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The SURE-LET Approach to Image Denoising
Thierry Blu, Senior Member, IEEE, and Florian Luisier

Abstract—We propose a new approach to image denoising,
based on the image-domain minimization of an estimate of the
mean squared error—Stein’s unbiased risk estimate (SURE). Un-
like most existing denoising algorithms, using the SURE makes it
needless to hypothesize a statistical model for the noiseless image.
A key point of our approach is that, although the (nonlinear)
processing is performed in a transformed domain—typically,
an undecimated discrete wavelet transform, but we also address
nonorthonormal transforms—this minimization is performed
in the image domain. Indeed, we demonstrate that, when the
transform is a “tight” frame (an undecimated wavelet transform
using orthonormal filters), separate subband minimization yields
substantially worse results. In order for our approach to be
viable, we add another principle, that the denoising process can
be expressed as a linear combination of elementary denoising
processes—linear expansion of thresholds (LET). Armed with the
SURE and LET principles, we show that a denoising algorithm
merely amounts to solving a linear system of equations which is ob-
viously fast and efficient. Quite remarkably, the very competitive
results obtained by performing a simple threshold (image-domain
SURE optimized) on the undecimated Haar wavelet coefficients
show that the SURE-LET principle has a huge potential.

I. INTRODUCTION

D
URING acquisition and transmission, images are often
corrupted by additive noise. The main aim of an image

denoising algorithm is then to reduce the noise level, while
preserving the image features.

Transform domain image denoising—the most popular ap-
proaches to process noisy images consist in first applying some
linear—often multiscale—transformation, then performing a
usually nonlinear—and sometimes multivariate—operation on
the transformed coefficients, and finally reverting to the image
domain by applying an inverse linear transformation. Among
the many denoising algorithms to date, we would like to cite
the following ones.

• Portilla et al. [1]:1 The authors’ main idea is to model
the neighborhoods of coefficients at adjacent positions and
scales as a Gaussian scale mixture (GSM); the wavelet
estimator is then a Bayes least squares (BLS). The re-
sulting denoising method, consequently called BLS-GSM,
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1Available at http://www.io.csic.es/PagsPers/JPortilla/denoise/soft-
ware/index.htm.

is the most efficient up-to-date approach in terms of peak
signal-to-noise ratio (PSNR).

• Pižurica et al. [2]:2 Assuming a generalized Laplacian
prior for the noise-free data, the authors’ approach called
ProbShrink is driven by the estimation of the probability
that a given coefficient contains significant informa-
tion—notion of “signal of interest”.

• Sendur et al. [3], [4]:3 The authors’ method, called
BiShrink, is based on new non-Gaussian bivariate distri-
butions to model interscale dependencies. A nonlinear
bivariate shrinkage function using the maximum a poste-

riori (MAP) estimator is then derived. In a second paper,
these authors have extended their approach by taking into
account the intrascale variability of wavelet coefficients.

These techniques have been devised for both redundant and
nonredundant transforms.

While the choice of the transformation is easily justified
by well-accepted general considerations—e.g., closeness to
the Karhunen–Loève transformation, “sparsity” of the trans-
formed coefficients, “steerability” of the transformation—the
nonlinear operation that follows is more frequently based on
ad hoc statistical hypotheses on the transformed coefficients
that are specific to each author. The final performance of the
algorithms—typically, PSNR results—is, thus, inconclusively
related to the accuracy of this modelization.

SURE-LET denoising—In this paper, we want to promote
quite a different point of view, which avoids any a priori

hypotheses on the noiseless image—in particular, no random
process modelization—but for the usual white Gaussian noise
assumption. This approach is made possible by the existence of
an excellent unbiased estimate of the mean squared error (MSE)
between the noiseless image and its denoised version—Stein’s
unbiased risk estimate (SURE). If we evaluate denoising per-
formances by comparing PSNRs, then this MSE is precisely
the quantity that we want to minimize. Similar to the MSE, the
SURE takes the form of a quadratic expression in terms of the
denoised image (see Theorem1).

