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ABSTRACT.   A class of Mikusiriski operators, called regular operators, is

studied.  The class of regular operators is strictly smaller than the class of all

operators, and strictly larger than the class of all distributions with left bounded

support.  Regular operators have local properties.   Lions' theorem of supports holds

for regular operators with compact support.  The fundamental solution to the Cauchy-

Riemann equations is not regular, but the fundamental solution to the heat equation

in two dimensions is regular and has support on a half-ray.

1.   Introduction.  One of the difficulties in working with Mikusiiiski operators

is that they are defined globally, and except for those operators which can be

identified as functions, measures, or distributions, their local properties are not

known.  There are some Mikusiriski operators which are not distributions but whose

local properties are rather intuitive.   For example the series

s(D a= y
„To (2«)!

is convergent in the field of operators and it seems reasonable that since each of

the operators  s"  is a distribution which is zero on the complement of the origin,

the operator a  should have zero for its support.

For other operators the local properties are not at all intuitive, for example

the fundamental solution for the Laplacian

(2) 1/A = \/(s\ + s22)
or the fundamental solution for the heat operator

(3) l/a=l/(s]-s2).
In this paper we define a subalgebra of the field of operators which is called

the algebra of regular operators.   Regular operators have local properties.   For

example each regular operator has a well-defined support.   Every function or dis-

tribution with support in a region  R1^ = jx| x. > a.,  i = 1, • • • , 7V¡  for some a £ RN

is a regular operator.  There are other regular operators; (1) and (3) above are

regular but (2) is not.
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A sequence of continuous functions with compact support is said to be an

approximate identity if it tends to the S function in "nice" manner (Definition

2.6).   An operator a  is regular if for some approximate identity  (f>   , n = 1, 2, • • • ,

a=f1/(bl=f2/(?2-...=fn/(pn=...

where the /    are continuous and have support in some fixed  Ra.

In §2 the Mikusiriski operator calculus is developed for R   .   This is carried

out in detail since the notation for the N-dimensional calculus is not standardized.

§3 contains the explicit statements of what is meant by statements such as

"the distribution  T  is in the field of operators" or "the operator s  is the deriva-

tive of the S  function."   This is also done in rather great detail since although

the terminology has standardized for N = 1, following Wloka [6], it has not stan-

dardized for N > 1.
ï4 contains the basic theorems on regular operators.  It is shown that the

operator

Kl/vT)sin (1/i)}-1

and the fundamental solution for the Cauchy-Riemann operator s. + is    ate not

regular operators.

In §5 we discuss the restriction of operators to open sets.

In §6 the support of regular operators is discussed.   Lions' theorem on the

support of convolution products for distributions with compact support ([3] and

[4]) is extended to regular operators with compact support.

The last section contains some examples.   The operator in (1) above is shown

to be regular and to have the origin for its support.  It is shown that  ie1       is a

regular operator and that its restriction to  t > 0  is

e1/472V^3.

It is shown that the fundamental solution for the heat operator in two dimensions

((3) above) is a regular operator and its support is the half-line  x. > 0, x    = 0.

Acknowledgement.  I would like to thank Professor Melvin Rosenfeld for many

helpful discussions while this paper was being propared.

2.  Notation. We shall construct the field of Mikusiriski operators on  R   . For

any ra-tuple  a = (a.j, ■ • • , a^) £ R     let R a = \x\ x £ R   , x = (x^, ■ ■ ■ , xN), x . > a.

for each  i = I, ■ ■ ■ , N\.   C(R   ) is the space of continuous functions on R   .   The

support of / £ C(R   ), supp /, is the closure of the set on which / is not zero. The

space of operators is constructed using the convolution algebra  C(R   ) = C where

C(RN) = \f: f £ C(RN) and  supp / £ R%  tot some   a\.
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The convolution of / and g  in  CAR    )  is denoted by juxtaposition; thus the func-

tion  r = fg  is given by

r(x)=(/g)(x) =   f°°   f(x-t)g(t)dt

= f-00 ■ ■ • Í-J{X1 -tV-^N- 'N^l- ■ • • ' lN)dtN

for each x eR . For each / e" C. the support number oí f, a(f) = (ctj(/),

ER   , is an 7z-tuple with the z'th component of a(f) being the number

a .(f) = Suplí. : x   < t., x = (xj, • • • , x ., • • • , x^) => f(x) = 0].

