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1. INTRODUCTION

THE problem of assessing the genotypic selection intensity that accompanies
the process of substituting one allele for another in adaptive evolution was
first attacked by Haldane (1957), who used the term "cost of natural
selection" in describing the amount of selective elimination in the process.
Based on a deterministic treatment, he obtained elegant formulae showing
that the sum of the fractions of selective deaths is almost independent of the
selection coefficient but depends on the initial frequency of the allele used for
the substitution. Later, more exact expressions were derived by Haldane
(1960), especially to cope with the cases in which the selection coefficient
is not small.

On the basis of Haldane's theory Kimura (1960) developed his theory
of the optimum mutation rate, where the term "substitutional load"
represents the genotypic selection intensity. Later, the theory was re-
examined and also the effect of slowly changing environment on the sub-
stitutional load was investigated (Kimura, 1967).

The above treatments are all deterministic in that the random fluctuation
of gene frequencies due to random sampling of gametes is disregarded.

However, the actual populations are all finite, and, as will be shown in
what follows, random sampling of gametes has a very significant effect on
the substitutional load. In the present paper, the senior author (M. K.) is
responsible for the theoretical treatments and also for the simulation studies
on the haploid population, while the junior author (T. M.) is responsible for
the simulation studies on the diploid population.

2. HAPLOID POPULATION

Let us consider a population of haploid organisms and denote by X€ the
effective population number. X roughly represents the number of breeding
individuals and may be different from the actual number of adults. For the
difference between actual and effective population number, the reader may
refer to Kimura and Crow (1963).

We will assume that the population consists of two types of individuals

(or alleles) A1 and A2, and denote by x and (1 —x) their respective frequencies
in the population. We will also assume that A1 has the selective advantage
s (>0) over A2 such that the mean change of x per generation is =

sx(1 —x), or more exactly, that the expected amount of change in x from time
t to t+dt is sx(1 —x)dt. Before proceeding further, it is important to note, for
the treatment to be realistic, that the total population number is not directly
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controlled by the numbers and the relative fitnesses of A1 and A2, as assumed
by Feller (1967), but is controlled by such environmental factors as food,
space, competing species and so on. Such an observation is made on the
biological basis of a strong tendency inherent in each organism to increase
in number, if unchecked. Namely, in each generation, a large number of
young are produced, but only a fraction of them can reach maturity so that
the total population number is compatible with the carrying capacity of the
environment. Therefore, it is quite realistic to assume that the population
number is kept nearly constant by the above population controlling mecha-
nism throughout the process of gene substitution. (For a more detailed
discussion, see Kimura and Crow, 1969).

Thus, we will assume that the effective population number .J is constant,
and, in each generation random sampling of gametes (or spores) for the
production of next generation takes place in such a way that the variance
of the change in gene frequency x per generation is V = x(1 —x)

The process of change of the frequency (x) of A1 is now a stochastic
process in which x fluctuates from generation to generation and, eventually,
either A1 reaches fixation (i.e. x becomes 1) or lost (i.e. becomes 0) from the
population. We will denote by u(p) the probability of eventual fixation of
A1 when its initial frequency is p. For the gene with selective advantage s
in a haploid population of effective size X6 as considered here, the more
general formula for u(p) derived by Kimura (1957) reduces to

u(p) (1 __e2NeSP)/(l _e2Ne8). (2.1)

Our aim is to calculate the sum total of the genetic load that accompany the

process through which A1 changes from a low frequency p to a very high
frequency and finally to fixation. For this purpose, we will use the method
of diffusion equations, especially the one of making use of the Kolmo-
gorov backward equation as developed by Kimura (Kimura, 1957, 1962,
1964).

