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ABSTRACT

Read alignment is an ongoing challenge for the
analysis of data from sequencing technologies.
This article proposes an elegantly simple multi-
seed strategy, called seed-and-vote, for mapping
reads to a reference genome. The new strategy
chooses the mapped genomic location for the read
directly from the seeds. It uses a relatively large
number of short seeds (called subreads) extracted
from each read and allows all the seeds to vote on
the optimal location. When the read length is
<160 bp, overlapping subreads are used. More con-
ventional alignment algorithms are then used to fill
in detailed mismatch and indel information between
the subreads that make up the winning voting block.
The strategy is fast because the overall genomic
location has already been chosen before the
detailed alignment is done. It is sensitive because
no individual subread is required to map exactly,
nor are individual subreads constrained to map
close by other subreads. It is accurate because
the final location must be supported by several dif-
ferent subreads. The strategy extends easily to find
exon junctions, by locating reads that contain sets
of subreads mapping to different exons of the same
gene. It scales up efficiently for longer reads.

INTRODUCTION

Developments in next-generation (next-gen) sequencing
technologies that parallelize the sequencing process have
dramatically increased world-wide sequencing capacity in
the past few years. Individual projects, such as the 1000
Genomes project (1) or The Cancer Genome Atlas (http://
cancergenome.nih.gov, March 2013), can produce tens or
hundreds of terabytes of sequence. A single Illumina
HiSeq system now has the capacity to generate >4

billion bases of sequence per hour. Meanwhile the
typical length of an individual sequence read has increased
from ~30 to 100 bp, and is likely to increase further.

Next-gen sequencing is revolutionalizing many areas of
biological research. It may be used to detect variation in
genomic DNA, to measure gene expression, to identify
RNA transcripts and for many other purposes. Read
mapping, the alignment of sequence reads to a reference
genome, is the first step for many of these analyses and is
often the most computationally intensive part of the
analysis.

All read aligners have to take algorithmic shortcuts
because the computational cost of exhaustively comparing
every read to every possible position in the genome is pro-
hibitively expensive. The first step is almost always to map
a shorter part of the read (a seed) to the genome.
Typically, only a small number of mismatches are
permitted, and indels are disallowed entirely. This is
partly for specificity, but also because too many
mismatches may cause later steps like backtracking to
fail. Most aligners then work out from the location that
the seed mapped to, trying to match the remainder of the
read to the genome surrounding the original location, a
process often called the extension step (2). Typically a
short seed will map to multiple locations in the genome,
so the seed must be extended at multiple locations before it
can be settled which of the original locations has the best
overall match to the complete read. At each location, the
extension step must contend with the possibility of
sequencing errors, polymorphisms or indel events. If the
read was generated from RNA, then each extension step
must moreover deal with the possibility that the read
might span two or more exons that might be well
separated in the genome. The extension steps are far
more expensive than mapping the original seed, especially
for longer reads. Much of the computational cost is
incurred because the final mapping location cannot be
decided until all the extension steps are largely complete.
If the original seed contains too many sequencing errors or
mutations relative to the reference genome, or spans an
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unexpected exon junction, then the read alignment may be
doomed from the start.

Popular aligners that extend from a seed in various
ways include Bowtie (3), Bowtie2 (4), BWA (9),
Novoalign (http://www.novocraft.com, 2013), Maq (6)
and MrsFast (7). The extension step usually involves
backtracking (3,9), Smith—Waterman dynamic
programming (4-6,8) or Needleman—Wunsch dynamic
programming (9) (Novoalign). A survey of read aligners
can be found in (10). In general, the running time of
dynamic programming increases quadratically with read
length (11,12). Many clever algorithms have been
proposed to make the extension step more efficient,
including bounded backtracking (5) and banded and bit-
vector versions of dynamic programming (13,14). Bowtie2
has abandoned backtracking in favour of an Single
Instruction Multiple Data-accelerated dynamic program-
ming procedure (4). Despite all efforts, seed extension
remains intrinsically expensive for longer reads.

A recent trend to avoid problems with the choice of seed
is to try multiple spaced seeds (8,9,13,15-18). This
multiplies the candidate locations, which must then be
prioritized by some form of filtering to improve specificity.
A recent technique to do this is g-gram filtering. This pro-
cedure extracts a number of g-grams (substrings or seeds
of length ¢) from a sliding window moved along the read
(13,19-21) or from the entire read (8,9,17). A measure of
local similarity or a count of matched g-grams is then used
to determine whether the candidate regions should be
included for further examination. Local similarity has
been measured efficiently using parallelograms (13).

