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The surface tension of ionic liquids 
À mechanica l formula 
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We show how both the Kirkwood-Buff and the Triezenberg-Zwanzig 
expressions for the surface tension of neutral fluids can be applied to charged 
fluids if due care is taken of the singularities introduced by the Coulomb 
potential. An expression previously obtained within a density functional 
theory is recovered and an alternative, but équivalent, mechanical expression 
is proposed. 

1. INTRODUCTION 

The statistical mechanical theory of the surface tension of planar l iquid-
vapour interfaces was initiated many years ago by Kirkwood and Buff [1] who 
based their theory on mechanical concepts such as the anisotropy of the pressure 
tensor within the interfacial région. More recently, Triezenberg and Zwanzig 
[2] developed a fluctuation theory which gave rise to a completely différent 
expression for the surface tension. Recently, Schofield [3] succeeded in 
showing the équivalence of both expressions. Ail thèse expressions, as they 
stand, can however not be applied to the experimentally interesting case of 
charged fluids such as the molten salts. The problem of extending thèse 
exact results, valid for neutral fluids, to charged fluids was taken up recently by 
Evans and Sluckin [4, 5] and also by Senatore and Tosi [6]. Thèse authors 
obtained an expression for the surface tension of charged fluids which is of the 
Triezenberg-Zwanzig type and which treats the average electric field, which 
is set up by the electric double layer characteristic of ionic interfaces, as a 
separate variable. It is our purpose here to dérive an alternative Kirkwood-
Buff like formula for the surface tension of ionic fluids and to show that it is 
équivalent to the resuit of the previous authors. 

We consider a classical multicomponent electrically neutral System of 
point partiales interacting through both short ranged pair potentials and the 
long ranged Coulomb potential. In § 2 we reconsider the fluctuation resuit 
obtained previously [4-6] and show how it can be obtained from the usual 
Triezenberg-Zwanzig (multicomponent) expression if due care is taken to 
remove a Coulomb singularity with the aid of the condition of electroneutrality 
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of the bulk phases. In this way, we are able to perform the transition from the 
three-dimensional Coulomb potential characteristic of the interparticle inter-
actions ( ~ l / r ) to the one-dimensional Coulomb potential characteristic 
of the electrostatic interactions between the charged sheets building up the 
electric double layer, without running into divergence problems. In § 3 we 
dérive an expression for the surface tension of ionic fluids based on the rescaling 
of the partition function, a method first used within this context by Buff [7] 
for neutral fluids. In § 4 we show how the thermodynamic resuit of § 3 can 
be reinterpreted in terms of the mechanical stress tensor theory of Kirkwood 
and Buff provided the Maxwell stresses produced by the double layer are 
added not to the total stresses but only to the ' truncated stresses ' where the 
Coulomb forces are averaged with the total corrélation functions instead of the 
fuU pair distribution functions. The équivalence of the différent expressions 
for the surface tension of ionic fluids is shown in § 5 following Schofield's steps 
[3] in reverse order and avoiding the singular contributions. Our conclusions 
are then gathered in the final § 6. 

2 . T H E FLUCTUATION THEORY 

2.1. The response functions 

We consider a classical fluid composed of Â^̂  particles of species a in equili-
brium at a température T corresponding to a two-phase région. The two 
phases will be spatially separated by putting the fluid in external potentials, 
F^(r), which couple to the microscopic number densities ̂ ^ (̂r) : 

PÀr)= î 8 ( r - r , ) (2.1) 

via the interaction energy 8H : 

^8H=-lidrp^{r)U^{r) (2.2) 

where ^ = {k^T)~^, while for later convenience we have introduced the alter-
native notation U^{r) = — pv^{r). From linear response theory we know that 
a small change in thèse external potentials {U^{r)-^U^{r) + 8U^{r)) induces a 
small change 8p^{r) in the average density Pa{f) = (W*")) according to 

8p^{r)=l idr'G^Ar,r')8UAr') (2-3) 
or inversely " 

8U^{r)= l i dr'K^Ar, r')SpAr'), (2.4) 
a' 

where G^^. and K^^. are inverses obeying 

S idr,G,Ar,r,)K^^Ar„r') = 8^^.8{r-r'). (2.5) 

As is well known, the response function G^^ {r, r') of (2.3) is the equilibrium 
corrélation function of the density fluctuations Bp^(r) in the unperturbed 
fluid (Si7,(r) = 0), i.e. 