Let (p, x; t) be the probability density that the frequency of A1 becomes
x at time t (measured one generation as unit) given that it is p at time 0.
Then satisfies the following Kolmogorov backward equation

(p,x;t) p(l—p) e2(p,x;t) + (1— ) (p,x;t) 22_________ —

21'fe a2 p p ( . )

In a particular population containing A1 and A2 at the relative fre-
quencies x and 1 —x, the mean fitness of the popultion is less by s (1 —x) as
compared with the fitness of the optimum genotype A1, so that the load in
this population is

1(x) = s(1—x). (2.3)

Since the probability is (p, x; t)dx that the frequency of A1 is x at time t, the
expected value of the sum total, denoted by F(p), of the load from time
t = 0 to time t = 03 is rr'

F(p) = l(x)ç6(p, x; t)dx Idt, (2.4)
Jo LJo J

in which the integral with respect to x is strictly over the open interval (0, 1)
i.e. for 0 <x < 1. It might perhaps be more appropriate to write the limits of
integration as 1/2N and 1 — l/21V but, for the sake of simplicity, we write
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those limits as 0 and 1. Here we may note that since s(1 —x)dt is the amount
of selective elimination during a short time interval from t to t + dt in a
population containing A1 and A2 with relative proportions x and 1 —x,
F(p) also represents the expected sum total of the amount of selective
elimination that takes place from time 0 to . However, gene A1 is eventu-
ally fixed only with probability u(p) and therefore the load for one gene
substitution should be defined by

L(p) = F(p)/u(p) (2.5)

as pointed out by Maruyama (1967).
We will now proceed to calculate F(p) by using equation (2.2). Multi-

plying 1(x) = s (1 —x) on each term of equation (2.2) and integrating the
resulting terms first with respect to x on the open interval (0, 1) followed by
integrating them with respect to I from t = 0 to , we obtain

f [ J s(l —x)ç6(p, x; t)dx]dt =P) {P) +21'Tes (2.6)

The left hand side of the above equation reduces to

s(1 —x)çb(p, x; ce)dx — s(1 —x)çb(p, x; 0)dx = —s(I —p), (2.7)
Jo Jo

which follows from the facts that (i) the boundaries x = 0 and 1 act as
absorbing barriers so that

x; x) = 0

for 0 <x < 1, over which the integral is defined, and, (ii) the initial frequency
of A1 isp so that

(p,x;0) =
where () represents the Dirac delta function.

Combining (2.6) and (2.7), we obtain the following equation for F(p),

d2F(p) +2SJ—-- + = 0, (2.8)
dp2 dp p

where

S = .Ns.

The above differential equation may immediately be integrated to give

('1 e28x

F(p) = C0—C1e2" +2S1 e2dA I —dx, (2.9)x

in which two constants C0 and C1 may be determined by the boundary
conditions,

F(0) = F(1) = 0. (2.10)

These conditions follow from the fact that, for all x in the interval 0 <x < 1,

x; t) = 0

whenp = 0 orp = 1.
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Using the boundary conditions (2.10), (2.9) reduces to

C2Peu_i 1'2 e fl\
F(p) = {l—u(p)}l dj—u(p)e28 —dy+u(p)loge(—),

.JO )' .I2SpY \PJ

so that the required formula for the load is

F(p) 1 2Sp ei 2S e 1
L(p) =

__- = {— _}J — dye2S
J2 dY+1oge(_)

(2.11)

where S = .Nes and u(p) represents the probability of fixation given by
u(p) = (1_e_2SP)/(le_2S).

The numerical calculation of the load from equation (2.11) is facilitated
by noting that the integrals in the right hand side of the equation may be
expressed in terms of the exponential integral as follows:

r2Sp eul-
dy = Ez(2Sp)—loge(2Sp)—y

Jo Y

('2S e
—

dy = E(2S)—E1(2Sp)
J 28p Y

In the above expressions, y is Euler's constant (057721 .. .) and E.() is the
exponential integral defined by

rz et
E(x) =

I -jdt (x>0)
.1 —

for which fairly extensive tabulation is available (see for example, Abramo..

witz and Stegun, 1965). However, for most practical purposes, the following
series approximations seem to be sufficient:

For a small value of x (>0)

E(x) = y+log x+x+ +

and, for a large value of x

(1 1 2!
E(x) =e—+-+ -••.