Our approach, thus, consists in reformulating the denoising
problem as the search for the denoising process that will
minimize the SURE—in the image domain. In practice, the
process is completely characterized by a set of parameters.
Now, to take full advantage of the quadratic nature of the
SURE, we choose to consider only denoising processes that
can be expressed as a linear combination of “elementary”
denoising processes—linear expansion of thresholds (LET).
This “SURE-LET” stategy is computationally very efficient
because minimizing the SURE for the unknown weights gives
rise to a mere linear system of equations, which in turn allows to

2Available at http://telin.ugent.be/~sanja/.
3Available at http://taco.poly.edu/WaveletSoftware/denoise2.html.
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consider processes described by quite a few parameters. There

is, however, a tradeoff between the sharpness of the description

of the process which increases with the number of parameters,

and the predictability of the MSE estimate, which is inversely

related to the number of parameters. We have already applied

our approach within a nonredundant, orthonormal wavelet

framework, and showed that a simple thresholding function that

takes interscale dependences into account is very efficient, both

in terms of computation time and image denoising quality4 [5].

SURE-related literature—Despite its simple MSE justifica-

tion (a mere integration by parts), the SURE does not belong to

the toolbox of the standard signal processing practitioner—al-

though it is, of course, much better established among statisti-

cians. The best-known use of the SURE in image denoising is

Donoho’s SureShrink algorithm [6] in which a soft-threshold

is applied to the orthonormal wavelet coefficients, and where

the threshold parameter is optimized separately in each sub-

band through the minimization of the SURE. Otherwise, the

approach that is most closely related to SURE-LET—but for a

multichannel image denoising application—is the contribution

by Pesquet and his collaborators [7]–[9] which perform sepa-

rate in-band minimization of the SURE applied to a denoising

process that contains both nonlinear and linear parameters.

Yet, the specificity of SURE-LET for redundant or

nonorthonormal transforms lies in the fact that this minimiza-

tion is performed in the image domain. While it is true that,

due to some Parseval-like MSE conservation, image domain

MSE/SURE minimization is equivalent to separate in-band

MSE/SURE minimization whenever the analysis transforma-

tion is—nonredundant—orthonormal [5], this is grossly wrong

as soon as the transformation is, either redundant (even when

it is a “tight frame”) or nonorthonormal. This is actually the

observation made by those who apply soft-thresholding to an

undecimated wavelet transform: the SureShrink threshold de-

termination yields substantially worse results than an empirical

choice (see Fig. 3). Unfortunately, this may lead practitioners

to wrongly conclude that the SURE approach is unsuitable for

redundant transforms, whereas a correct diagnosis should be

that it is the independent subband approach that is flawed.

Organization of the paper—In Section II, we expose the mul-

tivariate SURE theory for vector functions, and sketch the prin-

ciples of our linear parametrization strategy; we also address

practical issues like how the SURE is modified depending on

the choice for boundary conditions, and provide explicit SURE

formulæ for pointwise thresholding. In Section III, because we

want to exemplify the power of the SURE-LET approach, we re-

strict the processing to simple pointwise thresholds in the trans-

formed domain and show that, by using an undecimated Haar

wavelet transform, a SURE image-domain minimization yields

very competitive results with the best up-to-date algorithms [1],

[2], [4] (Section IV-C). In comparison, without any optimiza-

tion attempts in our implementation, the SURE-LET method is

quite CPU-time friendly. Yet, a huge margin of improvement

can be envisioned if intrascale and interscale dependencies are

taken into account. Both the competitiveness and robustness of

our method validate our new approach as an attractive solution

for image denoising.

4See our demo http://bigwww.epfl.ch/demo/suredenoising/.

