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1 Introduction

A remarkable prediction of string theory is the existence of interacting N = (2, 0) supercon-

formal quantum field theories in six dimensions, which underpins many recent developments

in mathematical physics. For example, compactifications on Riemann surfaces lead to a

rich class S of N = 2 supersymmetric quantum field theories in four dimensions [1, 2]. A

consequence of the six-dimensional perspective is that supersymmetric partition functions

of these theories on the manifolds S4 and S1×S3 are related to conformal field theories [3]

and topological field theories [4, 5] respectively. Furthermore, compactifications on three-

manifolds [6, 7] and four-manifolds [8] also lead to interesting classes of supersymmetric

theories in lower dimensions and new connections between mathematics and physics.

– 1 –



J
H
E
P
0
5
(
2
0
1
5
)
0
4
8

In this paper, we will consider the supersymmetric partition function of the N = (2, 0)

theory itself on S1×S5, which is closely related to the 6d superconformal index. Although

this partition function cannot be computed directly in six dimensions, due to the absence

of a useful lagrangian formulation, it has been computed recently using maximally super-

symmetric Yang-Mills theory in five dimensions on S5 [9–11].1 It relies on the conjecture

that the non-perturbative physics of 5d SYM allows us to extract non-trivial dynamics of

the 6d (2,0) theory with circle compactification [17, 18]. The most important part of the

dictionary is that the five-dimensional gauge coupling g2 is related to the radius β of S1 by

g2 = 2πβ . (1.1)

so that strong coupling corresponds to large radius. Although this five-dimensional theory

is non-renormalizable, it is conjectured that by including non-perturbative contributions

in five dimensions, one can capture all of the protected states contributing to the 6d

superconformal index. This is remarkable given that the 5d partition function is computed

as an instanton expansion in powers of e−4π2/β , while the 6d superconformal index is

naturally an expansion at large radius in powers of e−β with integer coefficients.

In this paper, we will extend these results to compute the partition function of the

(2, 0) theory on S1 × S5, or superconformal index, in the presence of extended defect

operators. One motivation for this is that extended defect operators play an indispensable

role in engineering defects of various kinds in compactifications to lower dimensions. As

one example, compactification on a Riemann surface with codimension 2 defects sitting at

punctures leads to flavor symmetries in the resulting four dimensional N = 2 theory [1, 2].

We will concentrate solely on the six dimensional (2, 0) theory of type g = AN−1, which

arises on the worldvolume of N coincident M5 branes. There are codimension 4 defects

from intersecting M2 branes and codimension 2 defects from intersecting M5 branes. Our

working assumption is that the defects have the following classification:

1. Codimension 4 defects are labelled by a dominant integral weight λ of g.

2. Codimension 2 defects are labelled by homomorphisms ρ : su(2)→ g.

3. Codimension 4 defects coincident with a codimension 2 defect of type ρ are labelled

by a dominant integral weight of the stabilizer of Im(ρ) ⊂ g.

For our computations, we will assume that defects wrapping S1 have an effective description

in 5d N = 2 SYM theory as:

1. A supersymmetric Wilson line in the irreducible representation of SU(N) with highest

weight λ.

2. A surface defect obtained by coupling to the three-dimensional N = 4 theory

Tρ(SU(N)). Alternatively, a monodromy defect whose monodromy is labelled by ρ.

3. A supersymmetric Wilson line in an irreducible representation of the unbroken gauge

group in the presence of the monodromy ρ.

1See also [12–16] for closely related works on S5 partition functions.
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Figure 1. A summary of the configurations of defects referred to in the introduction. Codimension

2 defects are shown in blue and codimension 4 defects are shown in red.

Let us now provide a some more details about the computation. The most general

superconformal index or partition function on S1 × S5 preserves a single supercharge and

its conjugate. It depends on five parameters corresponding to combinations of bosonic

charges that commute with the supercharge. In the language of five-dimensional gauge

theory on S5, these parameters can be understood as follows. Firstly, there is the radius β

of S1 which is related to the five-dimensional gauge coupling g2 by the formula g2 = 2πβ.

Secondly, there are three squashing parameters ~ω = (ω1, ω2, ω3) for the geometry of S5.

Finally, there is a real mass parameter µ for the adjoint hypermultiplet inside the N = 2

vectormultiplet.

We will furthermore concentrate on a limit where we tune the real mass parameter as

follows

µ→ 1

2
(ω1 + ω2 − ω3) . (1.2)

The partition function preserves an additional supercharge in this background and leads to

dramatic simplifications in the answer [9, 11, 19]. In the absence of defects, the partition

function has been shown to coincide with the character of the vacuum module of the

WN -algebra with central charge c = (N − 1) + N(N2 − 1) (ω1+ω1)2

ω1ω2
. This result has been

interpreted recently in the context of chiral algebras [19]. For this reason, we will refer to

this background as the ‘chiral algebra’ limit.

To picture where we can add supersymmetric defects to the calculation it is convenient

to picture S5 as a (S1)3 fibration over a triangle — see figure 1(a). This is described

further in the main text. There are three distinguished circles S1
(a) that may support

supersymmetric Wilson loops and three distinguished squashed spheres S3
(a) which can

support supersymmetric surface defects. In the chiral algebra limit, the circle S1
(3) plays a

distinguished role. We expect quantitatively different results depending on whether or not

the supersymmetric defects wrap the particular circle S1
(3). The configurations preserving

the supercharges of the chiral algebra limit are shown in figure 1(b) and 1(c). Let us discuss

each case in turn.
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The most general configurations of defects that are supported away from S1
(3) are shown

in figure 1(b). The summary of our results is as follows:

1. Adding supersymmetric Wilson loops in representations of highest weights λ1 and λ2

supported on S1
(1) and S1

(2) we find the characters of fully degenerate modules of the

WN -algebra.

2. Adding a supersymmetric surface defect of type ρ supported on S3
(3) we find the char-

acter of a semi-degenerate module of the WN -algebra. The non-degenerate modules

correspond to the maximal case ρ = [1N ].

3. Adding a supersymmetric surface defect of type ρ together with supersymmetric

Wilson loops in representations of the stabilizer of Im(ρ) ⊂ g with highest weights

λ1 and λ2, we find further semi-degenerate modules with a more intricate structure

of null states.

This completely exhausts the spectrum of irreducible modules of the WN -algebra described

in [20]. From perspective of chiral algebras, our computations provide evidence that com-

binations of supersymmetric defects orthogonal to the chiral algebra plane are realized by

chiral vertex operators for the WN -algebra, as speculated in [19].

Let us now summarize what happens when a codimension two defect is supported on

either S3
(1) or S3

(2) and hence wraps the distinguished circle S1
(3). We will present the result

for S3
(1) as shown in figure 1(c). The result for S3

(2) is obtained by simply interchanging ω1 ↔
ω2. Furthermore, we focus on supersymmetric surface defects labelled by the partition

ρ = [1N ]. In this case we find

1. For a supersymmetric surface defect supported on S3
(1) we find the character of the

vacuum module of affine ŝu(N) at level k = −N − ω1/ω2.

2. Adding a supersymmetric Wilson loop supported on S1
(1) in a representation of highest

weight λ we find the character of an irreducible module of the above with highest

affine weight λ̂ = k ω̂0 + λ.

This is a small generalization of the conjecture for the chiral algebra associated to a codi-

mension 2 defect in [19]. For supersymmetric surface defects of generic type ρ, we would

expect to find characters of modules of W (ρ)-algebras, which are obtained from the affine

algebra by Drinfeld-Sokolov reduction. From this point of view the WN -algebra is the spe-

cial case ρ = [N ] corresponding to the absence of a defect. However, we could not evaluate

the matrix integrals arising from localization in the generic case.

In summary, it is remarkable that the combinatorics and characters of irreducible

modules of a large class of chiral algebras are in 1-1 correspondence with supersymmetric

configurations of M2 and M5 branes on S1 × S5.

We now summarize the contents of the paper. In section 2 we explain how to compute

the general superconformal index in the presence of defects using localization on S5 and

perform some computations relevant for the chiral algebra limit. In section 3 we evalu-

ate the partition functions with configurations of defects relevant for WN -algebras, as in

– 4 –
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figure 1(b). In section 4 we evaluate the partition functions with configurations of de-

fects relevant for affine algebras, as shown in figure 1(c). We conclude in section 5 with a

discussion of some interesting directions for further study.

2 Computational method

In this section, we fix our notation for the paper and explain the method for computing the

superconformal index of interacting (2, 0) theories in the presence of codimension 2 and 4

defects. The reader interested only in the final results and the connections to characters

of vertex operator modules of chiral algebras can safely turn to sections 3 and 4.

2.1 The superconformal index

Let us define our conventions for the six-dimensional (2, 0) superconformal algebra

osp(8∗|4). The maximal bosonic subalgebra is so(2, 6) ⊕ usp(4) and we denote the cor-

responding Cartan generators by (E, h1, h2, h3, R1, R2). In particular, the generator E

corresponds to dilatations, (h1, h2, h3) to rotations in three orthogonal planes of R6 and

(R1, R2) to R-symmetry generators or equivalently rotations in two orthogonal two-planes

of the transverse R5.

In addition, there are supersymmetry generators QR2,R2

h1,h2,h3
labelled by their charges

under the bosonic subalgebra. The indices may take the values ±1
2 but for brevity we denote

these by ± in what follows. There are sixteen Poincaré supercharges with h1h2h3 < 0

and sixteen conformal supercharges with h1h2h3 > 0. In radial quantization, conjugation

reverses h1, h2, h3, R1, R2 and hence interchanges Poincaré and conformal supercharges.

The superconformal index can be defined as a trace over the Hilbert space of the theory

in radial quantization [21]. For 6d SCFTs, it was first introduced in [22]. Here, we define

the superconformal index using the supercharge Q ≡ Q++
−−−. Although all choices lead to

an equivalent superconformal index, this choice has the feature that it is symmetric in the

generators h1, h2, h3. The superalgebra generated by this supercharge is

{Q,Q†} = E − 2(R1 +R2)− (h1 + h2 + h3) , (2.1)

with the conjugate supercharge Q† ≡ Q−−+++. The superconformal index counts states in

short representations annihilated by Q and Q† and therefore saturating the bound

E ≥ 2(R1 +R2) + h1 + h2 + h3 . (2.2)

The superconformal index is then defined by

I = TrHQ

[
(−1)F e

−β
(
E−R1+R2

2

)
−β(a1h1+a2h2+a3h3)−βµR2−R1

2

]
, (2.3)

where HQ is the subspace of the Hilbert space in radial quantization that is annihilated

by Q and its conjugate Q†. The chemical potentials β, a1, a2, a3, µ (together with the

constraint a1 + a2 + a3 = 0) are introduced for the combinations of Cartan generators that

commute with Q. F is the fermion number operator and we can take F = 2h1 by the

– 5 –
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spin statistics theorem. This index at generic chemical potentials respects only a su(1|1)

subalgebra generated by Q and Q†.

It is often convenient to rephrase the superconformal index as

I = TrHQ(−1)F
3∏
j=1

q
hj+

R1+R2
2

j pR2−R1 , (2.4)

where we have defined

qj = e−βωj p = e−βµ , (2.5)

together with ωj = 1+aj . In moving between the two expressions, we have used that states

in HQ saturate the bound (2.2). For convergence, we will assume that |p| < 1, |qj | < 1.

In this paper, we will consider an unrefined limit of the superconformal index obtained

by specializing the parameters as follows

µ→ 1

2
(ω1 + ω2 − ω3) (2.6)

or equivalently p → (q1q2/q3)1/2. This limit was first considered in [23] (see also [19]).

In this limit the index has an enhanced supersymmetry by a second supercharge that we

denote Q′ ≡ Q+−
++− and its conjugate. The remaining combinations of Cartan generators

appearing in the superconformal index commute with the extra supercharges. This leads

to dramatic simplifications due to additional cancellations between bosons and fermions.

It is straightforward to see that the index simplifies to

I = TrHQ,Q′ (−1)F qE−R1sh1+R2 , (2.7)

where we have defined q ≡ q3 and s ≡ q1/q2. The trace is now over the Hilbert space

HQ,Q′ of states annihilated by the supercharges Q and Q′ and their conjugates in radial

quantization. It is clear that the plane rotated by h3 now plays a distinguished role. Indeed,

as shown in reference [19] the superconformal index in this limit can be interpreted as a

vacuum character of a chiral algebra on this plane. For this reason, we will refer to it as

the ‘chiral algebra’ limit.