(X X X

lIerewe will consider three cases. First,if both 2S( = 2Xes) and 2Sp( = 2X0sp)
are infinitely large,

(2.11) reduces to

L(p) =
loge() (2.12)

the result first obtained by Haldane (1957). Secondly, if 2S is much larger
than unity but 2Sp is small so that u(p) = 2Sp approximately, we have

L(p) =
i+ioge() (2.13)
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approximately. For one gene substitution, on the average (2Sp)1 —
equally advantageous genes are lost on the way, each of the latter con-
tributing about 2Sp to the load, thus creating extra load of 1 —(2Sp) or
roughly 1 as compared to the first case considered. We believe that this is a
new contribution to the concept of substitutional load. Thirdly, if both 2S
and 2Sp are much smaller than unity so that u(p) = p+Sp( 1 —p) approxi-
mately, we have roughly

L(p) =
2Sloe:3;)

which is much smaller than the load in the first case. Namely, in a small
population, a slightly advantageous genes may be substituted with a small
load.

Fig. 1 illustrates L(p) as a function of S assuming four different levels ofp.
The curves in the figure were drawn using values obtained from equation

(2.11) by numerical integration.

3. Dwrost POPULATION

Let us consider a random mating population consisting of N diploid
individuals and having effective population number and, assume a pair
of alleles A1 and A2 at an autosomal locus. We will denote by x and 1 —x
the respective frequencies ofA1 and A2 in the population. We will also denote

Haploid
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FIG. 1.—The load for one gene substitution (L) in a haploid population as a function of .Ws,
where iV is the effective population number and s is the selective advantage of A1. The
relationship between L and Js is illustrated for four different initial frequencies, i.e.

p = O1, 001, O00l and 00001.

I.0 0

NeS
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by s and sh the selective advantages of A1A1 and A1A2 over A2A2 measured in
Maithusian parameters. Then, the mean and the variance of the change in

the frequency of A1 per generation may be given respectively by

= sx(l—x){h+x(1—2h)}
and

V = x(l —x)/(2N6).
Let (p, x; t) be the probability density that the frequency of A1 becomes x
at time t (tth generation) given that it is p at time 0. Then q satisfies the

equation

bç(p,x; t) = p(l—p) l2ç6(px t)
+sp(1 —p) {h+ (1 —2h)p}

(p,x; t)
(3.1)

In a particular population in which the frequency of A1 is x, the average
fitness of the population is less by s — [sx2 + sh2x( 1 —x)] as compared with the
optimum genotype A1A1 so that the load is

1(x) = s(l—x){l+(l-—2h)x}. (3.2)

As in the haploid case, we are going to calculate the expected value of
the sum total of the load that accompanies the process through which x
changes from p to unity. For this purpose, we multiply each term of the
above differential equation (3.1) by 1(x) and integrate the resulting terms
first with respect to x over the open interval (0, 1) and then with respect to t
from t = 0 to cc. This leads to

s: [ j" l(x)ç/(p, x; t)dx]dt

p(i—p) 2F(p)
+sp(l—p){h+(l—2h)p}-?,

(3.3)

where
r°rr' 1

F(p) = I I l(x)ç6(p, x; t)dx Idt.
Jo Jo J

Since q(p, x; cc) = 0 for 0<x< 1, and q!(p, x; 0) = 8(x—p), the left hand
side of (3.3) becomes

('1

l(x)ç6(p, x; cc)dx— I 1(x)6(p, x; 0)dx
Jo Jo

= —1(p) = —s(1—p){1+(l—2h)p}.

Thus, we have the following differential equation for F(p).

d2F(p)

+4S{h+(l2h)p}$P) +4S{i +(l_2h)}
= 0, (3.4)

where S = JVeS.

