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The surface tension of ionic liquids
A mechanical formula

by!M. BAUS} and C. F. TEJERO]

Chimie-Physique 11§, C.P. 231, Université Libre de Bruxelles,
B-1050 Bruxelles, Belgium

(Recetved 22 June 1982 ; accepted 21 Fuly 1982)

We show how both the Kirkwood-Buff and the Trezenberg-Zwanzig
expressions for the surface tension of neutral fluids can be applied to charged
fluids if due care i1s taken of the singularities introduced by the Coulomb
potential. An expression previously obtained within a density functional
theory is recovered and an alternative, but equivalent, mechanical expression
15 proposed.

1. INTRODUCTION

The statistical mechanical theory of the surface tension of planar liquid-
vapour interfaces was initiated many years ago by Kirkwood and Buff [1] who
based their theory on mechanical concepts such as the anisotropy of the pressure
tensor within the interfacial region. More recently, Triezenberg and Zwanzig
[2] developed a fluctuation theory which gave rise to a completely different
expression for the surface tension. Recently, Schofield [3] succeeded in
showing the equivalence of both expressions. All these expressions, as they
stand, can however not be applied to the experimentally interesting case of
charged fluids such as the molten salts. The problem of extending these
exact results, valid for neutral fluids, to charged fluids was taken up recently by
Evans and Sluckin [4, 5] and also by Senatore and Tosi [6]. These authors
obtained an expression for the surface tension of charged fluids which is of the
Triezenberg-Zwanzig type and which treats the average electric field, which
1s set up by the electric double layer characteristic of ionic interfaces, as a
separate variable. It is our purpose here to derive an alternative Kirkwood-
Buff like formula for the surface tension of ionic fluids and to show that it is
equivalent to the result of the previous authors.

We consider a classical multicomponent electrically neutral system of
point particles interacting through both short ranged pair potentials and the
long ranged Coulomb potential. In §2 we reconsider the fluctuation result
obtained previously [4-6] and show how it can be obtained from the usual
Triezenberg-Zwanzig (multicomponent) expression if due care is taken to
remove a Coulomb singularity with the aid of the condition of electroneutrality
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of the bulk phases. In this way, we are able to perform the transition from the
three-dimensional Coulomb potential characteristic of the interparticle inter-
actions (~1/r) to the one-dimensional Coulomb potential (~r) characteristic
of the electrostatic interactions between the charged sheets building up the
electric double layer, without running into divergence problems. In §3 we
derive an expression for the surface tension of ionic fluids based on the rescaling
of the partition function, a method first used within this context by Buff [7]
for neutral fluids. In §4 we show how the thermodynamic result of §3 can
be reinterpreted in terms of the mechanical stress tensor theory of Kirkwood
and Buff provided the Maxwell stresses produced by the double layer are
added not to the total stresses but only to the ' truncated stresses ' where the
Coulomb forces are averaged with the total correlation functions instead of the
full pair distribution functions. The equivalence of the different expressions
for the surface tension of ionic fluids is shown in § 5 following Schofield’s steps
[3] in reverse order and avoiding the singular contributions. Our conclusions
are then gathered in the final § 6.

2. THE FLUCTUATION THEORY
2.1. The response functions

We consider a classical fluid composed of N, particles of species a in equili-
brium at a temperature 7' corresponding to a two-phase region. The two
phases will be spatially separated by putting the fluid in external potentials,
V,(r), which couple to the microscopic number densities p,(r) :

Na
pulr)= X dr—r) 2.1)
via the interaction energy 8H :
BSH =~ ¥, f dr po(r)Us(r) (22)

where B=(kyT)?, while for later convenience we have introduced the alter-
native notation U,(r)= —BV (r). From linear response theory we know that
a small change in these external potentials (U (r)—U,(r)+8U,(r)) induces a
small change 8p,(r) in the average density p,(r)= (p,(r)> according to

Spu(r)=Y [dr' G, .(r,¢r')8U_(r') (2.3)
or inversely ¥

SUL(r)= Y fdr' Ko (v, ¥')3p,(r"), (2.4)
where G, and K,,. are inverses obeying
2 I dl" Gaa.(r' 'I)Ka.a’(rlv r)= Sn‘s(r_ ")‘ (25)

As is well known, the response function G,,(r, r') of (2.3) is the equilibrium
correlation function of the density fluctuations 8p,(r) in the unperturbed
fluid (8U (r)=0), i.e.

