{5}, B_{4} C_{1}^{\prime} C_{0}, B_{3} C_{3} C_{5}, B_{3} C_{3} C_{0} \quad \text { (whose squares are } C_{1} C_{3} \text {) }
$$
$$
\left.B_{3} C_{2} C_{5}, B_{3} C_{2} C_{0}, B_{3} C_{4} C_{5}, B_{3} C_{4} C_{0} \quad \text { (whose squares are } C_{2} C_{4}\right)
$$

Hence H_{16}^{3} is not isomorphic with J_{16}^{3}. Having its self-conjugate substitutions all of period 1 or 2, it is not isomorphic with F_{16}.

The groups $I, G_{2}, G_{2}^{\prime}, G_{2}^{\prime \prime}, G_{4}^{2}, G_{4}^{4}, K_{8}, K_{8}^{\prime}$, together with their combinations, give all the self-conjugate subgroups of H_{16}^{3}. Proceeding as in §8, we find that the only additional groups are $G_{4}^{3}, G_{8}, H_{16}^{3}$.

Theorem. The only self-conjugate subgroups of H_{16}^{3}, aside from itself and identily, are $G_{2}, G_{2}^{\prime}, G_{2}^{\prime \prime}, G_{4}^{2}, G_{4}^{3}, G_{4}^{4}, K_{8}, K_{8}^{\prime}, G_{8}$.

Corollary. The only subyroups of order 8 of H_{16}^{3} are K_{8}, K_{8}^{\prime} and G_{8}.

The fifteen subgroups of order 8 of G_{16}.

15. Since all the substitutions, except identity, of the commutative group G_{16} are of period 2 , it contains exactly 15 subgroups of order 8 (see § 10). Since there are but 5 products each of 4 of the C_{i}, any subgroup of order 8 contains at least two $C_{i} C_{i}$. Transforming by a suitable even substitution on ξ_{1}, \ldots, ξ_{5}, we may take $C_{1} C_{3}$ as the tirst generator. Suppose first that there is present at least one further $C_{1} C_{i}$ or one $C_{3} C_{j}$. Transforming $C_{1} C_{i}$ by a suitable power of $\left(\xi_{2} \xi_{4} \xi_{5}\right)$, we obtain as first and second generators $C_{1} C_{3}$ and $C_{1} C_{2}$. The only resulting groups are G_{8} of $\S 7$ and

$$
\begin{aligned}
& M_{8}=\left\{I, C_{1} C_{3}, C_{1} C_{2}, C_{2} C_{3}, C_{1} C_{5}, C_{3} C_{5}, C_{2} C_{5}, C_{1} C_{2} C_{3} C_{5}\right\} \\
& N_{8}=\left\{I, C_{1} C_{3}, C_{1} C_{2}, C_{2} C_{3}, C_{4} C_{5}, C_{1} C_{3} C_{4} C_{5}, C_{1} C_{2} C_{4} C_{5}, C_{2} C_{3} C_{4} C_{5}\right\}
\end{aligned}
$$

Suppose, however, that there is present no $C_{1} C_{i}$ and no $C_{3} C_{j}$ other than $C_{1} C_{3}$. Then there must occur one of the following three: $C_{2} C_{4}, C_{2} C_{5}, C_{4} C_{5}$. But $\left(\xi_{2} \xi_{5} \xi_{4}\right)$ transforms $C_{2} C_{5}$ into $C_{4} C_{2}$ while $\left(\xi_{2} \xi_{4} \xi_{5}\right)$ transforms $C_{4} C_{5}$ into $C_{2} C_{4}$. Hence we may take $C_{1} C_{3}$ and $C_{2} C_{4}$ as the first and second generators. The group does not contain $C_{1} C_{2} C_{4} C_{5}$ or $C_{2} C_{3} C_{4} C_{5}$, not having $C_{1} C_{5}$ or $C_{3} C_{5}$ by assumption. Hence the group can contain only the 8 substitutions forming $G_{8}^{\prime \prime}$ of $\S 8$.

Now $\left(\xi_{2} \xi_{4} \xi_{5}\right)$ transforms G_{8} iuto M_{8}. Also $\left(\xi_{1} \xi_{2} \xi_{5} \xi_{3} \xi_{4}\right)$ transforms $G_{8}^{\prime \prime}$ into N_{8}. Finally, G_{8}, which contains a single product of four C_{i}, is not conjugate under linear transformation with $G_{8}^{\prime \prime}$, which contains three products of four C_{i}, since a product of two C_{i} and a product of four C_{i} have different characteristic determinants.

Theorem. Within O_{a} every subgroup of order 8 of G_{16} is conjugate with G_{8} or else with $G_{8}^{\prime \prime}$, while the latter are not conjugate.

All the self-conjugate subgroups of G_{16}^{\prime}.
16. Its substitutions fall into the 10 distinct sets of conjugates:

$$
\begin{gathered}
\{I\} ;\left\{C_{1} C_{2} C_{3} C_{4}\right\} ;\left\{C_{1} C_{3}\right\} ;\left\{C_{2} C_{4}\right\} ;\left\{C_{1} C_{5}, C_{3} C_{5}\right\} ;\left\{C_{1} C_{0}, C_{3} C_{0}\right\} ; \\
\left\{B_{3}, B_{3} C_{1} C_{3}\right\} ;\left\{B_{3} C_{2} C_{4}, B_{3} C_{1} C_{2} C_{3} C_{4}\right\} ;\left\{B_{3} C_{1} C_{5}, B_{3} C_{3} C_{5}\right\} ;\left\{B_{3} C_{1} C_{0}, B_{3} C_{3} C_{0}\right\} .
\end{gathered}
$$

The only substitutions of period 4 are the four in the last two sets. Hence G_{16}^{\prime} is not isomorphic with H_{16}^{3}; also, evidently not with F_{16}. Since $B_{3} C_{1} C_{0}$ has the characteristic determinant $(1-\rho)(1+\rho)^{2}\left(1+\rho^{2}\right)$, while the four substitutions $B_{3} C_{1} C_{2}$, etc., of period 4 in J_{16}^{3} have the characteristic determinant $(1-\rho)\left(1+\rho^{2}\right)^{2}$, the groups G_{16}^{\prime} and J_{16}^{3} are not conjugate under linear transformation.

The self-conjugate subgroups of G_{16}^{\prime} are all given by

$$
\begin{gather*}
I, G_{2}, G_{2}^{\prime}, G_{2}^{\prime \prime}, K_{4}, K_{4}^{\prime \prime \prime}, C_{4}^{5}=\left(B_{3} C_{1} C_{5}\right), C_{4}^{0}=\left(B_{3} C_{1} C_{0}\right) \tag{41}\\
\left\{\begin{array}{l}
K_{4}^{*}=\left\{I, C_{1} C_{3}, B_{3}, B_{3} C_{1} C_{3}\right\} \\
K_{4}^{* *}=\left\{I, C_{1} C_{3}, B_{3} C_{2} C_{4}, B_{3} C_{1} C_{2} C_{3} C_{4}\right\}
\end{array}\right. \tag{42}
\end{gather*}
$$

together with their combinations. Now $G_{2}^{\prime}=\left\{I, C_{1} C_{3}\right\}$ is a subgroup of all of order 4. By $\S 8$, any two of $G_{2}, G_{2}^{\prime}, G_{2}^{\prime \prime}$ generate G_{4}^{3}, while G_{2} with either K_{4} or $K_{4}^{\prime \prime \prime}$ gives G_{8}^{\prime}. Also $G_{2}^{\prime \prime}$ with either K_{4} or $K_{4}^{\prime \prime \prime}$ gives G_{8}^{\prime}. Either G_{2} or $G_{2}^{\prime \prime}$ with either C_{4}^{5} or C_{4}^{0} gives K_{8}. Either G_{2} or $G_{2}^{\prime \prime}$ with either $K_{4}^{* *}$ or $K_{4}^{* *}$ gives G_{8}^{3}. Next, K_{4} with either C_{4}^{5} or K_{4}^{*} gives

$$
\begin{equation*}
L_{8}=\left\{I, C_{1} C_{5}, C_{3} C_{5}, C_{1} C_{3}, B_{3}, B_{3} C_{1} C_{5}, B_{3} C_{3} C_{5}, B_{3} C_{1} C_{3}\right\} \tag{43}
\end{equation*}
$$

Also, K_{4} with either C_{4}^{0} or $K_{4}^{* * *}$ gives

$$
\begin{equation*}
L_{8}^{\prime}=\left\{I, C_{1} C_{5}, C_{3} C_{5}, C_{1} C_{3}, B_{3} C_{1} C_{0}, B_{3} C_{3} C_{0}, B_{3} C_{5} C_{0}, B_{3} C_{2} C_{4}\right\} \tag{44}
\end{equation*}
$$

Now $K_{4}^{\prime \prime \prime}$ with either C_{4}^{0} or K_{4}^{*} gives

$$
\begin{equation*}
T_{8}=\left\{I, C_{1} C_{3}, C_{1} C_{0}, C_{3} C_{0}, B_{3}, B_{3} C_{1} C_{3}, B_{3} C_{1} C_{0}, B_{3} C_{3} C_{0}\right\} \tag{45}
\end{equation*}
$$

Again, $K_{4}^{\prime \prime \prime}$ with either C_{4}^{5} or $K_{4}^{* *}$ gives

$$
\begin{equation*}
T_{8}^{\prime}=\left\{I, C_{1} C_{3}, C_{1} C_{0}, C_{3} C_{0}, B_{3} C_{1} C_{5}, B_{3} C_{3} C_{5}, B_{3} C_{5} C_{0}, B_{3} C_{2} C_{4}\right\} \tag{46}
\end{equation*}
$$

Finally, we have the relations

$$
\begin{array}{cl}
\left(C_{4}^{5}, C_{4}^{0}\right)=G_{8}^{\prime}, & \left(C_{4}^{5}, K_{4}^{*}\right)=L_{8}, \\
\left.\left(C_{4}^{0}, K_{4}^{*}\right)=K_{4}^{* *}\right)=T_{8}^{\prime} \\
\left(C_{4}^{0}, K_{4}^{* *}\right)=L_{8}^{\prime}, & \left(K_{4}^{*}, K_{4}^{* *}\right)=G_{8}^{3}
\end{array}
$$

Theorem. The self-conjugate subgroups of G_{16}^{\prime} are the groups (41)-(46) and $G_{4}^{3}, G_{8}^{\prime}, K_{8}, G_{8}^{3}, G_{16}^{\prime}$.

Corollary. The subgroups of order 8 of G_{16}^{\prime} are $L_{8}, L_{8}^{\prime}, T_{8}, T_{8}^{\prime}, G_{8}^{\prime}$, K_{8}, and G_{8}^{3}.

All the self-conjugate subgroups of H_{16}^{\prime}.

17. Its substitutions fall into the following 10 distinct sets of conjugates:

$$
\begin{gathered}
\{I\} ;\left\{C_{1} C_{2} C_{3} C_{4}\right\} ;\left\{C_{1} C_{3}\right\} ;\left\{C_{2} C_{4}\right\} ;\left\{C_{1} C_{5}, C_{3} C_{5}\right\} ;\left\{C_{1} C_{0}, C_{3} C_{0}\right\} ; \\
\left\{B_{3} C_{1} C_{2}, B_{3} C_{2} C_{3}\right\} ;\left\{B_{3} C_{1} C_{4}, B_{3} C_{3} C_{4}\right\} ;\left\{B_{3} C_{2} C_{5}, B_{3} C_{4} C_{0}\right\} \\
\left\{B_{3} C_{4} C_{5}, B_{3} C_{2} C_{0}\right\} .
\end{gathered}
$$

Only the last 8 are of period 4, so that H_{16}^{\prime} is not isomorphic with G_{16}^{\prime}, G_{16}, or J_{16}^{3}. It is not conjugate with F_{16} in view of the periods of their self-conjugate substitutions. Finally, H_{16}^{\prime} and H_{16}^{3} are not conjugate* within O_{Ω} since they are self conjugate only under J_{32}^{3} and G_{64}, respectively ($\S \S 31,46$).

Theorem. The only self-conjugate subgroups of H_{16}^{\prime} are $I, G_{2}, G_{2}^{\prime}, G_{2}^{\prime \prime}$, $K_{4}, K_{4}^{\prime \prime \prime}, H_{8}^{3}, K_{8}^{\prime}$ and the groups $G_{4}^{3}, G_{4}^{\prime}, H_{16}^{\prime}$, resulting from their combination.

Corollary. The only subgroups of order 8 of H_{16}^{\prime} are $H_{8}^{3}, K_{8}^{\prime}, G_{8}^{\prime}$.

The non-conjugate subgroups of orders $8,16,32$ of G_{64}.
18. There are 3 distinct sets of conjugate subgroups of order 32 in O_{a}, representatives of which are $J_{32}^{3}, H_{32}^{3}, G_{32}$ (end of $\S 7$); 6 distinct sets of order 16 , represented by $G_{16}, G_{16}^{\prime}, H_{16}^{\prime}, J_{16}^{3}, H_{16}^{3}, F_{16}^{\prime}(\S \S 8-17)$. These 6 have only the following subgroups of order 8: $G_{8}, G_{8}^{\prime}, G_{8}^{\prime \prime}, G_{8}^{3}, H_{8}^{3}, H_{8}^{2}, J_{8}, J_{8}^{\prime}$, $J_{8}^{\prime \prime}, J_{8}^{\prime \prime \prime}, F_{8}, F_{8}^{\prime}, F_{8}^{\prime \prime}, F_{8}^{\prime \prime \prime}, F_{8}^{*}, K_{8}, K_{8}^{\prime}, L_{8}, L_{8}^{\prime}, T_{8}, T_{8}^{\prime}$, together with subgroups of G_{16} conjugate with G_{8} or $G_{8}^{\prime \prime}(\S \S 12-17)$.

Now $B_{2} \equiv\left(\xi_{1} \xi_{2}\right)\left(\xi_{3} \xi_{4}\right)$ transforms G_{8}^{\prime} into $G_{8}^{\prime \prime}$, and transforms K_{8} into K_{8}^{\prime}; $C_{1} C_{5}$ transforms J_{8} into $J_{8}^{\prime \prime \prime}$, and J_{8}^{\prime} into $J_{8}^{\prime \prime} ;\left(\xi_{2} \xi_{4} \xi_{3}\right)$ transforms $J_{8}^{\prime \prime}$ into F_{8}^{*}; Σ transforms J_{8} into $F_{8}^{*}, F_{8}^{\prime}$ into H_{8}^{2}, H_{8}^{2} into F_{8}^{\prime}, and $F_{8}^{\prime \prime}$ into J_{8}. Finally, $C_{2} C_{5}$ transforms L_{8} into L_{8}^{\prime}, and T_{8} into T_{8}^{\prime}. Hence the above 21 groups are conjugate within O_{Ω} with the following:

$$
\begin{equation*}
G_{8}, G_{8}^{\prime \prime}, G_{8}^{3}, J_{8}, L_{8}, T_{8}, H_{8}^{3}, K_{8}, F_{8}^{\prime \prime \prime} \tag{47}
\end{equation*}
$$

The numbers of substitutions of period 4 in these groups are respectively

$$
0,0,0,2,2,2,4,4,6
$$

In the first place, no two of the groups J_{8}, L_{8}, T_{8}, having exactly 2 substitutions of period 4, are conjugate under O_{Ω}. Indeed, the two $B_{3} C_{1} C_{2}$ and $B_{3} C_{3} C_{4}$ of J_{8} have the characteristic determinant $(1-\rho)\left(1+\rho^{2}\right)^{2}$, while the two $B_{3} C_{1} C_{5}$ and $B_{3} C_{3} C_{5}$ of L_{8} and the two $B_{3} C_{1} C_{0}$ and $B_{3} C_{3} C_{0}$ of T_{8} all have

[^4]the characteristic determinant $(1-\rho)(1+\rho)^{2}\left(1+\rho^{2}\right)$. Moreover, the five of period 2 in L_{8} all have the characteristic determinant $(1+\rho)^{2}(1-\rho)^{3}$, while $C_{1} C_{0} \equiv C_{2} C_{3} C_{4} C_{5}$ of T_{8} has $(1+\rho)^{4}(1-\rho)$.