The equation can immediately be integrated to give

F(p) = C0+C1 G(x)dx+4S G(A)dA - +(l—2h)G(x)dx, (3.5)
Jo Jo JX(X j
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where C0 and C1 are constants and

G(x) = e_2S(2+(_2h)1. (3.6)

The constants may be determined by the boundary conditions

F(0) = F(l) = 1, (3.7)

which follows from the fact that when p = 0 or p = 1, (p, x; t) = 0 for
0< x < 1. Using these boundary conditions, (3.5) becomes

r'(i
F(p) = 4S{l—u(p)}I - +(l—2h)G1(x)dxI G(A)dA

j

t•x

_4S1 - +(l_2h)G_1(x)dx G(.\)dA (3.8)

.Jp ) Jp

where

/jI
u(p) = G(x)dx/ j G(x)dx, (3.9)

Jo I Jo
in which G(x) is given by (3.6), is the probability of the ultimate fixation of

A1 (Kimura, 1962). The load for one gene substitution is then given by

L(p) = F(p)/u(p). (3.10)

In the simplest but important case of" no dominance ", that is, when the
mutant gene is semidominant so that h = 1/2, we have G(x) = e

u(p) = (1—e—28P)/(l—e—28) (3.11)

and the expression for the load is simplified to give

1 5'eY—l IS
1

L(p) = 2{—
— i}J — d)_2eIS dy+2 ioge() (3.12)

with u(p) given by (3.11). It is interesting to note that the above expression
for L(p) is twice the corresponding expression for the haploid case (2.11).
Note, however, that the definition of the selection coefficient s is different for
the two cases. Namely, in the haploid case s represents the selective advan-
tage of A1 over A2, while in the diploid case with no dominance s represents
the selective advantage of A1A1 over A2A2. Except for such a reservation,
discussions given in the previous section for the haploid case apply to the

present case.

4. SIMULATION STUDIES

4.1. Haploitipopulation. In order to check the validity of equation (2.11),
Monte Carlo experiments were carried out by using computer IBM 7090.
The computer program was written in Fortran II to simulate the process of
selection in a finite population of haploids, in which the actual number
(X) of individuals is equal to the effective number (Xe). The selective

values of 1 + s and 1 were assigned respectively to A1 and A2. Starting from
J\tI and JV( 1 —p) individuals of A1 and A2, a simulation experiment was con-
tinued until one of the alleles became fixed in the population. In each
generation, X individuals were sampled to form the next generation in such
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a way that in each step of sampling, a pseudo random number R having
uniform distribution was generated (using Subroutine RAND 1), and, A1
was added to the next generation if R X, while A2 was added if R>X,
where X is the expected frequency of A1 after selection. This was con-
tinued until Y individuals were sampled.

For each experiment, the cumulative total of the load over all the genera-
tions was calculated. Then, in order to obtain the substitutional load, a
number of such experiments (usually consisting of 200 replicate trials) were
carried out with a given set of values of s,p and N, and the average load was
computed for those cases in which A1 was eventually fixed in the population.

Hciploid p0.0I

L

3.0

-I

co

FIG. 2.—Results of Monte Carlo experiments on the substitutional load in a finite population
of haploids. The solid line represents theoretical values of L as a function of .Ws, where
L is the genetic load for one gene substitution, Ne is the effective population number and
s is the selection coefficient. Results of the experiments are plotted with square dots.
See also table 1.

Fig. 2 illustrates the results of Monte Carlo experiments performed by setting

initial gene frequency p = 0.01. In the figure, the solid line represents the
theoretical values of L as a function of J'/eS. Those values were obtained from
formula (2.11) by numerical integration. The value of L at J'i6s = is
46o5. The results of the Monte Carlo experiments are plotted with square
dots. More detailed results are given in table 1. The agreement between
the theoretical predictions and the experimental results appears to be
satisfactory.

4.2. Diploid population. A similar computer program was written in
Fortran IV to simulate the process of selection in a finite population of
diploid individuals which are monoecious and among which mating takes
place at random. In the simulation process, the effective number (Ne) was
set equal to the actual number. The selective values 1 +s, 1 +sh and I were

respectively assigned to A1A1, A1A2 and A2A2.
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Number of
replicate trials

200
800
200
200
200
200
200
200
200
200
200
200
200
200
100
100

Number
fixed

5
11

4
3

3
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22
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FIG. 3.—Results of Monte Carlo experiments on the substitutional load in a finite population
of diploids, assuming that the advantageous mutant gene is completely recessive (h = 0)
and its initial frequency p = 001. Results of the experiments are plotted with square
dots. For details, see text and also table 2.
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TABLE 1

Results of vlonte Carlo experiments on the substitutional load in a haploid population. In all the e4eri-

inents listed here, the initial frequency of A1 was taken as 00l (p =001). The theoretical
values were computed from equation (2.11). N is the effective population number and s is the

selection coefficient for A1.