In this article, we propose a new multi-seed strategy that
differs from previous algorithms by choosing the mapped
genomic location for the read directly from the seeds. The
strategy consists of a seed-and-vote step, which achieves
local alignment simultaneously in multiple parts of the
read, followed by an in-fill step to complete the alignment.
The new strategy uses a relatively large number of short
equi-spaced seeds from each read, which we call subreads.
Instead of trying to prioritize the seeds, the strategy allows
all the subreads to vote on the optimal location for the
read. The voting procedure has similarities with g-gram
counting, but is used instead to determine a unique
location. The new strategy differs from previous proced-
ures in a number of ways: the subreads are shorter and
more numerous than conventional seeds; they are mapped
without mismatches; and the local alignment is determined
directly by counting subreads without further intermediate
steps. The subread procedure then uses conventional al-
gorithms including dynamic programming to complete the
alignment, filling in the detailed mismatch and indel infor-
mation between the subreads that make up the winning
voting block. The alignment is extremely fast because the
overall genomic location has already been chosen before
the detailed alignment is done, and because the in-fill is
required for very short local regions only, with known
flanking locations already provided by the matched
subreads. The strategy has been implemented in two
software tools: Subread for general purpose alignment
and Subjunc for detecting exon—exon junctions from
RNA reads.
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Seed-and-vote local alignment may at first impression
seem too naive, as it does not require any conventional
concept of sequence similarity like edit distance to be
specified explicitly. Instead, a suitable balance between
sensitivity and specificity is achieved implicitly by
choosing a considerable number of relatively short
subreads. In extensive testing, the strategy proves to be
not only fast but more than competitive with existing
aligners in terms of sensitivity and accuracy. The
strategy is sensitive because no individual subread is
required to map exactly, nor are individual subreads con-
strained to map close by other subreads. The strategy is
accurate because the final location must be supported by
several different subreads. Crucially, the strategy scales up
efficiently for longer reads.

Insertions and deletions are genomic variants that have
been linked to the onset and progression of a number of
diseases. For example, a 6 bp indel in the promoter region
of gene Casp8 was identified to be associated with suscep-
tibility to multiple cancers (22). A 14 bp indel in the gene
Ncx1 was found to modulate the age at onset in late-onset
Alzheimer’s disease (23). Indel detection is an important
part of read alignment when mapping genomic DNA, but
presents special problems for many aligners. The need to
detect indels makes dynamic programming and backtrack-
ing very time-consuming, and the presence of indels can
make similarity measures like Hamming distance mislead-
ing. Q-gram filtering methods are seldom designed for de-
tecting insertions and deletions. SWIFT, for example, can
detect insertions and deletions within the sliding windows,
but not in the entire region of the read (20). By contrast,
our Subread software finds indels rapidly anywhere in the
read, mainly leveraging the fact that indels can be re-
stricted to very small regions bounded by flanking local
alignments.

RNA-seq presents particular challenges for aligners
because RNA transcripts typically comprise multiple
exons that might be thousands of bases apart in genomic
location. Elucidating the splicing mechanism is important
for understanding various biological processes, which
might make use of different isoforms from the same
genes to exert their functions. Ordinary DNA mapping
techniques designed for contiguous reads cannot be
applied successfully to map sequences that span exon—
exon junctions. RNA-seq mapping has therefore
concentrated on the detection of exon—exon junctions in
the read. Junction detectors need to split the read into
smaller segments, typically non-overlapping segments of
about 25 bp (24-26). Each segment is then mapped separ-
ately to the reference genome, and an exon—exon junction
is detected when segments from the same read map to
different exons. Our subread strategy can be viewed as a
more flexible and higher resolution version of segmenta-
tion that uses shorter more numerous overlapping
segments. Subjunc is a specialized version of our subread
software that performs complete alignment of RNA-seq
reads including detection of exon—exon junctions.
Compared with segmentation, the use of overlapping
subreads allows shorter subsequences to be matched to
exons while taking full advantage of longer single-exon
subsequences when they exist. Junctions can be detected
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closer to the ends of the reads. At the same time, the seed-
and-vote strategy provides speed improvements both at
the full read level and within each single-exon
subsequence.

Not all analyses of RNA-seq data require detection of
splice junctions. A popular type of gene-level differential
expression analysis uses read counts that are summarized
at the gene level (27-30). For this type of analysis, the
seed-and-vote paradigm provides a special efficiency,
because each read can be anchored to a particular exon
in a particular gene, even before the exon—exon junctions
have been detected. This means that Subread can be used
to generate gene-level count summaries, without the need
to run Subjunc. This provides spectacular speed improve-
ments for this particular type of analysis over alternative
alignment pipelines.