In the second place, the groups H_{8}^{3} and K_{8} are not conjugate, since the four of period 4 in H_{8}^{3} have the characteristic determinant $(1-\rho)\left(1+\rho^{2}\right)^{2}$, while the four of period 4 in K_{8} have $(1-\rho)(1+\rho)^{2}\left(1+\rho^{2}\right)$.

Finally, no two of the groups $G_{8}, G_{8}^{\prime \prime}, G_{8}^{3}$ are conjugate within O_{Ω}. Indeed all the substitutions except I and $C_{1} C_{2} C_{3} C_{4}$, of both G_{8} and G_{8}^{3} have the determinant $(1+\rho)^{2}(1-\rho)^{3}$, while $C_{1} C_{2} C_{3} C_{4}, C_{2} C_{0}$ and $C_{4} C_{0}$ of $G_{8}^{\prime \prime}$ have the determinant $(1+\rho)^{4}(1-\rho)$, only four of $G_{8}^{\prime \prime}$ having $(1+\rho)^{2}(1-\rho)^{3}$. To show that G_{8} and G_{8}^{3} are not conjugate under O_{Ω}, we note that ($\S 34$) G_{8} is self-conjugate only under G_{192} and (§32) G_{8}^{3} only under H_{192}, while G_{192} contains a single subgroup G_{64} of order 64 , and H_{192} three subgroups of order 64 .

Theorem. Within O_{Ω} every subgroup of order 8 is conjugate with one and but one of the nine groups (47).

The subgroups of order 4.

19. The commutative group G_{8} of substitutions of period 2, aside from identity, has exactly 7 subgroups of order 4 . Any such subgroup contains at least two $C_{i} C_{j}$. Transforming by a suitable even substitution on $\xi_{1}, \xi_{2}, \xi_{3}, \xi_{4}$, we may take $C_{1} C_{2}$ as the first generator. It contains a second $C_{i} C_{j}$ of the form $C_{2} C_{3}, C_{2} C_{4}$, or $C_{3} C_{4}$, so that the groups are G_{4}^{2} or

$$
G_{4}=\left\{I, C_{1} C_{2}, C_{2} C_{3}, C_{1} C_{3}\right\} ; G_{4}^{*}=\left\{I, C_{1} C_{2}, C_{2} C_{4}, C_{1} C_{4}\right\}
$$

Now B_{2} transforms G_{4} into G_{4}^{*}, and $\left(\xi_{1} \xi_{5} \xi_{4}\right)$ transforms G_{4}^{*} into K_{4}^{\prime}. But G_{4}^{2} and K_{4}^{\prime} are not conjugate in view of the characteristic determinants of their substitutions.

Each of the 7 subgroups of order 4 of $G_{8}^{\prime \prime}$ contains at least one $C_{i} C_{j}$. Now $\left(\xi_{2} \xi_{4} \xi_{5}\right)$ transforms $C_{4} C_{5}$ into $C_{2} C_{4}$, while $\left(\xi_{2} \xi_{5} \xi_{4}\right)$ transforms $C_{2} C_{5}$ into $C_{2} C_{4}$, each transforming $G_{8}^{\prime \prime}$ into itself. As first generator we may therefore take $C_{1} C_{3}$ or $C_{2} C_{4}$. The resulting groups are $G_{4}^{3}, K_{4}^{\prime}, K_{4}^{\prime \prime}$, and

$$
G_{4}^{\prime}=\left\{I, C_{1} C_{3}, C_{2} C_{5}, C_{1} C_{2} C_{3} C_{5}\right\}, G_{4}^{\prime *}=\left\{I, C_{1} C_{3}, C_{4} C_{5}, C_{1} C_{2} C_{4} C_{5}\right\}
$$

the latter being transformed into the former by B_{3}. But $\left(\xi_{1} \xi_{5} \xi_{4}\right)$ transforms G_{4}^{\prime} into G_{4}^{2}, while B_{2} transforms $K_{4}^{\prime \prime}$ into $K_{4}^{\prime \prime \prime}$.

The commutative group G_{8}^{3} of substitutions of periods 1 and 2 has exactly 7 subgroups of order 4. Now $C_{1} C_{5}, C_{2} C_{5}, C_{1} C_{2}, \Sigma\left(\xi_{2} \xi_{4} \xi_{3}\right), \Sigma\left(\xi_{2} \xi_{4} \xi_{3}\right) B_{2}$ transform G_{8}^{3} into itself and, in particular, transform B_{3} into $B_{3} C_{1} C_{3}, B_{3} C_{2} C_{4}$, $B_{3} C_{1} C_{2} C_{3} C_{4}, C_{2} C_{4}, C_{1} C_{3}$, respectively. Hence we may take $C_{1} C_{3}$ as the first generator of a subgroup of order 4. The group is therefore G_{4}^{3} or else it contains one of the substitutions $B_{3}, B_{3} C_{1} C_{3}, B_{3} C_{2} C_{4}, B_{3} C_{1} C_{2} C_{3} C_{4}$. Now
$I, C_{1} C_{5}, C_{2} C_{5}, C_{1} C_{2}$ transform the preceding four amongst themselves transitively. Hence the resulting groups are conjugate with K_{4}^{*} of $\S 16$. Its substitutions, other than identity, have the characteristic determinant $(1-\rho)^{3}(1+\rho)^{2}$, so that it is not conjugate with either G_{4}^{2} or $K_{4}^{\prime \prime \prime}$. But K_{4}^{*} is not conjugate with K_{4}^{\prime} by $\S \S 38,42$.

The group J_{8} contains a single cyclic group ($B_{3} C_{1} C_{2}$) of order 4. It remains to determine the groups containing only operators of periods 1 and 2. Since B_{3} transforms $C_{1} C_{2}$ into $C_{3} C_{4}$, we may take $C_{1} C_{2}$ or B_{3} as the first generator. The resulting groups are G_{4}^{2} and $K_{4}^{B_{3}}$ of $\S 10$. The latter is transformed into G_{4}^{2} by Σ.

The group H_{8}^{3} contains only two cyclic groups of order 4: $C_{4}^{3}=\left(B_{3} C_{1} C_{4}\right)$ and ($B_{3} C_{1} C_{2}$), the latter being transformed into the former by $C_{2} C_{5}$. The only further subgroup of order 4 is G_{4}^{3}.

The group $F_{8}^{\prime \prime \prime}$ has three cyclic groups of order 4: $\left(B_{3} C_{1} C_{2}\right),\left(B_{2} C_{1} C_{4}\right)$, and $\left(B_{4} C_{1} C_{3}\right)$. Now $\left(\xi_{2} \xi_{3} \xi_{4}\right)$ transforms $B_{4} C_{1} C_{3}$ into $B_{3} C_{1} C_{2} ;\left(\xi_{2} \xi_{4} \xi_{3}\right)$ transforms $B_{2} C_{1} C_{4}$ into $B_{3} C_{1} C_{2}$.

The commutative group K_{8} contains the cyclic subgroups

$$
C_{4}^{5}=\left(B_{3} C_{1} C_{5}\right), \quad C_{4}^{0}=\left(B_{3} C_{1} C_{0}\right)
$$

and a single further subgroup G_{4}^{3} of order 4. But $C_{2} C_{5}$ transforms C_{4}^{0} into C_{4}^{3}. Now C_{4}^{5}, whose substitutions of period 4 have the characteristic determinant $(1-\rho)(1+\rho)^{2}\left(1+\rho^{2}\right)$, is not conjugate with C_{4}^{3}, for which the corresponding quantity is $(1-\rho)\left(1+\rho^{2}\right)^{2}$.

The group L_{8} contains a single cyclic group C_{4}^{5} and but two further groups of order 4: K_{4}^{*} and K_{4}. Now B_{2} transforms K_{4} into K_{4}^{\prime}.

Finally, T_{8} contains $C_{4}^{v}, K_{4}^{*}, K_{4}^{\prime \prime \prime}$, but no further groups of order 4.
Theorem. Within O_{Ω}, every subgroup of order 4 is conjugate with one and but one of the six groups $G_{4}^{2}, K_{4}^{\prime}, K_{4}^{*}, K_{4}^{\prime \prime \prime}$,

$$
\begin{equation*}
C_{4}^{3}=\left(B_{3} C_{1} C_{4}\right), \quad C_{4}^{5}=\left(B_{3} C_{1} C_{5}\right) \tag{48}
\end{equation*}
$$

The subgroups of order 2.

20. There are exactly two distinct sets of conjugate operators of period 2 within the simple quaternary abelian group (Linear Groups, p. 105). The same consequently holds for O_{Ω}. As representatives belonging to G_{64}, we may take $C_{1} C_{2} C_{3} C_{4}$ and $C_{1} C_{3}$, which generate the groups G_{2} and G_{2}^{\prime}, respectively.

Theorem. Within O_{Ω}, every subgroup of order 2 is conjugate with G_{2} or G_{2}^{\prime}.

Summary of the subgroups of order a power of 2.
21. Representatives of each distinct set of conjugate subgroups of order a power of 2 within the group O_{Ω}, together with all their incidences, are exhibited in the following scheme:

Largest subgroups in which the groups of order a power of 2 are self-conjugate, §§22-47.
22. Lemma I. If, for $p^{n}=8 l \pm 3$, a substitution of O_{a} transforms $C_{0} C_{t}$ into a substitution belonging to G_{960}, it replaces one of the variables by $\pm \xi_{t}$.
Let S have the matrix ($\alpha_{i j}$). Then $C_{0} C_{t}$ replaces $\sum_{j=1}^{5} \alpha_{i j} \xi_{j}$ by

$$
-\sum_{j=1, \ldots, i, 5} \alpha_{i j} \xi_{j}+\alpha_{i t} \xi_{t}=-\sum_{j=1}^{5} \alpha_{i j} \xi_{j}+2 \alpha_{i i} \xi_{t}
$$

Since the matrix of S^{-1} is $\left(\alpha_{j i}\right)$, it follows that

$$
S^{-1} C_{0} C_{t} S: \quad \xi_{i}^{\prime}=-\xi_{i}+2 \alpha_{i t} \sum_{j=1}^{5} \alpha_{j t} \xi_{j} \quad(i=1, \cdots, 5)
$$

Since 2 is a not-square, no one of the diagonal terms $-1+2 \alpha_{i t}^{2}$ of the latter is, zero. But a substitution of G_{960} has a single non-vanishing coefficient in each row (or column). Hence must

$$
\alpha_{i t} \alpha_{j t}=0 \quad(i, j=1, \cdots, 5 ; j \neq i)
$$

Hence the product of any two of the five coefficients in the t th column of the matrix of S is zero, so that four are zero. It $\alpha_{r t}$ is the non-vanishing one, all the remaining coefficients in the r th row are zero in view of the orthogonal conditions. Hence S replaces ξ_{r} by $\alpha_{r t} \xi_{t}$, where $\alpha_{r t}^{2}=1$.

Corollary I. If S transforms each $C_{0} C_{t}(t=1,2,3,4,5)$ into a substitution of G_{950}, then S itself belongs to G_{960}.

Corollary II. If S transforms $C_{0} C_{t}$ into itself, it replaces ξ_{t} by $\pm \xi_{t}$:
Indeed, $-1+2 \alpha_{i t}^{2}=-1$ gives $\alpha_{i t}=0(i=1, \cdots, 5 ; i \neq t)$, whence, by the orthogonal conditions, $\alpha_{t j}=0(j \neq t)$.

Corollary III. If S transforms into itself a subgroup of G_{960} which contains a single $C_{0} C_{t}$, then S replaces $\xi_{t} b y \pm \xi_{t}$.

Indeed, S transforms $C_{0} C_{t}$ into a substitution in whose matrix each diagonal term is $\neq 0$. Since the latter must belong to G_{950}, it is a product of the C_{i}. But $C_{i} C_{j}$ is not conjugate with $C_{0} C_{t}$, since they have distinct characteristie determinants. Hence $C_{0} C_{t}$ is transformed into itself.
23. Lemma II. If a quinary orthogonal substitution S in any $G F\left[p^{n}\right]$, for which $p^{n}=8 l \pm 3$ or $8 l-1$, transforms each $C_{k} C_{t}(k, t=1,2,3,4)$ into a substitution replacing ξ_{5} by $\pm \xi_{5}$, then S replaces ξ_{5} by one of the variables or its negative.

Taking $\left(\alpha_{i j}\right)$ as the matrix of S, we get for $S^{\prime}=S^{-1} C_{k} C_{t} S$:

$$
\xi_{i}^{\prime}=\xi_{i}-2 \alpha_{i k} \sum_{j=1}^{5} \alpha_{j k} \xi_{j}-2 \alpha_{i t} \sum_{j=1}^{5} \alpha_{j i} \xi_{j} \quad(i=1, \cdots, 5)
$$

The conditions that S^{\prime} shall replace ξ_{5} by $\pm \xi_{5}$ are

$$
1-2 \alpha_{5 k}^{2}-2 \alpha_{5 t}^{2}= \pm 1, \quad \alpha_{5 k} \alpha_{j k}+\alpha_{5 t} \alpha_{j t}=0 \quad(j=1,2,3,4)
$$

According as the upper or lower sign holds, we have

$$
\alpha_{5 k}^{2}+\alpha_{5 t}^{2}=0 \quad \text { or } \quad \alpha_{5 k}^{2}+\alpha_{5 t}^{2}=1
$$

In the first case, we have the five equations

$$
\alpha_{s k} \alpha_{j k}+\alpha_{5 t} \alpha_{j t}=0
$$

$$
(j=1, \cdots, 5)
$$

But not all the determinants of the second order of the matrix formed of the k th and t th columns of S are zero. Hence $\alpha_{5 k}=\alpha_{5 t}=0$. If, in the second case, $\alpha_{5 t}=0$, then $\alpha_{5 k} \neq 0, \alpha_{j k}=0(j=1,2,3,4)$, and $\xi_{5}^{\prime}=\alpha_{5 k} \xi_{k}$, in view of the orthogonal conditions.

Now, if every sum of two of the terms $\alpha_{51}^{2}, \alpha_{52}^{2}, \alpha_{53}^{2}, \alpha_{54}^{2}$ equals 1 , each term equals $\frac{1}{2}$, whence $p^{n}=8 l \pm 1$. Then $2+a_{55}^{2}=1$, so that $p^{n}=8 l+1$, contrary to assumption. Let next one such sum equal 0 ; for definiteness, $\alpha_{53}^{2}+\alpha_{54}^{2}=0$. Then $\alpha_{53}=\alpha_{54}=0$. Since $\alpha_{51}^{2}+\alpha_{53}^{2}=0$ or $1, \alpha_{51}^{2}=0$ or 1 . Likewise, $\alpha_{52}^{2}=0$ or 1. But $\alpha_{51}^{2}+\alpha_{52}^{2}=0$ or 1. Hence at least one of the terms $\alpha_{51}^{2}, \alpha_{52}^{2}$ vanishes. If both vanish, $\xi_{5}^{\prime}=\alpha_{55} \xi_{5}$. If $\alpha_{52} \neq 0$, then $\alpha_{51}=0$, and $\xi_{5}^{\prime}=\alpha_{52} \xi_{2}$, as shown above.