Gaarr, ¥') = (Bp(F)3B,AF')> 5 Bpo(r) = palr) — (Bulr)), (2.6)
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where from (2.6) on all averages (¢ ... ») are taken over the unperturbed system
(8U,(r)=0). Itis also customary to rewrite (2.6) in terms of the pair density
Pax '(r' ") :

Paz (P ¥') = (Pa(F)Badr’)) — 8,0:8(r — ') By(r)) (2.7)
or the truncated pair density p,,.T(r, r') :
Paa"(Fy F') = poaa ¥, ¥') = pu(r)pad{r’), (2.8)
where p,(r)= (p,(r)) is the (average) density of species a, as
Gaarry ¥') = paaT(r, ¥') + 8,5-8(r —)p,(r). (2.9)

Introducing, finally, the total correlation function A_,.(r, r')
Paa (Fy ¥') = pa(F)pa (F Yhoa{r, ¥') (2.10)
and the direct correlation function ¢,,(r, r’) via the Ornstein-Zernike equation
hoar, ¥')=cpu(r, ¥ )+ ; fdry by (v, v)pa (Fy)eaa(rn ¥),  (2.11)
(2.5) implies then that the inverse response function K (r, r') can be written
as
8,a-0(r—r")

Kaalr =200

—Caary ). (2.12)

2.2. The surface tension of a planar interface

If the interparticle potential is translationally invariant, an arbitrary trans-
lation (r—>r+a) of the external potentials (U,(r)—U,r+a)) will shift the
density profiles by the same amount (p (r)—>p,(r+a)). Taking hence U, (r)=
UJfr+a)—U,(r)=a.VU,(r)+ O(a®) the linear response equations (2.3) and
(2.4) reduce to the profile equations

Vpu(r)= % [dr' G (r, r)V'U(r), (2.13)

VU,(r)= Z fdr' K, (r, @' )Wp,.(r), (2.14)
first obtained by Lovett, Mou and Buff [8] and Wertheim [9]. In what follows
we shall consider only planar interfaces in which case it is convenient to use
cylindrical coordinates r=(x, ) and a two-dimensional Fourier transform with
respect to x =(x, y) the cartesian coordinates along the interface :

fx, )= s da exp (ia . x)f @ =), (2.15)

fla, =)= [ dx exp (—iq . x)f(x, =) (2.16)

while the z-axis is taken along the normal to the planar interface. In the case
of a planar interface we can write p,(r)=p,(z), Uyr)=U,(z), G,,(r,r)=
G {lx—x'|; 2,2'), K,,(r,r")=K,,(|]x-x’|; 2, 2'), i.e. the system has no
translational symmetry along the z-axis but keeps its rotational symmetry
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around the z-axis. With these assumptions the profile equations (2.13) and
(2.14) reduce to
puz)= 3 fde’ Golg=0; 2, ¥)U' (), (2.17)

Ulz)= Y Jdo' Koudg=0; 2,2')p'o(3"), (2.18)

where p' (2)=V,p,(2), U'l(2)=V,U,(2) while it follows from (2.16) that
flg=0)= f dx f(x). Finally, we also write the small-g expansion of K_,.(¢; 2,2')

as ;
K"‘(q 0% :l)= K“-“”(z' z') +q1 Kua'ﬂ’(‘zv 3')"’ O(q‘) A |q| (219)
with
K"'w % 3')= "dx Kss'(lxl T -‘!'), (2.20)
K‘“'(”(z' 3,)= = i j dx |x|2 K,,-(!!l y 2 :'), (2.2])
=3[ dx |x|®ceu|x]| ; 2, 3"), (2.22)

where we have used the rotational invariance of K .(|x|; 2, 2') and (2.12).
The surface tension o of the planar interface can now be defined by

Bo= Y [dzfds’ p'(3)K,,* 2, 2)ps(2") (2.23)

a result first obtained by Triezenberg and Zwanzig (2] (for the multicomponent
generalization cf. [10]) by computing the change in free energy due to a parti-
cular change in the equilibrium density profiles.