This article presents results from an extensive suite of
test scenarios to compare Subread with other popular
aligners. We present results both from simulations and
from a range of calibration data sets, including the 1000
Genomes project, sequencing data with spike-in controls,
and benchmark RNA-seq data from the Sequencing
Quality Control (SEQC) project. The tests include indel
detection for genomic DNA mapping scenarios and exon-
junction detection for RNA-seq. Special attention is given
in our comparisons to accuracy, i.e. to incorrectly mapped
reads, as well as to the more commonly examined ques-
tions of sensitivity and speed.

MATERIALS AND METHODS
Data sets

We used a 1000 Genomes data set, a SEQC data set and
simulation data sets to compare alternative methods for
read mapping and exon-exon junction detection.
The 1000 Genomes data set includes 27.5 million pairs
of 100bp reads, which were generated from an exome
sequencing of a Puerto Rico individual (SRR070481).
The sequencing was performed by Washington
University Genome Sequencing Center in October 2010,
using an [llumina Genome Analyzer II sequencer.

The SEQC project, which is the third stage of the well-
known MAQC project (31), is producing benchmark next-
gen sequencing data. It aims to use these data to evaluate
current analysis methods and to provide a guideline for
analysing the sequencing data. Four types of samples are
being sequenced in this project, including A, B, C and D.
Sample A is the Universal Human Reference RNA
(UHRR). Sample B is the Human Brain Reference RNA
(HBRR). Samples C and D are mixed from A and B at
mixing percentages of 75%A:25%B and 25%A:75%B, re-
spectively. We chose one library for each sample and
included them in this study. Each library has ~6 million
pairs of 101 bp reads. This data set was generated by City
of Hope, USA, in August 2011, using an Illumina HiSeq
sequencer.

One hundred and one base pair simulation data were
generated from a modified human reference genome
GRCh37(hgl9), in which 80bp or longer repetitive se-
quences were removed so as to make each simulated
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read have a unique known mapping location. SNPs and
indels were randomly introduced to the human genome
GRCh37, at rates of 0.0009 and 0.0001, respectively, to
simulate genomic variation. This setting is the same as that
used in the work of Li and Durbin (5). Real quality scores,
extracted from a 101 bp SEQC Sample A read data set,
were used for simulation reads. Sequencing errors were
generated according to the quality score each read base
has. The lower the quality score, the more likely a
sequencing error was introduced. So the distribution of
sequencing errors is similar to that of the real base
calling errors. This makes the simulation read data very
similar to the real read data. Supplemental Figure S1
shows the mean error rates at each base location in
SEQC reads and in simulation reads.

Two 101 bp simulation data sets were generated. One
contained indels and the other did not. Indels were not
introduced to the reference genome when generating the
data set containing no indels. Each data set included 10
million single-end reads. Two 202 bp simulation data sets
(one contained indels and the other did not) were
generated in the similar means, except that quality score
of each base in each SEQC read was duplicated before
being assigned to the longer reads.

In addition to the simulation data sets generated from
the filtered human genome, we generated a 101 bp simu-
lation data set from the unfiltered human genome, in
which repetitive regions were kept. This data set contained
indels in it. We also used Mason (32) and Art (33) to
generate two extra simulation data sets. The unfiltered
human genome was used for them as well. We generated
100 000 100-bp-long reads from using each read simulator.
For Mason, we used an SNP rate of 0.0009, an indel rate
of 0.0001 and the default sequencing error rate (0.004).
For Art, we provided it with a quality profile, which was
created from the SEQC data set used in this study, to
make it introduce sequencing errors using the real base
calling errors. The indel rate used was 0.001. For all
other parameters of Maons and Art, default values were
used. Versions of Mason and Art used are 0.1 and 1.5.0,
respectively.

ERCC spike-in control data

The Ambion(textregistered) External RNA Controls
Consortium (ERCC) spike-in control includes 92 spike-
in transcripts, which are spiked in difference concentra-
tions in each of the two mixes (Mix 1 and Mix 2)
(http://www lifetechnologies.com, 2013). The transcripts
in these two mixes are present at defined Mix 1:Mix 2
molar concentration ratios, described by four subgroups
(log fold changes of 2, 0, —0.58 and —1, respectively).
Each group contains 23 transcripts spanning a 10°-fold
concentration range, with approximately the same tran-
script size and GC content. The median length of the
spike-in transcript sequence is 994 bp.