Corollary. If each transform leaves ξ_{5} unaltered, S replaces ξ_{5} by $\pm \xi_{5}$.
24. Since the $C_{0} C_{t}(t=1, \cdots, 5)$ generate G_{16}, it follows from Corollary 1 to Lemma I that a subgroup of G_{950} containing G_{16} is self-conjugate within O_{Ω} only under a subgroup of G_{960}. Now the only even substitutions on ξ_{1}, \ldots, ξ_{5} which transform $B_{k}(k>1)$ into itself are $B_{1}=I, B_{2}, B_{3}, B_{4}$; while the only ones which transform B_{2}, B_{3}, B_{4} amongst themselves are those of the alternating group on $\xi_{1}, \xi_{2}, \xi_{3}, \xi_{4}$.

Theorem. Within O_{Ω}, G_{16} is self-conjugate only under G_{950}, J_{32}^{k} is selfconjugate only under G_{61}, while G_{64} is self-conjugate only under

$$
\begin{equation*}
G_{192}=\left\{E_{i}, E_{t} C_{i} C_{j}\binom{i, j=0,1,2,2,4,4,5 ; j>i}{E_{t} \text { ranging over even substitutions on } \xi_{1}, \ldots, \xi_{4}}\right\} . \tag{49}
\end{equation*}
$$

25. A substitution S which is commutative with $C_{1} C_{2} C_{3} C_{4}$ replaces ξ_{5} by $\pm \xi_{5}$ (Corollary II to Lemma I). By Linear Groups, p. 160, the number of quaternary orthogonal substitutions of determinant +1 is

$$
\left(p^{3 n}-p^{n}\right)\left(p^{2 n}-1\right) p^{n} .
$$

Exactly one half of these belong to O_{Ω}; for, $S\left(\xi_{1} \xi_{2}\right) C_{1}$ is a quaternary orthogonal substitution of determinant +1 if S is, while one and but one of the two belongs to O_{a}. Hence the preceding number is the order of the subgroup of O_{Ω} commutative with $C_{1} C_{2} C_{3} C_{4}$. Another proof follows from the fact that $C_{1} C_{2} C_{3} C_{4}$ corresponds (Linear Groups, pp. 179-182) to the abelian substitution $T_{1,-1}$. The latter is commutative with exactly $\left[p^{n}\left(p^{2 n}-1\right)\right]^{2}$ abelian operators.*

Theorem. Within O_{Ω}, G_{2} is self-conjugate only under $G_{p^{n n}\left(p^{2 n}-1\right)^{2}}$.
The last group can be given a very simple form when $p^{n}=3$. Then

$$
\alpha_{i 1}^{2}+\alpha_{i 2}^{2}+\alpha_{i 3}^{2}+\alpha_{i 4}^{2} \equiv 1 \quad(\bmod 3) \quad(i=1,2,3,4)
$$

requires that one or four of the coefficients in each row of the matrix for S shall $\neq 0$. In the former case, S belongs to G_{192}. In the latter case, $C W^{ \pm 1}$ replaces ξ_{1} by $\sum_{j=1}^{j=4} \alpha_{1 j} \xi_{j}, C$ being a suitably chosen product of an even number of the $C_{i}(i<5)$. Hence $S=C W^{ \pm 1} \Gamma$, where Γ leaves ξ_{1} unaltered and replaces ξ_{5} by $\pm \xi_{5}$, and therefore belongs to G_{192}. But W transforms $C_{1} C_{i}$ into $B_{i} C_{1} C_{2} C_{3} C_{4}, C_{1}$ into $W C_{1}$, and C_{i} into $W B_{i} C_{i} C_{1} C_{2} C_{3} C_{4}$ for $i=2,3,4$. Hence $S=W^{ \pm 1} \Gamma_{1}$, where Γ_{1} belongs to G_{192}. Hence, for $p^{n}=3$, the substitutions commutative with $C_{1} C_{2} C_{3} C_{4}$ form the group

$$
\begin{equation*}
G_{556}=\left\{\Gamma, W \Gamma, W^{2} \Gamma\left(\Gamma \text { ranging over } G_{192}\right)\right\} . \tag{50}
\end{equation*}
$$

26 . A substitution is commutative with $B_{3} C_{1} C_{4}$ if and only if it has the form S^{\prime} of $\S 11$. The orthogonal conditions on S^{\prime} reduce to the four:

$$
\begin{array}{lr}
\alpha_{11}^{2}+\alpha_{12}^{2}+\alpha_{13}^{2}+\alpha_{14}^{2}=1, & \alpha_{11} \alpha_{21}+\alpha_{12} \alpha_{22}+\alpha_{13} \alpha_{23}+\alpha_{14} \alpha_{24}=0 \\
\alpha_{21}^{2}+\alpha_{22}^{2}+\alpha_{23}^{2}+\alpha_{24}^{2}=1, & -\alpha_{13} \alpha_{21}+\alpha_{14} \alpha_{22}+\alpha_{11} \alpha_{23}-\alpha_{12} \alpha_{24}=0 \tag{51}
\end{array}
$$

[^5]If $\alpha_{11}^{2}+\alpha_{13}^{2} \neq 0$, the equations (51) in the second column give

$$
\begin{equation*}
\alpha_{21}=r \alpha_{22}+s \alpha_{24}, \quad \alpha_{23}=s \alpha_{22}-r \alpha_{24}, \tag{52}
\end{equation*}
$$

where

$$
\begin{equation*}
r=\frac{\alpha_{13} \alpha_{14}-\alpha_{12} \alpha_{12}}{\alpha_{11}^{2}+\alpha_{13}^{2}}, \quad s=\frac{-\alpha_{11} \alpha_{14}-\alpha_{12} \alpha_{13}}{\alpha_{11}^{2}+\alpha_{13}^{2}}, \quad r^{2}+s^{2}=\frac{\alpha_{12}^{2}+\alpha_{14}^{2}}{\alpha_{11}^{2}+\alpha_{13}^{2}} . \tag{53}
\end{equation*}
$$

It follows that
$\alpha_{21}^{2}+\alpha_{23}=\left(r^{2}+s^{2}\right)\left(\alpha_{22}^{2}+\alpha_{24}^{2}\right), \quad \sum_{j=1}^{4} \alpha_{2 j}^{2}=\frac{\left(\alpha_{22}^{2}+\alpha_{24}^{2}\right)\left(\alpha_{11}^{2}+\alpha_{12}^{2}+\alpha_{13}^{2}+\alpha_{14}^{2}\right)}{\alpha_{11}^{2}+\alpha_{13}^{2}}$.
The conditions (51) therefore reduce to (52) together with

$$
\begin{equation*}
\alpha_{11}^{2}+\alpha_{12}^{2}+\alpha_{13}^{2}+\alpha_{14}^{2}=1, \quad \alpha_{22}^{2}+\alpha_{24}^{2}=\alpha_{11}^{2}+\alpha_{13}^{2} . \tag{54}
\end{equation*}
$$

By Linear Groups, p. 46, the equation $\alpha_{11}^{2}+\alpha_{13}^{2}=\kappa$ has $p^{n}-\nu$ or $p^{n}+p^{n} \nu-\nu$ sets of solutions in the $G F\left[p^{n}\right]$, where $\nu= \pm 1$ according as $p^{n}=4 l \pm 1$. Hence there are $p^{2 n}-\left(2 p^{n}+\nu p^{n}-2 \nu\right)$ sets α_{11}, α_{13} for which $\alpha_{11}^{2}+\alpha_{13}^{2}$ is neither 0 nor 1. Each such set furnishes $p^{n}-\nu$ sets α_{12}, α_{14} satisfying $\alpha_{12}^{2}+\alpha_{14}^{2}=1-\left(\alpha_{11}^{2}+\alpha_{13}^{2}\right)$. Next, each of the $p^{n}-\nu$ sets of solutions of $\alpha_{11}^{2}+\alpha_{13}^{2}=1$ furnishes $p^{n}+p^{n} \nu-\nu$ sets α_{12}, α_{14}. Hence there are $\left(p^{n}-\nu\right)\left[\left(p^{2 n}-2 p^{n}-\nu p^{n}+2 \nu\right)+\left(p^{n}+p^{n} \nu-\nu\right)\right]=\left(p^{n}-\nu\right)\left(p^{2 n}-p^{n}+\nu\right)$ sets $\alpha_{11}, \cdots, \alpha_{14}$ satisfying the first condition * (54) and $\alpha_{11}^{2}+\alpha_{13}^{2} \neq 0$.

If. $\alpha_{11}^{2}+\alpha_{13}^{2}=0$, then $\alpha_{12}^{2}+\alpha_{14}^{2}=1$. The last equations (51) now give

$$
\alpha_{22}=\alpha \alpha_{21}+\beta \alpha_{23}, \quad \alpha_{24}=\beta \alpha_{21}-\alpha \alpha_{23},
$$

where

$$
\begin{gather*}
\alpha=-\alpha_{11} \alpha_{12}+\alpha_{13} \alpha_{14}, \quad \beta=-\alpha_{12} \alpha_{13}-\alpha_{11} \alpha_{14}, \\
\alpha^{2}+\beta^{2}=\left(\alpha_{11}^{2}+\alpha_{13}^{2}\right)\left(\alpha_{12}^{2}+\alpha_{14}^{2}\right)=0 . \tag{53'}
\end{gather*}
$$

Hence $\alpha_{22}^{2}+\alpha_{24}^{2}=0$. The condition (51) therefore reduce to (52') and

$$
\alpha_{11}^{2}+\alpha_{13}^{2}=0, \quad \alpha_{12}^{2}+\alpha_{14}^{2}=1, \quad \alpha_{21}^{2}+\alpha_{23}^{2}=1 .
$$

and hence have $\left(p^{n}-\nu\right)^{2}\left(p^{n}+p^{n} \nu-\nu\right)$ sets of solutions $\alpha_{i j}$.
The total number of sets of solutions of (51) is thus $\left(p^{n}-\nu\right)^{2}\left(p^{2 n}+p^{n} \nu\right)$. The determinant of S^{\prime} is seen to equal

$$
\begin{aligned}
\pm & \left\{\left(\alpha_{11}^{2}+\alpha_{12}^{2}+\alpha_{13}^{2}+\alpha_{14}^{2}\right)\left(\alpha_{21}^{2}+\alpha_{22}^{2}+\alpha_{23}^{2}+\alpha_{24}^{2}\right)\right. \\
& \left.-\left(\alpha_{11} \alpha_{21}+\alpha_{12} \alpha_{22}+\alpha_{13} \alpha_{23}+\alpha_{14} \alpha_{24}\right)^{2}-\left(-\alpha_{13} \alpha_{21}+\alpha_{14} \alpha_{22}+\alpha_{11} \alpha_{23}-\alpha_{12} \alpha_{24}\right)^{2}\right\}
\end{aligned}
$$

and hence by (51) equals ± 1. The sign \pm must therefore be taken + .

[^6]For $p^{n}=3$, only half of the resulting 96 orthogonal substitutions S^{\prime} of determinant +1 belong to O_{Ω}. These are seen to be

$$
\begin{array}{r}
B_{i}, B_{i} C_{1} C_{3}, B_{i} C_{2} C_{4}, B_{i} C_{1} C_{2} C_{3} C_{4}, B_{j} C_{1} C_{2}, B_{j} C_{2} C_{3}, B_{j} C_{1} C_{4}, B_{j} C_{3} C_{4} \tag{55}\\
(i=1,4 ; j=2,3)
\end{array}
$$

together with their products on the left by $W\left(\xi_{2} \xi_{4} \xi_{3}\right)$ and its inverse $W^{2}\left(\xi_{2} \xi_{3} \xi_{4}\right)$.
For $p^{n}=5$, it will be shown that exactly half of the resulting 480 orthogonal substitutions S^{\prime} of determinant +1 belong to O_{a}. Assuming first that 3 of the $\alpha_{1 j}$ are zero, we obtain the 16 substitutions (55) and 16 others not in O_{Ω}. Assume next that exactly one of the $\alpha_{1 j}$ is zero. Then two of the $\alpha_{1 j}^{2}$ are +1 and one is -1 , so that there are 12 types. For example,* take $\alpha_{11}^{2}=\alpha_{12}^{2}=+1$, $\alpha_{13}^{2}=-1, \alpha_{14}=0$. By $\left(54^{\prime}\right), \alpha_{21}^{2}+\alpha_{23}^{2}=1$. Hence either $\alpha_{21}=0$, whence $\alpha_{22}=-\alpha_{12} \alpha_{13} \alpha_{23}, \alpha_{24}=\alpha_{11} \alpha_{12} \alpha_{23}$ by (52'), or else $\alpha_{23}=0$, whence

$$
\alpha_{22}=-\alpha_{11} \alpha_{12} \alpha_{21}, \quad \alpha_{24}=-\alpha_{12} \alpha_{13} \alpha_{21}
$$

In the respective cases, S^{\prime} becomes

$$
\begin{aligned}
& S_{1}^{\prime}=\left(\begin{array}{ccccc}
\alpha_{11} & \alpha_{12} & \alpha_{13} & 0 & 0 \\
0 & \alpha_{22} & \alpha_{12} \alpha_{13} \alpha_{22} & \alpha_{11} \alpha_{13} \alpha_{22} & 0 \\
-\alpha_{13} & 0 & \alpha_{11} & -\alpha_{12} & 0 \\
\alpha_{12} \alpha_{13} \alpha_{22}-\alpha_{11} \alpha_{13} \alpha_{22} & 0 & \alpha_{22} & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right) \quad \begin{array}{l}
\\
\binom{a_{11}^{2}=a_{12}^{2}=+1}{a_{13}^{2}=a_{22}^{2}=-1}
\end{array} \\
& \left.S_{2}^{\prime}=\left[\begin{array}{ccccc}
\alpha_{11} & \alpha_{12} & \alpha_{13} & 0 & 0 \\
-\alpha_{11} \alpha_{12} \alpha_{22} & \alpha_{22} & 0 & \alpha_{11} \alpha_{13} \alpha_{22} & 0 \\
-\alpha_{13} & 0 & \alpha_{11} & -\alpha_{12} & 0 \\
0 & -\alpha_{11} \alpha_{13} \alpha_{22} & \alpha_{11} \alpha_{12} \alpha_{22} & \alpha_{22} & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right] \quad \begin{array}{l}
\alpha_{11}^{2}=\alpha_{12}^{2}=\alpha_{22}^{2}=+1 \\
\alpha_{13}^{2}=-1
\end{array}\right) .
\end{aligned}
$$

To show that none of the 16 substitutions S_{1}^{\prime} belong to O_{Ω}, denote S_{1}^{\prime} by S_{1}^{*} when $\alpha_{11}=\alpha_{12}=+1, \alpha_{13}=+2$. According as $\alpha_{22}=+2$ or -2 , we have for S_{1}^{*}

$$
R_{123} C_{3} R_{234}\left(\xi_{2} \xi_{4}\right) C_{2} C_{3}, \quad \text { or } \quad R_{123} C_{3} R_{234}\left(\xi_{2} \xi_{4}\right) C_{3} C_{4}
$$

neither of which belongs to O. Giving to $\left(\alpha_{11}, \alpha_{12}, \alpha_{13}\right)$ in turn the values $(1,1,-2),(-1,-1,2),(-1,-1,-2),(1,-1,2),(1,-1,-2)$,

