
The Surprising Effectiveness of Visual Odometry Techniques

for Embodied PointGoal Navigation

Xiaoming Zhao†, Harsh Agrawal‡, Dhruv Batra‡,§, Alexander Schwing†

†University of Illinois, Urbana-Champaign ‡Georgia Institute of Technology §Facebook AI Research

https://xiaoming-zhao.github.io/projects/pointnav-vo/

Abstract

It is fundamental for personal robots to reliably navigate

to a specified goal. To study this task, PointGoal navigation

has been introduced in simulated Embodied AI environments.

Recent advances solve this PointGoal navigation task with

near-perfect accuracy (99.6% success) in photo-realistically

simulated environments, assuming noiseless egocentric vi-

sion, noiseless actuation and most importantly, perfect lo-

calization. However, under realistic noise models for visual

sensors and actuation, and without access to a “GPS and

Compass sensor,” the 99.6%-success agents for PointGoal

navigation only succeed with 0.3%.1 In this work, we demon-

strate the surprising effectiveness of visual odometry for the

task of PointGoal navigation in this realistic setting, i.e.,

with realistic noise models for perception and actuation and

without access to GPS and Compass sensors. We show that

integrating visual odometry techniques into navigation poli-

cies improves the state-of-the-art on the popular Habitat

PointNav benchmark by a large margin, improving success

from 64.5% to 71.7% while executing 6.4 times faster.

1. Introduction

The ability to navigate efficiently and accurately within

an indoor environment is fundamental to personal robots

and has been a focus of research in computer vision for

many years [37]. To coalesce the community around a com-

mon framework and standard metrics, Anderson et al. [2]

proposed the task of PointGoal navigation. In PointGoal nav-

igation, an agent is randomly spawned in a previously unseen

environment and has to navigate to a point goal specified rel-

ative to the agent’s initial location and orientation, e.g., ‘Go

5m north, 3m west relative to start’. The agent uses a dis-

crete action space (e.g., move forward 0.25m, turn left

or turn right 30◦, and stop) to navigate in the environ-

ment. Under the assumption of noiseless egocentric vi-

1https://eval.ai/web/challenges/challenge-page/580/

leaderboard/1631 (Habitat Team).

Point-Goal
coordinate

[0.3, 0.4]

Observation Actuation Localization

Point-Goal
coordinate

[?, ?]

(a)

(b)

Figure 1: Noiseless (a) and noisy (b) PointGoal navigation. In the

noisy setting, the agent observes: 1) sensor noises in egocentric

observation; 2) actuation perturbations. The second column shows

a histogram of orientation angle changes caused by a turn left

action; 3) no localization information. The agent’s inaccurate

localization results in uncertainty about the goal location.

sion (noise-free RGB + depth sensors), noise-free actuation

(e.g., turn left will always turn exactly 30◦) and perfect lo-

calization using GPS+Compass sensors, recent methods solve

this task with near-perfect accuracy (99.6% success) [53].

However, these assumptions are unrealistic. Note that

GPS sensors typically don’t yield a precise location in in-

door environments. In addition, perception and actuation

of real robots often depend heavily on environment light-

ing and friction coefficients of surfaces. To study this more

realistic setting, in a recent benchmark2, PointGoal naviga-

tion was updated to include noisy actuation models from

real robots [35]. For example, for a single turn left ac-

tion, the actual turn angle varies significantly as shown in

column two of Fig. 1. Also, RGB and depth noise models

from [9] were incorporated to simulate a real-world camera.

Most importantly, as illustrated in column three of Fig. 1, the

agent does not have access to GPS+Compass data and must

navigate solely based on egocentric RGB + depth (RGB-

D) measurements. Under such a more realistic setting, the

performance of a policy that is near-perfect in noiseless sce-

narios [53] drops drastically to 0.3%. Improving upon it,

prior state-of-the-art [24] incorporates particle SLAM into

visual navigation and achieves a success rate of 64.5% under

such a realistic setting. Compared to the 99.6% success rate

2https://aihabitat.org/challenge/2020/

ar
X

iv
:2

10
8.

11
55

0v
1

 [
cs

.C
V

]
 2

6
A

ug
 2

02
1

https://xiaoming-zhao.github.io/projects/pointnav-vo/
https://eval.ai/web/challenges/challenge-page/580/leaderboard/1631
https://eval.ai/web/challenges/challenge-page/580/leaderboard/1631
https://aihabitat.org/challenge/2020/

on the noiseless version of the task, navigation with noisy

perception and actuation as well as without localization in-

formation hence remains challenging.