II. THEORETICAL BACKGROUND

We consider the standard simplified denoising problem: given

noisy data , for where is a white

Gaussian noise of variance , find a reasonably good estimate

of . Our goal is, thus, to find a function of

the noisy data alone which will

minimize the MSE defined by

(1)

A. Unbiased Estimate of the MSE

Since we do not have access to the original signal , we

cannot compute —the Oracle MSE. However,

without any assumptions on the noise-free data, we will see that

it is possible to replace this quantity by an unbiased estimate

which is a function of only. This has an important conse-

quence: contrary to what is frequently done in the literature,

the noise-free signal is not modeled as a random process in our

framework—we do not even require to belong to a specific

class of signals. Thus, the observed randomness of the noisy

data originates only from the Gaussian white noise .

The following lemma which states a version of Stein’s lemma

[10], shows how it is possible to replace an expression that con-

tains the unknown data by another one with the same expec-

tation, but containing the known data only.

Lemma 1: Let be an -dimensional vector function

such that for . Then,

under the additive white Gaussian noise assumption, the expres-

sions and have the same ex-

pectation

(2)

where stands for the mathematical expectation operator.

Proof: We use the fact that a Gaussian white probability

density satisfies . Thus, denoting

by the partial expectation over the th component of the

noise, we have the following sequence of equalities:5

5To be fully rigorous, we need to assume that f (y)q(y �x ) tends to zero
with jy j, which is very broadly ensured whenever f (y) is bounded by some
fastly increasing function, like exp(kyk =2� ) where � > �.
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TABLE I
COMPARISON OF SOME OF THE MOST EFFICIENT DENOISING METHODS

Note: Output PSNRs have been averaged over eight noise realizations.

Now, taking the expectation over the remaining components of

the noise, we get

Since the expectation is a linear operator, (2) follows directly.

By applying Lemma 1 to the expression of the MSE, we then

get Stein’s unbiased risk—or MSE—estimate (SURE).

Theorem 1: Under the same hypotheses as Lemma 1, the

random variable

(3)

is an unbiased estimator of the MSE, i.e.,

Proof: By expanding the expectation of the MSE, we have

where we have applied Lemma 1. Since the noise has zero

mean, we can replace by . A re-

arrangement of the terms then provides the result of Theorem

1.

We want to emphasize here the fact that in image denoising

applications the number of samples is usually large—typically

—and, thus, the estimate has a small variance—typically

. This estimate is, thus, close to its expectation, which is

indeed the true MSE of the denoising process.

B. SURE-LET Approach

Our general denoising strategy consists in expressing the de-

noising process, , as a linear combination (LET: linear ex-

pansion of thresholds) of given elementary processes,

(4)

Here, the unknown weights are specified by minimizing the

SURE given by (3). It is also possible, in order to evaluate the

performance of the algorithm, to compare the result with what

the minimization of the MSE would provide—i.e., the Oracle

optimization (see Table I). A limitation of the LET approach

is that the elementary denoising functions have to fulfill

the hypothesis of Lemma 1 (differentiability); moreover, the

number of parameters must not be “too large” compared to

the number of pixels (typically, less than 100 for usual 256

256 images), in order for the variance of the SURE to remain

small.

The linearity of the expansion (4) is a crucial advantage

for solving the minimization problem, because the SURE is

quadratic in . The coefficients are, thus, the solution of

a linear system of equations

for

(5)

Note that, since the minimum of always exists, we are en-

sured that there will always be a solution to this system. When
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, the function is over-parameterized and con-

sequently, several sets of parameters yield equivalent results;

in that case, we may simply consider the solution provided by

the pseudoinverse of . Of course, it is also possible to reduce

the parametrization order so as to make the matrix full

rank—at no quality loss.

What this approach suggests is that the practitioner may

choose at will (restricted only by the differentiability constraint

of Theorem 1) a set of different denoising algorithms—ide-

ally with complementary denoising behaviors—and optimize a

weighting of these algorithms to get the best of them at once.

Among the potentially interesting algorithms are those that

work in a transformed domain such as:

• the nonredundant wavelet transforms, either orthogonal or

bi-orthogonal [11];

• the classical undecimated wavelet transform [12];

• the curvelet [13] transform;

• the contourlet [14] transform;

• the steerable pyramids [15], [16];

as well as the discrete cosine transform (DCT) or its overcom-

plete variant: the block discrete cosine transform (B-DCT). In

the remainder of this paper, we will consider only pointwise

thresholding in such transform domains.