[^7]$-1,1,2),(-1,1,-2)$, we find for $S_{1}^{\prime}: C_{3} C_{4} S_{1}^{*} C_{3} C_{4}, C_{3} C_{4} S_{1}^{*} C_{1} C_{4}$, $S_{1}^{*} C_{1} C_{3}, C_{1} C_{3} S_{1}^{*} C_{1} C_{3}, C_{1} C_{4} S_{1}^{*} C_{1} C_{4}, C_{1} C_{4} S_{1}^{*} C_{3} C_{4}, C_{1} C_{3} S_{1}^{*}$.
To show that all the 16 substitutions $S_{2}^{\prime \prime}$ belong to O_{n}, denote $S_{2}^{\prime \prime}$ by S_{2}^{*} when $\alpha_{11}=\alpha_{12}=+1, \alpha_{13}=+2$. According as $\alpha_{22}=+2$ or -2 , we have for S_{2}^{*}
$$
R_{123} C_{2} C_{5} R_{234} C_{2} C_{5}, \quad \text { or } \quad R_{123} C_{3} C_{4} R_{234} C_{1} C_{4} .
$$

Giving to $\left(\alpha_{11}, \alpha_{12}, \alpha_{13}\right)$ in turn the values $(1,1,-2),(-1,-1,2)$, $-1,-1,-2),(1,-1,2),(1,-1,-2),(-1,1,2),(-1,1,-2)$, we find for $S_{2}^{\prime}: C_{3} C_{4} S_{2}^{*} C_{3} C_{4}, C_{3} C_{4} S_{2}^{*} C_{1} C_{4}, S_{2}^{*} C_{1} C_{3}, C_{1} C_{3} S_{2} C_{1} C_{3}$, $C_{1} C_{4} S_{2} C_{1} C_{4}, C_{1} C_{4} S_{2}^{*} C_{3} C_{4}, C_{1} C_{3} S_{2}^{*}$.
Assume lastly that none of the $\alpha_{1 j}$ are zero. Then every $\alpha_{1 j}^{2} \equiv-1$. By (54), $\alpha_{22}^{2}+\alpha_{24}^{2} \equiv-2$, so that $\alpha_{21}^{2}+\alpha_{23}^{2} \equiv-2(\bmod .5)$. Hence every $\alpha_{2 j}^{2} \equiv-1 . \quad \operatorname{By}(53)$,

$$
r=2\left(\alpha_{13} \alpha_{14}-\alpha_{11} \alpha_{12}\right), s=3\left(\alpha_{11} \alpha_{14}+\alpha_{12} \alpha_{13}\right), r s \equiv 0 .
$$

Let first $s \equiv 0$, so that $\alpha_{11} \equiv \alpha_{11} \alpha_{12} \alpha_{13}, r \equiv \alpha_{11} \alpha_{12} . \quad$ By (52) we find for S^{\prime} :

$$
S_{3}^{\prime}=\left|\begin{array}{ccccc}
\alpha_{11} & \alpha_{12} & \alpha_{13} & \alpha_{11} \alpha_{12} \alpha_{13} & 0 \\
\alpha_{11} \alpha_{12} \alpha_{22} & \alpha_{22} & -\alpha_{11} \alpha_{12} \alpha_{24} & \alpha_{24} & 0 \\
-\alpha_{13} & \alpha_{11} \alpha_{12} \alpha_{13} & \alpha_{11} & -\alpha_{12} & 0 \\
-\alpha_{11} \alpha_{12} \alpha_{24} & -\alpha_{24} & -\alpha_{11} \alpha_{12} \alpha_{22} & \alpha_{22} & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right|
$$

Denote $S_{3}^{\prime \prime}$ by S_{3}^{*} when $\alpha_{11}=\alpha_{12}=\alpha_{13}=+2$. For $\alpha_{22}=\alpha_{24}=+2$, we have for S_{3}^{*}

$$
S_{3}^{* *}=C_{2} C_{4}\left(\xi_{2} \xi_{4} \xi_{3}\right) R_{234} C_{2} C_{4} R_{124}\left(\xi_{1} \xi_{3} \xi_{2}\right) R_{123}\left(\xi_{1} \xi_{4} \xi_{2}\right) C_{3} C_{4} .
$$

For $\alpha_{22}=\alpha_{24}=-2, S_{3}^{*}=S_{3}^{* *} C_{2} C_{4}$. For $\alpha_{22}=2, \alpha_{24}=-2, S_{3}^{*}$ becomes

$$
S_{3}^{* * *}=C_{2} C_{4}\left(\xi_{2} \xi_{4} \xi_{3}\right) R_{234} C_{2} C_{4} R_{124}\left(\xi_{1} \xi_{2} \xi_{3}\right) R_{123}\left(\xi_{1} \xi_{4} \xi_{3} \xi_{2}\right) C_{3} .
$$

For $\alpha_{22}=-2, \alpha_{24}=+2, S_{3}^{*}$ becomes $S_{3}^{* * *} C_{2} C_{4}$. Hence S_{3}^{*} belongs to O_{0} if and only if $\alpha_{22}=\alpha_{24}$. Next, S_{3}^{\prime} becomes $C_{2} C_{4} C_{3}^{*} C_{2} C_{4}$ when $\alpha_{11}=\alpha_{13}=2$, $\alpha_{12}=-2$; hence must $\alpha_{22}=\alpha_{24}$. Again, S_{3}^{\prime} becomes $C_{2} C_{4} S_{3}^{*} C_{1} C_{2} C_{3} C_{4}$ when $\alpha_{11}=\alpha_{13}=-2, \alpha_{12}=+2$, whence must $\alpha_{22}=\alpha_{24}$. Also, $S_{3}^{\prime}=S^{*} C_{1} C_{3}$ when $\alpha_{11}=\alpha_{22}=-2, \alpha_{13}=-2$, whence must $\alpha_{22}=\alpha_{24}$. Denote S_{3}^{\prime} by $[\alpha, \beta]$ when $\alpha_{11}=\alpha_{12}=2, \alpha_{13}=-2$. Then $[\alpha,-\beta]=C_{3} C_{4} S_{3}^{*} C_{3} C_{4}$, whence must $\alpha_{22}=-\alpha_{24}$. For $\alpha_{11}=\alpha_{12}=-2, \alpha_{13}=+2, S_{3}^{\prime}=[\alpha, \beta] C_{1} C_{3}$, whence must $\alpha_{22}=-\alpha_{24}$. For $\alpha_{11}=2, \alpha_{12}=\alpha_{13}=-2, S_{3}^{\prime}=C_{2} C_{4}[-\alpha,-\beta]$, whence must $\alpha_{22}=-\alpha_{24}$. Finally, $S_{3}^{\prime}=C_{2} C_{4}[-\alpha,-\beta] C_{1} C_{3}$, when $\alpha_{11}=-2, \alpha_{12}=\alpha_{13}=+2$, whence must $\alpha_{22}=-\alpha_{24}$. To summarize, S_{3}^{\prime} belongs to O_{Ω} only when $\alpha_{22}=+\alpha_{24}$ if $\alpha_{11}=+\alpha_{13}$, and $\alpha_{22}=-\alpha_{24}$ if $\alpha_{11}=-\alpha_{13}$, or briefly, only when $\alpha_{24}=-\alpha_{11} \alpha_{13} \alpha_{22}$.

Let next $r \equiv 0$, so that $\alpha_{14} \equiv-\alpha_{11} \alpha_{12} \alpha_{13}, s \equiv \alpha_{12} \alpha_{13}$. Then, by (52),

$$
\alpha_{21}=\alpha_{12} \alpha_{13} \alpha_{24}, \quad \alpha_{23}=\alpha_{12} \alpha_{13} \alpha_{22}
$$

For $\alpha_{11}=\alpha_{12}=\alpha_{13}=\alpha_{22}=\alpha_{24}=+2, S^{\prime}$ becomes* Σ of $\S 11$ and hence belongs to O_{Ω}. Hence, in view of the preceding case, the general S^{\prime}, with $r=0$, belongs to O_{Ω} only when $\alpha_{24}=-\alpha_{11} \alpha_{13} \alpha_{22}$.

We may combine the two preceding cases as follows: An orthogonal substitution S^{\prime} with every $\alpha_{1 j} \neq 0$ belongs to O_{Ω} if and only if

$$
\begin{equation*}
\alpha_{21}=\alpha_{11} \alpha_{12} \alpha_{22}, \quad \alpha_{23}=\alpha_{11} \alpha_{14} \alpha_{22}, \quad \alpha_{24}=-\alpha_{11} \alpha_{13} \alpha_{22} \tag{56}
\end{equation*}
$$

Hence of the 480 orthogonal substitutions of determinant unity which are commutative with $B_{3} C_{1} C_{4}$, exactly 240 belong to O_{Ω} for $p^{n}=5$.

In the general case there are exactly $\frac{1}{2}\left(p^{n}-\nu\right)\left(p^{2 n}-1\right) p^{n}$ substitutions of O_{Ω} commutative with $B_{3} C_{1} C_{4}$, where $\nu= \pm 1$ according as $p^{n}=4 l \pm 1$. Indeed, $S_{1}=\left(\xi_{1} \xi_{3}\right) C_{1} S$ is commutative with $B_{3} C_{1} C_{4}$ if S is, while only one of the pair S, S_{1} belongs to O_{Ω} by $\S \S 3,4$.

Now B_{3} transforms $B_{3} C_{1} C_{4}$ into its inverse $B_{3} C_{2} C_{3}$.
Theorem. Within O_{Ω}, the group $C_{4}^{3}=\left(B_{3} C_{1} C_{4}\right)$ is self-conjugate only under a group $G_{\left(p^{n-\nu)\left(p^{2 n-1) p^{n}}\right.}\right.}$.
27. We may now readily determine the largest subgroup transforming G_{32} into itself. The latter has exactly 12 substitutions of period 4: $B_{k} C_{1} C_{l}$, $k, l=2,3,4 ; k \neq l$. They are all conjugate within G_{192}, under which G_{32} is certainly self-conjugate. Indeed, B_{3} and $C_{2} C_{5}$ transform $B_{3} C_{1} C_{4}$ into $B_{3} C_{2} C_{3}$ and $B_{3} C_{1} C_{2}$, respectively; $\left(\xi_{2} \xi_{3} \xi_{4}\right)$ and $\left(\xi_{2} \xi_{4} \xi_{3}\right)$ transform $B_{3} C_{1} C_{2}$ into $B_{2} C_{1} C_{4}$ and $B_{4} C_{1} C_{3}$, respectively : $C_{2} C_{5}$ transforms $B_{4} C_{1} C_{3}$ into $B_{4} C_{1} C_{2} ; B_{3}$ transforms $B_{3} C_{1} C_{2}$ into $B_{3} C_{3} C_{4}, B_{4} C_{1} C_{2}$ into $B_{4} C_{3} C_{4}$, and $B_{2} C_{1} C_{4}$ into $B_{2} C_{2} C_{3} ; C_{2} C_{5}$ transforms $B_{2} C_{2} C_{3}$ into $B_{2} C_{1} C_{3} ; B_{2}$ transforms $B_{2} C_{1} C_{3}$ into $B_{2} C_{2} C_{4}$, and $B_{4} C_{1} C_{3}$ into $B_{4} C_{2} C_{4}$.

We next show that exactly 48 operators of O_{Ω} transform G_{32} and the substitution $B_{3} C_{1} C_{4}$ each into itself. It will then follow that G_{32} is self-conjugate only under a group of order 12×48.

For $p^{n}=3$, this result follows from $\S 26$ since $W^{2}\left(\xi_{2} \xi_{3} \xi_{4}\right)$ transforms G_{32} into itself (§11).

For $p^{n}=5$ consider in turn the various types of substitutions of O_{Ω} which are commutative with $B_{3} C_{1} C_{4}$. When 3 of the $\alpha_{1 j}$ are zero, there resulted the 16 substitutions (55). Since they belong to G_{192}, they transform G_{32} into itself. When a single $\alpha_{1 j}$ is zero, there resulted 12 types of substitutions, one type comprising the 16 substitutions S_{2}^{\prime}, the substitutions of the remaining types being of the form ΓS_{2}^{\prime}, where Γ belongs to G_{192}. But S_{2}^{\prime} transforms $C_{1} C_{4}$ into

[^8]\[

\left[$$
\begin{array}{ccccc}
-1 & 2 \alpha_{12} \alpha_{22} & 2 \alpha_{11} \alpha_{13} & 0 & 0 \\
2 \alpha_{12} \alpha_{22} & 1 & 0 & 3 \alpha_{11} \alpha_{13} & 0 \\
2 \alpha_{11} \alpha_{13} & 0 & 1 & 2 \alpha_{12} \alpha_{22} & 0 \\
0 & 3 \alpha_{11} \alpha_{13} & 2 \alpha_{12} \alpha_{22} & -1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}
$$\right] \quad\binom{\alpha_{11}^{2}=\alpha_{12}^{2}=\alpha_{22}^{2}=1}{\alpha_{38}^{2}=-1},
\]

which does not belong to G_{32} since its non-diagonal terms do not all vanish. Hence the 12 types are all excluded. Finally, when none of the $\alpha_{1 j}$ are zero, there resulted the 32 substitutions S of the form S^{\prime} with every $\alpha_{1 j}^{2}=\alpha_{2 j}^{2}=-1$ and satisfying (56). We verify that S transforms $C_{1} C_{4}$ into

$$
\left.\left[\begin{array}{rrrrr}
0 & \lambda & \mu & 0 & 0 \tag{57}\\
\lambda & 0 & 0 & -\mu & 0 \\
\mu & 0 & 0 & \lambda & 0 \\
0 & -\mu & \lambda & 0 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right] \quad \begin{array}{l}
\lambda=2 \alpha_{12} \alpha_{22}+2 \alpha_{1} \alpha_{13} \alpha_{13} \alpha_{22} \\
\mu=2 \alpha_{11} \alpha_{18}+2 \alpha_{12} a_{14}
\end{array}\right) .
$$

Since $\lambda^{2}+\mu^{2} \equiv 1$, either $\lambda=0$ or $\mu=0$. If $\lambda=0$, then $\alpha_{14}=-\alpha_{11} \alpha_{12} \alpha_{13}$, $\mu=-\alpha_{11} \alpha_{13}$, and (57) is $B_{3} C_{1} C_{3}$ or $B_{3} C_{2} C_{4}$. If $\mu=0$, then $\alpha_{14}=\alpha_{11} \alpha_{12} \alpha_{13}$, $\lambda=-\alpha_{11} \alpha_{22}$, and (57) is either B_{2} or $B_{2} C_{1} C_{2} C_{3} C_{4}$. Hence (57) belongs to G_{32} in every case.
Next, S transforms $C_{1} C_{2}$ into

$$
\left(\begin{array}{rrrrr}
0 & 0 & \sigma & \rho & 0 \tag{58}\\
0 & 0 & -\rho & \sigma & 0 \\
\sigma & -\rho & 0 & 0 & 0 \\
\rho & \sigma & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right) \quad\binom{\sigma=2 \alpha_{11} \alpha_{13}-2 \alpha_{12} \alpha_{11}}{\left.\rho=2 \alpha_{11} \alpha_{22}-2 \alpha_{11} \alpha_{12} \alpha_{13} \alpha_{22}\right)}
$$

Since $\rho^{2}+\sigma^{2} \equiv 1$, either $\rho=0$ or $\sigma=0$. If $\rho=0$, then $\alpha_{14}=\alpha_{11} \alpha_{12} \alpha_{13}$ and (58) is either B_{3} or $B_{3} C_{1} C_{2} C_{3} C_{4}$. If $\sigma=0$, then $\alpha_{14}=-\alpha_{11} \alpha_{12} \alpha_{13}$ and (58) is either $B_{4} C_{1} C_{4}^{\prime}$ or $B_{4} C_{2} C_{3}$. Hence (58) belongs to G_{32} in every case.