To better understand the challenges of navigation in this

realistic setting, we study three visual odometry (VO) tech-

niques. We find those VO techniques to be surprisingly

effective for PointGoal navigation in this realistic setting.

Specifically, we 1) leverage the geometric invariances of vi-

sual odometry; 2) incorporate discretization and ensembling

to safeguard against noise; and 3) use top-down orthographic

projection of depth information as an additional signal. For

1), we note that the estimated motion for a given pair of ob-

servations is related to the motion estimated for the permuted

observation. Two loss terms encourage this relation. For 2)

we study Dropout [46] in the last two layers of the visual

odometry model to safeguard against uncertainty within the

egomotion prediction, following [25]. We also find depth

discretization to be effective. For 3), we infer an egocentric

top-down projection from depth information at each individ-

ual step. We find that such a simple projection, which is

local to each step, benefits egomotion estimation.

On the Habitat Challenge 2020 PointNav benchmark, we

show that those three techniques are surprisingly effective,

achieving a 71.7% success rate and a 52.5% SPL, which

improves significantly upon the 64.5% and 37.7% SPL from

prior state-of-the-art (SOTA). Moreover, using VO in a navi-

gation policy also executes 6.4 times faster than prior SOTA.

We perform exhaustive ablations to show the efficacy of each

of the three techniques and find that all the aforementioned

techniques contribute to a more accurate navigation.

Importantly, we train this visual odometry model sep-

arately instead of learning it online with the policy. Us-

ing the VO model as a drop-in replacement for a perfect

GPS+Compass permits to re-use navigation policies that

were learned with perfect localization information (i.e., with

GPS+Compass sensor) without any expensive re-training.

Note that the visual odometry model can be trained for dif-

ferent environment dynamics using a static dataset of only a

couple of million frames. In contrast, navigation policies are

typically trained using over a billion frames collected using

six-months of GPU-time [53].

To summarize, we study three techniques for realistic

PointGoal navigation: 1) leveraging geometric invariances

via losses; 2) incorporating discretization and ensembling;

3) using top-down projection of depth information.

We show: learning such a visual odometry model offline

using only a couple of million frames and directly replac-

ing the GPS+Compass input of a navigation policy achieves

SOTA performance on the standard PointNav benchmark.

2. Related work

Navigation for embodied tasks. Recently, there has

been a renewed interest in the field of Embodied AI. The

community has built several indoor navigation simulators

[41, 57, 40, 27] on top of photo-realistic scans of 3D environ-

ments [27, 6, 47, 56, 55]. To test a robot’s ability to perceive,

navigate and interact with the environment, the community

has also introduced several tasks [57, 5, 45, 10, 52, 36, 3, 28,

48, 22, 21, 51, 16, 34, 33, 31, 32] and benchmarks. Specifi-

cally, Batra et al. [5] introduce evaluation details for the task

of Object Navigation, requiring the agent to navigate to a

given object class instead of a final point-goal. Similarly,

Room Navigation [36] requires the agent to navigate to a

given room type. More recently, Krantz et al. [45, 28, 48]

extend the navigation task to utilize instructions in natural

language. VLN [2, 28] and ALFRED [45] require the agent

to follow a sequence of natural language instructions in order

to reach the specified goal. Thomason et al. [48] introduce

Vision-and-Dialog Navigation that requires back-and-forth

communication in order to reach the desired location. Jain

et al. [22, 21] develop FurnLift and FurnMove to study vi-

sual multi-agent navigation. While these tasks differ in their

setup, each of them requires the agent to navigate accurately

in an environment. Towards this, the agent’s navigation pol-

icy assumes perfect knowledge of an agent’s location and

orientation (for example by using a perfect GPS+Compass

sensor). Recently, to alleviate this unrealistic assumption,

Datta et al. [11] propose to estimate egomotion from a pair

of depth maps. Like them, we also conduct egomotion es-

timation from visual observation. However, differently, we

study components that improve robustness. As we show in

Sec. 4.3, without improving robustness to observation and

actuation noise, the model yields inferior results.