Alternatively   a is the unique z2-tuple such that  supp /C Ra,,s, but if ß  is

greater than  a in some component then  supp / is not contained in Rn.

The support vector oí f EC is such that -°o < a .(/) < °°, i = 1, • • •, TV, if /

is not the zero function and a.(0) = 00 for 1' = 1,- • • , N. Let [S] denote the con-

vex hull of the set S. US is a closed subset of R a fot some a, the convex cap

of S, C(S), is defined by

C(S) = ¡x: 3xQ £ [S] such that (x - x„). > 0 for every   i = I, ■ ■ ■ , N].

For example if S is the unit circle with center at the origin then

where C(S) is the region.

A theorem of Mikusinski [4] states

Theorem 2.1.  If f and g are in L then C(supp fg) = C(supp /) + C(supp g).

Here the  + means the algebraic sum of the two sets in  7?    .   Two corollaries

Corollary 2.2.  a(fg) = a(f) + a(g).

Corollary 2.3. C has no divisors of zero.

The field of operators M(R   ) = M is the quotient field of C.  The support

number a can be extended from a homomorphism on the multiplicative semigroup

of C to the reals to become a homomorphism on the multiplicative group of m to

the reals by the following definition.
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Definition 2.4.  Let a be an operator and suppose a = f/g where / £ C, g e C,

and g y- 0.  Then  a(a) = a(f) - a(g).
Let /j/gi   be another representation of the equivalence class  a.   Then

f/g i = f/g implies fxg = fgx  and, by Corollary 2.2,

a(/j) + a(g) = a(f) + a(g{)    or    a(/j) - a(gx) = a(/) - a(g).

Thus Definition 2.4 is independent of which equivalence class is used to repre-

sent a.

If (V = 1,  h  is the function which is equal to  1  for x > 0 and h(x) = 0 for
x < 0.  Then h is not in C but h  convolution with itself twice and three times is

in C and h = h /h    is in JH.  The operator s = h~     is the differentiation operator,

and e~   s  is the translation operator

e~asf = {/(/- a)! foraefi1.

For  a = 0  the translation operator is the identity operator which will be written

either as   1, l(x), 8, or 8{x);   1 = /// = 8.
Definition 2.5.  Let a £%(Rk) and b eJÍKR1).   The tensor product  c = a ® b £

l(Rk + !) is the operator

yi(xv-^k)f2(xk+l,...,x )\
c = ——■-.-

k1^1,---,xk)g2(xk+v...,xk+l)}

where a = /j/gj   and  b = f/gy
This definition is again independent of the particular representations  f y gx

and /,, g2  used for a and b.
In particular, we shall use the notations  x' =  Uj, x2, • ■ • , x ._ j, x , + ], • • • ,ïj),

h.(x) = h(x) ®8(x'), and s.(x) = s(x .) ® S(x')-  Thus for / £ C(RN) We have
z 111 i i '

b.f(x)=  fX{    f(x.~ l, x')dt
I -J    —OO * ^

and, for / such that <9//t9x. E C(RN),

s.f(x) = df(x)/dx..

If for example / is a continuously differentiable function in PQ   and / is zero

outside RQ   then

s.f = \df/dx] + {f(0,x')\®B(x).

By S((), e > 0, we mean the f-ball about the origin in  R    ,

S(e) = \x: x\ + ■ ■■ + x2N < c2].