Finally, S transforms B_{2} into

$$
\left(\begin{array}{rrrrr}
\alpha & 0 & \beta & 0 & 0 \tag{59}\\
0 & -\alpha & 0 & -\beta & 0 \\
\beta & 0 & -\alpha & 0 & 0 \\
0 & -\beta & 0 & \alpha & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right) \quad\binom{\alpha=2 a_{11} \alpha_{12}+2 a_{13} \alpha_{14}}{\beta=2 a_{11} a_{14}-2 a_{12} \alpha_{13}}
$$

Then $\alpha^{2}+\beta^{2} \equiv 1$. If $\alpha=0$, then $\alpha_{14}=\alpha_{11} \alpha_{12} \alpha_{13}$ and (59) is either $B_{3} C_{1} C_{3}$ or $B_{3} C_{2} C_{4}$. If $\beta=0$, then $\alpha_{14}=-\alpha_{11} \alpha_{12} \alpha_{13}$ and (59) is either $C_{1} C_{4}$ or $C_{2} C_{3}$. Hence (59) belongs to G_{32} in every case.

The general case will be established indirectly. Of the substitutions transforming $B_{3} C_{1} C_{4}$ into itself and hence also its inverse $B_{3} C_{2} C_{3}$ into itself, B_{4} transforms $B_{3} C_{1} C_{2}$ into $B_{3} C_{3} C_{4} ; \Sigma$ of $\S 11$ transforms $B_{3} C_{1} C_{2}$ into $B_{4} C_{1} C_{3}$, and the latter into $B_{2} C_{1} C_{4} ; B_{4}$ transforms $B_{4} C_{1} C_{3}$ into $B_{4} C_{2} C_{4} ; B_{2} C_{1} C_{2}$ transforms $B_{2} C_{1} C_{4}$ into $B_{2} C_{2} C_{3}$. Hence 6 of the 12 substitutions of period 4 in G_{32} are conjugate with $B_{3} C_{1} C_{2}$ by means of substitutions transforming G_{32} and $B_{3} C_{1} C_{4}$ each into itself. We next show that no substitution of O_{Ω} transforms $B_{3} C_{1} C_{4}$ into itself and $B_{3} C_{1} C_{2}$ into one of the four : $B_{4} C_{1} C_{2}, B_{4} C_{3} C_{4}$, $B_{2} C_{1} C_{3}, B_{2} C_{2} C_{4}$. The condition $B_{3} C_{1} C_{2} S^{\prime}=S^{\prime} B_{4} C_{1} C_{2}$, where S^{\prime} is given in $\S 11$, requires that every $\alpha_{1 j}=\alpha_{2 j}=0$, and hence is impossible. Likewise, $B_{3} C_{1} C_{2} S^{\prime}=S^{\prime} B_{2} C_{1} C_{3}$ is impossible. But B_{4} transforms $B_{4} C_{1} C_{2}$ into $B_{4} C_{3} C_{4}$, and $B_{2} C_{1} C_{3}$ into $B_{2} C_{2} C_{4}$. Finally, we show that exactly 8 substitutions of O_{a} transform $B_{3} C_{1} C_{4}$ and $B_{3} C_{1} C_{2}$ each into itself. It suffices to find the substitutions which are commutative with both $B_{3} C_{1} C_{4}$ and $C_{2} C_{4}$. Now $C_{2} C_{4} S^{\prime}=S^{\prime} C_{2} C_{4}$ requires that $\alpha_{12}, \alpha_{14}, \alpha_{21}, \alpha_{23}$ all vanish. The resulting special form $S^{\prime \prime}$ of S^{\prime} transforms $C_{1} C_{4}$ into

$$
\left[\begin{array}{ccccc}
\alpha_{13}^{2}-\alpha_{11}^{2} & 0 & 2 \alpha_{11} \alpha_{13} & 0 & 0 \tag{60}\\
0 & \alpha_{22}^{2}-\alpha_{24}^{2} & 0 & -2 \alpha_{22} \alpha_{24} & 0 \\
2 \alpha_{11} \alpha_{13} & 0 & \alpha_{11}^{2}-\alpha_{13}^{2} & 0 & 0 \\
0 & -2 \alpha_{22} \alpha_{24} & 0 & \alpha_{24}^{2}-\alpha_{22}^{2} & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right\}
$$

This belongs to G_{32}, when 2 is a not-square, if and only if $\alpha_{11} \alpha_{13}=0, \alpha_{22} \alpha_{24}=0$, since the only conditions on $S^{\prime \prime}$ are $\alpha_{11}^{2}+\alpha_{13}^{2}=1, \alpha_{22}^{2}+\alpha_{24}^{2}=1$. For $\alpha_{11}=0$, $S^{\prime \prime}$ belongs to O_{a} if and only if $\alpha_{22}=0$, whence $S^{\prime \prime}$ is $B_{3} C_{1} C_{2}, B_{3} C_{1} C_{4}$, $B_{3} C_{2} C_{3}$ or $B_{3} C_{3} C_{4}$, all belonging to G_{32}. For $\alpha_{13}=0$, then $\alpha_{24}=0$, whence $S^{\prime \prime}$ is $I, C_{1} C_{3}, C_{2} C_{4}$, or $C_{1} C_{2} C_{3} C_{4}$, all belonging to G_{32}.

Theorem. Within O_{Ω}, the group G_{32} is self-conjugate only under

$$
\begin{equation*}
G_{576}=\left\{\Gamma, \Sigma \Gamma, \Sigma^{2} \Gamma\left(\Gamma \text { ranging over } G_{192}\right)\right\} \tag{61}
\end{equation*}
$$

28. The group H_{32}^{3} is self-conjugate under G_{64} by $\S 7$. Of the 20 substitutions of period 4 in H_{32}^{3}, the four $B_{3} C_{1} C_{2}, B_{3} C_{1} C_{4}, B_{3} C_{2} C_{3}, B_{3} C_{3} C_{4}$ are conjugate within G_{64}; likewise the eight $B_{2} C_{i} C_{5}, B_{2} C_{i} C_{0}(i=1,2,3,4)$; likewise the eight $B_{4} C_{i} C_{5}, B_{4} C_{i} C_{0}$, as follows from the table of conjugate substitutions of $G_{64}(\S 6)$. Now $B_{2} C_{1} C_{5}$ and $B_{3} C_{1} C_{4}$ have the characteristic determinants $(1-\rho)(1+\rho)^{2}\left(1+\rho^{2}\right)$ and $(1-\rho)\left(1+\rho^{2}\right)^{2}$, respectively (end of
§19). Hence $B_{3} C_{1} C_{4}$ is conjugate with only 4 of the substitutions of period 4 of H_{32}^{3}. We proceed to show that only 16 substitutions of O_{Ω} transform H_{32}^{3} and $B_{3} C_{1} C_{4}$ each into itself and that the 16 are the substitutions (55) belonging to G_{64}. The proof is similar to that in $\S 27$. Consider first the case $p^{n}=5$. Then (57) belongs to H_{32}^{3} if and only if $\alpha_{14}=-\alpha_{11} \alpha_{12} \alpha_{13} ;(58)$ belongs to H_{32}^{3} if and only if $\alpha_{14}=+\alpha_{11} \alpha_{12} \alpha_{13}$. Hence a transformer with each $\alpha_{1 j} \neq 0$ is excluded. Those with a single $\alpha_{1 j}$ equal zero are excluded as in $\S 27$. For the general case we proceed as at the end of $\S 27$. The only substitutions transforming $B_{3} C_{1} C_{4}$ and $B_{3} C_{1} C_{2}$ each into itself are 8 substitutions belonging to H_{32}^{3}. Indeed, (60) belongs to I_{32}^{3}, when 2 is a not-square, if and only if $\alpha_{11} \alpha_{13}=0, \alpha_{22} \alpha_{24}=0$.

Theorem. Within O_{Ω}, the group H_{32}^{3} is self-conjugate only under G_{64}.
29. The group J_{16}^{3} is self-conjugate under G_{64} since it is self-conjugate under both G_{32} and $J_{32}^{3}(\S \S 8,10)$. Within G_{64} the four substitutions of period 4 of J_{16}^{3} are conjugate with $B_{3} C_{1} C_{4}$. It therefore remains only to determine all the substitutions S of O_{Ω} which transform J_{16}^{3} and $B_{3} C_{1} C_{4}$ each into itself. We proceed as in $\S 27$. For $p^{n}=5$, the only substitutions S are the 16 substitutions (55); for, (57) belongs to J_{16}^{3} if and only if $\alpha_{14}=-\alpha_{11} \alpha_{12} \alpha_{13}$, while (58) belongs J_{16}^{3} if and only if $\alpha_{14}=+\alpha_{11} \alpha_{12} \alpha_{13}$.

In the general case, S^{\prime} belongs to G_{64} if it is commutative with $C_{2} C_{4}$ (end of $\S 27$). Within G_{64} the substitutions of period 2 in J_{16}^{3} fall into sets of conjugates as follows:

$$
C_{2} C_{4}, C_{1} C_{3} ; C_{1} C_{2}, C_{3} C_{4} ; C_{1} C_{4}, C_{2} C_{3} ; B_{3}, B_{3} C_{1} C_{3}, B_{3} C_{2} C_{4}, B_{3} C_{1} C_{2} C_{3} C_{4}
$$

The conditions for $C_{2} C_{4} S^{\prime}=S^{\prime} C_{1} C_{2}^{\prime}$ are $\alpha_{1 j}=\alpha_{2 j}=0(j=1,2,3,4)$. Likewise, $S^{\prime \prime}$ cannot transform $C_{2} C_{4}$ into $C_{1} C_{4}$, nor into B_{3}.

Theorem. Within O_{Ω}, the group J_{16}^{3} is self-conjugate only under G_{64}.
30. Since G_{16}^{\prime} contains $C_{1} C_{0}, C_{3} C_{0}$ and $C_{5} C_{0}$, a substitution S commutative with it must replace three variables by $\pm \xi_{1}, \pm \xi_{3}, \pm \xi_{5}$ (Lemma I, § 22). Since further there exists an even substitution on ξ_{1}, \cdots, ξ_{5} which replaces ${ }^{-}$ $\xi_{1}, \xi_{3}, \xi_{5}$ by those three variables, respectively, we may set $S=O_{2,4}^{\lambda, \mu} \Gamma$, where Γ belongs to G_{961}. Now $O_{2,4}^{\lambda, \mu}$ transforms B_{3} into $T \equiv\left(\xi_{1} \xi_{3}\right) T_{1}$, where T_{1} replaces ξ_{2} by $2 \lambda \mu \xi_{2}+\left(\lambda^{2}-\mu^{2}\right) \xi_{4}$. In order that T shall belong to G_{16}^{\prime}, it is necessary that $T_{1}=\left(\xi_{2} \xi_{4}\right) C$, where C is a product of the C_{i}. Hence $\lambda \mu=0$. The case $\lambda=0$ is excluded if S belongs to O_{Ω}. Hence $O_{2, \mu}^{\lambda, \mu}=I$ or $C_{2} C_{4}$. Hence S belongs to G_{960}. But the only even substitutions on ξ_{1}, \cdots, ξ_{5} which transform B_{3} into itself are I, B_{2}, B_{3}, B_{1}. But neither B_{2} nor B_{4} transforms $C_{1} C_{0}, C_{3} C_{0}, C_{5} C_{0}$ amongst themselves.

Theorem. Within O_{Ω}, the group G_{16}^{\prime} is self-conjugate only under J_{32}^{3}.
31. By a proof entirely analogous to the preceding, we obtain the

Theorem. Within O_{Ω}, the group H_{16}^{\prime} is self-conjugate only under J_{32}^{3}.
32. A substitution S which transforms G_{8}^{3} into itself must replace ξ_{5} by $\pm \xi_{5}$ (Corollary III of §22). If S transforms $C_{1} C_{3}$ of G_{8}^{3} into itself, then $S=O_{1,3} O_{2,4} C$, where C is a product of C_{i}. Now $O_{i, 3}^{1, \mu} O_{2,4}^{0, \sigma}$ transforms B_{3} into a substitution B^{\prime} which replaces ξ_{1} and ξ_{2} by

$$
2 \lambda \mu \xi_{1}+\left(\lambda^{2}-\mu^{2}\right) \xi_{3}, \quad 2 \rho \sigma \xi_{2}+\left(\rho^{2}-\sigma^{2}\right) \xi_{4}
$$

respectively. Since $\lambda^{2}+\mu^{2}=1$ and 2 is a not-square, then $\lambda^{2}-\mu^{2} \neq 0$. Hence $\lambda \mu=0, \rho \sigma=0$ if B^{\prime} belongs to G_{8}^{3}, so that S belongs to (G_{16}, B_{3}). Now G_{8}^{3} is evidently self-conjugate under G_{64}. Within the latter, $C_{1} C_{3}$ and $C_{2} C_{4}$ are conjugate, as also $B_{3}, B_{3} C_{1} C_{3}, B_{3} C_{2} C_{4}, B_{3} B_{1} C_{2} C_{3} C_{4}$. Hence if O_{Ω} contains a substitution which transforms $C_{1} C_{3}$ into B_{3} and G_{8}^{3} into itself, G_{8}^{3} will be self-conjugate under exactly 6×32 substitutions of O_{n}. Now an orthogonal substitution of period 2 replaces ξ_{5} by $\pm \xi_{5}$ and transforms $C_{1} C_{3}$ into B_{3} if and only if it has the form

$$
\left(\begin{array}{ccccr}
\alpha_{11} & \alpha_{12} & -\alpha_{11} & -\alpha_{12} & 0 \\
\alpha_{12} & \alpha_{22} & \alpha_{12} & \alpha_{22} & 0 \\
-\alpha_{11} & \alpha_{12} & \alpha_{11} & -\alpha_{12} & 0 \\
-\alpha_{12} & \alpha_{22} & -\alpha_{12} & \alpha_{22} & 0 \\
0 & 0 & 0 & 0 & \pm 1
\end{array}\right)
$$

$$
\left(\begin{array}{l}
4 a_{11}^{2}=1 \\
4 a_{12}^{2}=1 \\
4 a_{22}^{2}=1
\end{array}\right] .
$$

It therefore transforms B_{3} into $C_{1} C_{3}$ and $B_{3} C_{1} C_{3}$ and $B_{3} C_{2} C_{4}$ into themselves, and hence G_{8}^{3} into itself. We choose the sign \pm to make the determinant equal +1 . If S is one such substitution, then $S_{1}=S\left(\xi_{1} \xi_{3}\right) C_{5}$ is another, since $\left(\xi_{1} \xi_{3}\right) C_{5}$ transforms each substitution of G_{8}^{3} into itself. But* either S or S_{1} belongs to $O_{\Omega}(\S 4)$.