G. . . (r , r') = <S^.(r)S^,.(r')> ; S^,(r) = p,(r) - <?,(r)>, (2.6) 
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where from (2.6) on ail averages ( < . . . ) ) are taken over the unperturbed System 
{hUJj) = Q). It is also customary to rewrite (2.6) in terms of the pair density 

P a . - ( ' - , « - ' ) = < p , ( r ) p , . ( r ' ) > - S , , , 5 ( r - r ' ) p » > (2.7) 

or the truncated pair density p^^''^{r, r') : 

Pac.^{r, r') = Paa{r, r')-/3^(r)p^.(r'), (2.8) 

where Pa(r) = <Pa(r)> is the (average) density of species a, as 

G.. .(r, r') = p^^.'^{r, r') + S , , .S ( r - r ' )p , ( r ) . (2.9) 

Introducing, finally, the total corrélation function h^^.{r, r') 

Paa^{r,r') = p,{r)pAr')KAr,r') (2.10) 

and the direct corrélation function c^^.{r, r') via the Ornstein-Zernike équation 

ha:a{r,r') = c,,.{r,r')+ ^ H»-! ^««.(r, ri)p^,(ri)c^,^.(ri, r'), (2.11) 

(2.5) implies then that the inverse response function K^^.(r, r') can be written 
as 

'K^Ar, r')J^^'^^'~''^-c^A^, r'). (2.12) 
pÀn 

2.2. The surface tension of a planar interface 

If the interparticle potential is translationally invariant, an arbitrary trans-
lation ( r ^ r + a) of the external potentials {UJ^r)-^UJj + a)) will shift the 
density profiles by the same amount {pj^r)^pjj + a.)). Taking hence 8UJ^r) = 
UJ(r + a)—UJj) = a.VUJj) + 0{dL^) the linear response équations (2.3) and 
(2.4) reduce to the profile équations 

Vp«('')= I J dr' G^Ar, r')V'C/,,(r'), (2.13) 

V t / . ( r ) = l I dr' K^Ar, r')VV,,(r'), (2.14) 
a' 

first obtained by Lovett, Mou and Buff [8] and Wertheim [9]. In what follows 
we shall consider only planar interfaces in which case it is convenient to use 
cylindrical coordinates r = (x, z) and a two-dimensional Fourier transform with 
respect to x = {x, y) the cartesian coordinates along the interface : 

fi^y ^) = 7 T ^ J exp {iq . x) /(q, z), (2.15) 
(277)2 

/ ( q , ^ ) = J r f x e x p ( - / q . x ) / ( x , ^ ) (2.16) 

while the s-axis is taken along the normal to the planar interface. In the case 
of a planar interface we can write Pai"") =Pai'^)y U„{r)=U^{z), G^^.{r,r') = 
C a a ' d x - x ' l ; z, z'), K^A^, r') =K^^.{\x-x'\ ; z, z'), i.e. the System has no 
translational symmetry along the sr-axis but keeps its rotational symmetry 
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around the 2-axis. With thèse assumptions the profile équations (2.13) and 
(2.14) reduce to 

P'ai^)= 1 i dz' G„,.(9 = 0 ; z, z')V'Az'), (2.17) 

U\{z) =%^dz' K^Aq = 0 ; ^, z')p'Az'), (2.18) 

where p\{z) = '^^pj^z), U\{z) = '^^UJ^z) while it follows from (2.16) that 
fiq = 0)= J <fx /(x). Finally, we also write the small-ç expansion of K^^,{q ; z, z') 
as : 

K^Aq; z, z') = K,A'\^, -') + q' K,.'^'\z, z') + 0{q') ; ^ = | q | (2.19) 

with 

K^A'K^^^l^ idxK,A\y^\; z,z'), (2.20) 

KA'\^,^')=-kidx\x\^K,A\^\; z,z'), (2.21) 

= i j « / x |x|2c^^,( |x| ; S', S''), (2.22) 

where we have used the rotational invariance of ^^j,.(|x| ; z, z') and (2.12). 
The surface tension a of the planar interface can now be defined by 

i3a= X idzidz' p\{z)K^A'\^,^')p'A^') (2.23) 

a resuit first obtained by Triezenberg and Zwanzig [2] (for the multicomponent 
generalization cf. [10]) by Computing the change in free energy due to a parti-
cular change in the equilibrium density profiles. 

2.3. The electric double layer 

The above treatment can be generalized to the case where some of the 
particle species are charged in which case surface ségrégation of thèse charges 
leads to the formation at the interface of an electric double layer. This was 
originally donc by Evans and Sluckin [4, 5] and also by Senatore and Tosi [6], 
using a density functional theory in which the electric potential set up by the 
double layer is explicitly isolated from the remaining contributions. We shall 
show now that in fact this is not necessary and that the same gênerai expression 
holds both for charged and neutral particle fluids provided the singularities 
introduced by the Coulomb potential are properly eliminated. Let us first 
introduce the truncated inverse response function, K^^-, defined by 

K^Aq \ z,z') = K,Aq\ z, z') + pe,e,.V{q � z, z') (2.24) 

where is the charge of the particles of species a, which for certain species 
may vanish but is restricted by the condition of overall electroneutrality : 

le^N^ = 0 (2.25) 
» 

while V{q ; z, z') is the two-dimensional Fourier transform of the three-
dimensional Coulomb potential F ( | r — r' | ) = 1/ |r — r'|, i.e. 

1 2TT 
V{q; g ) = ( t/x exp ( - ? q . x ) = — exp ( - ) . (2.26) 

{\x\^ + z^y' q 
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Alternatively, V{q ; z) can also be obtained as the solution of Poisson's équation 

( V / - < 7 ^ ) F ( ç ; z)=-A.rh{z) (2.27) 

which vanishes when l ^ l ^ o o . Equation (2.24) is a convenient way of writing 
K^^. if we accept (without proof) that in this way the most singular part of K^^. 
has been explicitly displayed so that K^^. can be assumed to have the same 
properties as for uncharged particles, e.g. 