The ERCC spike-in control sequencing data used in this
study were created as part of the SEQC study. Mix 1 and
Mix 2 were pooled with SEQC sample A (UHRR) and
sample B (HBRR), respectively, before library prepar-
ation was performed. Spike-in transcript sequences were
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combined with human genome so that a hybrid index can
be built by each aligner. Spike-in reads and human reads
were then mapped to the hybrid index.

To compute fold changes for each spike-in transcript,
read counts were normalized by total number of mapped
spike-in reads and by the transcript length (reads per 1 kb
transcript per 10000 mapped spike-in reads). An offset
count of 0.5 was added to the raw read counts to avoid
taking the log of zero.

Exon—exon junctions derived from NCBI RefSeq
annotation

When comparing different methods for detecting exon—
exon junctions, we assessed their ability to discover junc-
tions that originate from annotated exons. We obtained
chromosomal coordinates of annotated exons from NCBI
RefSeq human gene annotation (Build 37.2). We call a
reported junction as a ‘known’ junction, if it connects
two annotated exons from the same gene, i.e. the ¥
splicing point of the junction is located at the last base
position of the 5 exon and the 3’ splicing point is located
one base before the first base of the 3’ exon.

Mapping quality scores

Subread and Subjunc output a mapping quality score
(MQS) for each mapped read, defined by

MQS = 100+1010{Z(1 —p) =Y (=p)

i€by, i€bym

where [ is the read length, p; is the base-calling P value for
the ith base in the read, b,, is the set of locations of
matched bases and b,,,, is the set of locations of mis-
matched bases.

Base-calling P values can be readily computed from the
base quality scores available in the FASTQ file (raw read
data file). High-quality bases have low base-calling
P values. Read bases that were found to be insertions
are treated as matched bases in the MQS calculation.
The MQS is a read-length normalized value, which is in
the range of 0-200. If a read can be best mapped to more
than one location, its MQS will be divided by the number
of such locations.

Building index for reference genome

To build an index, 16 bp sequences were extracted from
the reference genome in every three bases, i.e. there is a
2bp gap between each pair of neighbouring 16bp se-
quences. Correspondingly, each read has to be scanned
three times for the mapping, i.e. three sets of subreads
are extracted, which start from the first, second and
third base of the read, respectively.

We build a hash table for a reference genome to enable
fast access to the chromosomal locations of subreads
extracted from each read. The hash table includes all the
informative 16 bp sequences extracted from the reference
genome (keys) and also their chromosomal locations
(values). Each base in each 16 bp sequence is encoded by
2 bits. Therefore, each 16 bp sequence occupies 4 bytes of
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space. For mouse or human genomes, their index sizes are
6.2 and 6.6 GB, respectively. The actual peak memory
usage will be slightly higher than these, because sequences
of the entire genome are loaded into memory as well when
performing alignment. The index-building function
provides the option of breaking the index into multiple
parts so as to reduce the memory footprint (only one
part is present in the memory at any time).

Aligners and junction detectors under comparison

Versions of aligners included in this study are as follows:
Subread (1.3.1), Bowtie2 (2.0.0-Beta3), BWA (0.5.9), Maq
(0.7.1), MrsFast (2.3.0.2) and Novoalign (2.07.11). All
aligners were run using their default settings except
Novoalign and MrsFast, which were run with the
options -rRandom and -n 1, respectively, to report at
most one hit for each read so that they can be compared
with other aligners. Versions of junction detectors
included in this study are: Subjunc (1.3.1), TopHat
(1.3.0), TopHat 2 (2.0.0) and MapSplice (1.15.2). All the
programs were tested on a HP Blade supercomputer,
which includes 16 Xeon 2.93 GHz CPU cores and 128
GB of memory.

Subread and Subjunc can be downloaded from http://
subread.sourceforge.net or http://www.bioconductor.org
(Rsubread package).

RESULTS
The seed-and-vote paradigm

We describe a new multi-seed alignment strategy that
chooses the mapped genomic location for the read
directly from the seeds (Figure 1). The new strategy uses
a number of overlapping seeds from each read, called
subreads. Instead of trying to pick the best seed, the
strategy allows all the seeds to vote on the optimal
location for the read. The algorithm then uses more con-
ventional alignment algorithms to fill in detailed mismatch
and indel information between the subreads that make up
the winning voting block. Figure 1B illustrates the
proposed seed-and-vote mapping approach with an artifi-
cial example.

