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The subpolar gyre regulates 
silicate concentrations in the North 
Atlantic
H. Hátún1, K. Azetsu-Scott3, R. Somavilla4, F. Rey5, C. Johnson  6, M. Mathis7,  
U. Mikolajewicz7, P. Coupel8, J.-É. Tremblay8, S. Hartman9, S. V. Pacariz1,10, I. Salter1,11 &   
J. Ólafsson2 

The North Atlantic is characterized by diatom-dominated spring blooms that results in significant 
transfer of carbon to higher trophic levels and the deep ocean. These blooms are terminated by limiting 
silicate concentrations in summer. Numerous regional studies have demonstrated phytoplankton 
community shifts to lightly-silicified diatoms and non-silicifying plankton at the onset of silicate 
limitation. However, to understand basin-scale patterns in ecosystem and climate dynamics, nutrient 
inventories must be examined over sufficient temporal and spatial scales. Here we show, from a new 
comprehensive compilation of data from the subpolar Atlantic Ocean, clear evidence of a marked 
pre-bloom silicate decline of 1.5–2 µM throughout the winter mixed layer during the last 25 years. 
This silicate decrease is primarily attributed to natural multi-decadal variability through decreased 
winter convection depths since the mid-1990s, a weakening and retraction of the subpolar gyre and 
an associated increased influence of nutrient-poor water of subtropical origin. Reduced Arctic silicate 
import and the projected hemispheric-scale climate change-induced weakening of vertical mixing may 
have acted to amplify the recent decline. These marked fluctuations in pre-bloom silicate inventories 
will likely have important consequences for the spatial and temporal extent of diatom blooms, thus 
impacting ecosystem productivity and ocean-atmosphere climate dynamics.

�e subpolar North Atlantic is characterized by deep winter convection1, and a strong diatom dominated spring 
bloom2. Diatoms are fast-growing algae that in addition to phosphate and nitrate require silicic acid, herea�er 
referred to as silicate, to sustain their growth3. In the subpolar North Atlantic, silicate is the main limiting nutrient 
for diatom growth4 although occasionally outweighed by seasonal iron limitation5. Diatoms are an important 
food source for secondary producers, and in particular for calanoid copepods such as Calanus �nmarchicus6, 
which itself is a key prey item linking microbial components to higher trophic levels in subpolar ecosystems7.

Along its eastern boundary, the subpolar North Atlantic receives relatively warm and saline water from the 
subtropical gyre characterized by silicate concentrations of less than 3 µM, averaged over the upper 200 meters 
(Fig. 1). �e productivity of the subpolar ocean is therefore crucially dependent on both deep winter convec-
tion and silicate import from the Arctic. Arctic water, which is rich in silicate8, enters the Atlantic through the 
Canadian Arctic Archipelago and in smaller volumes through the Fram Strait, and it is carried equatorward by 
the Labrador Current9. Silicate also accumulates in the deep Over�ow Waters that pass through the Labrador 
Sea and, together with Labrador Sea Water, continue southwards as the Deep Western Boundary Current1. �e 
counterclockwise rotating subpolar gyre (SPG) prevents these silicate-rich waters from draining southwards out 
of the subpolar region. A fraction of the Labrador Sea Water and a part of Labrador Current water, here collec-
tively referred to as Sub Arctic Water (SAW), are �owing eastwards along the northern edge of the North Atlantic 
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Current10 and admixed with the nutrient poor subtropical waters west of the British Isles11 (Fig. 1). Western 
waters from the Gulf Stream and eastern waters from the Bay of Biscay region are herea�er jointly discussed as 
Sub Tropical Water (STW). �e con�uence of SAW and STW produces silicate enriched Atlantic Water (AtW), 
which �ows poleward through the Nordic Seas and northwestward towards Greenland (Fig. 1), thus retaining a 
portion of the silicate within the subpolar domain.

�e size and circulation strength of the SPG is highly variable11 and depends on wintertime atmospheric forc-
ing, primarily air-sea heat exchange and wind stress curl12. �is variability is represented by the unitless gyre index 
calculated from the sea surface height �eld11,12 (see Methods) which, in turn, represents surface currents, the 
buoyancy content and the position of major fronts in the North Atlantic13. Weak atmospheric forcing is associated 
with shallow winter mixing (depths), a westward retraction of the SPG and a weak and southward shi�ed North 
Atlantic Current with decreased eastward transport of SAW and a low gyre index. �is physical regime opens a 
‘window’ between the SPG and the European Continental slope increasing the admixture of nutrient poor STW 
to the poleward AtW �ow. �e gyre index therefore explains the relative SAW and STW mixture to the AtW11.