K^Aq\ z,z') = K^^S^\z,z') + q^K^^S^\z,z') + 0{q^) (2.28) 

with définitions of ^^^.<'" and X^ .̂*^) similar to those of (2.20)-(2.22). T h e 
difficulty with charged Systems is now clearly visible since V{q\ z — z') and 
hence according to (2.24) also K^^, have no analytic expansion similar to (2.19). 
Instead, we have from (2.26) ; 

V{q; z-z') = — -27r\z-z'\+7Tq\z-z'\^-'^q^\z-z'\^+0{q% (2.29) 
q 3 

i.e. a non-analytic expansion in q^ implying for instance that K^^^^"^ does not 
exist, invalidating thereby the expansion of (2.19). This difficulty can be 
avoided if we observe that the basic équations of the fluctuation theory of the 
surface tension, namely (2.18) and (2.23), do in fact involve only K^^. acting on 
p'^.{z') while this latter quantity does have a non-singular small-^ expansion 
(at least when the electroneutrality properties are invoked) as we now show. 
Consider the quantities 

Mq ; ^)=%idz' K^Aq ; ^, ^')p'ai^') (2.30) 

Aq)= I , i'i^i dz' p'J,z)K^Aq ; z, z')p\.{z:) 
a, a.' 

= S \dzpJ,z)AJ^q- Z). (2.31) 
a. 

Using (2.24) into (2.30) we obtain 

'^.(-7; ^)=%Sàz' K^Aq; z,z')p'Az') + peJdz' V{q; z-z')p\{z') 

= AJ,q ; z) + AJ-\q; z) (2.32) 

and similarly from (2.31) 

A{q) = A{q) + A^^\q); | 

A^^\q) = Pidzidz' p',{z)V{q; z~z')p',{z') J 

where A^{q ; z) and A{q) are similar to A^{q ; z) and A{q) of (2.30) and (2.31) 
but involve now only the truncated functions K^^,, instead of K^^,. In (2.32) 
and (2.33) we have also introduced the (average) charge density, Pe{z), of the 
interfacial double layer 

PÀ^)=le^p^{z) ' (2.34) 

with p'^(z)='^^p^.(z). Associated with this charge density there will be an 
electric potential (f){z) defined by the foUowing Poisson équation 

V/<^(^)=-47rp , (^ ) . (2.35) 

(2.33) 
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Notice that (2.35) is effectively what remains of the three-dimensional Poisson 
équation within the présent symmetry : except for the factor 4TT (which reminds 
us that the System is three-dimensional) it is a one-dimensional Poisson équation. 
We shall assume that Pe(^) describes indeed a double layer, i.e. that p^iz) is 
non-vanishing only at the interface ( s : ~ 0 ) but vanishes in the bulk phases : 

p^{z=±œ) = 0, (2.36) 

while the system also satisfies overall electroneutrality 

idzp,iz) = 0. (2.37) 

T h e solution <f>{z) of (2.35) which remains finite for ^ = 0 can then be written 

(j>{z)= —2TT ^ dz' \z — z'\pg{z'), (2.38) 

where the Green's function, —2Tr\z — z'\, appearing in (2.38) is seen to be 
precisely the ç-independent term in the expansion of (2.29). We now proceed 
by showing that because of (2.36) and (2.37) the small-g expansions of (2.30)-
(2.33) are in fact analytic whereas one of the integrands (cf. (2.29)) is not. In 
view of (2.28) and (2.29) we can write the small-ç expansion of (2.32) as 

A,{q; z) = A,^^\z) + q^A,^^\z) + Oiq'), . (2.39) 

AJ-\q; z)^pe^idz' V{q; z-z')p\{z') 

l-ne B 
= ^ i d z ' p \ { z ' ) - 2 7 r e J i d z ' \z-z'\p\{z') + 0{q), (2.40) 

where because of (2.36) the Ijq term of (2.40) vanishes identically whereas we 
integrate by parts the remaining term (which is allowed provided Pe{z) vanishes 
faster than l / l^l when \z\ -^oo) and obtain using (2.38) 

AJ^\q; z) = ^ej'{z) + 0{q). (2.41) 

Returning to the profile équation (2.18) we see that we can write it in terms 
of K^^. or alternatively in terms of K^^. and (f> as done by the previous authors 
[5, 6]. Indeed comparing (2.18) with (2.30) and using the resuit of (2.41) we 
f ind 

U',{z) = lim X j dz' K^Ag ; ^, ^')p'ai^')> � (2.42) 

= ^ej'{z)+ S j dz' KAq = 0 ; ̂ > ^')p'ai^'\ (2.43) 

where in (2.42) the z' intégral has to be performed before the small-ç limit is 
taken whereas (2.43) is the resuit obtained by previous authors [5]. Consider 
now A{q) of (2.31) ; from (2.33) we have 