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



1973] THE SUPPORT OF MIKUSINSKI OPERATORS 323

Definition 2.6.  By an approximate identity we shall mean a sequence (p  ,

n = 1, 2, • • • , such that all the following are satisfied:

(1) 4>n £&(RN), ra=l, 2,.--;
(2) for each e > 0 there is an nQ(e) such that ra > raQ  implies  supp 0   C 5(e);

(3) (f>n(x) > 0 for all x £ RN and for all ra > 1;
(4) / N cp (x)dx = 1  for all ra.

This is an approximate identity in the sense that for any / £ C(/?   ) the con-

volution products cf> f —> f uniformly on the set Sa = \x: x. < a .\ for each  a e R   .

Professor Mikusiriski calls such a sequence a "delta sequence".

3.  Embeddings in m.  There is a natural embedding of L(R   ) into m(R   )

given by

9 | C(RN) - %(RN),       Hf) = af    where af = f<p/<p.

Here (f> £ (AR   ) is an arbitrary but fixed nonzero function. We will make the iden-

tification complete and ordinarily write fern.

Besides  C, M also contains subalgebras which may be identified with alge-

bras of locally integrable functions, Baire measures and distributions.

A.  Locally integrable functions.  A function / is said to be locally integrable

in R     (functions which are equal up to a set of measure zero are identified with

each other) if / is integrable on each compact subset of R   .  For each <p £ C

which has compact support and each locally integrable /,

/*0(x)=    f     f(x -t)cf>(l)dtJRN

is a continuous function in  R   . If f £ L     (R   ) we will say / £ M if there exists

an zz £ Ml such that, for each (p £ C(RN) with compact support, acp £ C(R   ) and

/ * <p = acp.
A necessary and sufficient condition that a locally integrable function f be

in M is that, for some  a £ R   ,  f(x) = 0 a.e. in the complement of R^.   The con-

volution algebra of such functions is called ¿l(R   ). For any (f> 4 0, (f> £ £(R   ),

the mapping /—»(/* <pA/cf> is an algebraic isomorphism of £(R   )  into %(R   ). The

mapping is independent of <p.

In fact the quotient algebra of i- is the same as that of C.  The only thing in

the above which we shall prove is the statement that / £ M implies f e X..  The

rest of the statement is very well known.

Let (f>    be an approximate identity and suppose f em. then / * (p   = a(p    e
(AR   ) and the support vector of aeb    is

a(acb ) = a(a) + a(d> ) —» a(a) + (0, 0, • ■ •, 0) = a(a)

as n  tends to infinity.   Thus for any  e, > 0,  ad>  (x) = 0  outside  R„.   .   ,  .  But
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since (/>    is an approximate identity for each compact set K, f * <p   —► / in L(K)

as n —> t».  Thus on any compact subset of R     disjoint from R^t   \   f , f must

equal zero except on a set of measure zero.  Since this is true for each fn > 0 and

for each compact  K,  / must equal zero almost everywhere outside  Ra,   ».   Thus

f£l(RN).
B.   Locally finite measures.  If ft is a locally finite Baire measure on R   ,

then, for each (p £ C(P   ) with compact support, <p * p(x) = f N (p(x - t) dp(x) is a

continuous function on R   . We say p - a £ m if, for each <f> £ C(7?   ) with compact

support, </> * p = £Z</>.  Again we have

A necessary and sufficient condition that a locally finite Baire measure p be

in M is that p have support in R^   for some  a £ R   .   The convolution algebra of

such measures is denoted Jj(R   ).  For any nonzero (/> £ C(R   ) the mapping p —>

(p * </>)/</>  is an algebraic isomorphism of Jo into JK which takes  C onto  C and

i-  onto Jl.

Again the only part which needs proof is the statement that p £ m =>supp p

is contained in  R a  for some   a.  Since the proof is identical to the proof of the

analogous statement for distributions we shall postpone the proof to the discussion

of distributions. We shall instead give an example.

Let r be a smooth rectifiable arc in R     which is contained in Ra  fot some

a.  By hr we mean the measure of arc length on V, i.e., for / £ C,

rf(x) = Jrf(x-t(s))ds.