In the present study a new 25-year (1990–2015) compilation of pre-bloom silicate observations is analyzed, 
gathered from several independent hydrographic sections crossing the Atlantic In�ow branches in the Nordic 
Seas, the northern Irminger Sea and the central Labrador Sea (Fig. 1). Our records represent the vertically 
homogenous winter mixed layer, and thus a water column of typically more than a kilometre in the west, and sev-
eral hundred meters along the eastern side. Considering that the diatom-dominated spring bloom in the North 
Atlantic becomes silicate limited every year, these time-series of pre-bloom silicate concentrations represent 
long-term trends in the capacity for diatom related primary production throughout a huge volume in the sub-
polar North Atlantic Ocean. �e data compilation includes series from three long-term observation sites along 
the Norwegian slope that have been updated from previous work14, and incorporates previously unpublished 
series from the Labrador and Irminger Sea (Methods and Supplementary Information 1). �ese primary datasets, 
which have been consistently sampled during the winter/early spring months in order to re�ect pre-bloom con-
centrations in the winter mixed layer (Methods), are illustrated with coloured squares in Fig. 1. We also present 
supporting silicate time series from the Labrador Shelf, the Iceland Basin, the Faroe Shelf, the Porcupine Abyssal 
Plain and the Bay of Biscay (Methods and Supplementary Information 1) - shown with black circles in Fig. 1.
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Figure 1. Schematic of the emphasized features in the subpolar Atlantic, with the climatological average upper 
ocean (0–200 m) silicate concentrations during April obtained from the World Ocean Atlas20 contoured with 
colors. Oceanographic abbreviations: Subpolar gyre (SPG), SubArctic Water (SAW), SubTropical Water (STW), 
Atlantic Water (AtW) and the North Atlantic Current (NAC). �e silicate observations shown in Fig. 2a are 
sampled in the central Labrador Sea (L), the northern Irminger Sea (Ir), and in the Nordic Seas – the Svinøy 
Section (S), Ocean Weather Ship M (M) and the Gimsøy Section (G) (colored letters). Supporting time series 
(Supplementary Information 1, black letters) are obtained from the Porcupine Abyssal Plain (P) and the 
southern Bay of Biscay (B) (Fig. 3), the Labrador Current (LC) (Fig. 5), the Iceland Basin (Ic) and the Faroe Shelf 
(F). �e �gure was produced using the so�ware Matlab R2013b, (https://www.mathworks.com).

https://www.mathworks.com


www.nature.com/scientificreports/

3SCIENTIFIC REPORTS | 7: 14576  | DOI:10.1038/s41598-017-14837-4

�e observations are compared with output from a global model system consisting of the ocean general circu-
lation model MPIOM (Max-Planck-Institute Ocean Model)15 and the marine biogeochemistry model HAMOCC 
(Hamburg Ocean Carbon Cycle Model)16, driven with ERA4016 and ERA-Interim17 reanalysis data. More details 
are provided in Methods and Supplementary Information 1. Previous studies have demonstrated that simulated 
�elds from MPIOM compare favourably with observations in the Labrador and Irminger Seas13.
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Figure 2. Temporal evolution of key parameters. (a) Colored lines show pre-bloom upper ocean silicate 
concentrations across the subpolar Atlantic; L, Ir, S, M and G in Fig. 1. �e samples are made in the pre-bloom 
homogeneous winter mixed layer, and thus represent several hundred meters in the Nordic Seas and typically 
more than a kilometre in the Labrador Sea (see Methods). �e dashed black line shows the unitless gyre index, 
associated with the leading North Atlantic sea-surface height mode, as obtained from altimetry observations41 
(Methods). (b) Similar to (a), but showing the silicate concentrations in the northern Irminger Sea (Ir in Fig. 1) 
for a longer time period. �e observations are in green, simulations (0–200 m, March) in blue and the gyre 
index in dashed gray.