A{q) = A^'» + q^ A<^\ 

A<-\q) = pidzjdz' p',{z)V{q ; z - z')p\{z') = ^ ( J dz p',{z))^ 

+ Pidz p',{z)cl>'iz) - 2nM i dz p,{z)Y 

+ 27r^q^ i dz [dz' p,{z)\z-z'\p,{z') + 0{q^). (2.44) 
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Or using (2.36) and (2.37) the q and \jq terms drop out leaving the analytic 
expansion 

A^'^Xq) = Pidz p,{z)<l>'{z) -q'^Sdz p,{z)<f>{z) + Oiq^). (2.45) 

Notice that because of (2.35) and (2.36) and (2.37) we also have 

i dz p,{z)i>{z) = ^ i d z {.f>'{z)y. (2.46) 

Finally, combining the results we find for the small-^ expansion of A(q) : 

A{q)= I idzp'^{z)U'^{z) + q^Po + 0{q^), (2.47) 
a 

/3a= X idzidz'p\{z)K^^.^^\z,z')p'A^')-Pidzp,{z)i>{z), (2.48) 
a,a 

= l i m ^ r X i dz i dz' p'^{z)K^^4q ; z, z')p\-{z') 

t-*Q q |_ a, »' 

l idzp'^{z)U'^{z) (2.49) 

where (2.47) shows that A{q) is analytic (at least to 0{q^)) even while K^^.{q \z,z') 
is not ; ("Î.48) is the expression of the surface tension a obtained by the previous 
authors [5, 6] while (2.49) is an expression for a in terms of the complète K^^. 
valid whether the particles are charged or neutral. 

T o close this section we should like to point out that some of the intermediate 
steps in the previous treatments did contain ill defined expressions like 
Idr' pj^z')l\r-r'\=^{z) (cf. (3) of [4] and (3.2) of [6]) and j" ̂ fx x2/(x2 + ^2)i/2 
((A 6) of [6]) which do not show up here. A proper transition from the 
three-dimensional Coulomb potential, l / | r —r'|, relevant to the particles to 
the one-dimensior.al Coulomb potential, —1TT\Z — z' \ , relevant to the double 
layer is possible only when the small-ç singularities of V(<j ; z — z') (2.29) are 
properly removed by using the electroneutrality conditions (2.36) and (2.37). 

3. T H E THERMODYNAMIC THEORY 

A différent approach to the computation of the surface tension a proceeds 
through the thermodynamic définition, i.e. by taking the derivative of the 
Helmholtz free energy F= F(j8, Â ,̂ O, ^ ) with respect to the interfacial area A : 

(3.1) 

at constant température (/3), volume {Q.) and number of particles (Â ^̂ )̂. Writing 
F in terms of the canonical partition function Z as jSF= — In Z one can compute 
the derivative with respect to A by using the scaling method used by Bogoliubov, 
Born and Green for the computation of the pressure and adapted to the présent 
case by Buff [7]. Omitting the irrelevant dependence on )3 and Â^̂  we write 
Z(L^, Ly, L^) = Z{Q., Ag, A) where L^, Ly, are the lengths of the edges of 
the rectangular vessel containing the two-phase system, Q = L^L^L^ its volume, 
AQ = L^L^ and A = L^Ly the area of two perpendicular cross sections, A being 
equal to the interfacial area. Let Z^{L„ Ly, L^) = Z{XL„ Ly, X'"^ L^) = 
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Z{£1,A^,XA), then d;,Z;, = [dZJd{XA)][d{XA)ldX] while [dZJdiXA)]^^^ = 
dZjdA and hence a Z / a ^ = ( l /yî)[a^ZJ^=i or from (3.1) : 

< ' = - ^ [ 3 A l n Z , ] , = i . (3.2) 

Equation (3.2) can be rewritten after a change of variables ( x ' j - = Axy, j ' j - = 3 ' ^ - , 

z'j = Zj) inside as 

= ^ <X\H{{Xx„y„ A- i^ , } ) ] , = i> 

where H = H{{rj}) dénotes the hamiltonian of the A'̂  partiales of positions 
rj = {Xj,ypZj) and < . . . > the corresponding canonical ensemble average at 
température Equation (3.3) can also be written in terms of the pair 
density of (2.7) and the central pair potentials V^j{\r^ — rj\) (notice that 
(:cV, + x ' V , ' ) F ( | r - r ' | ) = ( x - x ' ) V , _ , , F ( | r - r ' | ) ) a s 

'̂  = i I \ dr^ dr' p,,{r,r')[{x-x')SJ^_^.-{z~z')^,_A 
a, «' 

^{V^A\^-r'\) + e^e^.V{\r-r'\)], (3.4) 

where we have separated the short-ranged potentials, V^^., from the Coulomb 
potential F ( | r | ) = l / | r | . Before taking the thermodynamic limit {N, O, ^ - > o o ) 
we rewrite (3.4) with the aid of (2.8) as follows : 

0 = ^ I _ Idr^dr' p^Ar,r')[{x-x')\,^^.-{z-z')V,^^.]V,A\r-r'\) 

+ J^idri dr' p , / ( r , r')[{x - x')V,_,. - ( z - z')V,_,.] V{\r-r'\) 

