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THE SUM OF TWO PLANE CONVEX C” SETS
IS NOT ALWAYS C°

JAN BOMAN

1. Introduction.

In a recent article [K] in this journal Christer O. Kiselman investigated the
smoothness of the boundary of the vector sum 4 + B of two plane convex sets
A and B with smooth boundaries. In the special case when the boundaries of
A and B are C® and have no infinitely flat points Kiselman shows that the
boundary of A + B must be of class C2°/3 and that this statement is sharp in the
sense that 20/3 can not be replaced by any smaller number. In the case where
infinitely flat points are allowed Kiselman states that the boundary of 4 + B
must be C*, but on the negative side he gives no information on this problem
apart from the already cited result. This means that the minimal smoothness for
the sum of two bounded convex sets with C* boundary is shown to be some-
where between C* and C2° but is not exactly determined. Here we will show
that the minimal smoothness is in fact C* (Theorem 2). Since Kiselman’s state-
ment that the boundary must be C* seems to be non-trivial, we have included
here a proof for this fact, or more precisely

THEOREM 1. Assume A and B are bounded, convex sets in the plane, whose
boundaries are of class C',r = 1,2, 3, 4. Then the boundary of A + Bis of class C".

THEOREM 2. There exist two bounded, strictly convex plane sets A and B with
C* boundary such that the boundary of A + B is not of class C>.

It is easily seen from the proof that one can construct 4 and B so that the
boundary of 4 + Bis not of class C***for any positive ¢. (See Remark 1 at the end
of the paper).

The analogous problem in higher dimensions is considered in an other article
in this issue [B].
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2. Preliminaries.

We use the notation and terminology of [K]. The problem is local, so it suffices
to study the smoothness of the infimal convolution h = f O g i.e.

M h(x) = inf(f(3) + glx — ),

Yy
where f and g are (germs of) smooth convex functions which vanish and have
vanishing derivative at the origin. Theorems 1 and 2 are immediate consequences
of the corresponding statements for infimal convolution of germs.

PROPOSITION 1. Let r be 1, 2, 3, or 4, and assume f and g are convex germs of
class C', such that f'(0) = g'(0). Then f O g is of class C".

PROPOSITION 2. There exist two strictly convex C® germs f and g with f'(0) =
g'(0) = O, such that f O g is not in C>.

In what follows we assume throughout that f and g are convex germs of class
atleast C! defined in some neighbourhood J of the origin, and that f(0) = g(0) =
f0)=4©0=0.

If f or gis strictly convex, the infimum in (1) is attained at the unique point y for
which

@) S =gx -y

If f and g are only assumed to be convex, the set of solutions to (2) may be an
interval, and the infimum is attained at any point of that interval. Denote the set
of solutions to (2) by Y(x). The function x + Y(x) is Lipschitz continuous in the
following sense: given x,, x,, and y, € Y(x,), there exists y, € Y(x,) such that
[y1 — ya| £ |xy — x,|. To prove this one uses the fact that f" and ¢ are increasing
together with the intermediate value theorem. It is easy to see that h must be
differentiable and

3) KHx)=f'(y)=4g'x -y
for any ye Y(x). By the continuity of x ~— Y(x), h must be C'.

Assume now, f, geC*, k = 2. Denote by E the set of all xeJ for which
f"(y) = g"(x — y) = 0 for some (equivalently all) y satisfying (2). Applying the
Implicit Function Theorem to (2) we find that the function x > yisin C*"'in
J\E, and
@) dy/dx = g"(x — YIS" () + ¢"(x — y)), xeJ\E.

Hence by (3)
®) h'(x) = f"(Mg"(x — WI"B) + g"(x — ), xeJ\E,



218 JAN BOMAN

and if f, ge C?
(6) hx) = (@)1 + (f" g + "),
= (dy/dx)3f® + (1 — dy/dx)*¢"®, xeJ\E.

In the last formula we have abbreviated f"(y) to f”, g"(x — y) to ¢g” etc. Due to
convexity f®(x — y) must vanish whenever x € E. It is clear that the expressions
(5) and (6) must tend to zero if x tends to some point of E. It is easy to see that h”
and h® exist and are equal to zero at points of E. Thus we have proved
Proposition 1 forr = 1, 2, 3.

3. fOgeC*.