Let us consider a simple example: the free tensormultiplet in six dimensions. The

superconformal index in this case can be evaluated by first enumerating the single letter

contributions, which are summarized in table 1. The superconformal index is then given by

I = PE

[(
p+ p−1

)√
q1q2q3 + q1q2q3 − (q1q2 + q2q3 + q1q3)

(1− q1) (1− q2) (1− q3)

]
, (2.8)

where we use the standard definition of the Plethystic exponential. The denominator factors

inside the Plethystic exponential come from summing the action of holomorphic derivatives

on the single letter contributions. In the chiral algebra limit, the result simplifies to

I = PE

[
q

1− q

]
=
∞∏
j=1

1

1− qj
. (2.9)
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X h1 h2 h3 R1 R2

φ 0 0 0 1 0 p−1√q1q2q3

φ 0 0 0 0 1 p
√
q1q2q3

ψ++
++−

1
2

1
2 -1

2
1
2

1
2 −q1q2

ψ++
+−+

1
2 -1

2
1
2

1
2

1
2 −q1q3

ψ++
−++ -1

2
1
2

1
2

1
2

1
2 −q2q3

∂ψ 1
2

1
2

1
2

1
2

1
2 q1q2q3

Table 1. The abelian tensormultiplet has a scalar φ in fundamental representation of so(5)R, 16

fermions ψR1R2

h1,h2,h3
with h1h2h2 < 0 and a self-dual three-form flux H. Recalling that E(φ) = 2,

E(ψ) = 5/2 and E(H) = 3, the fields commuting with the supercharges Q and Q† and their

contributions to the index are shown above. There is also a contribution from a fermionic equation

of motion.

In this limit, the index receives contributions only from the scalar φ corresponding to

highest weight in the fundamental of so(5)R i.e. (R1, R2) = (1, 0) and its holomorphic

derivatives in the plane rotated by h3. In particular, the index is independent of s. The

index is proportional to the vacuum character of the of a free boson in two dimensions, or

the vacuum character of û(1).

2.2 S5 partition function

For the interacting (2, 0) superconformal theories we do not have a free quantum field

theory description and another method must be found to compute the superconformal

index. In this subsection, we will summarize the conjecture that the superconformal index

of the (2, 0) theory of type AN−1 is captured exactly by a path integral of the maximal

supersymmetric Yang-Mills theory on S5.

The first claim is that the superconformal index in six-dimensions can be expressed

as a path integral on S1 × S5 with periodic boundary conditions. The chemical potentials

{ωj , µ} of the superconformal index are now reinterpreted as squashing parameters for the

geometry of S5 and expectation values of background R-symmetry gauge fields on S5. The

radius of S1 is simply β.

The second claim is that this supersymmetric partition function on S1×S5 is captured

exactly by the partition function of N = 2 SYM on S5 with gauge group SU(N) and gauge

coupling g2 = 2πβ. This theory is non-renormalizable in five dimensions but is expected to

have a UV completion by the (2, 0) theory of type AN−1 on a circle of radius β. Although

the UV completion may involve new and unknown degrees of freedom, the claim is that

the perturbative and non-perturbative spectrum of N = 2 SYM theory on S5 is sufficient

to capture all of the protected states contributing to the superconformal index.

Let us explain in more detail how the chemical potentials {β, ωj , µ} of the supercon-

formal index are identified with parameters of the S5 partition function.

– 7 –
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• The 5d gauge coupling is g2 = 2πβ.

• ωj are squashing parameters for the S5 metric - see the final equation of ap-

pendix (B.2).

• µ is a real mass parameter for the adjoint hypermultiplet inside the N = 2 vector-

multiplet.

For generic values of the parameters, the S5 partition function preserves two supercharges,

Q and Q†, which are identified with those used in the 6d superconformal index.

Finally, we note that the transformation between the superconformal index and the

partition function on S1×S5 will likely involve an anomalous background coordinate and R-

symmetry gauge transformation. Thus we can expect them to agree up to a multiplicative

factor determined by global anomalies. More precisely, we will find that

ZS5 = e−F I (2.10)

where F is a finite Laurent polynomial in the parameters βω1, . . . , βω3 and βm that can be

determined from the anomaly polynomial of the six-dimensional theory.2 We will confirm

this structure in examples.

2.3 Computation of S5 partition function

The partition function ZS5 can be evaluated exactly using the method of supersymmetric

localization or alternatively the refined topological string partition function [9–16]. Here

we focus on the former approach. A short review of the localization computation is given

in appendix B.

The path integral localizes to a matrix integral over a set of saddle points. The saddle

points are classified as follows. Firstly, one of the 5 adjoint scalars has a constant non-zero

vacuum expectation value 〈φ〉 = ia. This is the real scalar in the N = 1 vectormultiplet.

In addition, there are non-perturbative instanton saddle points on top of this background.

The instanton saddle points are the self-dual Yang-Mills instantons on CP2 base of the

Hopf fibration S5 → CP2. The 1-loop determinant of the fluctuations around these saddle

points gives rise to perturbative and non-perturbative contributions to the measure of the

matrix integral.

Our crucial assumption is that the one-loop and non-perturbative contributions factor-

ize into contributions from 3 fixed circles of the U(1)3 isometry group of the squashed S5.

We will denote these fixed circles by S1
(i) with i = 1, 2, 3. This factorization can be verified

explicitly for the perturbative contributions but has not been demonstrated conclusively

for the non-perturbative contributions. Under this assumption, the partition function has

the form [10, 11]:

ZS5(m, ~ω, τ) =

∫
[da] e

2π2

βω1ω2ω3
(a,a)

3∏
i=1

Z(i) , (2.11)

2It will be demonstrated in forthcoming work that the finite Laurent polynomial F is an equivariant

integral of the anomaly polynomial [24].

– 8 –
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r ε1 ε2 m

S1
(1) 2π/ω1 ω2 ω3 µ+ 3

2ω1

S1
(2) 2π/ω2 ω3 ω1 µ+ 3

2ω2

S1
(3) 2π/ω3 ω1 ω2 µ+ 3

2ω3

Table 2. The S5 partition function is constructed from three copies of the 5d Nekrasov partition

function with the parameters identified as above. The arguments in the final three columns may

be taken modulo ωj in the row corresponding to S1
(j).

where as above 〈φ〉 = ia is the N = 1 vectormultiplet scalar expectation value and β =

g2/2π. The measure of integration is

[da] =
iN−1

N !
dN−1a , (2.12)

and the integral domain is over iRN−1. The contributions Z(i) are copies of the 5d Nekrasov

partition function ZNek(a,m, ε1, ε2) on S1 × R4
ε1,ε2 where the circle S1 has radius r. The

equivariant parameters (r,m, ε1, ε2) at each fixed circle are replaced as shown in table 2.

The Nekrasov partition function ZNek(a,m, ε1, ε2) on S1 × R4
ε1,ε2 can be expressed

as a supersymmetric index with both perturbative contributions from fundamental BPS

particles and non-perturbative contributions from BPS instanton particles [25, 26]. It

is constructed from moduli space of k U(N) instantons Mk,N which carries an action

of U(1)2 × U(N) corresponding to rotations in two orthogonal planes of R4 and gauge

transformations. The parameters ε1, ε2 and ~a = (a1, . . . , aN ) are equivariant parameters

for these symmetries. It is well-known that the fixed points with respect to this action are

labelled by an N -tuple of Young tableaux ~Y = (Y1, . . . , YN ) such that the total number of

boxes is given by |~Y | = k.

The starting point for computing the partition function is the equivariant Chern char-

acter of the universal bundle E evaluated at the fixed point corresponding to ~Y [27, 28]:

Ch~Y (E) =W − (1− e−ε1)(1− e−ε2)eε+V , (2.13)

where we define ε+ ≡ (ε1 + ε2)/2 and

V =
N∑
I=1

∑
(i,j)∈YI

eaI−(i− 1
2

)ε1−(j− 1
2

)ε2 , W =
N∑
I=1

eaI . (2.14)

Then the equivariant index of the tangent bundle TMk,N at the critical point labelled by
~Y is given by [27, 28]

IndTM~Y
= −

Ch~Y (E)Ch~Y (E∗)
(1− e−ε1)(1− e−ε2)

= − WW∗

(1− e−ε1)(1− e−ε2)
+ eε+(V W∗ + V∗W)− (1− eε1)(1− eε2)V∗ V ,

(2.15)

– 9 –
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where the conjugate ∗ flips the signs in the exponents. This amounts to the equivariant

index for the U(N) vector multiplet. The first term in the second line is independent of the

instanton number (independent of V) and thus is regarded as the perturbative contribution

of the vector multiplet. The other terms are the instanton contributions coming from the

zero modes in the instanton background.

For the maximal SYM theory, there are also contributions from the hypermultiplet

in the adjoint representation of the gauge group. The hypermultiplet in the instanton

background has the equivariant index of the form

IndVH
~Y

= em−ε+
Ch~Y (E) Ch~Y (E∗)

(1− e−ε1)(1− e−ε2)
, (2.16)

where m is the equivariant parameter for the flavor symmetry of the hypermultiplet. As

for the vector multiplet, this index can also be divided into the perturbative contribution,

the term without V, and the instanton contribution, the other terms.

We use the conversion rule from the equivariant index to the partition function at the

fixed point

Ind =
∑
i

nie
ωi →

∏
i

ω−nii , (2.17)

where the integer ni denotes the degeneracy for given weight ωi. Also, we should keep

in mind the momentum factor
∑

t∈Z e
2π
r
t along the temporal circle in five-dimensions. It

should be put on each equivariant index. The instanton partition function then becomes

Z
U(N)
inst =

∑
~Y

q|
~Y |

N∏
i,j=1

∏
s∈Yi

sin
r(Eij(s)+m−ε+)

2 sin
r(Eij(s)−m−ε+)

2

sin
rEij(s)

2 sin
r(Eij(s)−2ε+)

2

, (2.18)

where s denotes a position of a box in the Young tableau Yi and

Eij(s) = ai − aj − ε2hi(s) + ε1(vj(s) + 1) . (2.19)

hi(s) and vj(s) are the distance from s to the right and bottom end of i-th and j-th Young

tableaux, respectively. q = e
− 4π2r

g2 is the instanton fugacity.

The perturbative contribution can be computed in the similar manner. However,

there is an ambiguity in computation of the perturbative partition function associated

to boundary conditions of R4 at infinity. Studying the correct boundary conditions goes

beyond the scope of this paper. Here we simply take the average of the equivariant index

with its charge conjugation and compute the perturbative contribution, which makes the

equivariant index invariant under the charge conjugation. This choice is rather convenient

for seeing the simplifications that occurs in the chiral algebra limit at the level of the

Nekrasov partition function. We also need to regularize the infinite products involved in

the perturbative contribution. To regularize them, we shall use Barnes’ multiple gamma

functions defined in [29] as follows:

ΓN (z|w1, · · · , wN ) = exp (∂sζN (s, z;w1, · · · , wN )|s=0) ∼
∏

n1,··· ,nN≥0

(z + n · w)−1 , (2.20)
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and Barnes’ zeta functions defined by the series

ζN (s, z|w1, · · · , wN ) =
∑

n1,··· ,nM≥0

(z + n · w)−s . (2.21)

Therefore the regularized perturbative partition function is given by

Zpert =
∏
e∈∆

[
Γ̃3((e, a)±m+ ε+)

Γ̃′3((e, a)) Γ̃3

(
(e, a) + 2π

r + 2ε+
)]1/2

, (2.22)

We have defined Γ̃3(z) ≡ Γ3(z; 2π
r , ε1, ε2)Γ3(1− z; 2π

r ,−ε1,−ε2) and put the prime on it to

deal with the zero modes at z = 0 such that Γ̃′(0) = limz→0 zΓ̃(z).

It is often convenient to rewrite the perturbative contribution in the more concise

expression

Zpert ∼
∏
e∈∆

[
(er(e,a); p, q)′∞(er(e,a)pq; p, q)∞

(er(e,a)±m√pq; p, q)∞

]1/2

, (2.23)

up to regularization factors. Here, (x; p, q)∞ ≡
∏∞
n,m=0(1 − xpnqm) is the multiple q-

Pochhammer symbol and p ≡ e−rε1 , q ≡ e−rε2 and the prime denotes the zero modes at

x = 0 are absent.