+ ^ j d r i d r ' p«(r)p,(r')[(x - x')V,_,. - {z -z')V,_,.] V{\r-r'\), (3.5) 

where Pee'^{r, r') = pAr, r')-p^{r)p^{r') is the truncated pair charge density, 

T'eeÇ''. »�')= X « a « a ' P a a � ( ^ f"') the pair charge density and Pe{r)= Y, ^aPÀ^) 
a, a' a 

the singlet charge density. Consider now the three terms in the right hand side 
of (3.5) separately. In the first term, p^x-{r, r') is long ranged since asymptoti-

cally it tends to Pa('')/'a�('"') when | r — r ' | ^ o o but the potential V^^,{\r — r'\) 
can be assumed to be sufficiently short ranged to make the integrand well 
behaved in the infinité volume limit. In this case its thermodynamic limit 
can be taken without danger and results, for a system with a planar interface 
with cylindrical symmetry for which ̂ (̂̂ -̂(r, r') = p^^.(|x — x' | ; z, z'), in a 
contribution of the form 

è I i dz i dz'i dR p^A\fi\ ; z,z')f^A\R\-, k - ^ ' l ) . (3-6) 
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with R = x — x' and 

[(^ - X') V,_ , , - - V,_,,] I r - r'I ) 

= ^'~''l~X'^^y'^A\r-r'\), (3.7) 

/ , „ , ( | R | ; \z-z'\) = \—^^—iv\A\r-r'\), (3.8) 

where V\A\r\) = {dld\r\)V ^A\r\) and \r - r'\^ = + {z - z ' f . In the second 

term of (3.5) the Coulomb potential F ( | r - r ' | ) is long ranged but Pee^C''. �'') 
can be assumed to be sufficiently short ranged leading in the thermodynamic 
limit to a contribution to a of the form 

\ldzldz'\dRp,,'^{\R\; z,z')f{\R\; \z~z'\), (3.9) 

where the définition of /( | R | ; |2: — s' | ) is similar to that of (3.8) with | r — r' | ) 
replaced by the Coulomb potential F ( | r - r ' | ) . For the third term of (3.5) 
we use, at finite volume, the Fourier séries représentation of (2.26) : 

f ' ( l ' - - ' - ' l ) = 7 Z e x p [ / q . ( x - x ' ) ] - e x p ( - 9 | ^ - y | ) (3.10) 
/ l q q 

and obtain in the infinité volume limit (^ = q / | q | ) 

(2<) 

= \ldz\dz' pj^z)pj^z')^ dq exp [ - q\z - z' \ '\^TT\Z - z' \ + . 

= \^dz\dz' pj,z)pj,z'){2TT\Z-Z'\+1TT\Z-Z'\) 

= - i dz p,.{zmz), (3.11) 

where we have used (2.38). Finally, gathering ail results we obtain the following 
expression for the surface tension : 

kidz^ dz' p^{z)p^{z' ) J «/R J -pr—^ exp[iq .R-q\z~z'\]{27T\z-z'\+i7Tq.R) 

«^=5 I i dz i dz'^ d\x-x')p^^.{\x-x'\ ; z, z') 

V'.A\r-r'\) 

a, a 

\x — x'\^ — 2\z — z'\^ 

\r — r \ 

+ ^ ^ dz ^ dz' ^ d^{x-x')p^J{\x-x'\ ; z, z') 

r — r 
V'{\r-r'\)-j-idz{<f>'{z)y, (3.12) 

where we have used (2.46) and put |r - r'| = ( |x - x'|^+1^-^'1^)^'^. This is 
an alternative expression for the surface tension of charged fluids in terms of 
the singlet and pair distribution functions and the pair potentials. 

4 . THE MECHANICAL THEORY 

A third approach to the surface tension due originally to Kirkwood and 
Buff [1] proceeds from the surface excess value of the tangential pressure. 

file:///ldzldz'
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For a planar interface normal to the 2;-axis this leads to the following définition 
of CT : 

a= i dzicr,,{z)-cj^^{2)), (4.1) 

where the normal pressure, a^^, will be a constant for a System in hydrostatic 

equilibrium while the tangential pressure, a^^, will be a function of z only for a 
planar interface, while cylindrical symmetry will imply moreover that a^^ = Oyy. 

T h e cartesian éléments, a^p of the local pressure tensor, o(r), can be defined in 

gênerai from the mechanical équation of motion 

< â ( r ) > + V . o ( r ) = F(r), (4.2) 

where <§(r)> = / X ' " i ) / '® average local momentum density and 

F(r) is the average external force density. T h e explicit computation of (4.2) 

yields (see for example [11]) 

o(r) = ai^(r) + a'(r), (4.3) 

« '̂̂ (��)=lIPa(r)/i8, (4.4) 
a 

V . o ' ( r ) = I J d r ' p^,.{r,r')V[V,A\r-r'\) + e^e,.V{\r-r'\)], (4.5) 
a, a' 

where is the kinetic and a' the potential contribution to the pressure tensor 

o. In (4.5) we have again separated the interactions into short-ranged potentials 