C. Pointwise SURE-LET Transform Denoising

Transform domain denoising consists in first defining a

couple of linear transformations —decomposition—and

—reconstruction—such that : typically, is

a bank of decimated or undecimated filters. Once the size of the

input and output data are frozen, these linear operators are char-

acterized by matrices, respectively

and that satisfy the perfect re-

construction property . Then, the whole denoising

process boils down to the following steps.

1) Apply to the noisy signal to get the trans-

formed noisy coefficients .

2) Apply a pointwise thresholding function

.

3) Revert to the original domain by applying to the thresh-

olded coefficients , yielding the denoised estimate

.

This algorithm can be summarized as a function of the noisy

input coefficients

(6)

The SURE-LET approach suggests to express as a linear

expansion of denoising algorithms , according to

(7)

where are elementary pointwise thresholding functions.

As we have noticed in the previous subsection [see (5)], re-

trieving the parameters boils down to the resolution of a

linear system of equations. Note that this linear parametrization

does not imply a linear denoising; indeed, the thresholding func-

tions can be chosen nonlinear.

In the SURE-LET framework, Theorem 1 can be reformu-

lated in the following way.

Corollary 1: Let be defined according to (6) where de-

notes pointwise thresholding. Then the MSE between the orig-

inal and the denoised signal can be unbiasedly estimated by the

following random variable:

(8)

where

• is

a vector made of the diagonal elements of the matrix ;

• .

In particular, when and

where , are and ma-

trices, then where .

Proof: By applying Theorem 1, we only have to prove that

in the SURE-LET framework

(9)

By using the reconstruction formula , i.e.,

, and the decomposition formula

, i.e., , we can successively write the fol-

lowing equalities:

(10)

and, finally, conclude that

.

As it appears in this corollary, the computation of the diver-

gence term—i.e., of —is a crucial point.

1) Evaluation of the Divergence Term— : In the general

case where and are known only by their action on vectors,

and not explicitly by their matrix coefficients—typically, when

only and are specified—the analytical expression for

is quite painful to compute: in order to build , for each

it is necessary to compute the reconstruction

(where is the canonical basis of ), then

the decomposition and keep the th component. Given that

is of the order of —and even much more in the case of

redundant transforms—this process may be extremely costly,

even considering that it has to be done only once. Fortunately,

we can always compute a very good approximation of it using

the following numerical algorithm.

For

1) Generate a normalized Gaussian white noise .
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2) Apply the reconstruction matrix to to get the vector

of size .

3) Apply the decomposition matrix to to get the vector

of size .

4) Compute the element-by-element product of with

to get a vector of coefficients ,

which can be viewed as a realization of the random vector

.

end

An approximate value for is finally obtained by

averaging the realizations over runs (typically,

provides great accuracy)

(11)

The above algorithm is justified by the following lemma.

Lemma 2: Let be a normalized Gaussian white noise with

components. Then, we have the following equality:

(12)

Proof:

The numerical computation of can be performed

offline for various image sizes, since it does not depend specif-

ically on the image—but for its size—nor on the noise level.

2) Influence of the Boundary Extensions: One of the main

drawbacks of any transform-domain denoising algorithm is the

potential generation of boundary artifacts by the transform it-

self. Decreasing these effects is routinely done by performing

boundary extensions, the most popular choice being symmetric

extension and periodic extension. Thus, the effect of these ex-

tensions boils down to replacing the transformation by an-

other transformation, .

Indeed, usual boundary extensions are linear preprocessing

applied to the available data and can, therefore, be expressed

in a matrix form. In particular, for a given boundary extension

of length , i.e., characterized by an matrix , the

denoising process becomes

where (resp., ) is the matrix corresponding to the

linear transformation (resp., ) when the input signal is of

size . Any boundary handling can, therefore, be seen

as a modification of the decomposition matrix that must be

taken into account when computing the divergence term, namely

. This is where Lemma 2 is particularly useful: al-

though the implementation of the transformations and with

the adequate boundary extensions may be straightforward, the

explicit computation of the coefficients of the matrices and

is tedious—and Lemma 2 avoids this computation.