Figure 3. Silicate concentrations in the STW. Red dots show silicate concentration time-series from 150 m in 
the southern Bay of Biscay (B in Fig. 1), and the red line shows the 12 months low-pass �ltered value. �e blue 
line is the near-surface winter silicate concentrations from the region around the Porcupine Abyssal Plain (PAP) 
mooring (P in Fig. 1, March averages with standard errors).
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We observe a consistent decline of pre-bloom silicate concentrations throughout the subpolar North Atlantic 
of 1.5–2 µM over the 25-year observation period (Fig. 2a). �e rate of decline is similar in the central Labrador 
Sea, the northern Irminger Sea and in the Nordic Seas, all occupying the range 0.55–0.66 µM per decade (Table 1 
and Fig. 2a). Note that the supporting datasets from the Iceland Basin and Faroe Shelf exhibit comparable rates 
of decline over the same period (Table 1). �ese latter datasets exhibit more variability, likely due to variable 
sampling timing (Dec-Feb for the Faroe Shelf and di�ering summer months for the Iceland Basin, see Table S2) 
and locally complex coastal dynamics, and have thus merely been used to support the primary analysis. �e con-
sistency of the silicate decline over the large spatial domain from which the observations originate is remarkable 
and suggests that basin-scale physical mechanisms are responsible.

In the following section we explore three non-exclusive physical mechanisms that could explain the observed 
silicate decline in the subpolar North Atlantic: (i) decreased concentrations in the already silicate-poor STW, (ii) 
shallower winter convection and a weakening SPG and (iii) decreased silicate in�ux from the Arctic.

To investigate Mechanism (i), we analysed previously unpublished observations from the eastern region occu-
pied by STW (southern Bay of Biscay and the Porcupine Abyssal Plain, Fig. 1) and found no evidence of a per-
sistent silicate decline (Fig. 3). In the Sargasso Sea, a weak near-surface (0–150 m) silicate decline was observed 
during the late 1990s, but this was followed by a subsequent increase18. Taken together, these data indicate that the 
silicate content in the STW has remained relatively constant over the observation period, ruling out this mecha-
nism as an explanation for the observed decline in the subpolar region.

To address the role of the SPG (Mechanism ii), we �rst note that a similar silicate decline is not observed in 
the Rockall Trough19, but the negative trend becomes increasingly identi�able when moving northwestward into 
the SAW within the SPG, approaching 1 µM per decade close to Iceland (Extended Ellett Line, Figs 4b and S1). 
Silicate concentrations in the Irminger Sea and Labrador Sea (Fig. 1) are highly correlated with the gyre index 
(Fig. 2a, Table 2) and thus mirror the major temperature and salinity increase since the early 1990s11, indeed sug-
gesting a subpolar origin for the observed silicate decline.

Region µM/decade r2 P-value

L −0.66 0.68 <1e-6

Ir −0.66 0.63 <1e-6

S −0.60 0.67 <1e-5

M −0.61 0.78 <1e-7

G −0.55 0.79 <1e-7

Ic −0.78 0.37 0.021

F −0.70 0.38 <0.01

Table 1. Silicate trend analysis over the period 1990–2015. �e abbreviated regions are shown in Fig. 1, and the 
statistics are described in Methods.

Figure 4. Analysis of the simulated (HAMOCC) near-surface (0–150 m) silicate during March. �e map 
shows the correlation between the time series in the northern Irminger Sea (Ir, green box) and the times series 
at each individual model grid cell (1958–2011). �e white dotted line shows the Extended Ellett Line (EEL) 
hydrographic section, and the black lines outline the approximate boundary of the subpolar gyre (SPG) during a 
weak (full) and strong (dashed) state. �e �gure was produced using the so�ware Matlab R2013b, (https://www.
mathworks.com).

https://www.mathworks.com
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�e MPIOM/HAMOCC model system is now utilized to examine the potential link between the SPG and the 
silicate variability in the subpolar Atlantic at a resolution that cannot be achieved from the observations alone. 
Climatological upper-ocean April silicate concentrations produced by the model system are in reasonable agree-
ment with the World Ocean Atlas20 (Fig. S2). �e model also captures the silicate decline since the early 1990s, 
although primarily along the westward retracting subarctic fronts, both along the periphery of the SPG and in the 
Nordic Seas (Fig. S3, Supplementary Information 2). �is is likely because SAW is replaced by silicate poorer AtW, 
which renders pronounced changes along the frontal zones.