V^^. and the Coulomb potential V. Proceeding as in (3.4) and (3.5) we obtain : 

V . o ' ( r ) = S idr' p,Arr')VV^A\r-r'\) 
a, a 

+ J r f r ' p , J ( r , r ' ) V F ( | r - r ' | ) 

+ ^ , , ( r ) j ^ r ' p , ( r ' ) V F ( | r - r ' | ) . (4.6) 

Introducing the average electric field, E(r), and average potential, (f>{r), through 

E(r) = - V 0 ( r ) = - V y rfr' p , ( r ' ) F ( | r - r ' | ) (4.7) 

we can split a' of (4.6) into a truncated part a""' and the electric or Maxwell 

pressure tensor (i.e. minus the Maxwell stress tensor) according to : 

V . o » = I , J ^ ' - ' p , , , ( r , r ' ) V F , , , ( | r - r ' | ) 

+ H r > , / ( r , r ' ) V F ( | r - r ' | ) , (4.8) 

V . o ^ H r ) = - P e ( r ) E ( r ) . (4 .9) 

Notice that since 0 = 0 ^ + 0'̂ ' + o^ , the Maxwell tensor has to be added not to the 

total pressure tensor but only to its truncated part. There remains now -to 

' s o l v e ' (4.8) and (4.9) for and a^'. From (4.7) we obtain V . E = 47rp .̂, 

using this resuit we eliminate from (4.9) and obtain the usual Maxwell 

pressure tensor. 

[ E ( r ) E ( r ) - i E ( r ) . E(r) l ] (4.10) 
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provided V x E = 0, which in view of (4.7) is trivially satisfied. T o obtain o'^ 
we rewrite as usual (4.8) as 

V . o T ( r ) = l X , \dr'[p,,.{r-r',r)-p^Ar,r + r-)]Ç'V^A\r'\) 

+ H ' ^ ' - ' [ P e e > - ' - ' , r ) - p , , > , r + r ' ) ]V'F( |r ' | ) (4.11) 

and hence 

- i I, J'^'-' .̂.-(r, r + r ' ) r ' V ' F , „ . ( | r ' | ) 

- è f r f r ' p , J ( r , r + r')r 'V'F( |r ' | ) , (4.12) 

where i 
Paa'{r,r + r')= f rfA p , , . ( r - Ar', r + (1 - A)r') (4.13) 

0 

and similarly for PeJ^{r, r + r'). Returning now to (4.1) we obtain finally 

a = i X , Idz^dr' -p^A^,r + r')[x'^',~z'Y,-\V^A\^'\) 
te, a 

+ H J ^ r ' p , / ( r , r + r ' ) [ x ' - ^ ' V ' J F ( I r ' I ) 

- 1 ^ ^ ^ ( V , , ^ ( ^ ) ) ^ (4.14) 

where we take into account that within the présent symmetry (f> = <f>{z) while 

Paa'('", '�') = P a a ' ( | x - x ' | ; 2'), (4.15) 

1 

Paair,r + r')= ^ dX p^^.{\x'\ ; z - Xz', z + {l - X)z') 

0 

= p„, ,( |x' | ; z,z'). (4.16) 

The expression (4.14) can also be written as 

a=idz {crJiz) - a^Jiz)) + J dz (a, M(^) - ^ , , ^ ( z ) ) , (4.17) 

which resembles Frenkel's formula [12] except that a^j'^ are not the éléments 
of the total pressure tensor but only of its truncated part (cf. (4.12)). 

5 . T H E éQUIVALENCE PROBLEM 

We have investigated three différent approaches to the définition of the 
surface tension of planar interfaces and shown how each of them could be 
extended to the case of charged fluids. There now remains to show that thèse 
three approaches also yield équivalent results. We shall consider the three 
approaches two by two. 

The mechanical resuit of (4.14) will be équivalent to the thermodynamic 
resuit of (3.12) if we can show that the foUowing relation holds together with'a 
similar relation for p̂ '̂̂  : 

1 

idz^dz'^dx' J dXp^^.{\x'\ ; z - Xz', z' +z- Xz')[x'V'^-z'y',]V^^.{\r'\) 
0 

= i dz^ dz' i dx' p^^.{\x'\ ; z, z' + z)[x'V'^-z'V'^]V^^.{\r'\), (5.1) 

where as usual r'= (x', z') = {x', y', z'). If in the left hand side of (5.1) we 
change the order of the intégrations and change the s;-variable to s — A '̂ we eod 
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up with the right hand side of (5.1) provided this latter intégral exists, i.e. 
provided the integrand J dx' /3aa'(|x'| 1 ^' +z) . . ., is a decreasing function 
of z while PJJ^-(|X'| ; ̂ r, s ' + s ) itself obviously is not. Assuming this to be the 

� case the thermodynamic and mechanical théories will be équivalent. 
The proof that the thermodynamic resuit (3.12) is also équivalent to the 

fluctuation theory resuit (2.48) and (2.49) is clearly a much more difficult 
matter. This was first done for the uncharged case in a remarkable paper by 
Schofield [3]. Its extension to the charged case undertaken here is seen to 
require only that due care be taken of the Coulomb singularities, a problem 
already encountered in § 2. We find it slightly easier to take Schofield's steps 
in reverse order and to start from the formula (2.49) which we write in view of 
(2.30) as ^ 

= lim - X J dz p\{z)[AJ,q ; z) - AJ,q = 0 ; ^)] (5.2) 

since we have already shown in (2.40) that A^{q ; z) is well behaved at ^ = 0. 