Camera pose estimation and visual odometry (VO). Cam-

era pose estimation is related to localization estimation. E.g.,

direct use of a convolutional neural net (CNN) to estimate

relative camera pose was studied [59, 30], following the

aforementioned egomotion estimation [11]. These models

don’t usually consider robustness. Meanwhile, in the last

few decades, a number of methods have been developed

for VO [42, 14]. The pipeline typically consists of several

steps from camera calibration, feature selection and match-

ing to motion estimation from correspondences, outlier de-

tection, and bundle adjustment. More recently, various deep-

learning-based architectures have been proposed for VO. For

instance, Wang et al. [49] proposed a CNN + recurrent neu-

ral net (RNN) to estimate VO in an outdoor environment

from RGB input. Because three successive frames in indoor

navigation have little overlap, we find sequential training

with an RNN to not help. In contrast, we use a faster ResNet-

18 [17] architecture to learn VO from a noisy RGB-D input

pair. Wang et al. [50] leverage the mathematical group prop-

erty of the rigid motion to learn a VO model for outdoor

navigation. Similarly, we also utilize geometric invariance

constraints as a self-supervisory signal during training. In

addition, we deliberately utilize representations that make

Figure 2: The studied method. (a) We estimate the transformation ĤCt→Ct+1
∈SE(2) in PointGoal navigation (Sec. 3.1). (b) The visual

odometry (VO) operates on two consecutive egocentric observations (It, It+1) and yields ĤCt→Ct+1
(Sec. 3.5). (c) Illustration for ψ(·). To

deal with noise, besides raw RGBt and depth
t
, we find discretization d-depth

t
(Sec. 3.3) and top-down projection s-proj

t
(Sec. 3.4) to help.

the model robust to observation noise.

To model the agent’s uncertainty about its egomotion

prediction, Kendall et al. [25] used Dropout [46] after each

convolution layer and the penultimate linear layer. At test

time, their model uses 40 random samples to get a robust

estimate of the egomotion. 40 forward passes of the model

at every time step is prohibitively expensive when used as

input to a navigation policy. Moreover, since the input to

the VO model is already noisy, adding Dropout to the CNN

architecture provides little benefit. Instead, we add Dropout

to the last two layers of the model, and approximate the

effect of averaging the predictions from multiple models by

scaling the parameters of the last two layers. This permits

robust estimation with a single forward pass.

3. Approach

We study a simple but effective visual odometry (VO)

model, suitable for Embodied AI tasks that predict egomo-

tion from a pair of noisy RGB-D frames. This VO model,

which is based solely on classical components, can be used

as a drop-in replacement for a perfect GPS+Compass sen-

sor in a downstream navigation task. In the following, an

overview is provided before the components are discussed.

3.1. Overview

The model is illustrated in Fig. 2. PointGoal naviga-

tion [2] requires an agent to navigate to a point goal v
g
t ,

which is specified relative to the agent’s current location at

each time step t. After the first move, due to noise, the agent

only has an estimate v̂
g
t of the relative position.

Based on the estimated relative coordinates v̂
g
t as well as

egocentric observations I≤t until time t, e.g., measurements

from an RGB-D sensor, the agent chooses the next action

towards the goal. For this, the agent computes a distribution

over an action space A = {turn left, turn right, . . . },

i.e., a policy π(·|v̂g
t , I≤t). Upon executing action at ∈ A,

the agent’s position and orientation change. This results in

a change of the agent’s local coordinate system from Ct to

Ct+1. Any point’s location in coordinate system Ct can be

transformed to that of coordinate system Ct+1 using a trans-

formation HCt→Ct+1
, which is an element of the group of

rigid transformations in the 2D plane, i.e., SE(2). This as-

sumes that the agent’s motion is planar which holds because

an episode is defined on a single floor. Note, all techniques

can be extended easily to SE(3) if required.

However, transformation HCt→Ct+1
is not available be-

cause perfect location change measurements are not accessi-

ble. Hence, we need to estimate ĤCt→Ct+1
∈ SE(2) given

the agent’s egocentric observations. Using the transforma-

tion estimate ĤCt→Ct+1
, the agent computes the goal’s rela-

tive position at time t+ 1 from its prior estimate v̂
g
t via

v̂
g
t+1 = ĤCt→Ct+1

· v̂g
t . (1)

Sec. 3.2 discusses how to estimate the transformation

ĤCt→Ct+1
from egocentric observations by using geomet-

ric invariances. Sec. 3.3 explains a simple way to make a

visual odometry model robust to uncertainty in egomotion

estimates. Next, Sec. 3.4 discusses a simple method to uti-

lize a top-down projection from egocentric observation as an

additional signal. Finally, Sec. 3.5 details training.