As explained above, the chiral algebra limit of the 6d superconformal index is ap-

proached by tuning the real mass parameter µ→ 1
2(ω1 + ω2 − ω3) [19, 23]. Using that the

contributions from the circle S1
(j) are periodic in ωj we can deduce that from the point of

view of each fixed point this is equivalent to the limits

(1) m = ±ε− , (2) m = ±ε+ , (2.24)

where ε± = (±ε1 + ε2)/2. These points correspond to an enhancement of supersymmetry

and lead to additional cancellations.

First consider the limit m = ±ε−. We note that there is a universal center of mass

factor multiplied to each non-zero instanton number contribution taking the form of

sin r(ε−+m)
2 sin r(ε−−m)

2

sin rε1
2 sin rε2

2

, (2.25)

and it vanishes in both cases m = ±ε−. Therefore the instanton contribution is unity

in this limit. Furthermore, the perturbative contributions simplifies to a product of sine

functions, so that

Z(a,m = ±ε−, ε1, ε2) =
( r

2π

)N/2∏
e>0

2 sin
(r

2
(e, a)

)
, (2.26)

which we get from (2.22) using the identities of Γ3. This formula is derived for U(N). For

U(1) the perturbative and instanton contributions are trivial. Thus we expect that the

answer for SU(N) is simply obtained by imposing the condition a1 + · · · + aN = 0 on the

above formula.
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Second, consider the limit m = ±ε+. In this case, the contributions to the index from

the vectormultiplet and adjoint hypermultiplet cancel out exactly. Thus the perturbative

contribution is unity and the instanton contribution simply counts the number of fixed

points. Therefore we have

Z
U(N)
inst (a,m = ε+, ε1, ε2) =

∑
~Y

q|
~Y | =

∞∏
n=1

1

(1− qn)N
. (2.27)

In this simple limit, we expect that the SU(N) answer is obtained by dividing by the

partition function for U(1) so that

Z
SU(N)
inst (a,m = ε+, ε1, ε2) =

∞∏
n=1

1

(1− qn)N−1
. (2.28)

2.4 Codimension 4 defects

It is expected that the six-dimensional (2, 0) theories have codimension four surface defects

labelled by irreducible representations of g = AN−1 with highest weight λ. Upon dimen-

sional reduction on S1 they should become supersymmetric Wilson loops in N = 2 SYM

with gauge group SU(N) in the same irreducible representations. Supersymmetric Wilson

loops in five dimensions have been studied in [11, 30, 31].

Let us begin with an abelian tensormultiplet in six-dimensions where there is an explicit

description of the codimension four defects as Wilson surfaces. In order to preserve Q =

Q++
−−− we wrap the Wilson surface around the M-theory circle S1 and one of the three

closed circles S1
(j) ⊂ S

5. Then we construct the Wilson surface in the euclidean spacetime

exp

(
n

∫
S1×S1

(j)

(iB + Φ dτ∧dsj)
)
, (2.29)

where n ∈ Z is the abelian charge and dτ and dsj are line elements along S1 and S1
(j)

respectively. B denotes the two-form gauge field with self-dual curvature H = dB and Φ

is one of the five scalars in the abelian tensormultiplet. The scalar Φ is characterized as

a singlet under the generators R1 and R2. Note that the Dirac quantization in 6d CFT

forces the charge n to be an integer.

Turning off all of the chemical potentials in the superconformal index, it is straight-

forward to check that the supersymmetric Wilson surface supported at the fixed point S1
(j)

always preserves the two supercharges

Q++
−−− , Q−−−−− , (2.30)

together with six more depending on the fixed point inserted and all of their conjugates.

For instance, in the case of S1
(1) the six additional supercharges preserved are

Q++
−++ , Q−−−++ , Q+−

++− , Q−+
++− , Q+−

+−+ , Q−+
+−+ . (2.31)

Those preserved at the remaining fixed points are obtained by symmetric permutations of

the lower indices.
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Turning on the general chemical potentials in the superconformal index, the Wilson

surface respects only Q = Q++
−−− and its conjugate. This means we can still define and

compute the superconformal index with generic chemical potentials in the presence a Wil-

son surface on any S1 × S1
(j). However, the Wilson surface commutes with the second

supercharge Q′ ≡ Q+−
++− preserved in the chiral algebra limit only if it wraps S1

(1) or S1
(2).

From the six-dimensional perspective, these cases correspond to codimension four defects

transverse to the chiral algebra plane. We will concentrate only on these cases in the

present work.

The dimensional reduction of the Wilson surface operators along the S1 gives rise

to the supersymmetric Wilson loops in the five-dimensional U(1) gauge theory on S5.

In particular, the two-form B provides the five-dimensional gauge field Aµ ≡ βBτµ where

µ = 1, . . . , 5 and similarly we define the five-dimensional scalar φ = βΦ. Taking these fields

independent of τ and integrating over the M-theory circle S1, we find a supersymmetric

Wilson loop in five dimensions

exp

(
n

∮
S1
(j)

(iA+ φdsj)

)
. (2.32)

As in 6d abelian case, the charge n is quantized, which naively seems not to be the case

since the abelian theory has no charged object perturbatively. However, non-perturbative

objects, for example the singular instantons which we assume to be involved in this paper,

can carry nontrivial charge and thus the quantization condition is required.

In the case of the six-dimensional (2, 0) theory of type g = AN−1 we cannot formu-

late the codimension four defect directly on S1 × S1
(j). Nevertheless, taking inspiration

from the abelian tensormultiplet, we can conjecture that it is computed by inserting a

supersymmetric Wilson loop on S1
(j),

Trλ P exp

(∮
S1
(j)

(iA+ φdsj)

)
, (2.33)

where the trace is taken in the representation of SU(N) of highest weight λ.

On the saddle points we have A = 0 and φ = ia and hence integrating over S1
(j) of length

2π/ωj the supersymmetric Wilson loop will make a classical contribution Trλ(e2πia/ωj ) to

the integrand of the partition function. The presence of the supersymmetric Wilson loop

does not affect the 1-loop perturbative computation. However, the Wilson loop in general

receives instanton corrections.

The Wilson loop partition function on S1×R4 is obtained by inserting the equivariant

Chern character Ch~Y (E) of the universal bundle to the instanton partition function. For

example, in the case of a fundamental Wilson loop, we have the expectation value of

the form

W
U(N)
fund =

1

Z
U(N)
inst

∑
~Y

q|
~Y |Ch~Y (E)

N∏
i,j=1

∏
s∈Yi

sin
r(Eij(s)+m−ε+)

2 sin
r(Eij(s)−m−ε+)

2

sin
rEij(s)

2 sin
r(Eij(s)−2ε+)

2

, (2.34)

normalized by the bare partition function. To insert a Wilson loop on the circle S1
(j), we

insert this factor with parameters at S1
(j) to the partition function.
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Let us again consider the special limits m = ε+ and m = ε−. Firstly the Wilson

loop in the limit m = ε+ receives a rather simple instanton correction. After the huge

cancellations, we obtain

W
U(N)
fund (a,m = ε+, ε1, ε2) =

N∑
i=j

eiraj PE

[
−(1− e−irε1)(1− e−irε2)

q

1− q

]
. (2.35)

However, we do not discuss Wilson loops in this limit further in this work since it corre-

sponds to inserting the Wilson loop in the chiral algebra plane.

On the other hand when m = ε−, since the center of mass factor multiplied to each

instanton sector vanishes, the Wilson loop reduces to its classical value

W
U(N)
fund (a,m = ε−, ε1, ε2) =

N∑
i=j

eiraj . (2.36)

We conjecture that the U(N) fundamental Wilson loop involves the U(1) Wilson loop factor

and thus the SU(N) Wilson loop expectation value is given by

W
SU(N)
fund = W

U(N)
fund /WU(1) , (2.37)

where WU(1) is the abelian Wilson loop of unit charge under the overall U(1) gauge group.

One can also identify this abelian Wilson loop expectation value from the U(1) gauge

theory computation. The answer is

WU(1) = eira PE
[
(1−e−irε1)(1−e−irε2) zU(1)

]
=eira PE

[
e−irε1(1−eir(ε−±m))

q

1− q

]
, (2.38)

where a is the equivariant parameter of the U(1) gauge symmetry and zU(1) is the letter

index of the U(1) instanton partition function given by

zU(1) =
sin r(ε−+m)

2 sin r(ε−−m)
2

sin rε1
2 sin rε2

2

q

1− q
. (2.39)

This abelian Wilson loop shows the expected behavior in the special limits. In the limit

m = ε+, it reproduces the Plethystic exponential term in (2.35) and, in the second limit

m = ε−, it vanishes as expected. This conjecture for the SU(2) fundamental Wilson loop

can also be checked by comparing against the Wilson loop computation value of the Sp(1)

gauge theory, which we have confirmed for the single instanton calculus.

The abelian Wilson loop can be interpreted as a heavy tensor multiplet in the 6d theory.

The U(1) instanton partition function is the Plethystic exponential of the letter index zU(1)

and agrees with the index of a single tensor multiplet on T 2 × R4 [32]. The index of the

heavy tensor fields can be obtained from the index of the single tensor multiplet by removing

the factors corresponding to the motion along R4. We can achieve it by multiplying the

factor (1− e−irε1)(1− e−irε2) to the letter index zU(1). Thus the index of a heavy 6d tensor

multiplet is the precisely the index of the abelian Wilson loop in (2.38).
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The Wilson loop expectation value in the other representations can be computed in the

similar manner. We have to insert the corresponding Chern character to the instanton par-

tition function. One can construct the equivariant Chern character in the general represen-

tation of the gauge group using that of the universal bundle E . For instance, the equivariant

characters in the symmetric and anti-symmetric representations are given by [28]

Chsym =
1

2

[
Chq(E)2 + Chq2(E2)

]
,

Chanti =
1

2

[
Chq(E)2 − Chq2(E2)

]
.

(2.40)

Here q stands for the exponential of equivariant parameters and thus Chq2(E) means the

equivariant character of E with doubled equivariant parameters. We can apply the similar

construction for other representations. The instanton partition functions with the insertion

of these characters yield the corresponding Wilson loop partition functions.

The Wilson loop partition functions in general representations have the universal center

of mass factor which vanishes in the limit m = ε−. Thus, in this limit, the Wilson loop

partition function in the representation labelled by highest weight λ takes the form of the

classical expectation value

W
U(N)
λ (a,m = ε−, ε1, ε2) = Trλ(eira) . (2.41)

On the other hand, it exhibits a rather complicated expression when we take the limit

m = ε+ of Wilson loop in a general representation, which we do not discuss in this paper.

2.5 Codimension 2 defects

The non-abelian (2, 0) theories are expected to have codimension 2 surface defects whose

study was initiated in [1, 2] in the context of the construction of four dimensional theories

of class S. For a detailed discussion of the classification and properties of codimension two

defects see [33–37].

For g = AN−1 the codimension 2 defects are in 1-1 correspondence with homomor-

phisms ρ : su(2) → g. They can be labelled by a partition [n1, . . . , ns] with
∑s

j=1 nj = N

and by convention we take ni ≤ nj if i < j. This data encodes how the fundamental

representation decomposes N → n1 + · · ·ns into representations of the image of ρ. An

important property of codimension two defects is that they support a flavor symmetry.

Let `j be the number of times that the number j appears in the partition [n1, . . . , ns] so

that
∑

j j`j = N . Then the flavor symmetry supported by the defect is s(⊕j u(`j)).

Codimension 2 defects can be understood as transverse M5 branes intersecting with the

primary stack of N coincident M5 branes. However, there is an alternative description of

codimension 2 defects discussed in [38, 39] whose connection to our computations is more

transparent. This involves the primary stack of N M5-branes probing a multi-centered

Taub-NUT (TN) space with s singularities. The M5-branes wrap the circle fiber and

extend along a radial direction of the base R3 of TN, with a number ni M5 branes ending

on i-th singularity. Thus the data classifying such configurations is a partition [n1, · · · , ns]
of N . Each set of ni M5-branes is supported on a cigar in the TN geometry. When all
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s centers coincide, TN develops an Zs orbifold singularity. Such configuration generates

a codimension 2 defect at the tip of the cigar spanned by the M5 branes. Later in this

section, we will compute the partition function in the presence of the codimension 2 defects

using the instanton calculus of the 5d SYM on the Zs orbifold plane.