Theorem. Within O_{n}, the group G_{8}^{3} is self-conjugate only under H_{192}.
33. Since $G_{8}^{\prime \prime}$ contains $C_{2} C_{0}, C_{4} C_{0}$ and $C_{5} C_{0}$, a substitution commutative with $G_{8}^{\prime \prime}$ has (as in § 30) the form $O_{1,3}^{1, \mu} \Gamma, \Gamma$ in G_{966}. The first factor is evidently commutative with every substitution of $G_{8}^{\prime \prime}$. It belongs to O_{a} if and only if it is a $Q_{1,3}$ (of § 3), the number of which is $\frac{1}{2}\left(p^{n}-\nu\right)$. But the only even substitutions on ξ_{1}, \cdots, ξ_{5} which transforms $C_{2} C_{0}, C_{4} C_{0}$ and $C_{5} C_{0}$ amongst themselves are

$$
\begin{equation*}
I,\left(\xi_{1} \xi_{3}\right)\left(\xi_{2} \xi_{4}\right),\left(\xi_{1} \xi_{3}\right)\left(\xi_{2} \xi_{5}\right),\left(\xi_{1} \xi_{3}\right)\left(\xi_{4} \xi_{5}\right),\left(\xi_{2} \xi_{4} \xi_{5}\right),\left(\xi_{2} \xi_{5} \xi_{4}\right) . \tag{62}
\end{equation*}
$$

Theorem. Within O_{Ω}, the group $G_{8}^{\prime \prime}$ is self-conjugate only under

$$
\begin{equation*}
H_{24(p n-\nu)}=\left[Q_{i, 3}^{\lambda, \mu}, G_{16},(62)\right] . \tag{63}
\end{equation*}
$$

For $p^{n}=3$ or 5 , the only $Q_{1,3}^{\lambda, \mu}$ are I and $C_{1} C_{3}$. Hence $H_{96}=\left[G_{16},(62)\right]$.

[^9]34. The group G_{8} is evidently self-conjugate under G_{192} of $\S 24$. Within the latter $C_{1} C_{3}$ is conjugate with $C_{1} C_{2}, C_{1} C_{4}, C_{2} C_{3}, C_{2} C_{4}$ and $C_{3} C_{4}$. It thus remains to determine the substitutions S which are commutative with both $C_{1} C_{3}$ and G_{8}. As in $\S 32, S=O_{1,3} O_{2,4} C$. But $O_{1,3}^{\lambda, \mu}$ transforms $C_{1} C_{2}^{\prime}$ into a substitution which replaces ξ_{1} and ξ_{2} by
$$
\left(\mu^{2}-\lambda^{2}\right) \xi_{1}+2 \lambda \mu \xi_{3}, \quad\left(\sigma^{2}-\rho^{2}\right) \xi_{2}+2 \rho \sigma \xi_{4},
$$
respectively. Hence must $\lambda \mu=0, \rho \sigma=0$.
Theorev. Within O_{Ω}, the group G_{8} is self-conjugate only under G_{192}.
35. A substitution S commutative with K_{8} must replace ξ_{5} by $\pm \xi_{5}$ (Corollary II of § 22), and must transform $C_{1} C_{3}$ into itself or $C_{2} C_{4}$. Hence $S=O_{1,3} O_{2,4} C$ or its product on the right by B_{2}. Now $O_{1,3}^{\lambda, \mu} O_{2,4}^{\rho, \sigma}$ transforms $B_{3} C_{1} C_{5}$ into
\[

$$
\begin{gathered}
\xi_{1}^{\prime}=-\xi_{3}, \quad \xi_{3}^{\prime}=\xi_{1}, \quad \xi_{2}^{\prime}=2 \rho \sigma \xi_{2}+\left(\rho^{2}-\sigma^{2}\right) \xi_{4}, \\
\xi_{4}^{\prime}=\left(\rho^{2}-\sigma^{2}\right) \xi_{2}-2 \rho \sigma \xi_{4}, \quad \xi_{5}^{\prime}=-\xi_{5},
\end{gathered}
$$
\]

which belongs to K_{8} if and only if $\rho \sigma=0$. According as $\sigma=0$ or $\rho=0$, it becomes $B_{3} C_{1} C_{5}$ or $B_{3} C_{3} C_{0}$, respectively. Hence if $O_{1,3}^{\lambda, \mu} O_{2,4}^{\rho, \sigma}$ belongs to O_{Ω} it is a $Q_{1,3}, Q_{1,3} B_{3}$, or the product of one of them by $C_{2} C_{4}$, Finally, B_{2} does not transform K_{8} into itself.

Theorem. Within O_{Ω}, the group K_{8} is self-conjugate only under

$$
\begin{equation*}
H_{8\left(p^{n-\nu)}\right.}=\left(Q_{i, 3}^{\lambda}, B_{3}, G_{16}\right) . \tag{64}
\end{equation*}
$$

For $p^{n}=3$ or 5 , this group becomes J_{32}^{3}.
36. A substitution commutative with H_{8}^{3} must be of the type S of $\S 35$. Now $O_{1,3}^{\lambda, \mu} O_{2,4}^{\mathrm{p}, \sigma}$ evidently transforms $B_{3} C_{1} C_{2} \equiv O_{1,3}^{0,-1} O_{2,4}^{0,-1}$ into itself. Hence it transforms into itself $B_{3} C_{1} C_{4} \equiv B_{3} C_{1} C_{2} \cdot C_{2} C_{4}, B_{3} C_{2} C_{3}=B_{3} C_{1} C_{2} \cdot C_{1} C_{3}$, $B_{3} C_{3} C_{4}=B_{3} C_{1} C_{2} \cdot C_{1} C_{2} C_{3} C_{4}$. Also, B_{2} transforms H_{8}^{3} into itself.

Theorem. Within O_{Ω}, the group H_{8}^{3} is self-conjugate only under

$$
\begin{equation*}
H_{4\left(p p_{-v)^{2}}\right.}=\left(Q_{i, 3}^{\lambda, \mu} Q_{i, 4}^{e, \sigma}, G_{64}\right) . \tag{65}
\end{equation*}
$$

For $p^{n}=3$ or 5 , this group becomes G_{64}.
37. A substitution S commutative with G_{4}^{2} must replace ξ_{5} by $\pm \xi_{5}$ (Corollary II of §22) and transform $C_{1} C_{2}$ into itself or $C_{2} C_{4}$. Hence $S=O_{1,2} O_{3,4} C$ or its product by B_{3}, respectively.

Theorem. Within O_{Ω}, the group G_{4}^{2} is self-conjugate only under

$$
H_{4(p n-\nu)^{2}}^{\prime}=\left(Q_{i, 2}^{\lambda, \mu} Q_{3,4}^{\rho, \sigma}, G_{64}\right) .
$$

For $p^{n}=3$ or 5 , this group becomes G_{64}.
38. The group K_{4}^{\prime} is certainly self-conjugate under H_{96} of $\S 33$. Within the latter $C_{2} C_{4}, C_{2} C_{5}$ and $C_{4} C_{5}$ are conjugate, and H_{96} has substitutions which transform $C_{2} C_{4}$ into itself and $C_{2} C_{5}$ into $C_{4} C_{5}$. It thus remains to determine the substitutions S commutative with each $C_{2} C_{4}, C_{2} C_{5}, C_{4} C_{5}$. Now $S=O_{1, ~}^{\lambda, \mu_{3}} C$, where C is a product of the C_{i}.

Theorem. Within $O_{\Omega}, K_{4}^{\prime}$ is self-conjugate only under $H_{24\left(p^{n-v)}\right.}$.
39. A substitution commutative with $K_{4}^{\prime \prime \prime}$ and hence with $C_{1} C_{3}$ is either $S=O_{1,3}^{\lambda, \mu} O_{2,4,5}$ or $S C_{1}$. Now S transforms $C_{1} C_{2}^{\prime} C_{4} C_{5}$ into

$$
\begin{gathered}
\xi_{1}^{\prime}=\left(\mu^{2}-\lambda^{2}\right) \xi_{1}+2 \lambda \mu \xi_{3}, \quad \xi_{3}^{\prime}=2 \lambda \mu \xi_{1}+\left(\lambda^{2}-\mu^{2}\right) \xi_{3} \\
\xi_{2}^{\prime}=-\xi_{2}, \quad \xi_{4}^{\prime}=-\xi_{4}, \quad \xi_{5}^{\prime}=-\xi_{5}
\end{gathered}
$$

Hence $\lambda \mu=0$ is the necessary and sufficient condition that the transform shall belong to $K_{4}^{\prime \prime \prime}$. The substitutions commutative with it are

$$
C O_{2,4,5}, \quad\left(\xi_{1} \xi_{3}\right) C O_{2,4,5} \quad\left(c=I, C_{1}, C_{3}, C_{1} C_{3}\right)
$$

The number of substitutions $O_{2,4,5}$ of determinant ± 1 is $2\left(p^{2 n}-1\right) p^{n}$, by Linear Groups, p. 160. Hence $\frac{1}{4} \cdot 8 \cdot 2\left(p^{2 n}-1\right) p^{n}$ substitutions of O_{Ω} are commutative with $K_{4}^{\prime \prime \prime}$.

Theorem. Within $O_{\Omega}, K_{4}^{\prime \prime \prime}$ is self-conjugate only under $G_{4 p n\left(p^{2 n-1)}\right.}$.
Corollary. Exactly $p^{n}\left(p^{2 n}-1\right)\left(p^{n}-\nu\right)$ substitutions of O_{Ω} are commutative with $C_{1} C_{3}$.
40. A substitution S commutative with J_{8} replaces ξ_{5} by $\pm \xi_{5}$. If S is of determinant +1 and is commutative with $B_{3} C_{1} C_{2}$ it has the form

$$
K=\left(\begin{array}{ccccr}
\alpha_{11} & \alpha_{12} & \alpha_{13} & \alpha_{14} & 0 \\
\alpha_{21} & \alpha_{22} & \alpha_{23} & \alpha_{24} & 0 \\
-\alpha_{13}-\alpha_{14} & \alpha_{11} & \alpha_{12} & 0 \\
-\alpha_{23} & -\alpha_{24} & \alpha_{21} & \alpha_{22} & 0 \\
0 & 0 & 0 & 0 & +1
\end{array}\right]
$$

If K is commutative with $C_{1} C_{2}$, then $\alpha_{13}=\alpha_{14}=\alpha_{23}=\alpha_{24}=0$. The resulting $2\left(p^{n}-\nu\right)$ substitutions are commutative with B_{3} and hence with J_{8} and all belong to O_{a}. If K transforms $C_{1} C_{2}$ into B_{3} (and inace B_{3} into $C_{3} C_{4}$ and hence J_{8} into itself), then $\alpha_{13}=\alpha_{11}, \alpha_{14}=\alpha_{12}, \alpha_{23}=\alpha_{21}, \alpha_{24}=\alpha_{22}$. The orthogonal conditions then reduce to $\alpha_{21}= \pm \alpha_{12}, \alpha_{22}=\mp \alpha_{11}, \alpha_{11}^{2}+\alpha_{12}^{2}=\frac{1}{2}$. Denoting the resulting substitution by $K_{ \pm}$, we have $K_{-}=K_{+} C_{2} C_{4}$. We proceed to show that K_{+}(and hence K_{-}) does not belong to $O_{\Omega} . \quad$ Setting $\alpha_{11}=\alpha$ and $\alpha_{12}=\beta$, we have for K_{+}

$$
[\alpha, \beta]=\left(\begin{array}{rrrrr}
\alpha & \beta & \alpha & \beta & 0 \\
\beta-\alpha & \beta-\alpha & 0 \\
-\alpha-\beta & \alpha & \beta & 0 \\
-\beta & \alpha & \beta-\alpha & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right) \quad\left(\alpha^{2}+\beta^{2}=\frac{1}{2}\right)
$$

For $p^{n}=3,[1,1]=W^{2}\left(\xi_{2} \xi_{3}\right) C_{2}$,

$$
[-1,-1]=[1,1] C_{1} C_{2} C_{3} C_{4},[1,-1]=W^{2}\left(\xi_{2} \xi_{3} \xi_{4}\right)\left(\xi_{1} \xi_{2}\right) C_{1} C_{2} C_{4}
$$

so that none of the $[\alpha, \beta]$ belong to O_{Ω}.
For any $G F\left[p^{n}\right]$ in which -1 is the square of a mark i, we make the transformation of variables given in Linear Groups, p. 180, and get

	Y_{12}	Y_{13}	Y_{14}	Y_{23}	Y_{24}	Y_{34}
Y_{12}^{\prime}	$\frac{1}{2}(1+\alpha)$	$-\frac{1}{2}(\alpha+i \beta)$	$\frac{1}{2} i \beta$	$\frac{1}{2} i \beta$	$-\frac{1}{2}(\alpha-i \beta)$	$\frac{1}{2}(1-\alpha)$
Y_{13}^{\prime}	$\frac{1}{2}(\alpha+i \beta)$	$-i \beta$	$\frac{1}{2}(\alpha-i \beta)$	$\frac{1}{2}(\alpha-i \beta)$	α	$-\frac{1}{2}(\alpha+i \beta)$
Y_{14}^{\prime}	$\frac{1}{2} i \beta$	$-\frac{1}{2}(\alpha-i \beta)$	$\frac{1}{2}(1-\alpha)$	$-\frac{1}{2}(1+\alpha)$	$\frac{1}{2}(\alpha+i \beta)$	$-\frac{1}{2} i \beta$
Y_{23}^{\prime}	$\frac{1}{2} i \beta$	$-\frac{1}{2}(\alpha-i \beta)$	$-\frac{1}{2}(1+\alpha)$	$\frac{1}{2}(1-\alpha)$	$\frac{1}{2}(\alpha+i \beta)$	$-\frac{1}{2} i \beta$
Y_{24}^{\prime}	$\frac{1}{2}(\alpha-i \beta)$	α	$-\frac{1}{2}(\alpha+i \beta)$	$-\frac{1}{2}(\alpha+i \beta)$	$i \beta$	$-\frac{1}{2}(\alpha-i \beta)$
Y_{34}^{\prime}	$\frac{1}{2}(1-\alpha)$	$\frac{1}{2}(\alpha+i \beta)$	$-\frac{1}{2} i \beta$	$-\frac{1}{2} i \beta$	$\frac{1}{2}(\alpha-i \beta)$	$\frac{1}{2}(1+\alpha)$.