It has previously been shown that the shi�ing fronts associated with the SPG dynamics have an especially 
strong imprint on the hydrography and the ecosystem in the biologically productive Northern Irminger Sea11,13,21. 
HAMOCC adequately re�ects the observed pre-bloom silicate variability in this key region, albeit with some dis-
crepancy in the late 1980s (Fig. 2b, r = 0.80, P < 1e-6, see Methods for statistics). �e simulated trend at site ‘Ir’ is 
comparable to the observations, and this trend is the focus of the present study.

�e model furthermore shows realistic temporal variability in the central SPG (Fig. S4), although the location 
of the deep convection site is located somewhat southeast from the real convection region (Fig. S3), which is 
transected by WOCE line ARW722.

With the limitations associated with specific model processes in mind, the upstream origin and the 
downstream imprint of the observed and simulated signal at site ‘Ir’ is further examined. We correlate the 
model-simulated pre-bloom near-surface silicate in the grid point nearest ‘Ir’ (averaged vertically over 0 to 150 m 
and temporally over March) with the similarly processed time series in all other model grid cells (Fig. 4). �e sili-
cate variability in the Irminger Sea does not correlate with areas south of the SPG, providing further evidence that 
the silicate trend does not originate in the subtropical Atlantic. However, strong correlations exist with the AtW 
mixing region of SAW and STW, as well as along the AtW �ow pathways both towards the Arctic and cyclonically 
around the SPG and into the Labrador Sea. �ese analyses suggest that the mechanistic processes causing reduc-
tions in silicate concentration primarily operate in the AtW mixing region, which includes the Rockall-Hatton 
Plateau, the Iceland Basin and the Reykjanes Ridge (Fig. 4).

In the AtW mixing areas, the SAW is found at 500–800 m depths23, thus convective vertical mixing is required 
to entrain it into the upper waters. Strong positive correlations between the simulated upper layer silicate and 
winter mixed layer depths (both parameters averaged over December-February, Fig. S5) highlight that, the sili-
cate variability in the subpolar North Atlantic is partly driven by convection and thus by air-sea heat exchanges. 

Figure 5. Temporal evolution of the upper-ocean silicate concentrations across the Labrador Shelf which has 
entered through the Canadian Arctic Archipelago (LC in Fig. 1, blue) and the central Labrador Sea (L in Fig. 1, 
red). �e plot includes data from the 50–150 m layer for the Labrador Shelf and 150–300 m for the central 
Labrador Sea (averages with standard errors).

Region

Gyre Index (GI) GI (de-trended)

r2, P r2, P

L 0.89, <1e-6 0.67, 0.002

Ir 0.82, <1e-4 0.51, 0.021

S 0.78, <1e-4 0.51, 0.021

M 0.78, <1e-4 —

G 0.78, <1e-3 0.49, 0.048

Table 2. Silicate correlated against the gyre index (1993–2013). To investigate if the gyre index explains inter-
annual variability, the series have also been de-trended by subtracting a linear trend line, prior to the correlation 
analysis. �e abbreviated regions are shown in Fig. 1, and the statistics are described in Methods.
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Atmospheric forcing primarily acts locally by cooling near-surface waters, which become dense and subsequently 
sink. In addition, there is a preconditioning e�ect from deep convection in the Labrador Sea, which expands the 
SPG into the Irminger Sea and Iceland Basin and, in turn, alters the water column density structure modulating 
convective processes. �e post-1995 decline of the SPG size and circulation strength11 is intrinsically coupled 
with the decreasing winter convection depths (from nearly 2.5 km in 1994 to 600–800 m around 2010 in the 
Labrador Sea)12, and thus provides a mechanism whereby reduced vertical nutrient �uxes lead to upper ocean 
silicate decline.

�e limited grid resolution of the model likely leads to an underestimated eddy driven in�ux of AtW from 
the boundaries of the Labrador Sea into the center of the Labrador Basin24 (Fig. 4). However, the observations 
demonstrate that the Labrador Sea silicate record is strongly correlated with that from the northern Irminger Sea 
(Fig. 2a, r = 0.86, P < 1e-6). It thus seems reasonable to conclude that the silicate variability that originates south 
of Iceland is advected into the Labrador Sea similarly to hydrographic anomalies in the region11. Further convec-
tion in this region enriches the AtW with silicate resulting in concentrations that are approximately 2 µM above 
the Irminger Sea values (Fig. 2a).