The brane descriptions indicate the symmetries that are preserved by a codimension

2 defect. Firstly, the six-dimensional conformal and R-symmetries are broken to

so(2, 6)→ so(2, 4)⊕ so(2)1 ,

so(5)→ so(2)2 ⊕ so(3)R .
(2.42)

Let us orient the defect such that the unbroken conformal symmetry so(2, 4) and R-

symmetry so(3)R have Cartan generators (E, h2, h3) and R ≡ R1 respectively. The re-

maining so(2)1 and so(2)2 symmetries are generated by h1 and R2. The combination

r = −h1 − 2R2 generates a superconformal R-symmetry u(1)r while the remaining di-

agonal combination d = h1 + R2 becomes an additional u(1)d flavor symmetry. The full

symmetry preserved by a codimension 2 defect is thus su(2, 2|2)⊕u(1)d with the first factor

being the N = 2 superconformal algebra of the 4d theory living on the intersection. For

the other orientation, similar relations hold with cyclic permutations on h1, h2, h3.

Let us consider in detail the case where the codimension 2 defect spans the plane

rotated by (h2, h3) (we could also consider (h1, h3) with similar results) so that in particular

it fills the chiral algebra plane rotated by h3. In this case it is illuminating to write the

supersymmetry algebra generated by the charges Q and Q′ in terms of the su(2, 2|2)⊕u(1)

generators as
{Q,Q†} = E − 2R+ r − h2 − h3 ,

{Q′, Q′†} = E − 2R− r + h2 − h3 .
(2.43)

The chiral algebra limit of the superconformal index can be written

I = TrHQ,Q′ (−1)F qE−Rsd
∏
j

t
fj
j , (2.44)

where we have introduced additional fugacities tj for the Cartan generators fj of the

s(⊕j u(`j)) flavor symmetry of the defect. Note that s becomes a fugacity for the addi-

tional u(1)d flavor symmetry. In what follows, we find that all states contributing to the

superconformal index have d = 0 and therefore the index is independent of s. The index

then coincides with the Schur limit of the N = 2 superconformal index for the su(2, 2|2)

algebra in four dimensions [5, 40, 41].

As before, we cannot compute the superconformal index in the presence of a codimen-

sion 2 defect directly in six dimensions. However, it is expected that for a codimension 2

defect wrapping S1, there is an equivalent description as a monodromy defect in 5d N = 2

SYM. Such monodromy defects were introduced in the physics literature in reference [33]

in the context of 4d N = 4 SYM. Extrapolating the arguments there to five dimensions,

we expect that a monodromy defect labelled by the partition ρ = [n1, . . . , ns] has an alter-

native description by coupling 5d N = 2 SYM to a 3d N = 4 σ-model whose target space

is T ∗(G/L) where L = S(U(n1)× · · ·U(ns))) is the associated Levi subgroup.
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r1 rs−1rs−2 N

Figure 2. Linear quiver.

This σ-model has a UV description as the gauge theory Tρ(g) introduced reference

in [42], which is the linear quiver shown in figure 2. In particular, there is a sequence gauge

groups U(ri) where ri = n1 + · · · + ni for i = 1, . . . , s − 1 (so that rs = N). There is an

su(N) symmetry acting on the N hypermultiplets at the final node, and on S3 we can turn

on corresponding real mass parameters in the Cartan subalgebra. Here we work instead

with imaginary mass parameters a = (a1, . . . , aN ) with
∑

j aj = 0. They are identified with

the expectation values of the scalar fields in the vectormultiplet of the bulk theory. There

is a also topological u(1)s−1 manifest in the linear quiver description, which is enhanced

to s(⊕j u(`j)) in the infrared. Let us introduce corresponding FI parameters by mj where∑
jmj = 0 dual to the Cartan generators of s(⊕j u(`j)). They are identified with the flavor

fugacities of the 6d superconformal index by tj = e−βmj .

At this point, the most rigorous way to proceed would be to attempt an exact localiza-

tion computation for N = 2 SYM on S5 coupled to Tρ(g) supported on S3 ⊂ S5. This com-

putation is beyond the scope of the present paper. Instead, we will employ an effective de-

scription of these surface defects as monodromy defects of Levi type l = s(u(n1)⊕· · ·⊕u(ns))

and factorize the computation of the partition function into contributions from three fixed

circles of S5. The validity of our procedure will be tested a posteriori by reproducing the

S3 partition function of Tρ(g) by sending the bulk coupling g2 → 0.

Let us now describe the computational scheme. Our first assumption is that in the

presence of a surface defect of type ρ, the partition function can once again be expressed as a

matrix integral, whose integrand is factorized into contributions localized at the three fixed

circles S1
(a), a = 1, 2, 3. For definiteness, suppose that the surface defect is supported on the

three-sphere S3
(3) ⊂ S5 containing S1

(1) and S1
(2) as Hopf linked circles but supported away

from S1
(3). Thus contributions localized at S1

(3) should not be changed by the presence of

the defect. On the other hand, from the perspective of S1
(1) and S1

(2) the defect is supported

on subspaces S1×Cε1 and S1×Cε2 of S1×C2
ε1,ε2 with the equivariant parameters identified

as in table 2.

Thus it is reasonable that the partition function of the combined system can be ex-

pressed as ∫
[da]

Nρ∑
σ=1

e
2π2

βω1ω2ω3
(a,a)− 4π2

βω1ω2
(σ(~m),a)

Z(1)
ρ,σZ

(2)
ρ,σZ

(3) . (2.45)

where the contribution from the third fixed point Z(3) is the same as in the absence of the

defect. The measure now becomes

[da] =
iN−1

n1!n2! · · ·ns!
dN−1a (2.46)
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as the gauge group is broken to the subgroup L. The summation σ = 1, . . . , Nρ runs over

the supersymmetric vacua of the three-dimensional theory Tρ(g) on S1 × C. The number

of these vacua is in general Nρ = N !/(n1!n2! . . . ns!). Note that the classical action has an

additional contribution with the monodromy parameter ~m whose derivation on round S5

is given in the appendix B.

Our second assumption is that the contributions Zρ,σ(j) at fixed points S1
(1) and S1

(2)

are given by the 5d Nekrasov partition function in the presence of a monodromy defect.

The partition ρ = [n1, n2, . . . , ns] labelling the surface defect determines the Levi subgroup

L = S (U(n1)× · · · × U(ns)) left unbroken by the defect. Given a Levi subgroup L, the

additional label σ specifies the nonequivalent choices for how L can be embedded into

SU(N). A particular choice can be denoted by Lσ. The monodromy defect labelled by

σ = 1 corresponds to the singularity ∮
|z2|=ε

A = 2π~m , (2.47)

where

~m = (m1, · · · ,m1︸ ︷︷ ︸
n1

,m2, · · · ,m2︸ ︷︷ ︸
n2

, · · · ,ms · · · ,ms︸ ︷︷ ︸
ns

) , (2.48)

and m1, . . . ,ms are identified with the FI parameters of the three-dimensional theory Tρ(g).

Note that ~m can be characterized by the property (~m, ρl) = 0 where ρl = ρn1 ⊕ . . . ⊕
ρns is the Weyl vector of the subalgebra l with the embedding σ = 1. The remaining

supersymmetric vacua σ correspond to nonequivalent choices of Levi subalgebra of the

same Levi type l. Thus σ correspond to permutations that are not simply permutations

within each block. The number of such permutations is clearly Nρ = N !/(n1! . . . ns!) which

matches the number obtained from the quiver description of Tρ. Thus, the supersymmetric

vacua are elements σ ∈ W/Wl where Wl is the Weyl group of l.

Let us now explain how to compute the 5d Nekrasov partition function in the presence

of a monodromy defect using the ramified instantons computations of [36, 39]. It is known

that the moduli space of the ramified instantons of U(N) gauge theory is equivalently

described by the moduli space of the instantons on the orbifold space C × C/Zs where

Zs acts on the complex coordinates as (z, w) → (z, ωw) with ω = e
2πi
s . Note that the

defect spans the z-plane. The equivalence between the monodromy defect and orbifold

construction has been proven in the mathematical literature [43, 44]. Reference [45] (see

also [46]) also demonstrates explicitly that the obrbifolding procedure directly reproduces

the vortex partition function of Tρ(g), when the 5d gauge coupling is sent to zero.

The geometric orbifold action is accompanied by the non-trivial U(1)s holonomy action

on the gauge group which will be explained momentarily. We also twist the rotation

symmetry so(2)1 of the coordinate w with the so(2)2 R-symmetry subgroup in so(5)R to

have unbroken supersymmetries. The Zs then acts on the diagonal combination u(1)d.

This allows us to construct the instanton moduli space with a monodromy defect from

the usual ADHM construction simply by applying the Zs action. The standard orbifolding

procedure leads to an ADHM construction whose quiver, called the chain-saw quiver, is
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Figure 3. Chain-saw quiver.

shown in figure 3. After the orbifolding, we have vector spaces Vi and Wi of complex

dimensions

dimCWi = ni , dimCVi = ki , (2.49)

for the nodes in the quiver diagram. Here the index i is defined modulo s so that

Vs+1 = V1 and Ws+1 = W1. The associated ADHM data are given by matrices

Ai ∈ Hom(Vi, Vi), Bi ∈ Hom(Vi, Vi+1), Pi ∈ Hom(Wi, Vi) and Qi ∈ Hom(Vi,Wi+1). As

a complex manifold, the moduli space of the ramified instantons Mρ,k1,··· ,ks is obtained by

setting to zero the complex moment map

Ai+1Bi −BiAi + Pi+1Qi = 0 , (2.50)

and performing a quotient by the complexified gauge group ⊗iGL(ki,C).

The localization of the ramified instanton partition function was explained

in [36, 39, 47]. The saddle points of the localization are again classified by the standard

N -tuple of Young tableaux ~Y . The Young tableaux are now labelled by

~Y = {Yj,α} , (j = 1, · · · , s , α = 1, · · · , ns) . (2.51)

The boxes in the j-th column of the tableau Yi,α contributes to the dimension of Vi+j−1,

i.e. ki+j−1.

Let us first compute the equivariant indices of vector bundles on the ramified instanton

moduli space. We compute it from the equivariant index on the standard instanton moduli

space by acting Zs orbifold. The Zs orbifold can be realized as an action on the equivariant

parameters ε2,m and a. Before proceeding, the parameters a should be renamed as

(a1, a2, · · · , aN ) = {ai,α} . (2.52)

We turn on the U(1)s gauge holonomy such that Zs action rotates the guage parameters

as aj,α → aj,α − j 2πir
s , while changing the so(2)1 rotation parameter as ε2 → ε2

s + 2πir
s .

Alternatively, we can redefine the gauge parameters as

aj,α → aj,α − jε2 , (2.53)
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and turn off the U(1)s holonomy, which effectively substitutes the U(1)s holonomy action

by Zs action only on ε2 parameter.

For the tangent bundle TMρ of the ramified instanton moduli space, the equivariant

index at the fixed point ~Y is given by

IndTMρ
~Y

(ε1, ε2, a) =
s−1∑
r=0

1

s
IndTM~Y

(
ε1,

ε2
s
, aj,α −

jε2
s

) ∣∣∣
ε2→ε2+2πir

, (2.54)

and, for the adjoint hypermultiplet, we get the index

IndVH,ρ
~Y

(ε1, ε2, a,m) =
s−1∑
r=0

1

s
IndVH

~Y

(
ε1,

ε2
s
, aj,α −

jε2
s
,m− ε2

2s

) ∣∣∣
ε2→ε2+2πir

. (2.55)

Remember that the Zs orbifold acts on the u(1)d which simultaneously rotates the co-

ordinate w and the so(2)2 R-symmetry, and also on the Cartans of u(N). In the above

indices we have implemented the Zs orbifold as the action only on ε2 by shifting the mass

parameters a and m. In addition, we need to multiply the momentum factor
∑

t∈Z e
2π
r
t

along the temporal circle in five-dimensions.