Example.  Suppose  y   > 0  for  i = 1, • • • , N  and that  S¿ = 1 y. = 1.   Let T be
the half-ray

T = !x| x. =yit, / > 0,  i = 1, 2, ■ ■ -, N].

We shall show that

hr=l/(yls1 + --- + yNsN).

Let H be the characteristic function of the set RQ ;  then HEX, h^H £ i  and

7>r7/(x) = j*r 77(x - t(s))ds

N

Thus

and

b   /■/>)=    Min   lx./y.],        x £ RNQ,
1 1</<N
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èr77(x) = 0,       x i R%.

Thus for  1 < ; < N, y s hrH(x) = I  in the set S . = \x\ x /y   = Min,£¿sN [x;/y¿]}
nRQ   and y .s . ¿_77(x) = 0 in the complement of S ..   Thus

N
£ yis.hTH(x) = H(x)
z=l

for all x and thus

N

¡=1

which is the desired result.

C.  Distributions.  If  T e Ju (R   ) is a distribution, cf>  is infinitely differenti-

ate and has compact support, then  T * cp is  an infinitely differentiable function

on RN.  We say T = a £ Jd, if, for each such cp,  T * cp = acp.  T £ 5)'(RN) is in
m(R   )  if and only if supp T C Ra  for some  a.   This set of distributions will be

denoted by S)+(R   ).  It is a convolution algebra and for any fixed nonzero infinite-

ly differentiable cp  in  C(R   )  the mapping  T —► (T * cp)/cp  is an algebraic isomor-

phism of S)+ into m which sends  L onto C, A. onto A-, and $ onto jo.

Again JJ + (R   ) has no divisors of zero and its quotient field is m(R   ).

We shall prove that if T £m1(R   ) then supp TCRa  for some  a.  Let cp    be

an approximate identity which consists of infinitely differentiable functions.  If

T = a e M then  T * cp   = acp  , ra = 1, 2, • ■ • , and support vector of T * cp   is

a(a) + a(ct>  ) which tends to  a(a) as ra —> <».  Thus for each fixed m, ra > m im-r n

plies  supp T * ó   C RNn.  . + S(e   ). Since  T * cp   -> T in 3)'(RN) as ra -> °°,r rr rn a(a) m r n

T must be zero in the complement of  R    .   . + S((   ) for every  ra.   This means  Tr °-\a) m '
is zero in the complement of R a.   ..  Thus   supp T C R       .  which proves the

statement.

4.  Regular operators. We will say that an operator a em(R   ) is regular if it

can be expressed in terms of convolution quotients where the denominator is a

"delta sequence" or an approximate identity.

Definition 4.1.  An operator a em(R   ) is regular if for each e > 0 there exists

a cp e C(RN) with supp cp C S(c), cp(x) > 0 for all x e RN, and ¡rn cp(x)dx = 1 such

that for some / £ C(R   ) (/ depends on cp) we have a = f/cp. Thus there is an ap-

proximate identity t/>     such that

Example 4.2.  The algebras C, Jl, $, and D'+ consist of regular operators,
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since, for any infinitely differentiable approximate identity (f>     and any distribu-

tion T £ §'(RN),  T = (T * </> )/</>   , all n = 1, 2, • • • .r ' n     '  n

Theorem 4.3.  The regular operators form a subalgebra of JIÏ which is properly

larger than the algebra S)'+ and properly smaller than J1Î.

Proof. Let a and b be regular operators and let a and ß be real numbers.

If a = f /¿>    and b = g ¡ft    we have' n   rn °n      n

aa + ßb = afj<pn + ßgn/ipn, n = l,2, ■■-,

= afj,n + ßgncpn/<pn<pn, « = 1,2,.-.,

and

ab = f g /6 ft  ,       n = 1, 2,

Thus it is only necessary to show that if qS     and i/f     are approximate identities

the convolution products  cp ft     form an approximate identity.