2.3. The electric double layer

The above treatment can be generalized to the case where some of the
particle species are charged in which case surface segregation of these charges
leads to the formation at the interface of an electric double layer. This was
originally done by Evans and Sluckin [4, 5] and also by Senatore and Tosi [6],
using a density functional theory in which the electric potential set up by the
double layer is explicitly isolated from the remaining contributions. We shall
show now that in fact this is not necessary and that the same general expression
holds both for charged and neutral particle fluids provided the singularitics
introduced by the Coulomb potential are properly eliminated. Let us first
introduce the truncated inverse response function, K., defined by

K.{9: 2,2)=K_{q; 2 2')+Pee.V(g; 37 (2.24)

where e, is the charge of the particles of species a, which for certain species
may vanish but is restricted by the condition of overall electroneutrality :

Y e, N,=0 (2.25)

while V(g; =2, 2') is the two-dimensional Fourier transform of the three-
dimensional Coulomb potential V(|r—¢'|)=1/|r—r'|, i.c.

1 2n
Vig; =)= fdx exp(—iq.x)m=7 exp (—gqlz]). (2.26)
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Alternatively, F(g; 2) can also be obtained as the solution of Poisson's equation
(V-g)V(g; 2)= —4md(z) (%27}

which vanishes when |z|—>cc. Equation (2.24) is a convenient way of writing
K.+ if we accept (without proof) that in this way the most singular part of K.
has been explicitly displayed so that K_,. can be assumed to have the same
properties as for uncharged particles, e.g.

KR..(¢; 2 2')=K,,- "2, 2') +¢* K,,.®(z, 2’) + O(¢*) (2.28)

with definitions of K,,.*® and K,,.®*’ similar to those of (2.20)-2.22). The
difficulty with charged systems is now clearly visible since V(¢; z—2") and
hence according to (2.24) also K,,. have no analytic expansion similar to (2.19).
Instead, we have from (2.26) :

Vig; z—z')=2q—"—21r|z—z'| +1rq|z—z'|’—§q’|z-—z'|’+ O(¢®), (2.29)

i.e. a non-analytic expansion in ¢* implying for instance that K_,.” does not.
exist, invalidating thercby the expansion of (2.19). This difficulty can be

avoided if we observe that the basic equations of the fluctuation theory of the

surface tension, namely (2.18) and (2.23), do in fact involve only K_,. acting on

p'2(2") while this latter quantity does have a non-singular small-¢ expansion

(at least when the electroneutrality properties are invoked) as we now show.

Consider the quantities

Afg: )= Y [de Koulgs 2 )02 (2:30)
Alg)= ¥ [dz[ds' p'o(2)K.agi 3, 3)p " (2)
=Y Jd2p'i(2)4u(g: 2). (2.31)

Using (2.24) into (2.30) we obtain
Aygi )= % [d3' K,o(g: 2, 3')p's(3") + Pe, [ da' Vig; 2—2)p"o(2')

=A(¢; 2)+A4,%g; =) (2.32)
and similarly from (2.31)
A(g)=A(g) +AAg)
ANg)=pBfdz[da' p'(2)V(g; 2-2")p' (%)

where 4,(¢; 2)and A(g) are similar to A,(¢; 2) and A(g) of (2.30) and (2.31)
but involve now only the truncated functions K., instead of K_... In (2.32)
and (2.33) we have also introduced the (average) charge density, p(z2), of the

interfacial double layer
po2)= Z €.pa(2) (2.34)

(2.33)

with p'.(2)=V,p(z). Associated with this charge density there will be an
electric potential ¢(z) defined by the following Poisson equation

V.2 d(z)= —4mp,(2). (2.35)
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Notice that (2.35) is effectively what remains of the three-dimensional Poisson
equation within the present symmetry : except for the factor 4= (which reminds
us that the system is three-dimensional) it is a one-dimensional Poisson equation.
We shall assume that p(z) describes indeed a double layer, i.e. that p () is
non-vanishing only at the interface (2 ~0) but vanishes in the bulk phases :

pe(2= £ ©0)=0, (2.36)

while the system also satisfies overall electroneutrality
[ dz p(2)=0. (2.37)
The solution ¢(z) of (2.35) which remains finite for z=10 can then be written
#(z)=—2m [ da’ |2—2'|p(%'), (2.38)

where the Green's function, —27|2—2’|, appearing in (2.38) is seen to be
precisely the g-independent term in the expansion of (2.29). We now proceed
by showing that because of (2.36) and (2.37) the small-¢ expansions of (2.30)-
(2.33) are in fact analytic whereas one of the integrands (cf. (2.29)) is not. In
view of (2.28) and (2.29) we can write the small-¢ expansion of (2.32) as