3) Applications to Standard Linear Transforms: In some par-

ticular cases of linear transforms, it is possible to easily compute

analytically, as shown in the following.

a) Nonredundant transforms: Here, we assume that the

number of samples is preserved in the transform domain, and

more precisely:

• is a full rank matrix of size ;

• is also a full rank matrix of size .

Then, the following lemma shows how to compute the diver-

gence term of Corollary 1.

Lemma 3: When is nonredundant, the divergence term

in (8) is given by

(13)

Proof: Because , we have

.

Note that, when additionally the transformation is or-

thonormal, the reconstruction matrix is simply the transpose

of the decomposition matrix, i.e., . Consequently, in

corollary 1, the SURE becomes

(14)

where is the th component of ; i.e., it is a sum of the spe-

cific MSE estimates for each transformed coefficient . The

optimization procedure can, thus, be performed separately in

the transform domain [5]. This is specific to orthonormal trans-

forms: nonredundant biorthogonal transforms do not enjoy this

property; i.e., the optimization in the transform domain is not

equivalent to the optimization in the image domain. Yet, Lemma

3 still applies and is actually particularly useful for applying our

SURE minimization strategy.

b) Undecimated filterbank transforms: Here, we will con-

sider linear redundant transforms characterized by analysis

filters and synthesis filters

as shown in Fig. 1.

A periodic boundary extension implementation of this struc-

ture gives rise to decomposition and reconstruction matrices

and made of circulant submatrices—i.e., diagonalized with

an -point DFT matrix— and of size each, with

coefficients

We then have the following lemma to be used in Corollary 1:
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Fig. 1. Undecimated J-band analysis-synthesis filterbank.

Lemma 4: When and are periodically extended imple-

mentations of the analysis-synthesis filterbank of Fig. 1, the di-

vergence term in (8) is given by where

(15)

and where is the th coefficient of the filter .

The extension to filterbanks in higher dimensions is straightfor-

ward—the summation in (15) running over a multidimensional

index .

Proof: According to Corollary 1, we have to compute

. Since and are circulant matrices the

product is also circulant and is built using the -peri-

odized coefficients of the filter , i.e.,

the diagonal of which yields (15).

It is often assumed that and satisfy the biorthogonality

condition

(16)

where is a divisor of , because undecimated filterbanks

are usually obtained from critically sampled filterbanks—for

which (16) holds with . In this case, since (16)

actually specifies the coefficients , we find that

.

An example of such a transform is the standard undecimated

wavelet transform (UWT) which uses ( in two

dimensions) orthonormal filters (see Fig. 2). In that case, the

equivalent filters are given by

They satisfy (16) for . This shows that

for all and

. In a 2-D separable framework, these values

are extended straightforwardly, taking into account that the 2-D

filters still satisfy (16) for : the general result is, thus,

that is given by the (2-D) downsampling factor .

III. EXAMPLE OF A SURE-LET DENOISING ALGORITHM

In Section II-C, we have proposed a general form of denoising

function (7), which involves several degrees of freedom: the

linear transformation, the number of linear parameters, and

the thresholding functions . This section studies a possible

choice. The denoising performance of the resulting algorithm

will be evaluated in the next section.

First, we will restrict ourselves to the undecimated wavelet

transform,6 although other linear transforms may in some cases

be more advisable—e.g., the undecimated DCT, the curvelet

transform, etc

A. Choosing an Efficient Thresholding Function

A pointwise thresholding function is likely to be efficient if it

satisfies the following minimal properties:

• differentiability: required to apply Theorem 1—this rules

out pure hard-thresholds;

• anti-symmetry: we assume that the coefficients are not ex-

pected to exhibit a sign preference;

• linear behavior for large coefficients: because when a coef-

ficient is large, it can be kept unmodified—noise corruption

is negligible.

A good choice has been experimentally found to be of the form

where and (17)

in each band . The nonlinear term, , can be seen as a

regular approximation of a Hard-threshold.