�e Labrador Sea record can be considered to represent silicate variability in the SAW, the main body of the 
SPG itself. It is therefore likely that the declining silicate concentrations in the eastward �owing SAW source 
water will subsequently lower the silicate in the poleward �owing AtW – produced from the mixture of SAW and 
STW11. Additionally, since a weakening and contracting gyre acts to increase the proportion of silicate-poor STW 
to the mixed AtW11,25 this mechanism acts synergistically with weaker convective processes to contribute to the 
observed AtW silicate decline.

Based on the presented observations and the analysis of model simulation, we suggest that SPG dynamics 
and winter convection (Mechanism ii) o�er a mechanistic framework to explain declining silicate concentrations 
through (a) variable vertical �uxes of silicate rich deep-water, (b) SPG regulation of SAW source water concentra-
tions and (c) the relative SAW/STW contribution to the mixed AtW west of the British Isles (Fig. 1).

Finally, we explore whether any variability in inputs from the Arctic could contribute towards the observed 
silicate decline in the subpolar North Atlantic (Mechanism iii). Silicate concentrations on the Labrador Shelf 
(Methods and Supplementary Information 1), which include water that has entered the region through the 
Canadian Arctic Archipelago9, are also declining and at twice the rate observed in the central Labrador Sea 
(Fig. 5). Indication of declines in silicate concentrations are also observed further North at the main entry points 
of Silicate-Rich Arctic Water (SRAW)11 into Ba�n Bay and the Labrador Sea (Fig. S6). Concurrently with the 
decline of the SPG during the mid-1990s, the Arctic circulation shi�ed to a persistently anticyclonic regime 
re�ected in a positive phase of the Arctic Ocean Oscillation26. �is results in increased retention of SRAW in 
the Beaufort Gyre and the Canada Basin27 of 8,000–12,000 km3 since the mid-1990s28,29. �e evolution of SPG 
dynamics and the Arctic Ocean Oscillation could thus further contribute to the observed silicate decline.

In order to estimate the magnitude of Arctic influence, an approximate mass balance is presented in 
Supplementary Information 2 (Fig. S7). Since the silicate concentrations in the SRAW and the mean concen-
trations of the Arctic are 22 µM8 and 11 µM, respectively, it is estimated that about 8.8–14.4 ·1016 µmol must 
have accumulated in the Beaufort Gyre and Canada Basin since the mid-1990s. Between 85% and 100% of the 
silicate �ux from the Arctic reaches the North Atlantic, mainly in the density range σθ = 27.0–27.59, and this 
encompasses a volume of about 4 ·1014 m3. �e silicate decrease in the subpolar North Atlantic Ocean, caused by 
the retention of silicate in the Arctic Ocean since the mid-1990s is therefore 0.2–0.3 µM, which is <15% of the 
observed silicate decline of 1.5–2 µM (Fig. 2). We conclude that variability in silicate input from the Arctic leaves a 
weak imprint on the dominant SPG mechanism described above, although further silicate transport observations 
would be required to accurately partition the quantitative contribution.

Silicate decline over such a large area in the North Atlantic is likely to have a signi�cant impact on ecosys-
tem structure and climate dynamics. �eoretically, pre-bloom silicate concentrations exert a �rst order control 
on the maximum potential of diatom production during the spring bloom. �ere is some evidence from the 
Continuous Plankton Recorder surveys30 conducted during 1991–2009 that the relative contribution of diatoms 
to total phytoplankton abundance is decreasing in the North Atlantic31 in line with the observed silicate decline 
presented here. �is would clearly a�ect standing stocks of calenoid copepods linking primary productivity to 
higher trophic levels, including commercially important �sh and seabird populations. Shi�s in phytoplankton 
community composition to lightly silici�ed and non-silici�ed phytoplankton may occur earlier in the growth 
season, potentially in�uencing copepod growth and egg production as well as the magnitude and stoichiometry 
of the biological carbon pump32.

Silicates sinking below the depth of winter convection in the subpolar North Atlantic will either be deposited 
on the sea�oor or drain equator-ward in the North Atlantic Deep Water – the lower limb of the �ermohaline 
Circulation system33. It therefore appears unlikely that changes in silicate inventories in the subpolar North 
Atlantic will signi�cantly impact diatom productivity in other areas of the ocean.