A3 2)=A,9) + ¢t 2,9(3) + O(g"), (2.39)
Aa(e)(q ’ z)m Bea I dz' V(q y z’)P'c(z')
-2 far () -2me p d 2= 16 )+ Ol @40)

where because of (2.36) the 1/g term of (2.40) vanishes identically whereas we
integrate by parts the remaining term (which is allowed provided p(2) vanishes
faster than 1/|2| when |2|-—>0oc) and obtain using (2.38)

A,Ng; 2)=Pe.d'(z)+ O(g). (2.41)

Returning to the profile equation (2.18) we see that we can write it in terms
of K,,. or alternatively in terms of K,,. and ¢ as done by the previous authors
[5,6). Indeed comparing (2.18) with (2.30) and using the result of (2.41) we

find
Uz)=lim Y fd2’ K ,(q; 3, 3')p(2'), . (2.42)
0
=Bed(3)+ T [ Konlg=0; 2, 2)pula),  (249)

where in (2.42) the 2’ integral has to be performed before the small-g limit is
taken whereas (2.43) is the result obtained by previous authors [5]. Consider
now A(q) of (2.31); from (2.33) we have

.I(q)=1‘°'+q’ Am'
Aq)=B§ dz § de o (=)V(g; z—z')p'.(z')=? (§ de p' (2))?

+Bf ds ' (2)'(2) — 2mBa( § d= po(z))?
+2mBg* § dz § de’ po(2)|2— 2 [p () +O).  (2:44)




Surface tension of tonic liquids 1217
Or using (2.36) and (2.37) the ¢ and 1/¢ terms drop out leaving the analytic

expansion
AN g)=B [ ds p'o(2)¢'(2)— ¢* B § dz p(2)d(2) + O(¢). (2.45)
Notice that because of (2.35) and (2.36) and (2.37) we also have

1
f dz po()$(a) =5 § dz ($/(2)" (2.46)
Finally, combining the results we find for the small-¢g expansion of A4(g) :
A(g)= ; §dz p'(5)U"(2) +¢* o+ O(¢*), (2.47)

fo= ¥ fdzfdy pu(e)Kes Bz ¥ ule) BT dr pu(2)B(2),  (248)

- 'iml,[ Y Jdz[de o' (2)K..dg; 2 7)o (%)
o0 @ L«
-2 fdz P';(Z)U',(z)]- (2.49)

where (2.47) shows that 4(g) is analytic (at least to O(¢*)) even while K, (¢ ; 2, 2")
is not ; (2.48) is the expression of the surface tension o obtained by the previous
authors [5, 6] while (2.49) is an expression for ¢ in terms of the complete K.
valid whether the particles are charged or neutral.

To close this section we should like to point out that some of the intermediate
steps in the previous treatments did contain ill defined expressions like
fdr' ps')/|r—r'| =(2) (cf. (3) of [4] and (3.2) of [6]) and [ dx x*/(x*+22)2
((A6) of [6]) which do not show up here. A proper transition from the
three-dimensional Coulomb potential, 1/|r—r’[, relevant to the particles to
the one-dimensior.al Coulomb potential, —2n|z—2'|, relevant to the double
layer is possible only when the small-g singularities of V(g; 2—2') (2.29) are
properly removed by using the electroneutrality conditions (2.36) and (2.37).

3. THE THERMODYNAMIC THEORY

A different approach to the computation of the surface tension o proceeds
through the thermodynamic definition, i.e. by taking the derivative of the
Helmholtz free energy F= F(8, N,, Q, A) with respect to the interfacial area 4 :

oF

at constant temperature (£), volume (£2) and number of particles (N,). Writing
F in terms of the canonical partition function Z as 8F= —In Z one can compute
the derivative with respect to A by using the scaling method used by Bogoliubov,
Born and Green for the computation of the pressure and adapted to the present
case by Buff [7]. Omitting the irrelevant dependence on 8 and N, we write
Z(L,, L, L,)=2(Q, A,, A) where L, L, L, are the lengths of the edges of
the rectangular vessel containing the two-phase system, Q=L_L L, its volume,
Ay=L,L, and A=L_L, the area of two perpendicular cross sections, 4 being
equal to the interfacial area. Let Z,(L, L, L,)=Z(AL, L, A'L,)=
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Z(Q, Ay, AA), then &,Z,=[2Z,/0(AA)][8(AA)/2A] while [3Z,/d(AA)];-,=
0Z|2A and hence ¢Z/8A =(1/A)[2,Z,]5=, or from (3.1):
1

o= _B_A [0xIn Z,],-1. (3.2)