Optimal subread length

A set of equally spaced overlapping substrings, the
subreads, are extracted from the read, and each is
mapped to the reference genome. No mismatches are
permitting when mapping each subread, so this step can
be accomplished with superb speed and efficiency via a
hash index of the genome. Instead of allowing
mismatches, we keep the subreads relatively short to
achieve a good balance between sensitivity and accuracy.
Tests show that a range of subread lengths, from 10-25 bp,
work well from this point of view (data not shown).
Subread uses subreads of length 16 because that is in the
optimal range for sensitivity and accuracy and because
sequences of this length will fit exactly into a machine
word on a 32-bit computer system or into half a word
on a 64-bit computer system. This uses computer
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Figure 1. Seed-and-vote mapping paradigm. (A) Schematic of the proposed mapping paradigm. Subreads (or seeds) are short continuous sequences
extracted from each read. Substrings in green are uninformative subreads, and they are excluded from voting. Little red bars denote mismatched
bases. Mapping location of the read is determined by the largest consensus set. The thin solid arrows point to the mapping location of each subread
included in the largest consensus set. Mapping location of the read, as indicated by the black up-pointing triangle, is voted for by all the subreads in
the largest consensus set. The dashed arrows indicate other mapping locations for the subreads, and these locations were disregarded due to
insufficient number of votes. (B) Using an artificial example to illustrate the paradigm. Six subreads are extracted from the artificial read. Each
square bracket denotes an extracted subread, which contains five continuous bases, and the number embedded in the blue cycle indicates the subread
number. Base sequence of each subread is encoded into a string of 0’s and 1’s (each base is encoded into a 2-bit binary number). Encoded value for
each subread is used as its key in the hash table. The key’s value gives the chromosomal location/s in the genome to which the corresponding subread
is perfectly matched (no mismatches allowed). Four candidate mapping locations are found for this artificial read, which receive 2, 5, 1 and 2 votes
(number of consensus subreads), respectively. The location that receives the largest number of votes, in this case the location with five votes, is
selected as the final mapping location for this artificial read. (C) Indel detection performed under the seed-and-vote paradigm. (C1) shows the
mapping results of subreads when there are no indels found in the reads (assuming no mismatches exist in the read for simplicity). (C2) and (C3)
show respectively the schematic for detecting an insertion (Ins) and a deletion (Del) in the situation where insertion or deletion is found in the read
and flanking subreads are found at both sides of insertion or deletion. (C4) gives the schematic for detecting indels when they occur at the locations
close to the end of the reads where flanking subreads can be found at only one side. In (C2) and (C3), chromosomal locations pointed to by red
arrows are the true mapping locations of subreads 8, 9 and 10, respectively, and chromosomal locations pointed to by dotted black arrows indicate
the chromosomal locations to which they will be mapped if no indels exist before them. d is the indel length, equal to the difference between the
location pointed to by the red arrow and the location pointed to by the dotted black arrow from the same subread. Regions encompassed by the
dotted green lines are found to contain indels [(C2) and (C3)] or are candidate regions for searching indels (C4). Bases in these regions are not
covered by subreads that have made successful votes, and their mapping locations will be determined by aligning to the corresponding regions (within
the dotted green lines) in the reference genome. In (C4), a 4 bp window is moved along the uncovered bases to look for potential indels. When three
or more bases in the window are found to be mismatches, the indel detection process is triggered for the search of indels.

memory in the most efficient way and reduces data access
time (Supplemental Methods, Supplemental Figure S2).
For the subread strategy to work effectively, it is neces-
sary that each subread has reasonable specificity, so
subreads corresponding to highly repetitive or overly
common sequences are removed from the subread set.
Examination of the human genome shows that 81% of
all possible 16 bp sequences occur 24 or fewer times in
the genome (Supplemental Methods, Supplemental

Figure S3). With this motivation, we define as uninforma-
tive any subread whose sequence occurs >24 times in the
reference genome. The informative subreads are therefore
those subreads that occur <24 times in the reference
genome. Simulations show that higher thresholds lead to
higher mapping sensitivity but lower accuracy (Table 5).
Our goal is to achieve a high mapping accuracy and a high
mapping speed; therefore, we decided to use a more
stringent threshold to filter out uninformative subreads.
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A cut-off of 24 repeats was used for Subread when
comparing it with other aligners in this study unless other-
wise stated. Subread provides an option (*-f) in the index
building program so that users can adjust this threshold if
appropriate.

Any set of informative subreads that vote for the same
mapping location for the read is called a consensus set. In
general, a read will have more than one consensus set.
This is partly because of ambiguity, because a subread
can be mapped to more than one location, but also
because different regions of the read could genuinely ori-
ginate from disjoint regions of the reference sequence, for
example because an RNA read could span one or more
exon—exon junctions.

The largest consensus set for each read determines its
mapping location. When there is no unique largest con-
sensus set, because two or more consensus sets mapping to
different locations have the same number of votes, the one
covering more bases in the genome is chosen. If there is
still a tie, it is broken on the basis of either MQSs or by the
Hamming distance between the read and each candidate
region.