Properties (1) and (3) of Definition 2.6 are obvious and property (2) follows

from Lions' theorem. To verify property (4) we can use the fact that fRw cp(x)dx = 1

if and only if the Fourier transform </> of cp  is   1  at the origin. Since

^;(0) = 4>n(0)ftn(0) = i,
property (4) is satisfied also.

To show that the algebra of regular operators is strictly between  JJ + and   JIÏ

we will give several examples of operators which are not regular and in §7 we

give three examples of regular operators which are not in JJ +(R   ).

Example 4.4.  Suppose f(t) = t~Vl sin(l//)  for  / > 0  and f(t) = 0  for  t < 0.
Then   l/f is not regular.  It was shown in [2] that this function cannot be made

positive by convolution, i.e., there is no nonzero g  such that fg  is nonnegative.

Thus   l/f / g/(p  lot any nonnegative </>, and   l/f cannot be a regular operator.

Example 4.5.  Let A = s, + is2  be the Cauchy-Riemann operator. If l/A =

//(/>, </>, / £ U,R   ), </> / 0, we can assume without loss of generality that / and (/>

are continuously differentiable;  thus

df(x, y)/dx + idf(x, y)/dy = cp(x, y)

tot all (x, y) £ R  .   If supp <f> ̂ S(t), then, in the complement of S(e), f satisfies

the Cauchy-Riemann equation

df/dx = -idf/dy     in  X2 +y2>(2

and is an analytic function of z = x + z'y.   Since / £ C(R   ), f vanishes when  x

and y are sufficiently negative and thus f(z) = 0 in  i|z| > e].  Thus the Fourier

transform of </>  is
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(1) 4>(c;,r,) = (ic; + r1)f(Ç,r])

where / is the Fourier transform of /. cf> and / are continuous (in fact, they are

entire functions of £ and rj), since they are Fourier transforms of functions with

compact support.  By (1), 0(0, 0) = 0 and thus

f     cp(x, y)dxdy = 0(0, 0)
JRN

is zero. It follows that cf> cannot be a positive nontrivial function. In particular

l/A  is not a regular operator.

5.  Operators on open sets.  We shall use the following two well-known prop-

erties of approximate identities.

Theorem 5.1.  Let Q, be an open set in R   , let  K be a compact subset of 0

2nd let f be continuous on A.   Let cp     be an approximate identity.   For suffi-

ciently large values of ra  the functions

^>)=   f NfW„(*-t)<it
are continuous functions on  K and the sequence fcp     converges uniformly to f

on K as n —> °°.

Theorem 5.2.  Let f be continuous on  R     and suppose  supp cf> C S(e);  then

supp fcpC supp / + S(e).

We will now prove the following theorem.

Theorem 5.3. Let a £ Uli, Q C RN open, f e C(fi). The following three state-
ments concerning a are equivalent.

(i) There exists an approximate cp    such that

a = fl/cpl = f2/cp2 = . • . = fjcpn = • . • ,       fne C(RN), ra = 1, 2, • • •,

and the functions f    converge uniformly to f on every compact subset of ß.

(ii) a  is a regular operator and for every approximate identity iA    such that

« = *l/lr*i=«2/*2---- =g„/(A„=---'       g„eC(RN), n=l,2,-..,

the sequence g    converges to f uniformly on every compact subset of Q.

(iii) a is a regular operator with the property that given any compact subset

K of Q and any o > 0 there is an cQ = (Q(K, 8) > 0 such that if cp e C, supp cp C

S(eQ), fcpdx = 1, cp(x) > 0 for all x and a - fJcb, then

Sup |/„(x)-/(x)| < o.
K
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Proof,  (ii) and (iii) are clearly equivalent and (ii) trivially implies (i).  Thus

it is only necessary to show (i) implies (iii).  Take e. < (distance (K, (9fi))/2;

then / is uniformly continuous on the neighborhood KQ = K + S(e.) of K.   Let

8 > 0.  There is an   t2 < (.   such that x, y £ K,   and   |x - y| < e,   implies

|/(x)-/(y)| <f3.  Thus

Sup      Sup \f(x)-f(y)\<8.
x¿K  |y—x|<f-

Take (AK, 8) = e    and suppose (i) in the theorem is true.  Let </> be as in (iii)

and let cp     be the approximate identity given in (i).  Then cp /=</>/    and, by