The partition function computation is straightforward using the conversion rule. The

ramified instanton partition function is given by

Zρinst(ε1, ε2, as,I ,m, q) =
∑
~Y

z(~Y )
s∏
i=1

q
ki(~Y )
i . (2.56)

z(~Y ) is the product of weights in the equivariant indices at the saddle point ~Y and qi are

the instanton fugacities. q ≡ q1q2 · · · qs is related to the dynamical coupling of the bulk

gauge theory. We identify the instanton fugacities with the monodromy parameters as

follows:

qi=1,2,··· ,s−1 = e
4π2r
g2

(mi−mi+1)
, qs = qe

4π2r
g2

(ms−m1)
. (2.57)

Similarly, we can compute the perturbative contribution under the Zs orbifold using

the above equivariant indices. It is given by

Zρpert =
s∏

i,j=1

ni∏
α=1

nj∏
β=1

[
Γ̃3

(
ai,α−aj,β−d i−js eε2+m+ ε1

2

)
Γ̃3

(
ai,α−aj,β−d i−j−1

s eε2−m+ ε1
2

)
Γ̃′3
(
ai,α−aj,β−d i−js eε2

)
Γ̃3

(
ai,α−aj,β−d i−j−1

s eε2 + ε1
) ]1/2

,

(2.58)

where d·e denotes the ceiling function. It turns out that the perturbative partition function

factorizes into the contributions from the 5d theory and from the 3d theory supported on

the defect. For instance, for the full defect of type ρ = [1, 1, · · · , 1], the perturbative

partition function factorizes as

Z
ρ=[1N ]
pert = Zpert(m→ m+ ε2/2)× Z3d,pert ,

Z3d,pert =
∏
e>0

[
S′2
(
(e, a); 2π

r , ε1
)
S2

(
(e, a)− 2π

r ;−2π
r , ε1

)
S2

(
(e, a) +m+ ε1

2 ; 2π
r , ε1

)
S2

(
(e, a) +m− 2π

r + ε1
2 ;−2π

r , ε1
)]1/2

, (2.59)
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with the double sine function defined as the following regularized infinite product

S2(z;w1, w2) ∼
∞∏

n1,n2=0

(n1w1 + n2w2 + z)

((n1 + 1)w1 + (n2 + 1)w2 − z)
(2.60)

The primed function is defined as S′2(0) ≡ limz→0 S2(z)/z.

Z3d,pert is the perturbative contribution from the 3d theory on the defect. Indeed, this

3d factor agrees with the perturbative contribution in the holomorphic block of the three

dimensional T [U(N)] theory, which is believed to be the 3d theory living on the defect.

We find that the product of two 3d factors, from S3
(3) for example, with the physical

parameters µ, ω1,2,3 constructs the 1-loop contribution to the S3 partition function of the

T [U(N)] theory in the Higgs branch expression [45]:

Z3d,pert(m = µ+ ω1/2 + ω3/2, r = 2π/ω1, ε1 = ω2)× Z3d,pert(ω1 ↔ ω2)

=
∏
e>0

S2((e, a);ω1, ω2)

S2((e, a) + µ+ ω1+ω2+ω3
2 ;ω1, ω2)

.
(2.61)

Furthermore we find that the ramified instanton partition function in the decoupling limit

q → 0 (or g → 0) reproduces the vortex partition function of the T [U(N)] theory. For

example, the instanton partition function of the U(2) gauge theory in the decoupling limit is

lim
q→0

Z
ρ=[12]
inst = 1 +

sin r(−m+ε1/2)
2 sin r(a12+m−ε1/2)

2

sin rε1
2 sin r(a12−ε1)

2

q1 (2.62)

+
sin r(−m+ε1/2)

2 sin r(a12+m−ε1/2)
2 sin r(−m+3ε1/2)

2 sin r(a12+m−3ε1/2)
2

sin rε1
2 sin rε1 sin r(a12−ε1)

2 sin r(a12−2ε1)
2

q2
1 + · · ·

This is precisely the vortex partition function of the T [U(2)] theory [45, 48].

Let us now discuss the limits m = ε± which are needed for the chiral algebra limit of

the superconformal index. Due to the mass shift m → m − ε2
2 , these limits become the

limits m = ±ε1/2. For simplicity we shall consider a particular embedding σ = 1 of the

Levi subgroup.

In the limit m = −ε1/2, the perturbative contribution (2.58) reduces to unity due to

the cancellation between contributions from vector and hypermultiplets

lim
m→ε1/2

Zρpert = 1 . (2.63)

A similar cancellation happens in the instanton calculus and we find that the contribution

at each instanton fixed point becomes unity. Thus the instanton series is significantly

simplified so that it simply counts the number of fixed points characterized by the same

instanton numbers (k1, k2, · · · , ks). For generic ρ, we claim that

lim
m→ε1/2

Zρinst = (q; q)−N∞

s∏
i=1

∞∏
j=1

(
1−

i+j−1∏
a=i

qa

)−ni

= (q; q)−N∞

s∏
i=1

s∏
j=i+1

(
e

4π2r
g2

mij ; q

)−ni
∞

s∏
i=2

i−1∏
j=1

(
qe

4π2r
g2

mij ; q

)−ni
∞

. (2.64)
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where the q-Pochhammer symbol is defined as (x; q)∞ =
∏∞
i=0(1 − xqi) and we used the

notation mij = mi −mj . The first equality was given in [39]. Here the index a is taken to

be modulo s. We have checked the second equality for N = 2, 3, 4, 5, 6, 7 with arbitrary ρ

at some lower orders in qi expansions.

In the second limit m = ε1/2, after some algebra and using identities of S2, we find

that the perturbative contribution simplifies to

lim
m→ε1/2

Zρpert =
( r

2π

)N/2 s∏
i=1

∏
e∈∆+

i

2 sin
(r

2
(e, a)

)
, (2.65)

where ∆+
i denotes the positive roots of subgroup U(ni) ⊂ L. For instantons, the contri-

bution at each fixed point ~Y contains the following center of mass factor as a universal

prefactor

sin r(m−ε1/2)
2

sin rε1
2

, (2.66)

which vanishes when m = ε1/2. Therefore all fixed point contributions are identically 0

and it proves that

lim
m→−ε1/2

Zρinst = 1 . (2.67)

3 WN -algebra characters

We will now combine the results of the previous section to compute of the chiral algebra

limit of the 6d superconformal index in the presence of supersymmetry preserving config-

urations of defects. In this limit, we can evaluate the Coulomb branch integral of the S5

partition function explicitly and express the result manifestly as a 6d superconformal index.

In the absence of defects this superconformal index has been shown to coincide with the

vacuum character of u(1) in the case of the abelian tensormultiplet and the WN algebra for

the non-abelian theory of type AN−1 [9, 11, 19]. In this section, we consider combinations

defects that do not intersect the fixed circle S1
(3) ⊂ S5 that is distinguished by the chiral

algebra limit — as shown in figure 4. From the perspective of the superconformal index,

this means that the defects are point-like in the chiral algebra plane and are expected

to correspond to chiral vertex operators. Indeed, we will reproduce the characters of

irreducible modules of u(1) and the WN -algebras found in [20].

3.1 Vacuum module

Let us first review the computation of the chiral algebra limit of the 6d superconformal

index in the absence of any defects [9, 11].

Tuning the mass parameter in the 5d partition function to µ → 1
2(ω1 + ω2 − ω3), the

computation of the five-sphere partition function simplifies dramatically. In particular, the

instanton partition functions at fixed points (1) and (2) are one and at fixed point (3)

becomes simply a q-Pochhammer symbol. In addition, the perturbative contributions at

fixed point (3) become one and simplify dramatically at fixed points (1) and (2). Let us

consider the abelian tensormultiplet and the non-abelian theories in turn.
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Figure 4. A summary of the configurations of a codimension 2 and codimension 4 defects that in

the chiral algebra limit reproduce characters of irreducible modules of the WN -algebra.

It is convenient to introduce the notation 2πiτ = −βω3 so that q = e2πiτ . We also

set ω1ω2 = 1 since the final results do not depend on it (i.e. only depend on the ratio

b2 ≡ ω1/ω2). For the U(1) theory, the contributions from each fixed point are

Z(1) = Z(2) = 1 , Z(3) = 1/η(−1/τ) . (3.1)

We have multiplied to Z(3) an overall factor e
πi
12τ to make it as a modular form. As studied

in [11] this factor is related to the leading high temperature behavior of the 6d abelian

index, which cannot be observed from the 5d partition function because we have assumed

the index to be smooth in 5d limit and regularized it. The detailed discussion will be left

for a later work [24]. Combining these contributions with the classical contribution e
πia2

τ

we have a gaussian integral

ZU(1) = i

∫
iR
da

eπia
2/τ

η(−1/τ)
=

1

η(τ)
. (3.2)

This expression is the vacuum character of the û(1) chiral algebra including the contribution

from the central charge c = 1.

For the SU(N) theory the contributions from each fixed point are

Z(1) =
∏
e>0

2 sinπb−1(e, a) , Z(2) =
∏
e>0

2 sinπb(e, a) , Z(3) = 1/η(−1/τ)N−1 . (3.3)

Strictly speaking we have performed the instanton calculus for U(N) and divided by the

U(1) instanton contribution. Combining these contributions with the classical contribution

e
πi
τ

(a,a) we find

ZSU(N) =

∫
[da]

∏
e>0

2 sinπb±(e, a)
e
πi
τ

(a,a)

η(−1/τ)N−1

=
q−

1
2

(Q,Q)

η(τ)N−1

∑
σ∈W

ε(σ)q−(σ(ρ)−ρ,ρ) .

(3.4)

For compactness we have introduced the shorthand notation f(b±) = f(b)f(b−1). We have

also introduced the standard notation Q = (b+1/b)ρ where ρ =
∑N

j=1 ωj is the Weyl vector
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and we have a summation over the Weyl group W of g = AN−1. The integration over a

in the Cartan subalgebra was again gaussian and performed by systematically completing

the square in the exponential.

Now, using the Weyl denominator formula∑
σ∈W

ε(σ)q−(σ(ρ)−ρ,ρ) =
∏
e>0

(1− q(ρ,e)) , (3.5)

we can express the partition function on squashed S5 in a form that is manifestly a super-

conformal index or partition function on S1 × S5,

q−
1
2

(Q,Q)

η(τ)N−1

∑
σ∈W

ε(σ)q−(σ(ρ)−ρ,ρ) = q−
c
24

∏
e>0

(1− q(ρ,e))

∞∏
n=1

(1− qn)N−1

= q−
c
24 PE

[
(N − 1)q

1− q
−
∑
e>0

q(ρ,e)

]

= q−
c
24 PE

(N − 1)q

1− q
−
N−1∑
j=1

jqN−j


= q−

c
24 PE

[
q2 + . . .+ qN

1− q

]
.

(3.6)

where
c = N − 1 + 12(Q,Q)

= (N − 1) +N(N2 − 1)(b+ 1/b)2 .
(3.7)

This result is precisely the vacuum character of the WN -algebra, see appendix A.2.

In particular, the final lines of equation (3.6) reflect that the states W
(n)
−l |0〉 are null if

0 < l < n and that the vacuum module is freely generated by W
(n)
−l for n = 2, . . . , N

and l ≥ n. In our correspondence with the superconformal index of the (2, 0) theory, we

can identify these generators with local operators On for n = 1, · · · , N − 1 generating the
1
2 -BPS chiral ring and their holomorphic derivatives i.e. W

(n)
−l = ∂l−nOn. Note that all the

states contributing to the superconformal index are bosonic.

3.2 Degenerate modules

In this subsection, we enrich the above computation by adding supersymmetric Wilson

loops wrapping S1
(1) and S1

(2). We expect to find non-vacuum modules of the relevant

chiral algebra. In the abelian tensormultiplet theory, we find non-vacuum modules whose

dimension depends on a pair of integers n1 and n2. For the non-abelian theory of type

AN−1, we will find the characters of the so-called completely degenerate modules of the

WN -algebra.

Let us first consider the abelian tensormultiplet theory and add supersymmetric Wilson

loops of integer charge n1 and n2 on the circles S1
(1) and S1

(2) respectively. As described

section 2.4, the presence of the Wilson loops modifies the instanton partition functions
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localized at fixed points (1) and (2). However, in the special limit the instantons at these

fixed points decouple and the contribution is simply the classical expectation values. In

summary we have

Z(1) = e2πian1/b , Z(2) = e2πian2b , Z(3) = 1/η(−1/τ) . (3.8)

Combining with the classical contribution, we again have a gaussian integral

Z
(n1,n2)
U(1) = i

∫
iR
da e2πian1/be2πian2b eπia

2/τ

η(−1/τ)

=
e−iπτ(n1/b+n2b)2

η(τ)
.

