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NO ARITHMETIC PROGRESSION OF Á: TERMS1
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Abstract. It is shown that for each integer k > 3, there exists a set Sk of

positive integers containing no arithmetic progression of k terms, such that

2„6Si \/n > (1 - e)k log A:, with a finite number of exceptional k for each

real e > 0. This result is shown to be superior to that attainable with other

sets in the literature, in particular Rankin's sets &(k), which have the highest

known asymptotic density for sets of positive integers containing no

arithmetic progression of k terms.

Let Sk be any set of positive integers which contains no arithmetic progres-

sion of k terms. Erdös and Davenport [1] proved that for any such Sk,

liminf \Sk c\[l,n]\/n = 0,

where \X\ denotes the cardinality of X, and [1, n] the set of integers from 1 to

n inclusive. More recently, Szemerédi [2] proved that

lim \Sk n[l,/il|//i = 0.

On the other hand, it has been shown by Behrend [3] and Moser [4] in the

case k = 3, and by Rankin [5] for all k > 3, that there exist sets Sk, with no

arithmetic progression of k terms, such that, for all positive integers n,

\Sk n[l,«]| > /iexp[-c(log«)Ä]

where b and c are positive numbers which depend on k but not on n.

These results have led Erdös [6] to conjecture that 2„es \/n must

converge. If this conjecture is true, then for each k > 3, there exists

Ak = sup    2    !/"•

For suppose Ak did not exist for some k. Let Sk(l) be any set of positive

integers containing no arithmetic progression of k terms, and, for each integer

m > 1, let ak(m) be the least integer such that
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S V« >   2    (i/«) - i
neSjt(m)nll, o*(m)l »ESjW

and let S*(/n + 1) be any set of positive integers with no arithmetic progres-

sion of k terms such that

2 l/n > log ak(m) + log 2 + y + 2.
n£S,(m+l)

Then Uk+X = U"-iSt(m)n[l, ^("OJ has no arithmetic progression of

k + 1 terms, yet 2„6{/     1/« diverges.

When Erdös made this conjecture, the best lower bound known to him for

Ak was \ k log 2, based on the theorem that 2k consecutive integers can be

partitioned into two sets, neither of which contains an arithmetic progression

of k terms [7]. We will prove here that Ak > (1 — e)k log k, for every e > 0,

with a finite number of exceptional k for each e.

Theorem. For every e > 0, there exist, for all but a finite number of integers

k > 3, sets Sk of positive integers, containing no arithmetic progression of k

terms, such that 2„6S  l/n > (1 — e)k log k.

Proof. Let Z + be the set of positive integers. For any prime p, let

Sp = Z+ - {«: 3i,j G Z + ,jp¡ -p'-1 + 1 < n < >'}.

Then Sp contains no integers divisible by p, so by the Chinese remainder

theorem, it contains no arithmetic progression with p terms, provided the

intervals between the terms are not divisible by p. For any positive integers i

and m, such that m < p', we have Sp n {«: n = m mod /?'} equal to

{/>'(« — 1) + m: n E Sp) if m is an element of S , and equal to the null set if

m is not an element of Sp. Therefore, one can prove, by induction on i, that Sp

contains no arithmetic progression with p terms even if the intervals are

divisible by p. Now

2 i>1 + f(^!yV'i
,es. " /-oV      P     I ....*,  "¿p <=" v       '        '   n = p'+l

But

s    =s    -V    s    7>i°gp
" /      W D' , + i        ,     ,    « »' P   —   1

-/>'.+1

SO

P2«75, » /toi     P     /       P" ! í-oV     P     I     , = o\

yj 7^-1 2
= 1 + p log/J-:- > p logp --r •

P - 1       p2 - p + l P - l

By a theorem of Huxley [8], there always exists a prime between k and

fc - k5/s. Therefore, Up is the greatest prime less than k then 2„eS l/n >
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(1 - £)k log k, with only a finite number of exceptional k for each e > 0.

Q.E.D.
One might think that this result could be improved by using Rankin's sets.

However, that is not the case, because Rankin's constant c depends so

strongly on k. Indeed c > \ Vk log k, and b > log 2/(log k + log 2). It is

not difficult to show that if Rk is a set of positive integers, and

|/c.fcn[l,/i]| < «exp[-±VJfc logrV(log«)log2/(logA: + 1082)]

for all n, then S„6»  l/n is bounded from above by a constant which does

not depend on k. For

neR

2    l/n < I + f   x'1 exp

= 1 + f °° expf - j Vk (log k) u

-±V* logfc(logx)log2/(log*+Iog2> dx

log2/(logA: + iog2)

-(log/c + log2)/log2

du

= 1 + ( j Vk log it) J" exp[ -Mi°g2/(iog*+iog2)-j ¿„

But /¿ exp[- Miog2/0og*+iog2)] du < 1; and

/CO /•COexp[-Mlog2/(logA:+log2)] a«< I    exp[-21og« + a] du= ea,

»l

where a is a constant, depending only on A;. We can solve for a by finding the

maximum value of 2 log u - ui°g2/(iog*+iog2) It turns out that

a =
2(log k + log 2)

~ioi2

/ log £ + log 2 ^
logi        log 2        ) + lQg 2 - '

Therefore,

2   l/#i< 1 + (|VI log A:)
-(log* + log2)/log2

n<ERk

+ Í2-Vk(logk)e2(logl0l]og2)2

-GogA: + log2)/log2

If one considers this expression as a function of a real variable k, then it is

continuous for k > 3, and tends to 1 for large k, so it is bounded from above.

It is evident that the problem of maximizing 2„eS l/n (or, since it is not

known that this sum always converges, maximizing 2„eStn(1 m] l/n for large

m) is by no means equivalent to that of maximizing the asymptotic density of

S, which is to say, maximizing 2„eS n[i,m] ' ^or lar8e m- ^ might turn out

that it is easier to find an upper bound on 2„GS nii.m] '/" man on

2„es n(i,m]l directly; that is, the best way to prove that 2„6Si l/n converges

might be to prove that it is less than a specific value. A possible approach

might be as follows: The set S' = Z+ — {n: 3i, j, jp' - p'~l + 1 < n <

jp'} can be constructed inductively; n E Sp if and only if the union of [n]
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with Sp n [1, n — 1] contains no arithmetic progression of p terms. This is a

poor way to construct sets with high asymptotic density, since no account is

taken of the possibility that by omitting an element at some point, it might be

possible to include two extra elements later. In the case of sets Sk with high

2n6S l/n, however, there is a heavy penalty for postponing the inclusion of

an element, so the set Sp defined above may indeed be maximal when k is

prime. Indeed, I have been unable to improve on it even marginally. Clearly

this set does maximize 2„sS 1/2", over all Sp, and it might be possible to

extend this result to ~ZneSf(n) for other f(n), even if not to 2„E5 l/n. If one

could prove that 2„6S l/n log log n always converges, then this would

suffice to show that the primes contain arithmetic progressions with an

arbitrary number of terms.
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