Theorem 5.1, </> /0  tends uniformly on  KQ  to /Q.  Since /    tends uniformly on KQ

to / and cp has its support in S(() we have, on  K  lim cp f   = /0 = lim cpf   = (/>/,

/0(x)= ff(x-t)cp(t)dt

fot every x £ K.   Thus

f0(x) -/(x)= fs     [f(x - t) - f(x)]cp(t)dt

and

Sup  |/0(x)-/(x)|< Sup       Sup \f(y)-f(x)\<8
xeK x€K    |x-y|<S(e)

which proves the theorem.

Definition 5.4.  Let / be a continuous function on an open set OCR   t and

let a  be a regular operator. We will say that a(x) equals f(x) on fi, a(x) = f(x)

on fi, if one of the three equivalent conditions (i), (ii), (iii), of Theorem 5.3 holds.

Theorem 5.5.   Let fia be open for each  a e A   and suppose that ga£ C(fi) for

each  a £ A.   Let a  be a regular operator such that a(x) = ga(x) on Qa /or cacTz

a E A.   Then there is a continuous function g £ C(fi), fi = (J .  fia and for each

a £ A,  g(x) = ga(x)   Vx E fia and a(x) = g(x)  on  fi.

Proof.  Let </>     be an approximate identity and suppose that a ■- f  /cp   ,

n = 1, 2, - • •.  Take  a and /3 in A.  We will first show that the restrictions of

ga and gn  to fia/5 = ^aCifin  are equal.  Let 7<„  be a compact subset of ^aa-

Since

a(x) = ga(x)    on fia,       a(x) = gn(x)    on fin,

/    converges uniformly on  Ka„  to ga and to g«. Since this is true for every

compact subset of fia O fl^   we have

It follows that the ga fit together correctly and there is a g £ C(fi) such that
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g\aa=ga   Va£A.
Given a compact  K C ft  we have

k
K = [J K.,        K   compact,

i
a. e A, 1 < i < k,i        ' —    —   '

and since the sequence  /    converges uniformly on each   K ., 1 < i< ra,  it follows

that /    converges uniformly on each compact subset  K of ft to g which com-

pletes the proof of the theorem.

Corollary 5.6.  If a  is a regular operator, ft is open, f e C(ft), g £C(ft),

a(x) = f(x)  on ft,    and    a(x) = g(x) on ft,

fie«

/-(*) = g(x)    Vx£ft.

Proof.   Take A = 11, 2\,  ft ( = ft = ft2, gj =/ and g2 = g  in the theorem.

Corollary 5.7.   For each regular operator a  there is a unique largest open set

(i) on which a  is a continuous function;

(ii)  ora which a  is an infinitely differentiable function;

(iii)  on which a  is equal to zero.

Proof.   These are all local properties and thus the corollary follows from the

theorem.

Theorem 5.8.   Let a  be regular and f £ C(R   );  then a(x) = f(x) on  R      if

and only if f £ C(RN) and a = f.

Proof.   The if part of the theorem follows from Theorem 5.1.   We will prove

the only if part.   If a = / i cp     fot an approximate identity cp  , then (p a —> a  in

(AR   ) since the cf> a  converge uniformly on compact sets in  R      and the support

vectors   a(cp a) =  a((p  ) + a(a) —> a(a) ate bounded below which completes the

proof.

Theorem 5.9.   // a  and b are regular and ft C R      is open, then a(x) = f(x)

on ft,  b(x) = g(x) on ft  implies  (a + b)(x) = f(x) + g(x)  on ft.

The proof is similar to the proof of Theorem 5.3.

6.  The support of regular operators.  We make the following definition of the

support of regular operators.
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Definition 6.1.  If a  is a regular operator then the support of a,  supp a, is the

complement of the largest open set on which a  is zero.