Case X 5

1 100 0002
2 100 0002
3 100 0005
4 100 0008
5 100 00l
6 100 0•02
7 100 003
8 100 004
9 100 0•05

10 100 005
11 100 0•06
12 100 0•l0
13 100 010
14 100 020
15 200 0l0
16 200 020

L

100.0

Diploid p=O.Ol hO

Substitutional Load (L)

From experiment From theory

083 1•55

l38 l55
3•0l 3•05

361 3.95
5•ll 4•34

550 5l7
3•62 5.37

646 5.44
652 5.47

4•83 5.47
482 548
5.73 550
420 5•50
5•ll 548
5.78 5.43
501 540

—4.

100.0

0.0

.0

oj

2NeS

10.0
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In Fig. 3, the results of the Monte Carlo experiments, assuming popula-
tion number X = = 50, initial frequency p = 0.01 and degree of
dominance h = 0 (A1 completely recessive) are represented. The square
dots in the figure indicate the results of the experiments. These should be
compared with the theoretical curve derived from formulae (3.8), (3.9) and

TABLE 2

Results of Monte Carlo experiments on the substitutional load in a finite population of diploid idi-
viduals. In all the experiments listed here, the experiments were carried out assuming the effective

population number N1 =50, the initial frequency p =001 and complete recessiveness of mutant
gene A1, i.e. h =0. Also, the selective values 1 + s and 1 were assigned respectively to the re-
cess ive (A,A,) and dominant (A2A, and A1A,) individuals. The theoretical values were ob-

tained from equations (3.8), (3.9) and (3.10) by numerical integration.

Substitutional Load (L)

From Monte Carlo experiments
— From theory

2)is 300 replicates 200 replicates (Diffusion approximation)

00l 005625 005766 010l6
002 — — 02026
003 01328 05113 03O29
005 050l3
008 — — 07939
0.1 07545 04775 09858
O2 — — l907
03 2255 2715 2769
05 — 4.335
08 — — 6350
l0 4656 36l2 7509
20 — — ll•81
3.0 l879 l349 l463
5O 18•32
80 — — 22.36*

100 3030 l727 24.45*
300 3698 3576

l000 — 6886 —

l036

* Avalue obtained by Gaussian quadrature using the Legendre polynomials with the
degree 40.

(3.10) by setting p = 0.01, h = 0 and applying numerical integration. More
detailed values are listed in table 2. Note that in the theoretical treatments
based on the diffusion model, L depends only on 2XeS when p and h are
given. In the present case, the numerical integration presented some
difficulty since we had to cope with double integrals. The method used to
compute a double integral such as

+(1 _2h)] G_1(x)dxj' G(lt)d\

appearing in equation (3.8) was as follows. The integral was approximated
by

M

I(xss)(1/M),
n=1
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where
= —(l/2M)+n/M

and

I(x) =
[± +(l_2h)]G-1(xn)J G(A)dA,X o

in which a value for

Cb

J G(x)dxa

was computed by the Gaussian quadrature with the degree o I the Legendre
polynomial used equals to 10 (cf. Hildebrand, 1956). The values given in
table 2 were obtained with M = 1000. The theoretical value at 2Ns =
that is I 036, was computed from L = (1 —p)/p+log8( lip) the formula that
can be obtained for the completely recessive gene using deterministic theory.

It may be seen from the present study that for the completely recessive
genes the value obtained by the deterministic theory can be approached
very slowly as the effective population number becomes infinity. Thus,
even for 2JIes = 100, the load is roughly 65 per cent, as large as the limiting
value. Note that 2X8s = 100 means ,JV 5000 when the selective advan-
tage is 1 per cent.