In the présent symmetry (2.5) becomes : 

I idz^G^^X^' ZZlWa,a'{q \ Z^,z') = h^^.h{z-Z'). (5.3) 
« ] 

Multiplying by p'^.{z') and summing over a! and z' we obtain from (5.3) ; 

Since A^^{q = 0, z^) is finite and non-zero (in non-zero external fields) (5.4) 

tells us that G^^^{q = () ; z, z-^) is finite (this will be shown explicitly elsewhere 
[13] in relation to the long range corrélations [9] developed by G^^,, along the 
electric double layer) and we can subtract the équation 

I J ' ^ ^ i G . . , ( 9 = 0 ; ^ , ^ i ) ^ . , ( 9 = 0 , ^ i ) = / ' ' . (^) (5.5) 
« 1 

from (5.4) to yield 

S J «̂ 1̂ G',^,(? = 0 ; ^, 2 i ) [ ^^ , (g ; ^ i ) - ^ . , ( 9 = 0, ^i)] 

°" = - I J [G . . , ( ? ; ^ , ^ i ) - G , , . ( ç = 0 ; ^ , ^ i ) ] J „ ( ç = 0 ; z,) 

- X f ' ^« i [^^^,(9 ; 2> ^ i ) - G ' „ „ , ( î = 0 ; z,z.,)][A^Xq\ z^) 

- ^ . , ( 9 = 0 , ^ , ) ] . (5.6) 

Multiplying (5.6) by U'J^z), summing over a and 'z, we obtain in view of (2.17), 

(2 .42) and (5.2) 

= - lim i X J dz J dz' v\{z)[G^Aq ; ^. 

- G . . - ( ? = 0 ; z,z')WAz'), (5.7) 

where moreover we take into account that the second term in the right hand 
side of (5.6) is 0{q^) [13]. Using now (2.6) and (2.16) we can rewrite (5.7) as 

^<j= - lim — i dz ^ dz' \ d{x - x')(exp [ — «q . (x — x')] - 1 ) 

ï ^ o q 

X ( ( I U'^{z)8p,{x, z)j(^ Ç U'Az')8PA^\ ^ ' ) ) ) - (5.8) 
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We then eliminate the external field from (5.8) with the aid of the microscopic 
équation of motion : 

i , ( x , z)+Y^ V,S$,,(x, z) = ^ X U\{z)hU^, z), (5.9) 

where we have subtracted the équation for <^,(x, s-)) ( = 0 for a System in 
equilibrium) and put â p ^ = p^ — a n d â ô j j - = CT^J — cr,y. Separating Vj- into the 
gradients normal (V^) and along (V^^) the interface we obtain, neglecting surface 
terms in z and z' 

J8CT = — lim —^^dz^ dz' J d{x — x')(exp [ —îq(x — x')] — 1) 
« ^ 0 q � 

x ( ^ ( i . ( x , ^ ) + S V,^.8â,.,(x,^)^ 

x ( i . ( x ' , ^ ' ) + i ; V , . „ â 5 , , , ( x ' , ^ ' ) j ^ . (5.10) 

Taking the limit and using the isotropy parallel to the interface we obtain 

( ^ = q / | q | ) 

a = ^ldzidz'ld{x-^'){q.{x-x)f'^iglx,z)Ux',z')y 

+ S V,^.V,,.,<Sâ,,(x, z)86y,(x',z')~} l (5.11) 
j-i' ) 

whereas up to surface terms (which we assume to vanish) (5.11) can be rewritten 

as 

'^=^1 d'^l dz' l d{x-x'){q . ( x - x ' ) ) ^ | < i e ( x , 2) i . (x ' , ^ ) 

+ V,^.V,V<i,(x, ^) ir (x ' , ^ ' ) > j (5.12) 

Integrating by parts we obtain 

a^^ldz\dz'\d{x- x'm � (x - x')^)<i.(x, z)Ux', z') 

-{z-z')\è^.q{x,z)à^.^{x',z')y}. (5.13) 

Finally, using the multicomponent generalization of the sum rule derived by 

Jhon et al. [14] 

i3<l i (r ) i , ( r ' )>= - X p,,.{r, r ' ) V , V , . ( F , , , ( | r - r ' | ) + v , , F ( | r - r ' | ) ) 
a, a. 

+ local terms, (5.14) 

where the ' local terms ' contain delta functions leading to vanishing contri-

butions to (5.13), the latter reduces to 

o = ^Sdr\dr' X />...(r, r '){(^-^')^(^ . V)^ 

- ( q . {x-x')f V / } ( ! / , , , ( I r - n ' D + e ^ v ^ ^ d r - r ' ! ) ) 

- ( x - x ' ) . ^ ^ . V , ^ , . } ( F , , . ( | r - r ' | ) + . , . , . F ( | r - r ' | ) ) , (5.15) 
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where the last step foUows f rom the central character of the potentials. Equation 
(5.15) is identical to (3.4) which, as shown in § 3 , can be further reduced to 

(3.12). And hence, provided the above assumptions are verified, the fluctuation 

theory and the thermodynamic theory will yield the same resuit. 