Equation (3.2) can be rewritten after a change of variables (x';= Ax;, ¥/, =y;,
2';=A"12;) inside Z, as
1

o=

G H({ Ay, vy A7 31) aey

N» ¢ ?
<¥ ,Z:, (x,ﬁzj—z,a—z’) H>, (3.3)

where H=H({r;}) denotes the hamiltonian of the N particles of positions
r;=(x;¥5, %) and {...) the corresponding canonical ensemble average at
temperature f~'. Equation (3.3) can also be written in terms of the pair
density of (2.7) and the central pair potentials ¥V (|r,—r;|) (notice that
(Ve 2V WV ([r—r|)=(x— &)V, - V(|r—r'|)) as

1
0=2—A .Z.. Idrjd'l Pca'(r' r')[(x-—x')V,_,,‘—(z—z')V,_,-]

X[Vaal[r=0'|) +ese.V(|r—r])], (3.4)

al = &l

where we have separated the short-ranged potentials, V_,., from the Coulomb
potential V(|r|)=1/|r|. Before taking the thermodynamic limit (N, Q, 4->x)
we rewrite (3.4) with the aid of (2.8) as follows :

o=§-12 Y fdrfdr pr, P )(x=x)V, o —(2=2)V, oW aullr—r'])

F ZLA I dr I dr’ PoeT(rv ")[(x_ x')vx—.t' T (3 o z')v:—l‘] V( ll’ - | )

+ .2%4 I dr ’ dr' Pn(')Pe(r')[(x = x')vr-t‘ = (z = z’)vi—l'] V(I' - ' )' (35)

where p,T(r, ') =p.(r, r')—pr)p.(r') is the truncated pair charge density,
Pee(r, )= Y e,6,.p,.(r,r') the pair charge density and p (r)= Y e.p,(r)

the singlet charge density. Consider now the three terms in the right hand side
of (3.5) separately. In the first term, p_,.(r, ') is long ranged since asymptoti-
cally it tends to p (r)p,(r’) when |r—r'|—o0 but the potential V,,.(|r—r'|)
can be assumed to be sufficiently short ranged to make the integrand well
behaved in the infinite volume limit. In this case its thermodynamic limit
can be taken without danger and results, for a system with a planar interface
with cylindrical symmetry for which p,,(r, ¥')=p.(|x=x'|; 2,2'), in a
contribution of the form

VX fdsfde fdRpudIR| 5 2 2 )fuulIR |2 —2]), (3.6)
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with R=x —x’ and
[(x_x,)vr—:'—(:_3')vx—x']V::'(|r_r'|)
_(x—x')’-—(z-:')’
- [r—r'|
LAL S sy e — )
faalIR] 5 [3=3"])=1 =]

where V' .(|r|)=(d/d|r|)V .(|r|) and |r—r'|*=R2*+(2~2")%. In the second
term of (3.5) the Coulomb potential V(|r—r'|) is long ranged but p,T(r, r')
can be assumed to be sufficiently short ranged leading in the thermodynamic
limit to a contribution to ¢ of the form

§fdsfds' fdRp."([R]; 3, 3)(IR|; [2=2"]) (3.9)

where the definition of f(|R|; |2 —2’|) s similar to thatof (3.8) with V' __.(|r—r’|)
replaced by the Coulomb potential V(|r—r’|). For the third term of (3.5)
we use, at finite volume, the Fourier series representation of (2.26) :

V'.l:'(ir-r")v (3‘7)

Vaallr—r'|), (3.8)

a3 ; - £
V(jr—r¢|)=3 T exp [ia . (x—x')] {exp(—«n:—: o (3.10)
q
and obtain in the infinite volume limit (§ =q/|q|)

i.’dzfdz pel2)pe(s’ )Idaj(z )2 exp [1q . R—g|z—2"|](2n|2—2"| +im§q . R)

=udzfdz'm)p‘.(z')!dqexp[—qlz-z'|1(2w|=- |+l )sm
=4 fdz [ d2’ p(2)pz'N2m|2—2'| +27|2—2'|)
= — [ ds p(x)(a), (3.11)

where we have used (2.38).  Finally, gathering all results we obtain the following
expression for the surface tension :

o=} ¥ Jdzfde' fd(x—x")pu{|x =X ; 2,2)
x-x'|*—2|z—3"|" , :

Ir_r'l Vaa’('r-r |)
+fde fds fd¥x—x)pe (X=X ; 2,2

-x'[2=2|z-2"|2 _, y "
X e e - S (32)

where we have used (2.46) and put |r—r'|=(|x—x"|*+|2—2"|*)'%  This is
an alternative expression for the surface tension of charged fluids in terms of
the singlet and pair distribution functions and the pair potentials.