In addition to the above simulation experiments, numerical studies were
also made by multiplying the transition matrix, assuming small population
numbers such as ,7 = 10, 20 and 30. The results suggest that the theoretical
treatment based on the diffusion model gives fairly good approximation
already at V = 30. For example, with p = 0'05, 2YeS = 1 and h = 1/2,
we obtain L = 4066 from the diffusion model, while L = 3199 from matrix

multiplication assuming JV' = 30.

5. DISCUSSION

So far, we have considered the cumulative total amount of selective
elimination that accompanies the process of substituting one allele for another
in a finite population. This total amount is spread over many generations.

Let us now consider a situation in which a large number of loci are
available for gene substitution and mutant genes acquire a selective ad-
vantage on the average in vm of the loci in each generation. We will assume
that whenever this happens it takes place in a different locus and that the
selective advantage of the mutant gene is s in homozygotes and sh in hetero-
zygotes. In a population consisting of JV diploid individuals, the initial
frequency p is equal to l/(2X) if the mutant gene is advantageous from the
moment of its birth and if every mutant represents a new not pre-existing
allele. On the other hand, if the mutant allele is recurrent and initially
disadvantageous or neutral but becomes advantageous later due to change of
environment, p may sometimes be much larger than 1 /(2X).

Let us assume then that the above process has proceeded for a large
enough number of gene-rations so that the balance is reached between the
appearance of advantageous mutations and their random extinction or
fixation in the population. Since q'(p,x; t) is the probability density that the
frequency of the mutant gene becomes x after t generations, vmçl(P, x; t)dx
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represents the contribution made by the mutant genes that acquired their
advantage t generations earlier to the present frequency class having gene
frequency x x + dx. Noting that the genetic load for a locus with mutant

gene frequency xis 1(x) = s(1—x){1+(l—2h)x} as given in (3.2), the load

in the present generation may be obtained by summing up vmçl(P, x; t)1(x)dx
over all the contributions made by the past generations, i.e. 0 t , and
over all the relevant frequency classes, i.e. 0 <x < 1. Thus if we denote by Le
the substitutional or evolutional load (cf. Kimura, 1960), we have, for the
present case

i•1 r
Le I vmç6(P, x; t)1(x)dxdt = vmF(P) = KL(p), (5.1)

JOJO

where K vmu(P), and, F(p), u(p) and L(p) are respectively given by (3.8),
(3.9) and (3.10) in the previous section. Note that L(p) represents the
genetic loadfor one gene substitution while Le represents the substitutional load

at any particular generation in an equilibrium population in which gene
substitution proceeds at the rate K per generation. Note also that the last
mentioned figure K vmu(P) represents the average number of gene
substitutions in the population per generation and it may be much smaller
than Vm, the average number of loci in which mutant genes become advan-
tageous per generation, because in each such locus the mutant gene becomes

eventually fixed only with probability u(p). For such an equilibrium popula.-
tion, it can be shown that the average number of heterozygous loci per
individual due to the advantageous mutant genes is

H(p) =
4(){u(P)_P]

(5.2)

assuming that an infinite number of loci are available for gene substitution
and that the mutant gene is semidominant (h = 1/2). The derivation of the
above formula will be published elsewhere.

In the following, we will consider two cases of special interest, assuming
that the mutant genes are semidominant.