Theorem 6.2. An operator has compact support if and only if there is an ap-

proximate identity such that, for every ra = 1, 2, • • • , a = / /cp and the functions

f    all have support in some fixed compact set  K.

Proof.  Certainly such an operator vanishes outside  7< and thus a has com-

pact support.

Conversely, suppose a has compact support K.  If cf>    is an approximate

identity such that

we have

a = f /cp   =f/cp   ,      n = 1,2,-.., m= 1,2, ••■' n   r n      ' m   r m '    ' ' '    '

0   /   =0   /   ,       ra = 1,2,--.,  m = 1,2,..-,rm'n       rn'm '    ' ' '' '

and if 0     has support in  S((  ), then in the complement of  K + S(( ) we have

fn(x) = lim <j>   f (x) = lim cp f   (x) = 0.
m -»oo m -.oo

Thus  supp /   C K + S(c ) which proves the theorem.

In fact we have shown that

(2) supp a + S(e ) 3 supp /

for each 0    and /  , ra = 1, 2, • • • .  Conversely if a  has compact support and  e>0

is any fixed positive number there is an n„ = nAe) such that for all ra > nAt)

(3) supp /   + S(c) 3 supp a

since, for any fixed point x„ £ supp a, there is an ra(xQ) such that ra > n(xA im-

plies supp / + S(t) contains xQ. The compactness of supp a then implies that

there is a single  raQ = nAe) such that (3) holds for n > raQ.

We can now extend the theorem of Lions on compact supports to regular oper-

ators.

Theorem 6.3.   If a and b are regular operators with compact support then ab

has compact support and

[supp ab] = [supp al + [supp bl

where  [ ] denotes the convex hull and + denotes the vector sum of the two sets.

Proof.  Let a  be an operator with compact support.  Suppose that 0    is an

approximate identity and a = f /cp    with  supp 0    C S(( ) then taking convex hulls

in (2) we have
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(2') [supp a] + S(e ) 0 [supp / ]

and taking convex hulls in (3) gives

(3') [supp / ] + S(e) D [supp a]

if n is sufficiently large.
Let a = f / eft    and b = g I ft    where cp    and ft    are approximate identities.

By (3 ) we have

[supp ab] C [supp / g  ] + S(e),

C [supp f ] + [supp gn] + S(e) by Lions' theorem,

C [supp a] + [supp b] + 5(e) + 25(fn) by  (2')

for every  e > 0  when  n  is sufficiently large.  Taking the intersection for all e > 0

gives

(2 ") [supp ab] C [supp a] + [supp b].

A similar application of first (2 ), then Lions's theorem, then (3 ) and finally

letting  ( tend to zero yields

(3") [supp a] + [supp b] C [supp ab].

Inclusions (2 ) and (3 ) yield Theorem 6.3.

7.  Examples.  Since every distribution with support in  R     for some   a is a

regular operator we shall only give examples of operators which are not distribu-

tions.

Example 7.1.  Let a  be the operator

k-o O*)'
Since the sequence  (2k)\  defines a class of infinitely differentiable functions

which is not quasi-analytic in the sense of Denjoy [5, Chapter 19, §19.5] there is

an approximate identity </>     such that, for each n,

(i) cf>     is infinitely differentiable;

(ii)  supp (j>n C 5(1/«);

(iii)  S~=1 </><£>/{2k)\  is uniformly convergent on  R1.

Thus  a  is a regular operator

and, for each «, acf>    vanishes outside 5(1/«).  Thus  supp a = |0|.
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Before going to the next example we will make some observations on the con-

vergence of regular operators.

Definition 7.2.  Let a, , k = 1, 2, • • • , be a sequence of regular operators. We

will say that a,   tends to a  (JILK) as  k —» «> if there is an approximate identity

0   , ra = 1, 2, • ■ • , such that

ak = fn,k/(Pn>        fn,kee>  n = 1,2, ■ ■ ■ ,  k = 1,2, ■ ■ ■ ,

and for each fixed n the sequence /    ,   converges in C  to an /    where a = f /cp ,

ra = 1, 2, • • •  (a sequence g, £ C(RN) converges in  C if there is a  a £ R     such

that a(gA > ot. for all k and g,   converges uniformly on compact sets to g).