4. THE MECHANICAL THEORY

A third approach to the surface tension due originally to Kirkwood and
Buff [1] proceeds from the surface excess value of the tangential pressure.
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For a planar interface normal to the z-axis this leads to the following definition
of o:

o= | dz (04(2)—0.4(2)), (4.1)

where the normal pressure, 0., will be a constant for a system in hydrostatic
equilibrium while the tangential pressure, o,,, will be a function of = only for a

planar interface, while cylindrical symmetry will imply moreover that o, =0,,.

The cartesian elements, oy, of the local pressure tensor, o(r), can be defined in
general from the mechanical equation of motion

8(r)>+V . o(r)=F(r), (4.2)

where <g(r)>=< Y P;3(r—r;) ) is the average local momentum density and
-

F(r) is the average external force density. The explicit computation of (4.2)
yields (see for example [11])

o(r)=0o%(r)+a'(r), (4.3)
ul\'(r) =1 2 Pa(r)fﬁv (44)

V. q'(r): Z Idl" Paa‘(r' r')V[V“.(Ir-r'|)+c,e,.V(|r-r'|)], (45)

where o* is the kinetic and @' the potential contribution to the pressure tensor
o. In(4.5) we have again separated the interactions into short-ranged potentials
V... and the Coulomb potential V. Proceeding as in (3.4) and (3.5) we obtain :

V.o(r)= 3 [de puulr, ¥ )0Voullr—r)
T [ pot(e, PV (e —r))
Fpdr) e pFWH(|r=r]).  (46)
Introducing the average electric field, E(r), and average potential, ¢(r), through
E(r)= —Vg(r) =~V [ dr' p(¢)V(Jr—r'|) (4.7)

we can split o’ of (4.6) into a truncated part ¢ and the electric or Maxwell
pressure tensor (i.e. minus the Maxwell stress tensor) o™ according to :

v » °’T(r)= Z I dl" pu‘(rl r')V Va.z'(|r_ rll)
' + [ dr p,T(e, WOV (Jr—F]),  (48)
V. a¥(r)= —p.(r)E(r). (4.9)
Notice that since o =o* + 6" + o™, the Maxwell tensor has to be added not to the
total pressure tensor but only to its truncated part. There remains now .to
‘solve’ (4.8) and (4.9) for o™ and ™. From (4.7) we obtain V. E=4np,,

using this result we eliminate p, from (4.9) and obtain the usual Maxwell
pressure tensor.

oM(r)= — ;(]—" (E(r)E(r) — §E(r) . E(r)1] (4.10)
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provided V x E=0, which in view of (4.7) is trivially satisfied. To obtain o7
we rewrite as usual (4.8) as

v Y oT(')=& .Z" I df' [Paa‘(r_ l"', ')— Paa'(rv r"'r’)]v'Vaa'(lr'l)
A (=, r) = p () (F])  (4.11)

and hence
oT(F) =~} ¥ fdr poulr, r4 0OV (|F])
v —3fdr 5. (r, e+ )VV(|F]), (4.12)

where 1
Pax(Fy v 40 )= J dAp (r—Ar, r+(1=2)r) (4.13)
0

and similarly for 5, T(r, r+r’). Returning now to (4.1) we obtain finally
o=} ¥ [dzfdr pg(r,r+v)x'V —2'V ]V (|r])
+3fdsfdr 5 Mr, e+ )XV, -2V, IV(|F])
1
~ [ dz (V@) (414)

where we take into account that within the present symmetry ¢ =¢(z) while

Paa(Py ¥') = paad|X—X%'| ; 2, 3'), (4.15)

1
Paai(rs v +¢)= [ dApo(|x']; 2- A2, 2 +(1-2)2")
0

= paa([X'] 5 2, 2). (4.16)
The expression (4.14) can also be written as
o= fdz (0."(2) —0.."(2)) + [ d2 (0."(2) ~ 0,,M(2)), (.17)

which resembles Frenkel's formula [12] except that o7 are not the elements
of the total pressure tensor but only of its truncated part (cf. (4.12)).