3.2. Geometric Invariances for Visual Odometry

The goal is to learn a convolutional neural net (CNN)

that estimates the transformation ĤCt→Ct+1
∈ SE(2) from

a given pair of egocentric observations (It, It+1). Formally,

an element of SE(2) is specified by a translation ξ̂Ct→Ct+1
∈

R
2 in the ground plane and an angle θ̂Ct→Ct+1

∈ R, i.e.,

ĤCt→Ct+1
=

[
R̂Ct→Ct+1

ξ̂Ct→Ct+1

1

]
, (2)

with R̂Ct→Ct+1
=

[
cos(θ̂Ct→Ct+1

) − sin(θ̂Ct→Ct+1
)

sin(θ̂Ct→Ct+1
) cos(θ̂Ct→Ct+1

)

]
∈SO(2)

denoting the estimated rotation matrix from the special

orthogonal group. Given this parameterization, we found

SE(2) estimation via regression to be effective when using

the following loss: Lreg
Ct→Ct+1

,

‖ξCt→Ct+1
− ξ̂Ct→Ct+1

‖22 + ‖θCt→Ct+1
−θ̂Ct→Ct+1

‖22. (3)

Here, ξCt→Ct+1
and θCt→Ct+1

are grounth-truth SE(2) com-

ponents while ξ̂Ct→Ct+1
and θ̂Ct→Ct+1

are estimates of the

model fφ illustrated in Fig. 2(b), i.e.,
(
ξ̂Ct→Ct+1

, θ̂Ct→Ct+1

)
= fφ ((ψ(It), ψ(It+1))) . (4)

Further, φ refers to parameters of the VO model and ψ de-

notes a function that processes egocentric observations. The

architecture of the model will be presented in Sec. 3.5.

Note, use of the loss given in Eq. (3) is common for

learning the parameters of a VO model which often exhibits

the structure given in Eq. (4), e.g., [49, 11]. However, as

we show in Sec. 4.3, without specifically accounting for

perceptual and actuation noise, pure regression does not

work well. We discuss robustness improvements next.

Beyond regressing to ground truth data via the loss given

in Eq. (3), more information is available in a pair of observa-

tions (It, It+1). To see this, suppose the agent observes

(It, It+1) followed by (It+1, It). In this case we know

that, in general, the agent returned to its original location.

This is more formally described via the SE(2) invariance

HCt→Ct+1
HCt+1→Ct

= I3×3. Such geometric invariances

are ubiquitous. To exploit them, in addition to the regression

loss given in Eq. (3), we found two additional losses during

training of a VO model to help:

Linv
Ct→Ct+1

, Linv, rot
Ct→Ct+1

+ Linv, trans
Ct→Ct+1

. (5)

Linv, rot
Ct→Ct+1

and Linv, trans
Ct→Ct+1

are the rotation and translation in-

variance loss, which are explained next.

Rotation invariance. Intuitively, if a rotation with an-

gle θCt→Ct+1
transforms coordinates in Ct to ones in Ct+1,

then the inverse coordinate transformation from Ct+1 to

Ct will be achieved via a rotation with angle −θCt→Ct+1
,

i.e., θCt+1→Ct
= −θCt→Ct+1

. Consequently, a VO model

which receives egocentric observations (It, It+1) followed

by observations (It+1, It) should be encouraged to predict

θ̂Ct→Ct+1
+ θ̂Ct+1→Ct

= 0. This is achieved via the self-

supervised learning loss

Linv, rot
Ct→Ct+1

,
∥∥θ̂Ct→Ct+1

+ θ̂Ct+1→Ct

∥∥2
2
. (6)

Translation invariance. The translation invariance property

is intuitively similar to the one for rotation. If the transforma-

tion from Ct to Ct+1 consists of pure translation ξCt→Ct+1
,

then the reverse transformation from Ct+1 to Ct is simply

another translation with ξCt+1→Ct
= −ξCt→Ct+1

. This re-

sults in the loss ‖ξ̂Ct→Ct+1
+ ξ̂Ct+1→Ct

‖22. The relation is

slightly more involved when the transformation consists of

both rotation and translation. We obtain

Linv, trans
Ct→Ct+1

,
∥∥ξ̂Ct→Ct+1

+ R̂Ct→Ct+1
· ξ̂Ct+1→Ct

∥∥2
2
. (7)

We provide the formal derivation of the losses in Eq. (6) and

Eq. (7) in the appendix.