If a, —> a  (MÂ) then a is also regular.  The following theorem on regular

convergence of operators is an easy consequence of the definition.

Theorem 7.3.   Let a,   be regular operators which converge to a  (JILK) as

k —» oo. Suppose that for some fixed open set ft  there are ¡unctions  g, £ C(ft)

such that a, (x) = g Ax) on ft.  // the sequence g,   converges uniformly on compact

subsets of ft  to g  then a(x) = g(x) on ft.

In Ll] the operator  iel   s  is used as a finite part.

FPe1/4,/2V^"3 = iei/l.

Example 7.4.  We will show that the operator  ie'   s   is regular, that its singu-

lar support (the complement of the set on which it is an infinitely differentiable

function) is the origin, and that

te S¿{~\-    l/4x/9,/~5,!»J (x) = eU4x/2y/rrx3     on x > 0

The series expansions

lVF      £   (z)"+'X2 .  £   (- 1)V ~    (_1)*+V*>'      =£ -Z-'   ai =l £ -77TÏÏ-'   fl2=E

are convergent in  m and  z'e!   s = a. + a2.   The operator a.   is essentially the oper-

ator which appears in Example 7.1 and the method used there shows that a^   has

ÍO! for its support.  However, we will use Theorem 7.3 here to determine the re-

striction of flj  and a    to ft = \x: x 4 0\.
We will use the fact that, for each k, k = 0, 1, 2, ■ • •,

sk(x) = 0    for x 4 0,

s*+1/2(x)=l/xU + 3/2)r(-U + l/2))    for %>0,

sk+1/2(x)=0    tot x <0.

(These results can be proved directly from the definition;   they are proved in [l,
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p. 359, Table of Finite Parts, entry 7, and Theorem 7], since the operators in-

volved are distributions.)

It follows immediately from Theorem 7.3 that

flj(x)= 0    for x/ 0,

a2(x) = 0    for x < 0,

(-1) k + \ 1
a(x)=  y

¿To <2* + 1)! xk^/2n-(k+i/2))
for x > 0,

1 ^   1_  _J_
T(l/2)2x3/2  h k\ (4x)*

for x > 0,

el/4*
a2^=~n

2yjTtXJ
tot x > 0.

Thus the support of iel   s  is the half-line x > 0, and the restriction to x > 0 is

iei^(x) = e1Mx/2yfnx1, x>0.

Example 7.5.  Let a = (s. - s2)~     be the fundamental solution to the heat

equation in R  .   The support of a  is the half-line

X2

*

a = 0

supp
Xj > 0,  x2 = 0.

Since a = 7>j/(l - s2Aj) = ¡&j ^k=Q s2 hx   , we will take an approximate identity

t/>n(xj, x2) = ftn(x\)ftn(x2^ where ft     is an approximate identity in one variable.

By the Denjoy-Carlemann theorem [5, p. 376] we can pick ft    such that

(1) ft    has support in (-1/«, 1/«),
(2) ft    is infinitely differentiable,
(3) For each «,  [(Max \ft[k)(x)\)/(2k)^ 1/k — 0 as  k — oo.

Then

oo

n=0

is uniformly convergent on R"  to a continuous function with support in
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{x | Xj > 1/ra,  |x2| < 1/ra}. Thus

supp a C \x\ x. > 0, x   = OÍ.

Since given any neighborhood of a point on the positive x.-axis there is a suffi-

ciently large n  such that fl0     fails to vanish in that neighborhood we have

supp a = ix| x. > 0, x   = Oh

Added in proof.   In Ora power series in the differentiation operator, Studia

Math, (to appear), it is shown that every power series  x = 2 A  s"  which converges

in the usual convergence in Mikusiriski operators represents a regular operator

and supp a = |0i.
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