We now consider the case r = 4, the only non-trivial case. First note that it is
sufficient to prove that h'® exists and is continuous at x = 0. This is obvious for
geometric reasons and can also be seen as follows. Let y,e Y(xo) and set
fi®) = f(yo + 1) = f(yo) = tf' (o), 91(t) = g(xo0 — yo + 1) — g(x0 — yo) —
tg'(xo — yo); then (f O g)(xo + t) =(f; T g4)(t) plus linear terms for ¢t near 0.
Assume O€E, i.e. f"(0) = ¢g”(0) = 0. If f“¥(0) = g"¥(0) = 0 we can deduce from
(6) that K®(x)/x — 0, i.e. that h'®(0) exist and is equal to zero. Ife.g. f“¥(0) > 0,
then f” must be positive in a punctured neighbourhood of the origin; the fact that
h™(0) exists and is equal to lim h*)(x) therefore follows from the existence of the

x—0
latter limit. To prove that h® is continuous we shall prove that the expression (9)
below tends to a limit as x tends to zero through points of E. For this we need to
study dy/dx. If f@(0) = g“¥(0) = 0, it will be sufficient to know that dy/dx is
bounded (which is obvious by (4)), but if £(0) or g*¥(0) is positive, we shall need
to know that dy/dx tends to a limit as x — 0.

LEMMA 1. AssumeOeE,i.e. f"(0) = g”(0) = 0, and f(0) or g*(0)is > 0. Then
the solution y(x) to (2) is C* near x = 0.

PRrOOF. By assumption f'(x) = x3a(x) and g'(x) = x3b(x), where a(x) and b(x)
are continuous, 6a(0) = f¥(0), 6b(0) = g¥(0), a(0)=0, b(0)=0, and
a(0) + b(0) > 0. Equation (2) means

yia(y) = (x — y)*b(x — y).
Dividing by x> and letting x tend to zero we obtain
() y/x = b(x — y)**/(a(y)'"® + b(x — y)'?*) >
b(0)!/°/(a(0)"" + b(0)") = gY0) P/ ) + g(0)%) as x .

Similarly, f"(x) = x2c(x), g"(x) = x2d(x), where c(x) and d(x) are non-negative,
continuous, and ¢(0) + d(0) > 0. By (4)
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dy __ gx—y - ydx-—y)
dx  f'M)+g'(x—y)  ye(y) +(x—y)’Pdx—y)

_ (1 = y/x)*d(x — y)
(v/x)e(y) + (1 = y/x)*d(x — y)’

We have to prove that this expression tends to a limit as x — 0. If both f“(0) =
2¢(0) and g‘¥(0) = 2d(0) are positive, this is immediate, since y/x tends to a limit
between 0 and 1. Assume now ¢(0) or d(0) is zero; we may assume ¢(0) = 0, since
the opposite case is analogous. Then by (7) lim (y/x) = 1, so the expression (8) has
the form 0/0 at x = 0. We shall prove f”(y)/g"(x — y) =0, which implies
dy/dx — 1. Since g¥(0) > 0 we have g"(x — y) ~ k(x — y)* for some k > 0. From
(7) we get

(x = y)/x =1 = (y/x) = (a(y)/b(0))'"*(1 + o(1)), as x —0.

Hence, for a new k > 0,

F'/g"(x = y) = kf"(y) x~% a(y)~*3(1 + o(1)), as x = 0.
Since a(y) = f'(y)/y?, this gives

(" W)g"Cc = y)* = k(y/Ix* £ (0> /(9 ~1(1 + o(1)), as x 0.

It remains only to show that f”(y)*?/f'(y) tends to zero as y tends to zero
through points where f’(y) & 0. By I'Hospital’s rule it suffices to prove that
P/ f"()!* - 0 as y tends to zero through points where f”(y) > 0. Squaring,
applying I'Hospital’s rule once more and remembering that f“(0) = 0 we verify
this fact. The proof of the Lemma is complete.

The conclusion of the lemma that y(x)is C! can not be improved. For example,
if we take f(x) = x*, g(x) = x*/log(1/|x|), we get y(x) ~ x/log(1/|x]))*/>. More-
over, we shall see later that dy/dx not necessarily exists, if both f and g have all
derivatives of order <4 equal to zero.

PrOOF OF ProposITION 1. To compute i we differentiate (6) and get
h®(x) = (dy/dx)*f® + (1 — dy/dx)*g"® +
+ 3d%y/dx?*[(dy/dx)* f® — (1 — dy/dx)*g®], xeJ\ E.
From (4) we compute
d*y/dx? = —[(dy/dx)’f® — (1 — dy/dx)*¢* (" + ¢").
Combining the last two equations we obtain
h(x) = (dy/dx)*f® + (1 — dy/dx)*g"®
©) — 3[(dy/dx)*f® — (1 — dy/dx)*¢ " V*/(f" + ¢").