Similarly to what was observed empirically in other set-

tings [5], [17], adding more thresholding functions only bring

marginal ( 0.1–0.2 dB) improvement to the overall denoising

quality.

B. Solving for the Linear Parameters

Finding the parameters that minimize the MSE estimate

amounts to solving the linear system of (5) in which it is nec-

essary to replace by

lowpass

where is the image obtained by zeroing all the bands

and processing the subband with the thresholding function

. Note that, as usual in denoising algorithms, the th

band, lowpass, is not processed.

As shown in Section II-C3b, the divergence term in

(5) has an exact expression, namely

. Alternatively, in particular, in the case of

nonperiodic boundary image extensions, it is possible to use

the approximate algorithm presented in Section II-C2.

C. Summary of the Algorithm

1) Perform a boundary extension on the noisy image.

6In our tests, the best performer was the Haar wavelet.
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Fig. 2. Classical undecimated wavelet filterbank for 1-D signal.

2) Perform an UWT on the extended noisy image.

3) For (number of bandpass subbands), For

1, 2:

a) Apply the pointwise thresholding functions defined

in (17) to the current subband .

b) Reconstruct the processed subband by setting all the

other subbands to zero to obtain .

c) Compute the first derivative of for each coefficient

of the current subband and build the corresponding

coordinate of as exemplified by (5).

end

end

4) Compute the matrix and deduce the optimal—in the

minimum SURE sense—linear parameters ’s using the

matrix formulation of (5).

5) The noise-free image is finally estimated by the sum of

each weighted by its corresponding SURE-optimized

.

IV. RESULTS

A. Wavelet-Domain Versus Image-Domain Optimization

Before comparing our SURE-LET approach with the best

state-of-the-art algorithms, we demonstrate here that, in order

to optimize the denoising process, it is essential to perform

the minimization in the image-domain. Instead, an indepen-

dent wavelet subband processing is suboptimal, often by a

significant margin, even in a “tight” frame representation.

This is because we usually do not have energy preservation

between the denoised “tight” frame coefficients and the

reconstructed image . This is not

in contradiction with the well-known energy conservation

between the “tight” frame coefficients and the noisy

image .

In Fig. 3, we compare a classical wavelet domain SURE-

based optimization of our thresholding function (17) with the

image domain optimization based on Lemma 4 in the frame-

work of the undecimated Haar wavelet transform. We notice

that the rigorous image domain optimization provides large im-

provements—up to 1 dB—over the independent in-band op-

timization. A closer examination of the “optimal” thresholds in

both cases indicates that this difference may be related to the dif-

ference between the slopes of these functions around zero: the

image-domain solution is actually much flatter, making it able

to suppress small coefficients almost exactly.

Fig. 3. Comparison of the proposed SURE-LET denoising procedure with a
SURE-based denoising algorithm optimized in the wavelet domain when using
the undecimated wavelet (Haar) transform: (a) House; (b) Al.

Fig. 4. Influence of the boundary extensions when using the undecimated
wavelet (Haar) transform: (a) Peppers; (b) House.

B. Periodic Versus Symmetric Boundary Extensions

It is also worth quantifying the effects of particular boundary

extensions. In Fig. 4, we compare symmetric boundary

extensions (rigorous SURE computation, as described in Sec-

tion II-C-2) with the periodic ones. As it can be observed, the

symmetric boundary extension can lead to up to 0.5 dB of

PSNR improvements over the periodic one.

C. Comparison With State-of-the-Art Denoising Schemes

We have compared our Haar wavelet SURE-LET denoising

algorithm with some of the best state-of-the-art techniques for

which the code is freely distributed by the authors: BiShrink [4]

(dual tree complex wavelet decomposition), ProbShrink [2] (un-

decimated Daubechies symlets) and BLS-GSM [1] (full steer-

able—eight orientations per scale—pyramidal decomposition).

Depending on the size of the images, 256 256 or 512 512,

we have performed 4 or 5 decomposition levels.