The determinant (141) of Linear Groups, p. 154, here equals

$$
\frac{1}{4}(1+2 i \beta)\left(\alpha^{2}+i \beta+\beta^{2}\right)
$$

and must be a square or zero. Applying $\alpha^{2}+\beta^{2}=\frac{1}{2}$, it reduces to

$$
\frac{1}{2} \cdot \frac{1}{4}(1+2 i \beta)^{2}
$$

By proper choice of i as a root of $x^{2}=-1$, we can assume that $1+2 i \beta \neq 0$.
But 2 is a not-square. Herice none of the $[\alpha, \beta]$ belong to O_{a}.
Finally, $C_{1} C_{2}$ of J_{8} transforms $B_{3} C_{1} C_{2}$ into its inverse $B_{3} C_{3} C_{4}$.
Theorem. Within O_{Ω}, the group J_{8} is self-conjugate only under

$$
\begin{equation*}
G_{B\left(p^{n-\nu)}\right.}=\left(G_{32}, Q_{1,2}^{\lambda, \mu} Q_{3,4}^{\lambda, \mu}\right) \tag{66}
\end{equation*}
$$

Corollary. For $p^{n}=3$ or $5, J_{8}$ is self-conjugate only under G_{32}.
41. A substitution S commutative with $F_{8}^{\prime \prime \prime}$ replaces ξ_{5} by $\pm \xi_{5}$. Then S is commutative with $B_{2} C_{1} C_{4}$ if and only if it has the form

$$
S_{1}=\left(\begin{array}{ccccr}
\alpha_{11} & \alpha_{12} & \alpha_{13} & \alpha_{14} & 0 \\
-\alpha_{12} & \alpha_{11} & \alpha_{14} & -\alpha_{13} & 0 \\
\alpha_{31} & \alpha_{32} & \alpha_{33} & \alpha_{34} & 0 \\
\alpha_{32} & -\alpha_{31} & -\alpha_{34} & \alpha_{33} & 0 \\
0 & 0 & 0 & 0 & \pm 1
\end{array}\right)
$$

Hence S_{1} is commutative with the inverse $B_{2} C_{2} C_{3}$ of $B_{2} C_{1} C_{4}$. There are four further substitutions of period 4 in $F_{8}^{\prime \prime \prime}: B_{3} C_{1} C_{2}, B_{3} C_{3} C_{4}, B_{4} C_{1} C_{3}, B_{4} C_{2} C_{4}$. If S_{1} is commutative with $B_{3} C_{1} C_{2}$, then $\alpha_{31}=-\alpha_{13}, \alpha_{32}=-\alpha_{14}, \alpha_{33}=\alpha_{11}$, $\alpha_{34}=\alpha_{12}$. The orthogonal conditions then reduce to $\alpha_{11}^{2}+\alpha_{12}^{2}+\alpha_{13}^{2}+\alpha_{14}^{2}=0$. Hence by Linear Groups, p. 47, there are $p^{3 n}-p^{n}$ substitutions S_{1}^{\prime} of determinant +1 commutative with $B_{3} C_{1} C_{2}$, and consequently commutative with

$$
B_{2} C_{1} C_{4} \cdot B_{3} C_{1} C_{2}=B_{4} C_{1} C_{3}
$$

and hence with the group $F_{8}^{\prime \prime \prime}$. If S_{1} transforms $B_{3} C_{1} C_{2}$ into its inverse, $S_{1}=S_{1}^{\prime} C_{1} C_{2}$. If S_{1}^{\prime} transforms $B_{3} C_{1} C_{2}$ into $B_{4} C_{1} C_{3}, S_{1}=S_{1}^{\prime}\left(\xi_{2} \xi_{4} \xi_{3}\right)$ and transforms $B_{4} C_{1} C_{3}$ into $B_{3} C_{3} C_{4}$. By symmetry there exist orthogonal substitutions of determinant +1 which transform $F_{8}^{\prime \prime \prime}$ into itself and transform $B_{2} C_{1} C_{4}$ into $B_{3} C_{1} C_{2}$ and are commutative with $B_{4} C_{1} C_{3}$. Hence there are $6 \cdot 4 \cdot\left(p^{3 n}-p^{n}\right)$ orthogonal substitutions of determinant +1 which are commutative with $F_{8}^{\prime \prime \prime}$. Exactly half of these belong to O_{0}, since $\left(\xi_{1} \xi_{2}\right) C_{1}$ transforms $B_{2} C_{1} C_{4}, B_{3} C_{1} C_{2}$ and $B_{4} C_{1} C_{3}$ into $B_{2} C_{1} C_{4}, B_{4} C_{2} C_{4}$ and $B_{3} C_{1} C_{2}$, respectively, and hence $F_{8}^{\prime \prime \prime}$ into itself.

Theorem. Within $O_{0}, F_{8}^{\prime \prime \prime}$ is self-conjugate only under $G_{12 p^{n}\left(p^{2 n-1)}\right.}$.
42. The group K_{4}^{*} contains $I, C_{1} C_{3}, B_{3}$ and $B_{3} C_{1} C_{3}$. Now $C_{1} C_{5}$ transforms B_{3} into $B_{3} C_{1} C_{3}$, and $C_{1} C_{3}$ into itself. By $\S 32, O_{\Omega}$ contains a substitution which transforms $C_{1} C_{3}$ and B_{3} into each other. Hence the number of substitutions of O_{0} commutative with K_{4}^{*} is 6 times the number commutative with each of its operators. If $\left(\alpha_{i j}\right)$ is commutative with $C_{1} C_{3}$, then $\alpha_{12}, \alpha_{14}, \alpha_{15}$, $\alpha_{32}, \alpha_{34}, \alpha_{35}, \alpha_{21}, \alpha_{23}, \alpha_{41}, \alpha_{43}, \alpha_{51}, \alpha_{53}$ are all zero. If it is also commutative with B_{3}, then $\alpha_{31}=\alpha_{13}, \alpha_{33}=\alpha_{11}, \alpha_{42}=\alpha_{24}, \alpha_{44}=\alpha_{22}, \alpha_{45}=\alpha_{25}, \alpha_{54}=\alpha_{52}$. The resulting orthogonal substitutions are

$$
\left(\begin{array}{lllll}
\alpha_{11} & 0 & \alpha_{13} & 0 & 0 \tag{67}\\
0 & \alpha_{22} & 0 & \alpha_{24} & \alpha_{23} \\
\alpha_{13} & 0 & \alpha_{11} & 0 & 0 \\
0 & \alpha_{24} & 0 & \alpha_{22} & \alpha_{25} \\
0 & \alpha_{52} & 0 & \alpha_{52} & \alpha_{55}
\end{array}\right] \quad\left[\begin{array}{l}
\alpha_{11}^{2}+\alpha_{13}^{2}=1, \alpha_{11} \alpha_{13}=0 \\
\alpha_{22}^{2}+\alpha_{24}^{2}+a_{25}^{2}=1,2 \alpha_{22} \alpha_{24}+\alpha_{25}^{2}=0 \\
2 \alpha_{52}^{2}+\alpha_{55}^{2}=2 \alpha_{25}^{2}+\alpha_{55}^{2}=1 \\
a_{52}\left(\alpha_{22}+\alpha_{24}\right)+\alpha_{25} \alpha_{55}=0
\end{array}\right]
$$

Trans. Am. Math. Sce 3

The condition that the determinant shall equal +1 is

$$
\begin{equation*}
\left(\alpha_{22}-\alpha_{24}\right)\left[\alpha_{55}\left(\alpha_{22}+\alpha_{24}\right)-2 \alpha_{25} \alpha_{52}\right]=1 . \tag{68}
\end{equation*}
$$

The conditions on $\alpha_{22}, \alpha_{24}, \alpha_{25}, \alpha_{52}, \alpha_{55}$ are seen to reduce to the following:

$$
\begin{equation*}
\alpha_{24}=\alpha_{22} \pm 1, \alpha_{52}= \pm \alpha_{25}, \alpha_{55}=\mp 2 \alpha_{22}-1,2 \alpha_{25}^{2}+\left(2 \alpha_{22} \pm 1\right)^{2}=1 . \tag{69}
\end{equation*}
$$

By Linear Groups, p. 48, the last condition has $p^{n}+\nu$ sets of solutions $\alpha_{25}, 2 \alpha_{22} \pm 1$, if 2 is a not-square and $\nu= \pm 1$ according as $p^{n}=4 l \pm 1$. There are 4 sets of solutions of $\alpha_{11}^{2}+\alpha_{13}^{2}=1, \alpha_{11} \alpha_{13}=0$. Of the resulting $2 \cdot 4 \cdot\left(p^{n}+\nu\right)$ substitutions, half belong to O_{a}, since but one of the pair S and $S\left(\xi_{1} \xi_{3}\right) C_{3}$ does.
Theorem. Within O_{a}, K_{4} is self-conjugate only under $G_{24(p n+\nu)}$.
43. The group T_{8} contains $C_{1} C_{0}$ and $C_{3} C_{0}$, but no further $C_{t} C_{0}$. Hence, as in the proof of Corollary III of $\S 22$, a substitution S commutative with T_{8} must replace the pair ξ_{1}, ξ_{3} by $\pm \xi_{1}, \pm \xi_{3}$ in some order. Hence S is commutative with $C_{1} C_{3}$. If S be commutative with B_{3}, it is of the form (67), of which $4\left(p^{n}+\nu\right)$ belong to O_{n}. Then S is commutative with $B_{3} C_{1} C_{3}$ and transforms $B_{3} C_{1} C_{0}$ into $B_{3} C_{1} C_{0}$ or $B_{3} C_{3} C_{0}$, since it transforms $C_{1} C_{0}$ and $C_{3} C_{0}$ amongst themselves. Next, $C_{1} C_{5}$ transforms T_{8} into itself and B_{3} into $B_{3} C_{1} C_{3}$, $B_{3} C_{1} C_{0}$ into $B_{3} C_{3} C_{0}$. Finally, B_{3} and $B_{3} C_{1} C_{0}$ have different characteristic determinants.

Theorem. Within O_{Ω}, T_{8} is self-conjugate only under $G_{8\left(p^{n+v)}\right.}$.
44. Every orthogonal substitution commutative with $B_{3} C_{1} C_{5}$ has the form

$$
\left[\begin{array}{ccccc}
\alpha_{11} & 0 & \alpha_{13} & 0 & 0 \tag{70}\\
0 & \alpha_{22} & 0 & \alpha_{24} & \alpha_{25} \\
-\alpha_{13} & 0 & \alpha_{11} & 0 & 0 \\
0 & \alpha_{24} & 0 & \alpha_{22} & -\alpha_{25} \\
0 & \alpha_{52} & 0 & -\alpha_{52} & \alpha_{55}
\end{array}\right]
$$

$$
\left(\begin{array}{l}
\alpha_{11}^{2}+\alpha_{13}^{2}=1, \alpha_{22}^{2}+\alpha_{24}^{2}+\alpha_{25}^{2}=1 \\
2 \alpha_{22} \alpha_{24}-\alpha_{25}^{2}=0 \\
2 \alpha_{52}^{2}+\alpha_{55}^{2}=2 \alpha_{25}^{2}+\alpha_{55}^{2}=1 \\
\alpha_{22} \alpha_{52}-a_{24} \alpha_{52}+\alpha_{25} \alpha_{35}=0
\end{array}\right] .
$$

The conditions on $\alpha_{22}, \alpha_{24}, \alpha_{25}, \alpha_{52}, \alpha_{55}$ and that for determinant +1 are seen to reduce to (69) if the sign of α_{24} is changed in the latter. Hence these conditions have $2\left(p^{n}+\nu\right)$ sets of solutions. Again, $\alpha_{11}^{2}+\alpha_{13}^{2}=1$ has $p^{n}-\nu$ sets of solutions. Hence exactly * $p^{2 n}-1$ of the $2\left(p^{2 n}-1\right)$ substitutions (70) of determinant +1 belong to O_{n}.

Observing that $C_{1} C_{5}$ transforms $B_{3} C_{1} C_{5}$ into its inverse, we may state the
Theorem. Within O_{a}, the group ($B_{3} C_{1} C_{5}$) is self-conjugate only under a group $G_{2\left(p^{2 n-1)}\right.}$.

[^10]45. Since L_{8} contains a single cyclic subgroup ($B_{3} C_{1} C_{5}$) of order 4, a substitution which transforms L_{8} into itself must be of the form (70) or its product by $C_{1} C_{5}$. Now (70) transforms the substitution $C_{1} C_{5}$ of L_{8} into
\[

\left[$$
\begin{array}{ccccc}
\alpha_{13}^{2}-\alpha_{11}^{2} & 0 & 2 \alpha_{11} \alpha_{13} & 0 & 0 \tag{71}\\
0 & 1-2 \alpha_{25}^{2} & 0 & 2 \alpha_{25}^{2} & k \\
2 \alpha_{11} \alpha_{13} & 0 & \alpha_{11}^{2}-\alpha_{13}^{2} & 0 & 0 \\
0 & 2 \alpha_{25}^{2} & 0 & 1-2 \alpha_{25}^{2} & -k \\
0 & k & 0 & -k & 1-2 \alpha_{53}^{2}
\end{array}
$$\right]\left[k=\alpha_{52}\left(\alpha_{22}-\alpha_{24}\right)-\alpha_{25} \alpha_{55}\right] .
\]

If (71) reduces to $C_{1} C_{5}$, then $\alpha_{13}=0, \alpha_{25}=0, \alpha_{55}=1$, so that (70) becomes $I, C_{1} C_{3}, C_{2} C_{4}$ or $C_{1} C_{2} C_{3} C_{4}$, in case it belongs to O_{Ω}. If (71) reduces to $C_{3} C_{5}$, then $\alpha_{11}=0, \alpha_{25}=0, \alpha_{55}=-1$, so that (70) becomes $B_{3} C_{i} C_{5}$ or $B_{3} C_{i} C_{0}(i=1,3)$, in case it belongs to O_{Ω}. The remaining substitutions of period 2 of L_{8}, other than $C_{1} C_{3}=\left(B_{3} C_{1} C_{5}\right)^{2}$, are B_{3} and $B_{3} C_{1} C_{3}$. But (71) cannot reduce to either of these when 2 is a not-square. Now

$$
\begin{equation*}
I, C_{1} C_{3}, C_{2} C_{4}, C_{1} C_{2} C_{3} C_{4}, B_{3} C_{i} C_{5}, B_{3} C_{i} C_{0} \quad(i=1,3) \tag{72}
\end{equation*}
$$

together with their products by $C_{1} C_{5}$, give the 16 substitutions of G_{16}^{\prime}.

It is seen to be the second compound of

$$
\Gamma=\left[\begin{array}{cccc}
x & y & r y & -r x \\
z & w & r w & -r z \\
-r z & -r w & w & -z \\
r x & r y & -y & x
\end{array}\right] \quad\left(r=\frac{-a_{13}}{1+a_{11}}=\frac{a_{11}-1}{a_{13}}\right),
$$

if and only if the following conditions hold

$$
\begin{aligned}
& x y=\frac{-P_{ \pm}}{1+r^{2}}, \quad x z=\frac{-P_{+}}{1+r^{2}}, \quad x w=\frac{\alpha_{22}+1}{2\left(1+r^{2}\right)}, \quad x^{2}=\frac{A}{1+r^{2}}, \quad y^{2}=\frac{-B}{1+r^{2}}, \\
& z w=\frac{P_{\mp}}{1+r^{2}}, \quad y w=\frac{P_{-}}{1+r^{2}}, \quad y z=\frac{\alpha_{21}-1}{2\left(1+r^{2}\right)}, \quad z^{2}=\frac{-C}{1+r^{2}}, \quad w^{2}=\frac{D}{1+r^{2}}
\end{aligned}
$$

We have $1+r^{2}=2 /\left(1+\alpha_{11}\right)$. These conditions are seen to be compatible and to determine (except as to sign) marks x, y, z, w of the field if and only if any non vanishing one of the last four fractions is a square. For example, $\left.\left.B C=\frac{1}{4}\left(1-\alpha_{22}\right)^{2}, A I\right)=\frac{1}{4} \cdot 1+\alpha_{22}\right)^{2}, A B=-\mu_{ \pm}^{2}$.

If $\alpha_{13}=0, \alpha_{11}=+1$, we take $r=0$. If $\alpha_{13}=0 . \alpha_{11}=-1$, the formula fail, but the substitution (70) is then the product of the preceding by $C_{1} C_{3}$, so that one belongs to O_{Ω} if the other does.