3.3. Robustness to Uncertainty

In addition to leveraging geometric invariances, we found

it was important to further increase robustness of the model’s

SE(2) estimation. This is important because measurements

are noisy: 1) visual observations differ even if the camera

position and orientation are identical because of observa-

tion noises. This makes the processing of observations brit-

tle; 2) perturbations in actuation influence the VO model’s

prediction since they increase the variance of rotation and

translation. For robustness we use two classical techniques:

Ensemble. To improve robustness, one can train an en-

semble of models. Averaging predictions over an ensemble

typically reduces variance. However, reinforcement learn-

ing (RL) based navigation systems need billions of samples

to train a good policy [53]. Since the policy relies on the

VO model to provide the agent’s current location estimate,

it is important to increase the inference speed and avoid

unnecessary computations. Therefore, instead of ensem-

bling multiple models, we found it helpful to train one CNN

architecture while adding Dropout [46] to the last two fully-

connected (FC) layers. This economically resembles the

behavior of training a large number of ensembles [4, 18].

During training, Dropout randomly disables hidden units in

the FC layer with a probability p, essentially sampling from

a collection of sub-networks. During inference, every hidden

unit in the FC layer is scaled with the same factor p to mimic

the averaging of predictions from multiple sub-networks.

Depth discretization. In addition, we found depth dis-

cretization to yield a more robust representation of the ego-

centric observation of a range sensor. Specifically, a single-

channel depth map depth is discretized into representation

d-depth with N channels using a one-hot encoding. Given

a pixel of depth at image coordinates (x, y) we obtain the

value of the i-th channel of d-depth via

d-depthi(x, y) = ✶ {depth(x, y) ∈ [zi−1, zi)} , (8)

where ✶{·} denotes the indicator function and {zi−1, zi}
are endpoints of discretization intervals. Intuitively, this in-

creases the absolute tolerance of the depth uncertainty to

mini
|zi−zi−1|

2 since the same representation will be gen-

erated unless a depth entry crosses the interval boundary.

Empirically we find an equidistant discretization into N in-

tervals using end-points zi = i · (zmax − zmin)/N to work

well. Here, zmax and zmin are the maximum (10m) and

minimum depth (0m) value respectively.

3.4. TopDown Projection as Additional Signal

Intuitively a map should further improve model robust-

ness. However, the key challenge in our setting: noise in

the depth sensor is fairly subtle and often hardly visible (see

Fig. 3(a,d)). But once projected to a 2D layout, the noise

manifests itself in gross deviations, holes, and blockages as

apparent in Fig. 3(b,e). To address this challenge we use

a normalized soft projection. Normalized soft projection

s-projt, shown in Fig. 3(c,f), resembles the room layout

given by the depth maps. Note that they also share more

similarities than the projection given in Fig. 3(b,e).

(a) (b)

(d) (e)

(c)

(f)

Figure 3: Steps to infer an egocentric top-down projection from

depth. Top and bottom rows show inferred top-down projections

from noisy and noiseless depth image at the same location. (b,e):

top-down scatter plot. (c,f): the soft top-down projection. As can

be seen, after processing, (c) and (f) share more similarities than

(b) and (e), making the representation more robust to depth noises.

We obtain the soft projection by 1) mapping depth ob-

servations into 3D point clouds, 2) using a 2D top-down

orthographic projection, and 3) normalizing the projection

with respect to the number of points within each pixel. Soft

projections are provided as input to the end-to-end trained

VO model which learns to use it appropriately. Details of

how to compute soft projections are presented in appendix.

3.5. VO Model Architecture, Training Details, and
Integration with Navigation Policy

Model Architecture. The visual odometry model fφ in

Eq. (4) employs a ResNet-18 [17] backbone to extract visual

features. For this we first compute representations from

egocentric observation as sketched in Fig. 2(c) via

ψ(It) , (RGBt, deptht, d-deptht, s-projt). (9)

Then, we stack (ψ(It), ψ(It+1)) along the channel dimen-

sion to obtain the ResNet-18 input. Since RGBt, deptht,

d-deptht and s-projt have three, one, N and one chan-

nels respectively, the input to the ResNet-18 is a tensor

with (2N + 10) channels. To estimate ĤCt→Ct+1
, we

use two Fully Connected (FC) layers with Dropout on

top of the ResNet-18 feature extractor. These FC layers

operate on 512-dimensional features and produce the out-

put
(
ξ̂xCt→Ct+1

, ξ̂zCt→Ct+1
, θ̂Ct→Ct+1

)
. Here ξ̂zCt→Ct+1

refers

to the translation in the agent’s forward direction while

ξ̂xCt→Ct+1
refers to the translation in the direction perpen-

dicular to the forward motion on the ground plane.