It remains challenging to hindcast or forecast trends in silicate inventories beyond the 25 year record pre-
sented here. �e observed silicate decline is primarily associated with the post-1995 weakening of the SPG11, 
and is therefore part of multi-decadal variability that observational records are too short to portray. �e model 
simulations indicate that the silicate concentrations during the early 1960s, when winter convection and the 
SPG circulation were also weak11 would have been almost as low as they are today (Fig. 2b). �e intensi�cation 
in deep convection during the winters 2012–201634 might have elevated the concentrations somewhat again. 
Nevertheless, over the next century, climate models predict global declines in nutrients and thus in primary pro-
duction, due to shallower winter mixing, with a particularly strong imprint on the subpolar North Atlantic35. Our 
data shows that such climate scenarios may act in synergy with multi-decadal oscillations to regulate upper ocean 
nutrient inventories with important impacts on ecosystem productivity.
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Methods
Primary datasets. For the Nordic Seas observation sites (S, M and G, Fig. 1), we have followed the methods 
in ref.14. �e average silicate values for the upper water column every March were calculated using all observa-
tions either from 0–200 m or in the upper mixed layer, and only stations which sampled the Atlantic Water were 
included. In the central Labrador Sea (L in Fig. 1), the silicate records from all stations along the ARW7 line, 
except those on the shelves, were used. �e section is occupied during May, and to avoid in�uence from the 
near-surface biology, only data from 150–500 m were included to produce Fig. 2a. �e Irminger Sea (Ir in Fig. 1) 
silicate concentrations are the mean of 0–50 m, February-March values from a �xed station on the Faxa�ói sec-
tion, in the core of the Irminger Current.

Supporting datasets. For the Labrador Shelf (LC in Fig. 1), the silicate concentrations have been averaged over 
the 50–150 m depth layer (Fig. 5). �e Iceland Basin (Ic in Fig. 1) time-series was calculated by averaging all silicate sam-
ples between 150 m and 600 m from four stations along the 20°W portion of the Extended Ellett Line (EEL). Data from 
the Faroe Shelf (F in Fig. 1), represent winter (DJF) averages of all samples from a coastal station. �e Porcupine Abyssal 
Plain (PAP, P in Fig. 1) dataset was sub-sampled from a ship of opportunity over a region close to the PAP site. For the 
southern Bay of Biscay (B in Fig. 1), silicate concentrations at the northern stations of the Santander standard section at 
150 m depth are shown in Fig. 3. �e Santander standard section has been sampled monthly since 1991.

Ocean model. The model system applied in this study consists of the ocean general circulation model 
MPIOM (Max-Planck-Institute Ocean Model) and the marine biogeochemistry model HAMOCC (Hamburg 
Ocean Carbon Cycle Model). MPIOM is the ocean-sea ice component of the global earth system model 
MPI-ESM36 of the Max-Planck-Institute for Meteorology in Hamburg. For the presented simulation, the horizon-
tal resolution in the northern North Atlantic ranges from around 13 km in the east and west to about 25 km over 
the Mid-Atlantic Ridge. In the vertical, the water column is resolved by 30 levels with 8 levels in the upper 100 m. 
Biogeochemical processes in the ocean are simulated by HAMOCC37, which is online coupled with MPIOM. 
Marine biology dynamics are represented by nutrients, phytoplankton, zooplankton, detritus, and dissolved 
organic matter38. �e model simulation considered in this study covers the period 1958–2012. ERA40 reanalysis 
data16 are used as meteorological forcing at the sea surface for the period 1958–2000, continued by ERA-Interim 
data for the remaining period 2001–2012.

The gyre index. �e dynamics of the subpolar gyre has o�en been proxied by a so-called gyre index. �is 
index is the principal component (no physical unit) obtained from an Empirical Orthogonal Function (EOF)39 
analysis of the sea surface height �eld over the entire North Atlantic Ocean, obtained from satellite altime-
try13,21,40 or from general circulation models11,13. We here utilize the gyre index from ref.40, which is based on a 
pre-2014 version of the Ssalto/DUACS altimetry products provided by the Copernicus Marine and Environment 
Monitoring Service (CMEMS) (http://www.marine.copernicus.eu). An updated gyre index based on the altime-
try products released in April 2014 – the DUACS 2014 – is available41. Changes in the satellite data processing in 
2014 have, however, resulted in a slight change in the updated gyre index21.

Statistics. �e correlation coe�cients are calculated by a standard Matlab routine which does not account 
for autocorrelation. �e P-values are computed by transforming the correlation to create a t-statistic having n-2 
degrees of freedom. (See Supplementary Information 1 for further details)15,42–61.
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