5. THE EQUIVALENCE PROBLEM

We have investigated three different approaches to the definition of the
surface tension of planar interfaces and shown how each of them could be
extended to the case of charged fluids. There now remains to show that these
three approaches also yield equivalent results. We shall consider the three
approaches two by two.

The mechanical result of (4.14) will be equivalent to the thermodynamic
result of (3.12) if we can show that the following relation holds together with®a
similar relation for p. " :

1
fds[dz|dx’ { dA p(|X'| 3 2= A2, ' + 2= A2 )*'V . — 2V, ]V . (|7'])

= fdsfdy fax’ poud|x|; 7 2 +2)E V=2V IVudIF]),  (5.1)

where as usual r'=(x', 2’)=(a’, ', 2’). If in the left hand side of (5.1) we
change the order of the integrations and change the z-variable to 2 — Az’ we epd
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up with the right hand side of (5.1) provided this latter integral exists, ie.
provided the integrand | dx’ p,.(|x'|; 2, 2"+2)..., is a decreasing function
of 2 while p,.(|x’| ; =, 2" +2) itself obviously is not. Assuming this to be the
case the thermodynamic and mechanical theories will be equivalent.

The proof that the thermodynamic result (3.12) is also equivalent to the
fluctuation theory result (2.48) and (2.49) is clearly a much more difficult
matter. This was first done for the uncharged case in a remarkable paper by
Schofield [3]. Its extension to the charged case undertaken here is seen to
require only that due care be taken of the Coulomb singularities, a problem
already encountered in § 2. We find it slightly easier to take Schofield's steps
in reverse order and to start from the formula (2.49) which we write in view of

(2.30) as 1
Bo=lim =¥ [dz p',(3)[4u(g; 2)-Ag=0; )] (5.2)
0§

since we have already shown in (2.40) that 4, (¢; 2) is well behaved at ¢=0.
In the present symmetry (2.5) becomes :

Y d35 G (g 23K, (9 %1, 3")=8,,-8(z~3"). (5.3)

Multiplying by p’,.(2") and summing over o’ and 2’ we obtain from (5.3) :
Z Idzl G (g 3 5))A.,(¢: 3)=p"o(2). (5.4)

Since A4, (¢=0, z,) is finite and non-zero (in non-zero external fields) (5.4)
tells us that G,, (¢=0; 2, 2,) is finite (this will be shown explicitly elsewhere
[13] in relation to the long range correlations [9] developed by G,,, along the
electric double layer) and we can subtract the equation ‘

L §d5 G (g=0; 2,2)4,,(9=0, ,)=p's(2) (5.5)
from (5.4) to yield
Y §d5 G (g=05 2 5)[ 4, (g5 21)—Aulg=0,2,)]
==Y Jd5 (G (g; 2 %) =G lg=0; 2, %)]4,,(g=0: 2)
LY a5 [Canl@ 3 3)~Gani@=0; % 3)][Aules =)
2 Au.(q=0' z1)]' (5.6)
Multiplying (5.6) by U’ (), summing over « and 2, we obtain in view of (2.17),
(2.42) and (5.2)
Be= — lim L Y [dzfds U (2)[G.a(q; 2 2)
0 ¢ o
—G{qg=0; 2, 2")JU(2'), (5.7)
where moreover we take into account that the second term in the right hand

side of (5.6) is O(¢®) [13]. Using now (2.6) and (2.16) we can rewrite (5.7) as

Bom — lim = § de § d¥’ § d(x—x)exp [iq . (x=x')]-1)
09

(L v@sntn ) $ VIR ). 68)
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We then eliminate the external field from (5.8) with the aid of the microscopic
equation of motion :

-~ y l ’ ~
éi(x. 3) + Z visaji(x' z)= 8\'3 _ﬂ' Z (-'r ,(S)Bpa(l, 3)t (59)
J =
where we have subtracted the equation for (g(x,2)> (=0 for a system in
equilibrium) and put 83, =p,—p, and 85,;=5,,—~0;;. Separating V, into the

gradients normal (V) and along (V) the interface we obtain, neglecting surface
terms in 2 and 2’

Bo——lnm—jdz[do}'d(x x')(exp [—iq(x—x")]—1)
o0 ¢

x <(§,(x. 2)+ XV, 88,(x, z))
x (g',(x', )+ 3 Ve, 88, z’))>. (5.10)