How many subreads and how many votes?

The remaining parameters that determine the mapping
algorithm are the number of subreads selected from each
read and the consensus threshold. The consensus thresh-
old is the minimum number of subreads (votes) required
for reporting a mapping location. An extensive simulation
study was undertaken to establish optimal values for these
parameters (Supplemental Materials). Numbers of
subreads ranging from 7 to 28, and consensus thresholds
ranging from 10 to 70% of the number of subreads, were
examined for the mapping of 10 million 101 bp reads. Not
surprisingly, sensitivity decreased and accuracy improved
with the consensus threshold increase for any fixed
subread number (Supplemental Figure S4). However,
setting the consensus threshold at ~30% of the subread
number gave good performance with respect to both
accuracy and sensitivity across a wide range of subread
numbers and cut-offs for removing uninformative
subreads (Supplemental Figure S5). Smaller numbers of
subreads are preferred from a computational cost point
of view. By taking all the evaluation results into account,
we decided to select 10 subreads from each read and use a
consensus threshold of three for mapping.

Detecting indels around the subreads

Detecting deletions and insertions is an especially difficult
aspect of read mapping that typically incurs considerable
computational cost. Our seed-and-vote strategy, however,
facilitates an efficient and accurate approach to indel
detection with only very modest computation overhead.
First consider indels that are flanked by consensus
subreads. In that case, the genomic positions of the
flanking subreads determine the indel length and bound
the locations of the indel bases. Indels near the ends of the
reads will not have flanking subreads on both sides. In this
case, we move a window along the unmapped regions to
identify indels. The subread approach only needs to align
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read bases not covered by the mapped subreads, a consid-
erable computational saving compared with full alignment
of the entire read.

Figure 1C illustrates how we identify indels and deter-
mine their lengths and locations. Figure 1(C1) shows the
mapping locations of subreads when there are no indels
found in a read. For simplicity, here every extracted
subread is mapped to a unique location. It can be seen
that the distances between mapping locations of subreads
in the reference genome are the same as their distances in
the read. We make use of this distance concordance to
infer indel lengths. When a read contains an insertion
[Figure 1(C2)], mapping locations of the subreads on the
right side of the insertion will be shifted to the left by a
distance d, which is equal to the length of insertion.
Similarly, when a read contains a deletion
[Figure 1(C3)], mapping locations of subreads on its
right side will be shifted to the right by a distance equal
to the length of deletion. Because there are no mismatches
allowed in the flanking subreads, the indels are called with
high confidence. The uncovered bases, which are not
covered by mapped subreads due to indel occurrences,
are then aligned to the genomic interval between the
mapped locations of the flanking subreads (encompassed
by the green dotted line) using a Smith—Waterman
dynamic programming procedure. Because the indel
length has been determined already by the flanking
subreads, the Smith—Waterman algorithm can be in-
structed to find an alignment of the correct indel length.

As it can be seen, the dynamic programming procedure
is only required for aligning uncovered bases, rather than
aligning the entire read sequence using this procedure as
carried out by other aligners such as Novoalign. The
running time of Subread increased by only 3% when
using this procedure to discovered indels in the 1000
Genomes data set included in this study. The dynamic
programming procedure also reported correct indel
lengths for 98% of the reads that were found to contain
indels in this data set.

However, indels might not have flanking subreads at
both their sides, especially when their locations are near
the ends of the reads [Figure 1(C4)]. In this case, a 4 bp
window is moved from the first (or last) mapped base to
the start (or end) of the read to identify indels. We require
at least three mismatches in the window to consider a po-
tential indel. Any potential indel that improves the simi-
larity between uncovered bases and the corresponding
reference region is reported.

Discovering exon—exon junctions between the subreads

A unique feature of RNA-seq is the ability to measure
distinct isoforms of a gene including alternative splicing
events. Here we use the seed-and-vote paradigm to
develop a novel approach for detecting exon—exon junc-
tions and producing complete mapping results from
RNA-seq reads.