(3.9)

This expression is the character of an irreducible non-vacuum module of û(1) with dimen-

sion ∆ = −1
2(n1/b+ n2b)

2.

In the non-abelian case, we can add supersymmetric Wilson loops supported on the cir-

cles S1
(1) and S1

(2) and labelled by irreducible representations of AN−1 with highest weights

λ1 and λ2 respectively. Let us first consider the case where λ2 = 0 in some detail. As

above, the instanton contributions at fixed points (1) and (2) decouple in the special limit

and the contributions from the fixed points are

Z(1) =
∏
e>0

2 sinπb−1(e, a) Trλ(e2πia/b) , Z(2) =
∏
e>0

2 sinπb(e, a) , Z(3) = 1/η(−1/τ)N−1 ,

(3.10)

The classical value of the Wilson loop in the irreducible representation of highest weight λ

is inserted to Z(1). We have also multiplied a factor e
(N−1)πi

12τ to Z(3) by hand. Computing

the gaussian integral in this case we find

Zλ(τ) =

∫
[da]

∏
e>0

2 sinπb±(e, a)
e
πi
τ

(a,a)

η(−1/τ)N−1
Trλ(e2πia/b)

=
q∆(µ)− 1

2
(Q,Q)

η(τ)N−1

∑
σ∈W

ε(σ)q−(σ(ρ)−ρ,ρ+λ) ,

(3.11)

which is precisely the character of a completely degenerate representation of the WN -

algebra with momentum µ = −λ/b and dimension ∆(µ) = (Q,µ)− 1
2(µ, µ).

It is again illuminating to express this result in terms of the Plethystic exponential.

Using the formula ∑
σ∈W

ε(σ)q−(σ(ρ)−ρ,ρ+λ) =
∏
e>0

(1− q(ρ+λ,e)) (3.12)

we find

Zλ(τ) = q∆(µ)− c
24 PE

[
(N − 1)q

1− q
−
∑
e>0

q(ρ+λ,e)

]
(3.13)

This demonstrates that we have a null state at level (ρ+ λ, e) for each positive root e > 0.

For instance, in the case N = 2 we find the character of the degenerate module of the
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Virasoro algebra with a null vector at level r

q∆(µ)− c
24 PE

[
q

1− q
− qr

]
, (3.14)

where now c = 1 + 6(b+ 1/b)2.

The most general completely degenerate module is found by placing two codimension 4

defects labelled by λ1 and λ2 wrapping the circles S1
(1) and S1

(2) respectively. The partition

function now evaluates to

Zλ1,λ2(τ) =
q∆(α)− 1

2
(Q,Q)

η(τ)N−1

∑
σ∈W

ε(σ)q−(σ(ρ+λ2)−ρ−λ2,ρ+λ1) (3.15)

corresponding to a simple module with momentum α = −λ1/b − λ2b. This exhausts the

spectrum of fully degenerate modules.

3.3 Semi-degenerate modules

In this subsection, we consider the a surface defect supported on the three-sphere S3
(3).

From the perspective of the superconformal index this corresponds to a codimension 2

defect orthogonal to the chiral algebra plane.

Let us briefly consider the abelian tensormultiplet theory. As we have argued in section,

the presence of a monodromy defect does not change the instanton contributions in this

case. The only modification comes from a classical contribution e−2πima where m is the

monodromy parameter. The S5 partition function

ZU(1) = i

∫
iR
da e−2πima eπia

2/τ

η(−1/τ)
=
q−m

2/2

η(τ)
. (3.16)

is nothing but the character of an irreducible module of û(1) of dimension ∆ = −m2/2.

We remind the reader that m is imaginary in our notation.

In the non-abelian case, let us first consider the most straightforward codimension

2 defect of type ρ = [1, 1, . . . , 1] = ∅. This leaves unbroken the subgroup L∅ =

S (U(1)× . . .×U(1)). There are N ! supersymmetric vacua labelled by an element σ ∈ W
and corresponding to a permutation of the monodromy parameters ~m = (m1, . . . ,mN ). In

what follows, we denote the monodromy parameters ~m by simply m (or µ = Q+ ~m), which

should not be confused with the N = 1∗ mass parameter that we have already tuned to

the special value.

In the chiral algebra limit, we find that the contributions from the fixed points are inde-

pendent of the permutation σ. The contributions from the fixed circles S1
(1) and S1

(2) are one:

Z∅,σ
(1) = Z∅,σ

(2) = 1. The contributions from the fixed circle S1
(3) is Z∅,σ

(3) = 1/η(−1/τ)N−1.

There are now two classical contributions in the presence of a codimension 2 defect. In ad-

dition to the familiar classical contribution e
πi
τ

(a,a) there is also a contribution e−2πi(σ(m),a)

which depends on the supersymmetric vacuum σ. The origin of the factor is explained in

the appendix B.
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Putting the contributions together and summing over the permutations we have only

to perform a gaussian integral∫
[da]

∑
σ∈SN

e−2πi(σ(m),a) e
πi
τ

(a,a)

η(− 1
τ )N−1

=
e−πiτ(m,m)

η(τ)N−1

= q∆(µ)− c
24 PE

[
(N − 1)q

1− q

]
.

(3.17)

where we have defined µ = Q + m and as before ∆(µ) = (µ,Q) − 1
2(µ, µ). This expres-

sion is precisely the character TrVµ
(
qL0−c/24

)
of a non-degenerate irreducible module with

momentum µ = Q+m.

The above computation can be rephrased in an interesting way. First note that the

classical and instanton contributions to the integrand combine to form the non-degenerate

character TrVα
(
q̃L0−c/24

)
on a torus with complex structure τ̃ = −1/τ and with momentum

α = Q+ a. The above integral is then

TrVµq
L0−c/24 =

∫
[da]µ(a)Z(m, a) TrVα q̃

L0−c/24 , (3.18)

where µ(a) =
∏
e>0

2 sinπb±(e, a) is the 5d N = 1 vectormultiplet measure and

Z(m, a) =

∑
w∈SN e

−2πi(w(m),a)∏
e>0 2 sinπb±(e, a)

. (3.19)

This is precisely the squashed S3 partition function of the 3d N = 4 theory T (U(N)) in

the chiral algebra limit. This is an important evidence that our computation in terms of

monodromy defects is correctly reproducing the surface defect that we intended. Note that

the combination Sµ,α = µ(a)Z(a,m) can be identified with the modular transformation

matrix for non-degenerate WN -characters.

Let us now consider a generic codimension 2 defect labelled by the partition ρ =

[n1, n2, · · · , ns] where n1 ≤ n2 ≤ · · · ≤ ns and
∑s

i=1 ni = N . In the presence of the

defect, the gauge symmetry of the five-dimensional theory is broken to the Levi type

l = s[u(n1) × · · · × u(ns)]. The supersymmetric vacua are labelled by a permutation

σ ∈ W/Wl. Due to the presence of non-abelian factors in l, there are now non-trivial

perturbative contributions

Zρ,σ(1) =
s∏
j=1

∏
e∈∆+

j

2 sinπb−1(e, σ(a)) , Zρ,σ(2) =
s∏
j=1

∏
e∈∆+

j

2 sinπb(e, σ(a)) , (3.20)

where ∆+
j corresponds to the positive root space generated by {erj , . . . , erj+1−1} where

rj = n1 + . . . + nj . These are the roots whose non-zero elements lie entirely within the

nj × nj block. The instanton contributions to the the fixed point S1
(3) remain unaffected

by the presence of the defect, so Z(3) = 1/η(−1/τ)N−1. As before, there is an additional

classical contribution e−2πi(σ(m),a) — see appendix B.

– 27 –



J
H
E
P
0
5
(
2
0
1
5
)
0
4
8

Putting the contributions together and summing over the supersymmetric vacua

we have ∫
[da]

∑
σ∈W/Wl

Zρ,σ(1) Z
ρ,σ
(2) e

−2πi(σ(m),a) e
πi
τ

(a,a)

η(− 1
τ )N−1

=
q∆(µ)− 1

2
(Q,Q)

η(τ)N−1

∑
σ∈Wl

ε(σ)q−(σ(ρl)−ρl,ρl) ,

(3.21)

which is the character TrVµ
(
qL0−c/24

)
of a semi-degenerate module of the WN -algebra with

momentum µ = Q + m − (b + b−1)ρl where (m, ρl) = 0 and ρl is the Weyl vector of the

subalgebra l.

We can also introduce the codimension 4 defects supported on the fixed circles S1
(1)

and S1
(2). As these circles are inside S3

(3) we may only introduce supersymmetric Wilson

loops in the unbroken gauge symmetry. For the abelian theory, we can introduce super-

symmetric Wilson loops of any integer charges n1 and n2, and the result is the character

of an irreducible module of û(1) of dimension ∆ = −(m− n1/b− n2b)
2/2.

For the non-abelian theories, the supersymmetric Wilson loops at the fixed circles S1
(1)

and S1
(2) are characterized by the dominant integral weights λ1 and λ2 of the the Levi

subalgebra l ⊂ g, respectively. The weights obey the constraints (λ1, e) ≥ 0 and (λ2, e) ≥ 0

for all e ∈
⋃s
j=1 ∆+

j . Plugging these Wilson loop contributions into the partition function

we obtain∫
[da]

∑
σ∈W/Wl

Zρ,σ(1) Z
ρ,σ
(2) Trλ1(e2πia/b) Trλ2(e2πiab) e−2πi(σ(m),a) e

πi
τ

(a,a)

η(− 1
τ )N−1

=
q∆(µ)− 1

2
(Q,Q)

η(τ)N−1

∑
σ∈Wl

ε(σ)q(ρl+λ1,ρl+λ2)−(σ(ρl+λ1),ρl+λ2) ,

(3.22)

where µ = Q+m− b−1(ρl +λ1)− b(ρl +λ2). Here Wl is the Weyl group and ρl is the Weyl

vector of l.

4 Affine characters

In this section, we will consider adding a surface defect wrapping one of the circles S3
(1)

or S3
(2). From the perspective of the 6d superconformal index this corresponds to adding

a codimension 2 defect wrapping the chiral algebra plane. In the case of a codimension 2

defect labelled by the partition ρ = [1N ] we will now find characters of irreducible modules

of the affine algebra ŝu(N) at level k = −N − b±2. We will leave exploration of general

type ρ defects for the future.

4.1 Vacuum module

Let us first consider a surface defect of type ρ supported on S3
(1). The same formulae

will apply for S3
(2) by interchanging b ↔ 1/b. These correspond to codimension 2 defects
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Figure 5. A summary of the configurations of a codimension 2 and codimension 4 defects that

in the chiral algebra limit reproduce characters highest weight modules of the affine ŝu(N) at level

k = −N − b±2.

wrapping the chiral algebra plane. In the chiral algebra limit, the contributions localized

at the first two fixed points are

Z(1) =
∏
e>0

2 sinπb−1(e, a) , Zρ,σ(2) =
s∏
j=1

∏
e∈∆+

j

2 sinπb(e, σ(a)) , (4.1)

and, from (2.64), at the third fixed point is

Zρ(3) = (q̃; q̃)−N∞

s∏
i=1

s∏
j=i+1

(
e

2πi
τ
mij ; q̃

)−ni
∞

s∏
i=2

i−1∏
j=1

(
q̃e

2πi
τ
mij ; q̃

)−ni
∞

. (4.2)

Combining all three fixed point contributions, the full partition function is∫
[da]

∏
e>0

2 sinπb−1(e, a)
∑

σ∈W/Wl

ε(σ)
s∏
j=1

∏
e∈∆+

j

2 sinπb(e, σ(a)) e
πi
τ

(a,a)− 2πi
τ
b(σ(m),a) × Zρ(3)

= (−iτ)
N−1

2 q∆(µ)− 1
2

(Q,Q)
∑
σ∈W

ε(σ)q(σ(m−ρl)−m+ρl,ρ) × Zρ(3) , (4.3)

where µ = Q+m−b−1ρ−bρl. This is not yet the superconformal index as the function Zρ(3)

still takes the form of a weak-coupling expansion expanded by q̃ not q. The superconformal

index can be in principle obtained by S-dualizing Zρ(3) and putting the result to the rest of

the partition function. However, for generic ρ, the S-dual formulae for Zρ(3) is not known

and we could not find the index expression of the partition function.