Taking the limit and using the isotropy parallel to the interface we obtain

(G=q/lq])
a=§ fdzfdz fd(x—x')q.(x—x"))> {<£.(x. 2)gdx’, 7))

+ Z vn z'y \83”(g, 3)861-,(1',3');\ }. (Sl])

whereas up to surface terms (whlch we assume to vanish) (5.11) can be rewritten
as

"=§f dz [ dz' fd(x—x")Q . (x—x))* { (B, D)X, )
(~-z) ZVz, o, {B(x, ), z'))} (5.12)

Integrating by parts we obtain

a=§ §dsfds §d(x—x)(@. (x—x")2)Gx, )X, )
—(— )4 8(x, 2)4 . (', ')} (5.13)

Finally, using the multicomponent generalization of the sum rule derived by
Jhon et al. [14]

B(fn’(")é.;(")'): = ,,Z.‘ Peu'(" r')V,-V,(V“.(jr—r'|)+e,e,.V(|r—-r'|))
' + local terms, (5.14)

where the ‘local terms’' contain delta functions leading to vanishing contri-
butions to (5.13), the latter reduces to

o=y f drfar I puadr, e =200 V)
(- XN VAVl le—r|) + st Vile—r'))
e LA L R X (CErpL A
~(x=x).44. Y, J(Vaulr—F ) +eses V(|r—r])),  (5.15)
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where the last step follows from the central character of the potentials. Equation
(5.15) is identical to (3.4) which, as shown in §3, can be further reduced to
(3.12). And hence, provided the above assumptions are verified, the fluctuation
theory and the thermodynamic theory will yield the same result.

6. CONCLUSIONS

We have derived a number of exact expressions for the surface tension of
planar interfaces of fluids consisting of mixtures of charged and uncharged
particles interacting through short ranged pair potentials and, for the charged
species, the long ranged Coulomb potential.  All difficulties due to the Coulomb
potential could be avoided provided the system satisfies overall electroneutrality
(2.37) as well as electroneutrality of the bulk phases (2.36). Charge segregation
in the interfacial region, where an electric double layer can be built up, is however
allowed. We have shown that the general expressions obtained for the surface
tension o within the fluctuation theory (2.49)

a—l lim — [ Z ‘dzjdz a(z)K.xa'(q VS 3')p',:(2’)
Besog

-3 fds p',(zw;(z)]. 6.1)
within the thermodynamic theory (3.1)-(3.3)

oF 0 ¢
Alara\E B mm) @

and within the mechanical theory (4.1)

o= [ dz (0,(2) — 0,.()) (6.3)

remain applicable to charged fluids and yield, respectively, the following results.
The fluctuation theory leads to an expression (2.48)

l ’ ’ ’ ’ ’
0=§ Z ‘dz I dz P \:(z)Kna'(a.(z' z )P :'(z )
+2m [ dx [ d3' p(z)|z—2"|po(2")  (6.4)
defining o in terms of the density profiles p,(z) (the charge density p.(2)=
Y e.p.(z)) and the second moment of the truncated inverse response functions

(or direct correlation functions) K,,.®’. Taking into account the relation
(2.38) between the charge density and the electric potential of the double layer
(6.4) is equivalent to the result of the previous authors [4,6]. The thermo-
dynamic theory leads to the result (3.12)

[x—x'|2=2|2—2"|*

=]

o=} Y [dsfds' [dx—x")p.{|x—x'|; 2, 2)
x Vial|r=r'|)+1 [ ds fdo’ [ d¥(x—x")p."(|x=X| 5 2, 27)

|x=x"|2—2|z—2'|

F=r]

()
+2m f dz f de’ po(z)|z—2'|p(z’)  (6.5)
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expressing ¢ in terms of the interaction potentials (V.. and V), the pair distri-
butions p,,., the truncated pair charge density p,.m and the charge density p,.
To our knowledge (6.5) is proposed here for the first time. The mechanical
theory leads to an expression for o (4.17)

- o ’dz (ouT(z)_orrT(z))+ Idz (O::M(z)_a.r.r'“(z)) (6.6)

in terms of the elements of the Maxwell pressure tensor (o, ) and of the truncated
pressure tensor (o;,"). Finally, all three expressions, (6.4)-(6.6), have been
shown, under relatively mild conditions, to be equivalent.
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