220 JAN BOMAN

Assume now 0 € E. It is sufficient to prove that the expression (9) tends to a limit
as x — 0. Consider first the term (dy/dx)*f. If f(0) = 0, this term tends to
zero, since dy/dx is bounded. If f(0) > 0, dy/dx must tend to a limit according
to Lemma 1. Hence (dy/dx)*f® must always tend to a limit. The second term is
treated similarly. The third term in (9) is a little more difficult. Expanding the
square in the numerator we get three terms, one of which is

f(3)g(3) 5 f(a) g(s) fu g"
4 " = d dx l_d dxz " "
g T W = xS

up to a constant factor. We need only discuss this term, since the other two terms
are easier. We may assume f”(y) > 0 and g"(x — y) > 0, since if not, f®(y) =0
or g®(x — y) = 0, which makes the expression on the left hand side equal to zero.
Arguing as above we find that it suffices to prove that the limit of | f®(y)|/ f"(y)'/
exists as y tends to zero through points where f”(y) > 0, and that this limit is zero,
if f®(0)=0. As we saw above, this is proved by squaring and applying
I’Hospital’s rule. The proof of Proposition 1 is complete.

(dy/dx)*(1 — dy/dx)*

4. An example where f (1 g¢ CS.

Our first step towards a proof of Proposition 2 will be to construct f and g so
that the fifth derivative of h is very large. Let f(x) = f,(x) = a?x?/2for a > O and
g(x) = x*/4. To compute h, = f,[(Jg we consider the equation (2), ie.
a?y = (x — y)3. This equation has a real analytic solution

(10 y = agp(x/a),
where y = ¢(x) is the real root of the equation y = (x — y)>. By (3)
hi(x) = fi(ap(x/a)) = a*p(x/a),
and hence
h$(x) = (1/a) ' V(x/a).
We want to make this expression large by taking a small. Now
o(x) = x> — 3x5 + 0(x7), as x = 0,

so that ¢ (0) = 0. But ¢ is not identically zero, in fact ¢*(x) = —360x +
0(x?), so obviously
(11) sup |h¥(x)| 2 C/a
Ix|<a

with C # 0.

To complete the proof of Proposition 2 we need to piece together infinite
sequences of germs of the form f; and g, or more exactly, multiples of such germs
plus linear terms. The following lemma is useful for this purpose. -
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LEMMA 2. Assume fi is a strictly convex C* function defined on [ —4~* 47¥],
k=1,2,...,such that f,(0) = f(0) and

(12) sup|fiP(x) EM, <0, r=12,....
x,k
Let b, be a sequence of positive numbers such that 2*b, is decreasing and
(13) lim 2*Vp, =0 for all N.
k— o

Then there exists a convex C* germ f at 0, such that f(0) = f'(0) = 0 and for all
sufficiently large k

fX) = b filx —47) — byx
is constant for |x — 4% < 47k 1,
PrOOF. Take ¥ e C*(R)sothat ¥ > 0, ¥ = 1in[3/4, 5/4],supp ¥ < [2/3,3/2],
and Y P(2Y =1 for 0<x <1, and set ¥(x) = P(2*x). Choose f(x)=
exp(lk/;; for x < 0, and define f(x)for x = 0 so that f(0) = f'(0) = 0 and

/)= Y b PuX) (x =47+ Y P s(x),
k=k k=K
where K and « are still to be determined. The requirement that f'(47%) = b,
leads to a relation for the determination of o,

(14 biy — by =by_ 14y + b By + 0,277 1d;

hered = _[ ¥dx and A,, By are positive numbers not greater than dM,/4*~*. For
sufficiently large k the values of o, that are determined from (14) will be positive,
hence f”(x) is positive for x # 0, if K is large enough. Since the sequence by is
rapidly decreasing according to (13), the sequence o, must have the same prop-
erty. This fact together with (12) and (13) implies that fe C*.