In what follows we shall focus on a surface defect of maximal type ρ = [1N ] in the

chiral algebra limit for which Z(3) has a nice modular property and can be re-expanded by

q. We find

Z
ρ=[1N ]
(3) = η (−1/τ)

(N−1)(N−2)
2

∏
e<0

θ

(
(e,m)

τ

∣∣∣− 1

τ

)−1

= (−i)−
N(N−1)

2 (−iτ)−
N−1

2 η(τ)
(N−1)(N−2)

2

∏
e<0

e−
πi(e,m)2

τ θ ((e,m)|τ)−1 ,

(4.4)
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with the theta function

θ(z|τ) = −iq1/8y1/2
∞∏
i=1

(1− qi)(1− yqi)(1− y−1qi−1) , (4.5)

where q = e2πiτ and y = e2πiz. The extra factors e
(N2−1)πi

12τ and
∏
e<0 e

2πi(e,m)
τ are multiplied

by hand to the standard instanton series for Z(3) being a modular form. Again the former

factor is interpreted as the leading term in high temperature expression of the 6d index,

while the latter factor appears to be ambiguity which is not fixed in the 5d partition

function.

The partition function in the presence of the defect is given by

Z[1N ] =

∫
[da]

∏
e>0

2 sinπb−1(e, a)
∑
σ∈W

ε(σ)e−
2πi
τ
b(σ(m),a)e

iπ
τ

(a,a) × Z(3)

= e−
iπ
τ

(m,m)(N+b2)q−
1
24

(N2−1)(N/b2+1)(q; q)∞

N∏
i,j=1

1

(qzi/zj ; q)∞

= e−
iπk(m,m)

τ q−c/24 PE

 q

1− q

 N∑
i,j=1

zi
zj
− 1

 ,
(4.6)

where we write zj = e2πimj . The partition function can be recognized as the character of

the vacuum module of the affine algebra ŝu(N) at level k = −N − b2 and with associated

Sugawara central charge c = (N/b2 + 1)(N2 − 1). More precisely we have

Z[1N ] = e−
iπk
τ

(m,m) TrV0

(
qL0− c

24

∏
j

z
hj
j

)
, (4.7)

where the vacuum module V0 has highest affine weight λ̂ = kω̂0. A summary of our

conventions and a derivation of this result can be found in appendix (A.3). Note that in

this case, we reproduce the vacuum character up to a small prefactor e−
iπk
τ

(m,m) depending

only on the level.

4.2 Highest weight modules

Let us now introduce a supersymmetric Wilson loop wrapping S1
(1). It is important that

the support of this supersymmetric Wilson loop does not intersect the support S3
(1) of the

surface defect. This means that the gauge symmetry is unbroken near the fixed point (1)

and we can introduce Wilson loops that is still in irreducible representations of SU(N)

labelled by the highest weight λ. From the perspective of the 6d superconformal index this

corresponds to a codimension 4 defect orthogonal to the pre-existing codimension 4 defect

— see figure 1(c).

The presence of the supersymmetric Wilson loop changes only the contribution local-

ized at S1
(1) to

Z(1) =
∏
e>0

2 sinπb−1(e, a) Trλ(e2πia/b) (4.8)
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and thus the full partition function becomes

Z[1N ],λ = Z[1N ] × q
1

2b2
((ρ,ρ)−(ρ+λ,ρ+λ)) χλ(e−2πim)

= e−
iπk
τ

(m,m)q∆λ−c/24 χλ(z) PE

 q

1− q

 N∑
i,j=1

zi
zj
− 1

 , (4.9)

where now the dimension is ∆λ = (λ,λ+2ρ)
2(k+N) and χλ(z) denotes the character of the finite

dimensional representation of AN−1 with highest weight λ. This is exactly the character

of an irreducible module of the affine lie algebra at level k = −N − b2 with affine highest

weight λ̂ = kω̂0 + λ. As before, we refer the reader to appendix (A.3) for a summary of

this result.

5 Discussion

Let us conclude with a number of speculations and promising directions for further research.

Firstly, we believe that our computations provide an important step towards deriving

the connection between the superconformal index of 4d N = 2 theories of class S and

topological quantum field theory [4, 5]. Let us recall from [5] that in the Schur limit the

superconformal index of the class S theory corresponding to a Riemann surface with n

maximal punctures of type ρ = [1N ] and genus g can be expressed as∑
λ

C2−2g−n
λ ψλ(a1) . . . ψλ(an) (5.1)

where the summation is over the finite dimensional irreducible representations of g and

the expression for the structure constants Cλ and wavefunctions ψλ(a) can be found in [5].

Promoting the 4d superconformal index to the S1 × S3 partition function we observe in

the case g = AN−1 that

1. Cλ is the superconformal index of the (2, 0) theory in the presence of a codimension 4

defect labelled by dominant integral weight λ orthogonal to the chiral algebra plane.

2. ψλ(a) is the superconformal index of the (2, 0) theory in the presence of a maximal

codimension 2 defect wrapping the chiral algebra plane and an orthogonal codimen-

sion 4 defect labelled by λ.

Presumably this can be extended to non-maximal punctures of generic type ρ.

The above picture also suggests a concrete proposal for how to compute the wavefunc-

tions ψρ,λ(ai, p, q, t) appearing in the superconformal index of class S theories with general

fugacities turned on. They should correspond to the superconformal index on S1×S5 with

a codimension 2 defect of type ρ wrapping say S1 × S3
(1) and codimension 4 defect of type

λ wrapping S1 × S1
(1). Note that the two defects coincide only along S1: S3

(1) and S1
(1)

are Hopf-linked inside S5. The 4d parameters are identified with the parameters of the 6d

superconformal index as

{ai, p, q, t}4d = {zi, q2, q3, (q1q2q3)1/2p−1}6d (5.2)
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Some initial checks of this proposal are performed in [45]. This observation is of mathe-

matical interest as these wavefunctions should provide a complete set of eigenfunctions of

the elliptic Ruijsenaars-Schneider integral system for the codimension 2 defect of maximal

type ρ and more generally its degenerations.

It is natural to identify the wavefunction ψλ with the contribution to the 4d super-

conformal index of class S theories from a disk with puncture. This can be understood

by reformulating the 6d superconformal index in terms of the 4d superconformal index on

S1 × S3
(1) together with a topologically twist along the two transverse directions involving

S1
(1), which are identified with a disk with puncture. The puncture corresponds to the

insertion of the codimension 2 defect of type ρ. The boundary condition along the S1
(1)

may be specified by the codimension 4 defect of type λ.

Note that there is an additional parameter in the 6d superconformal index conjugate to

h1 +R2, which is turned off in the identification (5.2). This reflects the topological twisting

along the Riemann surface. One can also check the chiral algebra limit p→ (q1q2/q3)1/2 of

the 6d superconformal index corresponds precisely to the Schur limit t→ q of the 4d N = 2

superconformal index of the theory on the S1 × S3
(1). This suggests that it is possible to

enumerate the states contributing to the superconformal index of 4d theories of class S and

identify their six-dimensional origin. We hope to return to this question in future work.

For codimension 2 defects wrapping S1×S3
(1), we could express the partition function

manifestly as a 6d superconformal index only in the case of a maximal puncture ρ = [1N ].

For more generic punctures, although we could find an integral expression and perform

the integral explicitly, we could not transform the instanton contribution Zρ(3) from the

third fixed point from a weak-coupling expansion in q̃ = e−2πi/τ to an expansion in the 6d

fugacity q = e2πiτ . It will be interesting to find the modular property of Zρ(3) for a generic ρ

and compute the superconformal index. Based on previous work, we would expect to find

the characters of modules of W (ρ)-algebras, which are obtained from the affine algebra

ŝu(N) by Drinfeld-Sokolov reduction [49]. As shown in [41], one can also reduce the flavor

symmetry su(N) of the maximal defect ρ = [1N ] by coupling to a 4d N = 2 linear quiver

tail by gauging the global su(N) symmetry and then Higgsing the theory by giving vacuum

expectation values to the bifundamental hypermultiplets.

Finally, a complementary approach to computing the 6d superconformal index is to

use the 5d gauge theory on S1 × CP2 by reducing the 6d (2,0) theory on S1 × S5 along

the Hopf fiber of S5. In this case, the partition function including the non-perturbative

instanton contributions is expressed manifestly in the form of a 6d index, without the need

for performing a modular transformation on τ . The partition function with codimension 2

defects of generic type ρ could be computed by this method and compared to the characters

of W (ρ)-algebra. This could also allow the 6d superconformal index with defects to be

computed in the case of general fugacities.
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A Chiral algebras

A.1 Conventons

Let us summarize our conventions for g = AN−1. We choose the standard metric ( , ) on h∗

normalized such that the length (e, e) = 2 for all roots e and identify h = h∗. The simple

roots denoted ej are dual to the fundamental weights ωj i.e. (ei, ωj) = δij . The Weyl vector

is the sum of the fundamental weights ρ =
∑N−1

j=1 ωj and has norm

(ρ, ρ) =
1

12
N(N2 − 1) . (A.1)

The weights of the fundamental representation are

hj = ω1 − e1 − . . .− ej−1 j = 1, . . . , N , (A.2)

and obey (hi, hj) = δij − 1/N and
∑N

j=1 hj = 0. The weights of the rank-r skew tensor

representation are then given by hj1 + . . . + hjr for 1 ≤ j1 < . . . < jr ≤ N . The positive

roots are hi − hj for i < j and the simple roots are ej = hj − hj+1. The Weyl group SN
acts by permutations of h1, . . . , hN .

We will often represent elements of g by traceless anti-hermitian matrices

hj = i diag

(
− 1

N
, . . . , 1− 1

N︸ ︷︷ ︸
j

, . . . ,− 1

N

)
(A.3)

with (a, b) = −Tr(ab) on h. For an element a ∈ h we define its components by aj = (a, hj)

so that
∑N

j=1 aj = 0 and (a, a) = Tr(a2) = a1
1 + . . .+ a2

N .

A.2 WN -algebra characters

In this appendix, we will summarize the spectrum of simple modules of the W -algebra of

type g = AN−1, which we have called the WN -algebra in the main text, following closely

reference [20].

The WN -algebra is generated by holomorphic currents Wj(z) of spin j = 2, . . . , N . The

holomorphic current W2(x) = T (x) is identified with the stress energy tensor and generates

a Virasoro subalgebra with central charge c that can be parametrized by

c = (N − 1) + 12(Q,Q)

= (N − 1) + (b+ b−1)2N(N2 − 1)
(A.4)

where Q = (b+ b−1)ρ and b > 0.

– 33 –



J
H
E
P
0
5
(
2
0
1
5
)
0
4
8

The simple modules Vµ are highest weight modules labelled by an element µ ∈ h

called the momentum. They are constructed from a Verma module with chiral primary of

dimension

∆(α) = (Q,µ)− 1

2
(µ, µ) (A.5)

by subtracting the descendants of any null vectors. The simple modules are sometimes

classified crudely as non-degenerate, semi-degenerate or fully degenerate, depending the

structure of null vectors appearing in the Verma module.

To construct simple modules we first choose a homomorphism ρ : su(2)→ g. This can

be labelled by a partition [n1, . . . , ns] with
∑s

j=1 nj = N and by convention ni ≤ nj if i < j.

This specifies how the fundamental representation of g decomposes N → n1+· · ·+ns under

the image of the homomorphism Im(ρ) ⊂ g. The stabilizer of Im(ρ) in g is the subalgebra

l = s(u(n1)⊕ · · · ⊕ u(ns)) (A.6)

with

∆l =
s⋃
j=1

∆j (A.7)

where ∆j is generated by the subset of simple roots {erj , . . . , erj+1−1} with rj = n1+· · ·+nj .
The corresponding spaces of positive roots are denoted by ∆+

l and ∆+
j with Weyl vectors

ρl and ρnj defined as half the sum of the positive roots therein.