6 . CONCLUSIONS 

We have derived a number of exact expressions for the surface tension of 

planar interfaces of fluids consisting of mixtures of charged and uncharged 

particles interacting through short ranged pair potentials and, for the charged 

species, the long ranged Coulomb potential. Ail difficulties due to the Coulomb 

potential could be avoided provided the System satisfies overall electroneutrality 

(2.37) as well as electroneutrality of the bulk phases (2.36). Charge ségrégation 

in the interfacial région, where an electric double layer can be built up, is however 

allowed. We have shown that the gênerai expressions obtained for the surface 

tension a within the fluctuation theory (2.49) 

1 , . 1 

a , a ' 

- Y. \ dz p\{z)U J,z)\, (6.1) 

within the thermodynamic theory (3 .1) - (3 .3) 

- e L . 4 ( i | . ( ' 4 - ' é ) " > 
and within the mechanical theory (4.1) 

a= \dz{p^lz)-a^J^zy) (6.3) 

remain applicable to charged fluids and yield, respectively, the fol lowing results. 

T h e fluctuation theory leads to an expression (2.48) 

<̂  = 1 I \ àz\dz p'^{z)K^J^\z, z')p'Az') 

+ 2TTI dz\ dz' p^{z)\z-z'\p^{z') (6.4) 

defining a in terms of the density profiles Pc,{z) (the charge density Peiz) = 

Ti^oiPxi^)) second moment of the truncated inverse response functions 

(or direct corrélation functions) K^^S^K Taking into account the relation , 

(2.38) between the charge density and the electric potential of the double layer 

(6.4) is équivalent to the resuit of the previous authors [4, 6]. T h e thermo-

dynamic theory leads to the resuit (3.12) 

<^ = ï I \ dz\dz'\ d%x-x')p^^{\x-x'\; z, z') 

X V'aA\^-f'\) + ïS dz' \ d\x-x')p^,:^{\x-x' \ ; z,z') 

Jx~:.'\^-2\z-z'\^ 

\r — r I 
+ 2TT ^ dz ^ dz' p^{z)\z — z'\pj^z') (6.5) 
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expressing a in terms of the interaction potentials {V^^, and V), the pair distri-

butions p^^-, the truncated pair charge density p^g^ and the charge density p^. 
ÏO our Knowledge (6.5) is proposed here for the first time. T h e mechanical 

theory leads to an expression for a (4.17) 

<y=idz (aJiz) - + f dz { a j \ z ) - a„-^(^)) (6 .6) 

in terms of the éléments of the Maxwell pressure tensor (CT̂ ;'̂ ') and of the truncated 
pressure tensor {cT^p^). Finally, ail three expressions, (6 .4)-(6 .6) , have been 

shown, under relatively mild conditions, to be équivalent. 

R é F é R E N C E S 

[1 ] KiRKWOOD, J. G . , a n d BUFF, F . P . , 1 9 4 9 , chem. Phys., 17 , 3 3 8 . 

[2 ] TRIEZENBERG, D . G . , a n d ZWANZIG, R . , 1 9 7 2 , Phys. Rev. Lett., 2 8 , 1 1 8 3 . 

[3] ScHOFiELD, P., 1979, Chem. Phys. Lett., 62, 413. 
[ 4 ] EVANS, R . , a n d SLUCKIN, T . J . , 1 9 8 0 , J . Phys. C , 13, L 7 7 . 

[5 ] EVANS, R . , a n d SLUCKIN, T . J . , 1 9 8 0 , Molec. Phys., 4 0 , 4 1 3 . 

[6] SENATORE, G., and Tosi , M. P., 1980, Nuovo Cim., 56 B, 109. 
[7 ] BUFF, F . P . , 1 9 5 5 , ^ . chem. Phys., 2 3 , 4 1 9 . 

[8] LovETT, R., Mou, C. Y., and BUFF, F. P., 1976, jf. chem. Phys., 65, 570. 
[9 ] WERTHEIM, M . S . , 1 9 7 6 , J . chem. Phys., 6 5 , 2 3 7 7 . 

[ 1 0 ] BHATIA, A . B . , MARCH, N . H . , a n d T o s i , M . P. , 1 9 8 0 , Physics Chem. Liq., 9 , 2 2 9 . 

[ 1 1 ] BAUS, M . , 1 9 8 2 , 7 . chem. Phys., 7 6 , 2 0 0 3 . 

[12] FRENKEL, J., 1946, Kinetic Theory of Liquids (Dover Publications), p. 362. 
[13] BAUS, M., Molec. Phys. (to be published). 
[ 1 4 ] JHON, H . S . , DESAI, R . C , a n d DAHLER, J. S . , 1978 , Chem. Phys. Lett., 5 6 , 1 5 1 . 

M . p . 