PROOF OF PROPOSITION 2. Let a, denote a sequence of numbers between 0 and
1, which will be specified in a moment, and set fi(x) = f, (x) = atx?/2,
g(x) = x*/4. The estimate (12) is satisfied, and we can construct f by means of

Lemma 2. Replacing f; by g, we construct g similarly. Set h= f Og and
h = £, O g4. Then

S0 =be + b filx — 47"

for|x — 4% < 4-%-1 and ¢/(x)is given by a similar formula. For |x — 2-47% <
4751 the equation (2) therefore means

Ry—4M=gx—y-4=gx-2:47 - (y-47").
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By (10) the solution y(x) is
(15) y =47 = ap((x — 2-47"/ay),
so that
H(x) = f'()) = by + bifi(@p((x — 2-:47")/ay)) = by + bihi(x —2-47)

for|x — 2-47% < 47*~ ', But h = h,,,so by (11) the fifth derivative of h must be
unbounded, if g, tends to zero sufficiently fast. The proof is complete.

REMARK. Let ¢ > 0. If g, decays so fast that a}/b, tends to zero as k — oo, the
function h will not bein C**¢,i.e. ¥ will not be in Lip (¢). More generally, let p be
an arbitrary modulus of continuity, i.e. a continuous, increasing, subadditive

function from R, into R, such that lim p(t) = 0, and choose g, such that
t—0

p(ay)/by = 0 as k — co. Then the modulus of continuity of A can not be

estimated by Cp(t). To see this one can argue as follows. We have seen that

KO2-47% + 1) = bhi(¢) = by ay  @(¢t/a) for |t] < 471, Choose 6,0 < & < 1,

sothat () > dfor§ < t < 28. Assume g, is chosen so that 26a, < 4%~ *forall

k. Then h® > b,6/a, on an interval whose length is > &a,. This implies that

sup [ (x1) — B (x,)| > (bid/ar)day > 0%
xx PUx1—x2) p(oax) plax)

— 00, as kK — o0,
which proves the claim.

5. The continuity of the mapping (f,g) —» f O g.

It is rather easy to see from (6) that the third derivative

h3(x) = &s(x, £,9)

isa continuous function on R x C3(J) x C3(J). The corresponding statement for
the fourth derivative is not true, though. Consider for simplicity

D4(f,9) = K(0).

This functional is not even continuous with respect to the C*-topology. To see
this just note that the function

ha(x) = (a’x%/2) O (x*/4)

considered in Section 4 has fourth derivative h¥(0) = ¢*(0) = 6 for all a > 0,
whereas h, = 0 for a = 0. Incidentally, this shows that (f + ex?) O g in general
does not converge in C* to f O g as ¢ — 0. More generally, using (6) and the
arguments in the proof of Lemma 1 one can prove that

H90) = S0 g0/ OO + g0
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if f"(0) = g"(0) = 0; the expression on the right hand side should be interpreted as
zeroif f®(0) = g*(0) = 0. Butifg”(0) = Oand f”(0) > 0, we have g¢®(0) = 0 and
dy/dx = 0 at x = 0, so that (9) gives h'(0) = g'*/(0).

These facts together with the remark at the end of Section 4 show that the
continuity of h¥(x) asserted in Proposition 1 is quite delicate.

6. Remarks.

1. Here is an attempt to explain what property of the pair of functions
fi(x) = a®x?/2 and g(x) = x*/4is responsible for the fifth derivative of f, 0 g to be
large. Looking at (4) we see that dy/dx = 0 if g"(x — y) = 0 and f"(y) > 0, and
dy/dx = 1in the opposite case. Thus, if f” and g” vanish at two different, closely
situated points, dy/dx must change its value from 0 to 1 over a short interval,
hence d?y/dx* must be large; the hope is that this will make h'® large. This
situation occurs for the pair f,(x) = (x — a)* + 4a®*x — a* and g,(x) = f,(—x), if
a is small. In an earlier version of this article that pair of functions was used to
obtain (11). Later C. O. Kiselman pointed out that one can use the pair
considered above and that this gives simpler computations. This pair has actual-
ly similar properties although f” is constant; indeed g”(x)/f,(x) = 3x?/a’ varies
from 0 to 3 as x runs from 0 to a.

2. In the example constructed above the limit of dy/dx as x — 0 does not exist.
This follows from the fact that the quantity g”(x — y)/f”(y) does not have a limit;
compare the previous remark. Moreover, we claim that dy/dx does not exist at
the origin. In fact, for x = (2 + t)/4*, |t| < 1/4 we obtain from (15) y — 47 * =
a,¢(t4"*/a,) and hence

y/x =1 + da,0(t/4ay)/(2 + 1).

But 4*a, — 0 and lim e¢(t/e) = t, hence for |t| < 1/4

e—0

—ﬁ- L+ o(1)), ask— oo,

Y

Since the function (1 + 1)/(2 + t) is non-constant, this proves that y/x does not
have a limit.
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