Given a homomorphism ρ : su(2)→ g, a simple module is constructed by starting from

a Verma module with momentum

µ = Q+m− (ρl + λ1)/b− b(ρl + λ2) (A.8)

where m is an imaginary element of h obeying (m, ρl) = 0 and λ1 and λ2 are dominant

integral weights of l ⊂ g. The latter obey the conditions (λ1, e) ≥ 0 for all e ∈ ∆+
l . There

is in general an intricate structure of overlapping Verma modules generated by the null

vectors. The character of the simple module obtained by subtracting the descendants of

the null vectors is

TrVµ

(
qL0−c/24

)
=
q∆(µ)− 1

2
(Q,Q)

η(τ)N−1

∑
w∈Wl

ε(w)q−(w(ρl+λ1)−(ρl+λ1),ρl+λ2) . (A.9)

where Wl is the Weyl group of l. The term in this formula with w the identity element is

the contribution from the full Verma module. The terms where w is a reflection by a simple

root in ∆l have ε(w) = −1 and subtract Verma modules generated by null vectors. The

remaining terms account for intersections of Verma modules and are fixed by invariance

under Wl.

Let us now consider some extreme examples. Firstly, we consider the partition ρ = [1N ]

so that l = s(u(1)⊕ · · · ⊕ u(1)) and hence ρl = 0. The parameter m is now any imaginary

element of h and setting λ1 = λ2 = 0 we obtain

TrVµ

(
qL0−c/24

)
=
q−

1
2

(m,m)

η(τ)N−1
. (A.10)
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In this case, there are no null states and we retain the full Verma module. For this

reason, these modules are called non-degenerate. At the other extreme we can consider

the partition ρ = [N ] so that l = g. In this cases we must have m = 0 and λ1 and λ2 are

dominant integral weights of g. The character is

TrVµ

(
qL0−c/24

)
=
q∆(µ)− 1

2
(Q,Q)

η(τ)N−1

∑
w∈W

ε(w)q−(w(ρ+λ1)−(ρ+λ1),ρ+λ2) . (A.11)

where we have the momentum µ = −λ1/b − bλ2. In this case, we have the maximum

number of null vectors and the simple modules are called fully degenerate. In particular,

the vacuum module corresponds to the case λ1 = λ2 = 0. All other simple modules are

broadly referred to as semi-degenerate.

A.3 Affine characters

We now consider some simple modules of the affine algebra ĝ with level in the regime

k = −N − ε with ε > 0. This is generated by spin-1 holomorphic currents Ja(x) with

a = 1, . . . , N2 − 1. The Sugawara construction provides a Virasoro subalgebra with cen-

tral charge

c =
(N2 − 1)k

k +N
= (N2 − 1)(N/ε− 1) . (A.12)

We will consider simple highest weight modules Vλ̂ labelled by a highest affine weight

λ̂. The components of an affine weight are denoted by λ̂ = (λ, k, n) where λ ∈ h is a

finite weight, k is the level and n is the component dual to the generator −L0. There is a

metric denoted by (λ̂, λ̂′) = (λ, λ′) + kn′ + nk′. We use the common abuse of notation and

write λ = (λ, 0, 0). It is convenient to introduce the fundamental affine weights which have

components ω̂0 = (0, 1, 0) and ω̂j = (ωj , 1, 0) for j = 1, . . . , N − 1. An affine weight that is

a linear combination of the fundamental affine weights can be written

λ̂ =

N−1∑
j=0

λjω̂j = kω̂0 + λ (A.13)

where k =
∑N−1

j=0 λj . In particular, we introduce the affine Weyl vector ρ̂ =
∑N−1

j=0 ω̂j =

Nω̂0 + ρ and in components ρ̂ = (ρ,N, 0).

Introducing δ = (0, 0, 1), the affine roots are all of the form ê = e + nδ where e ∈ ∆

is a finite root g. We will need the sets of positive and positive real affine roots, which are

defined as
∆̂+ = {α ∈ ∆+} ∪ {α+ nδ |α ∈ ∆, n > 0} ∪ {nδ |n > 0}

∆̂+
(re) = {α ∈ ∆+} ∪ {α+ nδ |α ∈ ∆, n > 0} .

(A.14)

The elements of ∆̂+
(re) have multiplicity one, whereas the imaginary roots {nδ |n > 0} have

multiplicity N − 1.

The characters of simple modules with highest affine weight λ̂ can be computed using

the Kazhdan-Lusztig formula provided k 6= −N . Given an affine weight λ̂ we define the

following subset of the positive real affine roots

∆̂+
(re)(λ̂) = { ê ∈ ∆̂+

(re) | (ρ̂+ λ̂, ê) ∈ Z } . (A.15)
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These roots generates a Coxeter group with associated Kazdan-Lusztig polynomials. In

the case that k = −N − ε with ε > 0 it has two components

(ρ+ λ, α) ∈ Z for α ∈ ∆+

(ρ+ λ, α)− nε ∈ Z for α ∈ ∆, n > 0 .
(A.16)

Here we want to consider generic ε > 0 so that the second component can only be non-

empty by tuning λ in a way that depends on ε. We will not consider this scenario. Instead,

we take λ to be a dominant integral weight of g. The first component then consists of all

e ∈ ∆+ and the Coxeter group is simply the Weyl group W of g. The Kazhdan-Lusztig

formula for the formal character is

Ch(Vλ̂) =
∑
w∈W

ε(w)
ew(λ+ρ)−ρ∏

α̂∈∆̂+

(1− e−α̂)mult(α̂)

=

∑
w∈W ew(ρ+λ)−ρ∏

n>0
(1− e−nδ)N−1

∏
α∈∆+

(1− e−α)
∏
α∈∆
n≥1

(1− e−α−δ)

=
χλ(e−α)∏

n>0
(1− e−nδ)N−1

∏
α∈∆
n≥1

(1− e−α−δ)

(A.17)

where we have assumed that only non-affine weight λ appears in the numerator. In passing

to the third line we have used the Weyl denominator formula, and χλ denotes the character

of the simple finite dimensional module of g with highest weight λ. In particular, the

vacuum module of ĝ with level k corresponds to λ = 0 and λ̂ = k ω̂0.

To compute the physical character we replace the formal expression e−α−nδ where

α =
∑

j `jhj by the monomial qn
∏
j µ

`j
j . Recall that hj are the weights of the fundamental

representation and so `j components of α in the orthogonal basis. Therefore, we have

TrVλ̂

(
qL0− c

24

N∏
j=1

µ
hj
j

)
=

q−
c
24χλ(µ)∏

n>0
(1− qn)N−1

∏
i 6=j
n≥0

(1− qnµi/µj)

= q−
c
24

(q, q)χλ(µ)∏N
i,j=1(qµi/µj , q)

.

(A.18)

B S5 partition function and codimension 2 defects

One can construct the 5d maximal SYM theory on (squashed) S5 from the 6d (2,0) theory

on S5×S1 by dimensional reduction along the S1. We first reduce the abelian (2,0) theory

to five-dimensions and find its non-abelian generalization. Let us consider the 6d theory

defined on the curved metric

ds2
6 = e−

2
3

Φds2
5 + e

4
3

Φ(dt+ e−ΦC)2 (B.1)
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where t is the Euclidean time and

e
4
3

Φ = 1−n2
i a

2
i , C =

in2
i aidφi

1− n2
i a

2
i

, ds2
5 = (1−n2

i a
2
i )

1
2

[
dn2

i + n2
i dφ

2
i +

(ain
2
i dφi)

2

1− n2
i a

2
i

]
(B.2)

Here wi = 1 + ai are chemical potentials for the U(1)3 rotation of the holomorphic coor-

dinates zi = nie
iφ, (n2

1 + n2
2 + n2

3 = 1). The dimensional reduction along the time circle

gives rise to the 5d theory on the squashed five-sphere with squashing parameters ωj . The

background ‘dilaton’ Φ and ‘RR gauge field’ Cµ are also turned on.

We restrict the 5d reduction such that it preserves two supercharges Q and Q† used

to define the 6d superconformal index. The 5d gauge theory action is uniquely determined

under this reduction. The explicit action can be found in [11]. The 5d supercharge Q

satisfies the following algebra:

{Q,Q†} ∼ −3(R1 +R2)

2
− µ(R1 −R2)−

3∑
i=1

ωihi . (B.3)

The partition function of the 5d theory can be computed using localization. The saddle

points of the path integral are given by a constant scalar vev 〈φ〉 = a in the vectormultiplet

and the singular instantons at the fixed points of the Killing vector ξ ≡
∑3

i=1 ωihi. The

final result is [11]

Z =
1

N !

∫
[da]e

2π2

βω1ω2ω3
(a,a)

3∏
i=1

Z
(i)
pertZ

(i)
inst , (B.4)

where i’s label three fixed circles S1
(i) ⊂ S

5. The 1-loop contribution is factorized into three

fixed circle contributions Z
(i)
pert and, by collecting all of them, one obtains [10, 11, 15]

3∏
i=1

Z
(i)
pert =

∏
e∈∆

∞∏
p,q,r=0

(pω1 + qω2 + rω3 + (e, a))′((p+ 1)ω1 + (q + 1)ω2 + (r + 1)ω3 + (e, a))

(pω1+qω2+rω3+µ̃+(e, a))((p+1)ω1+(q+1)ω2+(r+1)ω3−µ̃+(e, a))

=

(
limx→0 S3(x)/x

S3(µ̃)

)N ∏
e>0

S3

(
(e, a)|~ω

)
S3

(
− (e, a)|~ω

)
S3

(
µ̃+ (e, a)|~ω

)
S3

(
µ̃− (e, a)|~ω

) , (B.5)

where µ̃ ≡ µ+ ω1+ω2+ω3
2 and S3(x|~ω) is the triple-Sine function with ~ω = (ω1, ω2, ω3). The

prime in the first line denotes that the modes with p = q = r = e = 0 are removed. The

instanton contribution Z
(i)
inst at each fixed point coincides with the 5d Nekrasov instanton

partition function on S1 × C2 with Omega deformation.

Let us now turn to the codimension 2 defects on S5, which are related to the codimen-

sion 2 operators in the 6d (2,0) theory. The BPS defects can be supported on S3 ⊂ S5.

For simplicity, let us stick to the maximal SYM theory with U(N) (or SU(N)) gauge group

on round S5. These defects are defined by specifying a singular behavior of the gauge field

as one approaches their location. Near the defects, we parametrize two normal directions

by a complex coordinate z = reiθ where θ is one of the angle coordinates in S5. Then the

defect is defined with a gauge field which behaves around the defect as

Aµdx
µ ∼ ~mdθ ≡ diag(m1,m2, · · · ,mN )dθ . (B.6)
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Here ~m is a collection of monodromy parameters. For SU(N), it obeys
∑

imi = 0. The

corresponding field strength takes the form

F = ~m
δ(r)

r
∗ dΩS3 , (B.7)

where ∗dΩS3 is the Hodge dual of the three-sphere volume form.

Let us now derive the classical action in the presence of the defect. We use the off-shell

supersymmetry formulation of the 5d SYM studied in [9, 13]. We focus on the round S5

background. It turns out that the codimension 2 defects preserve the supercharge Q used

in the localization. The BPS condition from the gaugino variation is given by

1

2
Fµνγ

µνε− iDµφ
µε+ φσ3ε+ iDIσIε = 0 . (B.8)

The Killing spinor ε for the supercharge Q satisfies the following conditions

ε†γµε = vµ , ε†γµνε = iJµν , σ3ε = ε , (B.9)

where vµ is the Killing vector along the Hopf fiber of S5 and Jµν is the Kähler form of CP2

base. The solution to the BPS equation on the background flux (B.7) is given by

F = ~m
δ(r)

r
∗ dΩS3 , φ = a , D3 = ~m

δ(r)

r
+ ia , DI=1,2 = 0 , (B.10)

where a is a constant Hermitian matrix taking values in the Lie algebra of the gauge

group. Plugging this solution into the the action, one obtains the classical action with the

codimension 2 defect

e−S0 , S0 =
1

g2
YM

∫
d5x
√
g Tr

[
1

4
FµνF

µν − 1

2
DIDI − iD3φ+

5

2
φ2

]
=

2π2

β
(a− 2i~m, a) .

(B.11)

In the main context, we would use the convention a→ ia by analytic continuation.

We would not perform an explicit localization computation in the presence of codi-

mension 2 defect. However, turning on the squashing parameters, we expect that the path

integral again localizes to three fixed points and the full partition function takes the form

of products of three fixed point contributions. The contributions at the fixed points can be

computed using the results on the local S1 × C2, which are explained in sections 2.3–2.5.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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