First, if the selective advantage is sufficiently large such that 2Xs 1
while the initial frequency is very low so that 2XeSP 1, we have approxi-

mately u(p) = 2J1 SP and L(p) = 2[1 + loge( 1/pyj. Namely, the load for one
gene substitution is larger by about two as compared with the corresponding
value derived by Haldane (1957) who used a deterministic treatment. In a
population consisting of X diploid individuals, if vm advantageous mutations
are produced in each generation in the population and if each mutant
represents a new not pre-existing allele in a different locus, p = 1/(2X). In
this case, the mutation rate per gamete per generation for advantageous
mutation is v = Vm/(2J'f). The probability of fixation of each mutant gene is
U = (.We/X)s, where s is the selective advantage of the mutant homozygote.
The load for one gene substitution is L = 2[1 + loge(2X)]. For example, in
a population consisting of 50,000 individuals (2X = 105) and having the
effective population number half as large as the actual number (X =
if the selective advantage of each mutant gene in single dose is one per cent.
(s/2 = 0.01), the probability of ultimate fixation of each mutant gene is
u = 00l and the load for one gene substitution is L = 250. In order that
the gene substitution proceeds at the rate of 1 in every 300 generations, the
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rate suggested by Haldane (1957) as a representative figure in the ordinary
process of evolution, we must have K = VmU = 1/300. Then, the substitu-
tional load in any given generation is Le = KL = 0083. Namely, the
amount of selective elimination which is required for the adaptive evolution
to proceed at the above rate is 8'3 per cent, per generation. In such a
population, the advantageous mutations occur at the rate v = (1/3) x 10—s

per gamete per generation. From equation (5.2) we find that the number
of heterozygous loci per individual due to such advantageous mutations is
only about 07, a very small number.

Secondly, if the mutant gene is almost neutral such that 2XesI<< 1, we

have approximately u(p) =P +XeSP (1 —p) and L(p) = 4JTes loge( l/p).
Namely, as 2Xs approaches zero, the probability of fixation approaches p
and the substitutional load may become indefinitely small. For such muta-
tions, there will be no limit to the rate of gene substitution in evolution, pro-
vided that mutant genes are produced at correspondingly high rate. Com-
parative studies of amino acid arrangement of a protein molecule such as
hemoglobin or cytochrome c among different groups of animals suggest that
in mammalian evolution gene substitution had proceeded at the rate of
some two nucleotide replacements per generation (Kimura, 1 968b). This
is a surprisingly high rate of gene substitution. It is probable that a majority
of such molecular mutations are almost neutral for natural selection (Kimura,
1 968a) and that the mutation rate for them is very high, amounting to more

than one per gamete per generation.
In recent years it has often been claimed that selection coefficients in-

volved in genetic changes of natural populations are in general very large.
Certainly, several remarkable cases have been reported including the spread
of melanic forms in industrial melanism. However, it might be premature
to think that they represent a typical case of gene substitution in evolution,
especially when over all genetic loci are considered. In this connection, we
should note that a typical mammalian genome could code for some two
millions of polypeptide chains each consisting of 500 amino acids and having
a size almost five times as large as the mammalian cytochrome c. With such
a large number of genetic sites, a possibility can not be excluded that an
average individual in a large panmictic population is heterozygous at 20
thousands or more of such genetic sites due to steady flux of molecular
mutations.

6. SUMMARY

1. In a finite population, the amount of selective elimination that
accompanies the process of substituting one allele for another by natural

selection (substitutional load) depends not only on the initial gene frequency
(p) but also on the product of the effective population number and the
selection coefficients. This problem was formulated and solved by the
method of diffusion equations.

2. It was found that random sampling of gametes has a significant effect
on the substitutional load.

3. In the simplest but important case in which the mutant gene is semi-
dominant, the following results were obtained for a diploid population of
effective size X€ and the mutant gene having selective advantage s/2 in
heterozygotes and s in homozygotes: (i) If the selective advantage is large
enough such that 21'TeS' 1, while the initial frequency p of the mutant gene

H
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is so low that 2.JtfesP 1, the load for one gene substitution denoted by
L(p) is larger by about two as compared with the corresponding result
obtained by Haldane who used a deterministic treatment. (ii) If the mutant
gene is almost neutral such that 2XesI 1, the load L(p) is approximately
4Xes loge(1/p). Namely, as 21'Ies approaches zero, L(p) may become in-
definitely small. For such mutations, there will be no limit to the rate of
gene substitution in evolution, provided that mutant genes are produced at a

correspondingly high rate.
4. Simulation studies were also performed to check the validity of the

formulae derived by analytical treatments.
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