Figure 2 shows a schematic of the approach. The entire
set of reads is scanned twice. In the first scan, a number of
subreads are extracted from each read, which are then
used to vote for the mapping locations of reads in the
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Figure 2. Schematic for detecting exon—exon junctions under seed-and-vote paradigm. A two-scan procedure is used to detect exon—exon junctions
and to determine the mapping of each read. Three artificial reads are used to illustrate this procedure (Read 1, Read 2 and Read 50). In the first scan,
a set of subreads are extracted from each read and mapped to the reference genome. The best two mapping locations from each read, which receives
the two largest numbers of votes, are selected for further consideration. If donor and receptor sites are found between these two locations and total
size (L1+L,) of the two mapped regions in the reference is equal to the size (L) of the read region that is spanned by the subreads that vote for the
best two mapping locations, the determined splicing points will be recorded in the putative exon—exon junction table. Anchor locations of each read
in the genome and in the read are also recorded, which gives the mapping location to which the read is best mapped and the location of the leftmost
base of the set of extracted subreads that vote for that location, respectively. Anchor locations will be used for retrieving putative splicing points and
for the validation performed by the second scan. The first scan is applied to all the reads, and two tables are produced on completion. These two
tables include chromosomal locations of putative splicing points found for each exon—exon junction and anchor information for each read, respect-
ively. The input to the second scan includes these two tables and also the read data. For each read, the second scan uses its anchor location to search
for the putative splicing points falling within the read from the junction table output from the first scan and then examines all mapping possibilities
(including mapping the read as an exonic read) to eventually determine how the read should be mapped. The similarity between the read sequence
and the mapped regions when it is mapped as a junction read has to be greater than that from being mapped as an exonic read (i.e.
NM;+NMpr > NMp), if it is called a junction read. The cyan dashed line indicates the mapping location of the first base or the last base of the
read when it is assumed that the read does not contain junctions. Putative splicing points are removed from the final results if they are found to not
have any supporting reads after the second scan is completed. The final output from this two-scan procedure is a table of validated exon—exon
junctions with the number of supporting reads included, and also the complete mapping results for each read including CIGAR strings, which
describes how each base in each read is mapped.
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reference genome. Any locations which receive at least one
vote will be considered. We select the two most voted
mapping locations for each read and examine whether
there are any splicing sites existing between the two
selected locations. We require that a donor site (‘GT’)
and a receptor site (‘AG’) exist between the two locations
before considering them to have splicing points in
between. We also require that the length of region in the
reference genome that is spanned by the two sets of
subreads that voted for the two best locations, excluding
the region between the identified donor site and receptor
site, must be equal to the length of the region in the read
that is spanned by two same sets of subreads, when no
indels are allowed. This is illustrated in the mapping of
Read 1 in Figure 2 (L = L;+L;). When indels are allowed,
the length difference will be equal to or less than the
specified maximal indel length. This first scan is very sen-
sitive in finding potential exon—exon junctions because any
mapping locations with as low as one vote are considered.
On the other hand, the requirements on the length of
mapped regions and on the donor/receptor sites ensure a
high accuracy to be achieved.

The second scan will perform full read alignment for
each read (including those reads mapped as exonic
reads, which have only one candidate mapping location),
using the output from the first scan. The second scan also
serves as a validation procedure that will examine all
mapping possibilities for each read and choose the best
possible ones for them. It also assigns reads to the exon—
exon junctions discovered from the first scan and removes
those junctions that failed to get any supporting reads.

Output from the first scan includes discovered putative
exon—exon junctions and anchor information for reads.
For each read, its anchor location in the genome is the
mapping location of leftmost base of the leftmost subread
in the set of subreads that voted for the best mapping
location of the read, and its anchor location in the read
is the location of the same base in the read. The anchor
region in each read is the region that is spanned by the set
of subreads that voted for the best mapping location, and
the region in the genome that is mapped to by the anchor
region in the read is its anchor region in the genome. The
anchor location saved for each read allows the second
scan to retrieve all putative exon—exon junction locations
falling within the read discovered from the first scan. The
second scan considers all possibilities of how each read
should be finally mapped, including locations where the
read is mapped as an exonic read (no junction break
points were found in the read), locations where the read
is mapped as a junction read that has one junction break
point or locations where the read is mapped as a junction
read that includes more than one junction break point.