Theorem. Within O_{Ω}, the group L_{8} is self-conjugate only under G_{16}^{\prime}.
46. The group H_{16}^{3} contains 8 substitutions of period 4: $B_{3} C_{i} C_{5}$ and $B_{3} C_{i} C_{0}(i=1,3)$, all of which are conjugate under $G_{64}(\S 6)$. A substitution which transforms $B_{3} C_{1} C_{5}$ into itself and $C_{1} C_{2}$ into a substitution of H_{16}^{3} belongs to the set (72). Indeed, the conditions on (70) are
$\alpha_{25}=0, \alpha_{11}=0, \alpha_{22}=0, \alpha_{55}=-1 ; \quad$ or $\quad \alpha_{25}=0, \alpha_{13}=0, \alpha_{24}=0, \alpha_{55}=1$.
Theorem. Within O_{Ω}, the group H_{16}^{3} is self-conjugate only under G_{64}.
47. The only self-conjugate substitutions of period 4 of F_{16} are $B_{2} C_{1} C_{3}$ and its inverse $B_{2} C_{2} C_{4}(\S 13)$. These must be transformed among themselves by any substitution commutative with F_{16}. Every substitution S commutative with $B_{2} C_{1} C_{3}$ has the form

$$
S=\left[\begin{array}{ccccr}
\alpha_{11} & \alpha_{12} & \alpha_{13} & \alpha_{14} & 0 \\
-\alpha_{12} & \alpha_{11} & -\alpha_{14} & \alpha_{13} & 0 \\
\alpha_{31} & \alpha_{32} & \alpha_{33} & \alpha_{34} & 0 \\
-\alpha_{32} & \alpha_{31} & -\alpha_{34} & \alpha_{33} & 0 \\
0 & 0 & 0 & 0 & \pm 1
\end{array}\right] .
$$

The further substitutions of period 4 of F_{16} are $B_{2} C_{1} C_{4}$ and $B_{2} C_{2} C_{3}, B_{3} C_{1} C_{2}$ and $B_{3} C_{3} C_{4}, B_{4} C_{1} C_{3}$ and $B_{4} C_{2} C_{4}$, the two of each pair being conjugate within G_{32}, under which F_{16} is self-conjugate ($\S 10$).

If S is commutative with $B_{2} C_{1} C_{4}$, then $\alpha_{13}, \alpha_{14}, \alpha_{31}, \alpha_{32}$ are zero, so that $S=O_{1,2}^{a_{11}, a_{12}} O_{3,4}^{\alpha_{3,}, a_{34}}$ if it is orthogonal and of determinant +1 . If further S be commutative with $B_{3} C_{1} C_{2}$ and hence with F_{16}, then $\alpha_{33}=\alpha_{11}, \alpha_{34}=\alpha_{12}$. But if S transforms $B_{3} C_{1} C_{2}$ into $B_{4} C_{1} C_{3}$, then $\alpha_{33}=\alpha_{12}, \alpha_{34}=-\alpha_{11}$, so that $S=O_{1,2}^{a_{11}, a_{12}} O_{3,4}^{2_{11}, \alpha_{12}}\left(\xi_{3} \xi_{4}\right) C_{3}$ and hence is not in O_{a}. Hence $O_{1,2}^{a_{11}, a_{12}} O_{3,4}^{a_{11}, a_{12}}$ and its product by $C_{1} C_{2}$ are the only substitutions S of O_{Ω} which are commutative with F_{16} and $B_{2} C_{1} C_{4}$. Their products by B_{3} are the only ones transforming $B_{2} C_{1} C_{4}$ into $B_{2} C_{2} C_{3}$.

If an orthogonal substitution of the form S transforms $B_{2} C_{1} C_{4}$ into $B_{3} C_{1} C_{2}$, it has the form

$$
S^{\prime}=\left(\begin{array}{cccrr}
\alpha_{11} & \alpha_{12} & \alpha_{13} & \alpha_{14} & 0 \\
-\alpha_{12} & \alpha_{11} & -\alpha_{14} & \alpha_{13} & 0 \\
-\alpha_{12} & \alpha_{11} & \alpha_{14} & -\alpha_{13} & 0 \\
-\alpha_{11} & -\alpha_{12} & \alpha_{13} & \alpha_{14} & 0 \\
0 & 0 & 0 & 0 & \pm 1
\end{array}\right] \quad \begin{aligned}
& \\
& \binom{\alpha_{11}^{2}+\alpha_{12}^{2}=\frac{1}{2}}{\alpha_{13}^{2}+\alpha_{14}^{2}=\frac{1}{2}} .
\end{aligned}
$$

Its determinant equals $\pm 4\left(\alpha_{11}^{2}+\alpha_{12}^{2}\right)\left(\alpha_{13}^{2}+\alpha_{14}^{2}\right)$. We therefore take $\pm 1=+1$. Then $S^{\prime \prime}$ transforms $B_{3} C_{1} C_{2}$ into

$$
\left[\begin{array}{rrrrr}
0 & \rho & 0 & \sigma & 0 \\
-\rho & 0 & -\sigma & 0 & 0 \\
0 & \sigma & 0 & -\rho & 0 \\
-\sigma & 0 & \rho & 0 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right] \quad\binom{\rho=2 a_{11} a_{14}-2 a_{12} a_{13}}{\sigma=-2 a_{11} a_{13}-2 a_{12} a_{14}}
$$

Then $\rho^{2}+\sigma^{2}=1$. This belongs to F_{16} (and consequently S^{\prime} transforms F_{16} into itself) only when $\rho \sigma=0$. If $\sigma=0$, it becomes $B_{2} C_{1} C_{4}$ or $B_{2} C_{2} C_{3}$. If $\rho=0$, it becomes $B_{4} C_{1} C_{3}$ or $B_{4} C_{2} C_{4}$. Since 2 is a not-square, the conditions on $S^{\prime \prime}$ show that $\alpha_{11}, \alpha_{12}, \alpha_{13}, \alpha_{14}$ all differ from 0 . Hence $\rho=0$ gives $\alpha_{13}= \pm \alpha_{11}, \alpha_{14}= \pm \alpha_{12}$, while $\sigma=0$ gives $\alpha_{13}= \pm \alpha_{12}, \alpha_{14}=\mp \alpha_{11}$. From the remark at the end of the section it follows * indirectly that exactly half of the resulting substitutions belong to O_{Ω}.

If an orthogonal substitution of the form S transforms $B_{2} C_{1} C_{4}$ into $B_{4} C_{1} C_{3}$ then $S=S^{\prime \prime}\left(\xi_{3} \xi_{4}\right) C_{3}$.

The total number of orthogonal substitutions S of determinant +1 which transforms F_{16} into itself is therefore $6 \cdot 4 \cdot\left(p^{n}-\nu\right)$. These, together with their products by $C_{1} C_{3}$ (which transforms F_{16} into itself and $B_{2} C_{1} C_{3}$ into its inverse $B_{2} C_{2} C_{4}$), give all of determinant +1 which transforms F_{16} into itself. But $\left(\xi_{1} \xi_{2}\right) C_{1}$ transforms F_{16} into itself. Hence exactly $6 \cdot 4 \cdot\left(p^{n}-\nu\right)$ belong to O_{Ω}.

Theorem. Within O_{Ω}, F_{16} is self-conjugate only under $G_{2 t\left(p^{n-\nu)}\right.}$.
Another proof follows from the results of $\S 26$. The substitutions of O_{a} commutative with $B_{2} C_{1} C_{3}$ are found from those commutative with $B_{3} C_{1} C_{4}$ by transformation by $\left(\xi_{2} \xi_{3} \xi_{4}\right)$. From (55) we thus get

$$
\begin{array}{r}
B_{i}, B_{i} C_{1} C_{2}, B_{i} C_{3} C_{4}, B_{i} C_{1} C_{2} C_{3} C_{4}, B_{j} C_{1} C_{3}, B_{j} C_{1} C_{4}, B_{j} C_{2} C_{3}, B_{j} C_{2} C_{4} \tag{73}\\
(i=1,3 ; j=2,4)
\end{array}
$$

Hence, for $p^{n}=3$, these and their products by $W\left(\xi_{2} \xi_{4} \xi_{3}\right)$ and by its inverse give all the substitutions commutative with $B_{2} C_{1} C_{3}$. Inversely, they transform F_{16} into itself. For $p^{n}=5$, the 12 types S^{\prime} with a single vanishing $\alpha_{1 j}$ are seen to be excluded as in $\S 27$. Consider next $\Sigma *$, the transform of S^{\prime} by $\left(\xi_{2} \xi_{3} \xi_{4}\right)$, where S^{\prime} is the substitution of $\S 11$ subject to the conditions (56). We find that $\Sigma *$ transforms $C_{1} C_{2}$ and B_{3} into respectively

[^11]\[

\left.\left($$
\begin{array}{ccccc}
0 & 0 & \rho & \sigma & 0 \\
0 & 0 & -\sigma & \rho & 0 \\
\rho-\sigma & 0 & 0 & 0 \\
\sigma & \rho & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}
$$\right),\left($$
\begin{array}{rrrrr}
\lambda & 0 & 0 & \mu & 0 \\
0 & \lambda & -\mu & 0 & 0 \\
0 & -\mu & -\lambda & 0 & 0 \\
\mu & 0 & 0 & -\lambda & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}
$$\right) \left\lvert\, $$
\begin{array}{l}
\rho=2 \alpha_{12} \alpha_{22}+2 \alpha_{11} \alpha_{13} \alpha_{14} \alpha_{22} \\
\sigma=2 \alpha_{11} \alpha_{13}+2 \alpha_{12} \alpha_{14} \\
\lambda=2 \alpha_{11} \alpha_{12}+2 \alpha_{13} \alpha_{14} \\
\mu=2 \alpha_{11} \alpha_{14}-2 \alpha_{12} \alpha_{13}
\end{array}
$$\right.\right] .
\]

Since $\rho^{2}+\sigma^{2} \equiv 1$, either $\rho=0$, whence the first substitution is either $B_{4} C_{1} C_{4}$ or $B_{4} C_{2} C_{3}$, or $\sigma=0$, whence it is either B_{3} or $B_{3} C_{1} C_{2} C_{3} C_{4}$. Since $\lambda^{2}+\mu^{2} \equiv 1$, either $\lambda=0$ and the second substitution is either $B_{4} C_{1} C_{4}$ or $B_{4} C_{2} C_{3}$, or $\mu=0$ and it is either $C_{1} C_{2}$ or $C_{3} C_{4}$. The resulting substitutions all belong to F_{16}. But $B_{2} C_{1} C_{3}, C_{1} C_{2}$ and B_{3} generate F_{16}. Hence each of the 32 substitutions Σ * transforms F_{16} into itself. These together with the 16 substitutions (73) give all the 48 substitutions of O_{Ω} which transform F_{16} and $B_{2} C_{1} C_{3}$ each into itself. But B_{2} transforms F_{16} into itself and $B_{2} C_{1} C_{3}$ into its inverse. Hence F_{16} is self-conjugate only under the group $\left(G_{32}, \Sigma^{*}\right)$ of order 96.

The University of Chicago, July 25, 1903.

[^0]: * Presented to the Society at the Boston meeting, August 31-September 1, 1903. Received for publication, July 28, 1903.
 \dagger In the theory we have recourse to the generators (see § 2). When this becomes impracticable, we resort to the isomorphism with the abelian group by means of the "second-compound" theory (compare SS 11, 40, 44).
 \ddagger Transactions, vol. 4 (1903), pp. 371-386.

[^1]: * Two sets of generational relatious for G_{960} are given in Lintar Gro" μs, p. 293.

[^2]: * Hence the self-conjugate subgronps may also be determined from a study of the quotientgroup G_{64} / G_{2}.

[^3]: * A nother proof may be based on the quotient-group, F_{16} / G_{2}, which is a commutative group all of whose operators aside from identity are of period 2.

[^4]: * Another proof follows from Lemma I, § 22, taking $t=5$, since S transforms $C_{1} C_{2} C_{3} C_{4}$ into a substitntion of G_{960} only if it replaces some ξ_{r} by $\pm \xi_{5}$. Then $r=5$, since S must transform $C_{1} C_{3}$ and $C_{2} C_{4}$ amongst themselves. Hence S replaces ξ_{5} by $\pm \xi_{5}$ and cannot transform $C_{1} C_{2}$ or $C_{1} C_{4}$ into a substitution involving ξ_{5}.

[^5]: * Transactions, vol. 2(1901), bottom of p. 109. The number is the same for the quotientgroup of order Ω since P_{12} transforms $T_{1,-1}$ into $T_{2,-1}=T_{1,-1} \cdot T_{1,-1} T_{2,-1}$.

[^6]: * Since this has $p^{3 n}-p^{n}$ sets of solntions (Linear Groups, p. 47), we obtain a second proof.

[^7]: * Note that one of the four $S^{\prime}, B_{4} S^{\prime}, B_{3} C_{1} C_{2} S^{\prime}, B_{2} C_{1} C_{2} S^{\prime}$ has $\alpha_{14}=0$, while each is commutative with $B_{3} C_{1} C_{4}$. Also, $\left(\xi_{1} \xi_{2} \xi_{3}\right) S^{\prime}$ has $\alpha_{11}^{2}=-1, \alpha_{12}^{2}=\alpha_{13}^{2}=+1$, and belongs to O_{Ω} it and only if S^{\prime} does.

[^8]: ${ }^{*}$ Note that $\Sigma=C_{4} s_{3}^{* *} C_{4}\left(\xi_{2} \xi_{4} \xi_{3}\right)$.

[^9]: *For $p^{n}=5$, the values $\alpha_{11}=\alpha_{12}=\alpha_{22}=2, \pm 1=-1$, make the transformer equal to $C_{2} C_{3} C_{4} C_{5}\left(\xi_{2} \xi_{4} \xi_{3}\right) R_{234} C_{2} C_{4} R_{124}\left(\xi_{1} \xi_{4} \xi_{3}\right) R_{234}$.

[^10]: * To make an explicit determination of them, we proceed as in Linear Groups, § 189. When -1 is the square of a mark i, (70) becomes

[^11]: *To give a direct proof for $p^{n}=3$, we note a substitution given by the lower signs is the product of $C_{3} C_{4}$ and that given by the upper signs. For $\alpha_{13}=\alpha_{11}=+1, \alpha_{14}=\alpha_{12}=+1$, $S^{\prime}=W^{2}\left(\xi_{2} \xi_{3} \xi_{4}\right) ;$ for $\alpha_{13}=\alpha_{11}=+1, \alpha_{14}=\alpha_{12}=-1, S^{\prime}=W^{2}\left(\xi_{2} \xi_{3} \xi_{4}\right) C_{2} C_{4} B_{2} ;$ for $\alpha_{13}=\alpha_{12}=1$, $\alpha_{14}=-\alpha_{11}=-1, \quad S^{\prime}=C_{2} C_{3} W\left(\xi_{2} \xi_{4} \xi_{3}\right)\left(\xi_{3} \xi_{4}\right) C_{2} C_{3} C_{4} \equiv S^{\prime \prime} ;$ for $\alpha_{13}=\alpha_{12}=1, \alpha_{14}=-\alpha_{11}=1$, $S^{\prime}=C_{2} C_{3} S^{\prime \prime} C_{1} C_{4}$. All other cases follow at once from these.