For a reliable comparison, we have run all the algorithms7

on a comprehensive set of standard grayscale8 images of size

7We have used the same parameters as those suggested by the authors in their
respective papers and softwares.

88-bit images with pixels values between 0 and 255.
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Fig. 5. (a) Part of the noise-free Boat image. (b) A noisy version of it:PSNR =

22:11 dB. (c) BiShrink denoising result: PSNR = 29:99 dB. (d) ProbShrink

denoising result:PSNR = 29:97 dB. (e) BLS-GSM denoising result:PSNR =

30:36 dB. (f) UWT SURE-LET denoising result: PSNR = 30:24 dB.

256 256 (Peppers, House, Bridge) and of size 512 512

(Al, Barbara, Boat, Crowd, Goldhill), each one corrupted with

additive Gaussian white noise at eight different power levels

[5,10,15,20,25,30,50,100], which corresponds to PSNR

decibel values [34.15,28.13,24.61,22.11,20.17,18.59,14.15,8.

13]. We have then averaged the output PSNRs over eight noise

realizations (the different algorithms are applied to the same

noise realizations).

Table I reports the PSNR results we have obtained with the

various denoising methods, the best results being shown in

boldface. As we can notice, our algorithm (UWT SURE-LET)

matches the best state-of-the-art results for most of the images,

except for Barbara where it may be argued that, either a finer

subband decomposition, or a more sophisticated, multivariate,

thresholding function should be used in order to capture the

texture information that characterizes this image. Note also

how the SURE minimization is close to the MSE one (Oracle

in Table I), which is an evidence of the robustness of the

SURE-LET approach.

We want to stress that the denoising algorithm we propose in

this section is limited to a pointwise thresholding, contrary to the

above mentioned algorithms which involve some kind of multi-

variate thresholding. Because it simply boils down to solving a

Fig. 6. (a) Noise-free House image. (b) A noisy version of it: PSNR =

18:59 dB. (c) BiShrink denoising result: PSNR = 29:77 dB. (d)ProbShrink

denoising result: PSNR = 30:33 dB. (e) BLS-GSM denoising result:
PSNR = 30:50 dB. (f) UWT SURE-LET denoising result: PSNR =

30:90 dB.

linear system of equations, our algoritm is quite fast compared to

BLS-GSM which has the best denoising results. More precisely,

the execution of our current un-optimized Matlab implementa-

tion of the whole denoising task lasts on average 3.5 s for 256

256 images and about 26 s for 512 512 on a Power Mac

G5 with CPU speed of 1.8 GHz and 1 GB of memory, whereas

Portilla et al. BLS-GSM lasts, respectively, 25 and 100 s on the

same workstation. Note that the main part of our computational

time is dedicated to the independent reconstruction of all the

subbands.

Other preliminary tests indicate that if, for images like

Barbara, we choose transforms that have more subbands (such

as the undecimated DCT), our simple pointwise thresholding

strategy may provide slightly better results than BLS-GSM (typ-

ically, 0.2 dB); moreover, it is possible to select a transform

or the other based only on the SURE values. We may also envi-

sion that thresholding schemes that involve inter and intrascale

dependences substantially improve the denoising performance,

as this is the case with orthonormal wavelet transforms [5].

We can finally notice in Figs. 5 and 6 that our SURE-LET de-

noising procedure gives quite a decent visual quality compared

to the best state-of-the-art spatially adaptive method.
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V. CONCLUSION

We have presented a new approach to image denoising that is

especially useful when redundant or nonorthonormal transforms

are involved. In this paper, we have emphasized the theoretical

part of our approach and its implementation aspects, in order

to make the SURE-LET principle easily applicable for others.

Accordingly, we did not try to take advantage of all the de-

grees of freedom (multivariate thresholding, increased number

of parameters, more sophisticated transforms) to make our ex-

ample of algorithm optimal. And yet, the obtained results are

quite competitive with the best state-of-the-art denoising algo-

rithms—which require involved statistical image models. This

indicates that there is a substantial margin of improvement of

SURE-LET type algorithms.
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