We illustrate the proposed algorithm with example
involving a couple of reads, shown graphically in
Figure 2. Read I is found to contain a putative junction
break point located at the right side of the anchor, when
using its anchor location to search for splicing points from
the exon—exon junction table for this read discovered by
the first scan (Figure 2). To confirm if this is a true
junction, we examine whether including this junction in
the mapping result will improve its sequence similarity
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to the reference genome. If this junction is included, its
position in Read 1 can be worked out from calculating the
distance between the anchor location of this read in the
genome (950 on chromosome 1) and location Splicing
Point 1 in the genome (1000 on chromosome 1), as this
distance is equal to the distance between this junction
location in the read and anchor location in the read
(when no indels exist). Each exon—exon junction has two
splicing points in the reference genome, Splicing Point 1
and Splicing Point 2. If there are indels, the junction
position in the read will be shifted to the right, denoting
insertion in the read, or left, denoting deletion in the read,
by the number of indel bases. NM; denotes the number of
matched bases found in the region between the determined
junction location and anchor location in the read. We
further map the region, which is located between the
junction location and the 3’end of the read, to a
genomic region starting from location Splice Point 2.
Again, we allow indels in this mapping. The number of
matched bases found in this region is denoted by NMg.
Sum of NM; and NMy gives the total number of matched
bases for the entire read region located at the right side of
the anchor, when this region is being considered to contain
a junction. We then compare this region directly to a con-
tinuous reference region starting from the anchor location
and ending at the location indicated by the cyan dash line,
and count the number of matched bases, denoted by
NMpg. This comparison checks the possibility that this
region can be mapped as an exonic region, i.e. no
junction exists in this region. Indels are allowed in this
comparison. If the sum of NM; and NMpy is greater
than NM g, the discovered junction will then be confirmed
and this read will also be counted as one of the supporting
reads for this junction. Otherwise, this region will be
mapped as an exonic region. For the artificial read Read
1, this junction is confirmed and added to the table of
validated exon—exon junctions.

After determining the mapping of read region on the
right side of the anchor, the second scan moves on to
map the region at the left side of the anchor. There is no
putative junction break points found in this region; there-
fore, the mapping of this region is quite straightforward.
The voting subreads have already determined the mapping
locations of those bases in the anchor, and only indels
need to be figured out in those bases, which are located
outside of the anchor region if there is any. This is done by
testing if adding indels to every base could increase the
matched bases.

Read 50, however, is found to contain a putative
junction break point in the region on the left side of the
anchor, in addition to its confirmed junction break point
on the right side of the anchor. The second scan performs
a test, similar to what it has done for confirming the right
side junction, to validate the junction in this left region.

After both scans are completed, every read will be fully
aligned and a list of validated junction locations will be
generated. Those putative junction locations, which were
reported by the first scan but failed to get any supporting
reads in the second scan, were removed from the result
(e.g. the junction indicated by a red cross was removed).
The number of supporting reads is provided for each
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reported junction. Mapping results for each read are
reported, in addition to the chromosomal locations of dis-
covered exon—exon junctions. For each junction read, the
mapping location of each of its bases is recorded in a
CIGAR string (34).

Subread outputs the same mapping results for the
mapping of exonic reads as those given by Subjunc. For
the mapping of each junction read, the mapping region
given by Subread will overlap with one of the mapping
regions given by Subjunc, as they use the same set of
consensus subreads to determine the mapping location
(Subread) or anchor location (Subjunc). Therefore,
mapping locations of reads are essentially the same
between Subread and Subjunc, meaning that Subread
has the same mapping accuracy as Subjunc.

Subread is faster than previous aligners

First, we compared alternative aligners on a recent 1000
Genomes data set of 27.5 million pairs of 100 bp DNA
reads. Bowtie2, Maq and Subread all succeeded in
mapping almost all the reads to the human genome, and
they also had the highest percentages of normalized found
intervals given by the Rabema program (35). The metric
‘normalized found intervals’ developed in Rabema is
similar to the recall used in this study, except that it
down-weights those reads that are mapped to multiple
locations.

Subread was nearly four times as fast as the nearest
competitor, Bowtie2 (Table 1). There was a 30-fold differ-
ence in speed between Subread and the slowest aligners.
Subread remained more than twice as fast as any other
aligner even when tuned to use a small memory footprint.
MrsFast and Maq used considerable memory for this data
set, because their memory use is dependent on the number
of reads being mapped. The 1000 Genomes data set used
in this evaluation gives a typical size of read data used in
the field of genomic variation detection by using next-gen
sequencing technology. The speed of Subread makes it
suitable for production use.

The speed advantage of Subread increases as reads
become longer. Subread is seven times as fast as the next
fastest for mapping 202 bp reads (Supplemental Table S1).

Table 1. Performance of aligners in mapping genomic DNA reads
from the 1000 Genomes project

Aligner Mapped Rabema Time Memory
(%) intervals (%) (h) (Gb)
Subread (default) 97.7 86.7 1.6 7.6
Subread (low memory) 97.7 86.7 2.9 43
Bowtie2 99.1 87.2 6.0 33
BWA 95.6 82.6 15.2 33
Maq 98.1 86.3 48.3 19.1
Novoalign 93.9 68.9 18.7 8.2
MrsFast 70.3 73.8 48.2 25.8

Columns give the percentage of reads that are successfully mapped, the
percentage of normalized found intervals given by the Rabema
program (in ‘all’ category, maximal error 