VO training. We train the visual odometry model fφ on

a dataset Dtrain =
{(

(It, It+1), ξCt→Ct+1
, θCt→Ct+1

)}
,{

dCt→Ct+1

}
. Each data point consists of a pair of egocentric

observations as well as ground-truth translation and rotation

angle. The model is optimized to jointly minimize the re-

gression loss and geometric invariance loss defined in Eq. (3)

and Eq. (5), i.e., we address minφ LVO ,

∑

dCt→Ct+1
∈Dtrain

[
λregL

reg
Ct→Ct+1

+λtrans
inv Linv, trans

Ct→Ct+1
+λrot

invL
inv, rot
Ct→Ct+1

]
,

(a) Plot of ξCt→Ct+1
and θCt→Ct+1

from data w/o collisions.

(b) Plot of ξCt→Ct+1
and θCt→Ct+1

from data with collisions.

Figure 4: Three-drawing plot of VO training data Dtrain described

in Sec. 4.1. Different actions have obviously distinct SE(2) distri-

butions, which we find cannot be well-learnt with a unifed model.

where λreg, λtrans
inv and λrot

inv are user-specified hyper-

parameters. We set them to 1.0 in our experiments. We

optimize the VO model with Adam [26] using a learning rate

of 2.5×10−4. The dropout factor is p = 0.2 during training.

Navigation policy training. The focus of our work is Point-

Goal navigation under realistic conditions, i.e., noisy obser-

vations and actuation as well as no access to GPU+Compass

sensors. In order to demonstrate that VO techniques can be a

simple drop-in replacement for a ground truth GPS+Compass

sensor, we directly use the navigation policy from [53].

Specifically, the navigation policy π consists of a 2-layer

LSTM [19] and uses a ResNet-18 [17] backbone to process

the visual observations. The policy is learned independently

of the visual odometry model and has access to perfect lo-

cation data. During training, at each time step t, the policy

π operates on egocentric observations I≤t, the ground-truth

point goal v
g
t as well as prior actions a≤t−1 , and computes

a distribution over the action space A. To learn the policy

we use DD-PPO [53], a distributed version of PPO [44]. We

use the same set of hyper-parameters and reward shaping

settings [53], which we discuss more in the appendix.

Visual odometry for navigation. During inference, at every

time t+ 1, the agent obtains an egocentric observation It+1.

Together with the previous egocentric observation It, the VO

model fφ computes the SE(2) estimate ĤCt→Ct+1
using

Eq. (4). Given the relative position estimate v̂
g
t from the

previous time t, the agent updates the current estimate v̂
g
t+1

via Eq. (1) and uses it as policy input.

4. Experiments

We strive to answer the following questions: 1) to what

extent does such a visual odometry (VO) model help naviga-

tion? 2) what contributes to its performance? We report re-

sults on the online Habitat Challenge test split in Sec. 4.2 and

conduct ablation on the offline validation split in Sec. 4.3.

4.1. Experimental Setup

Simulator specification. All experiments are conducted

using the Habitat simulator [41] and we follow the Habi-

tat PointNav Challenge [1] guidelines for all studies. We

summarize them here and defer details to the appendix:

Dataset. We utilize the training data released as part of the

Habitat Challenge. It consists of 72 scenes from the Gibson

dataset [58] with a rating of 4 or above (Gibson-4+). The

offline validation split consists of 14 different scenes which

are not part of the training dataset.

Observations. Similar to a LoCoBot3, the agent is equipped

with an RGB-D camera mounted at a height of 0.88m. It

has a 70◦ field of view and records egocentric observations

of resolution 341(width) × 192(height). The visual obser-

vations incorporate a noise model [9].

Actuation. The action space A consists of four actions:

move forward which moves the agent forward by ∼ 25cm,

turn left and turn right which rotate the agent by ∼
30◦, and stop. The agent exhibits actuation noise modeled

after the LoCoBot robot [35]. During collisions, the ‘sliding’

behavior that allows the agent to slide along the obstacle

instead of stopping is disabled. This more accurately mim-

ics the movement of a real robot [23]. Fig. 4 shows how

actuation noise and collisions affect an agent’s ground-truth

translation and rotation for each action type.

VO dataset. To train the VO model, we create a dataset

Dtrain of one million data points from 24,286 trajectories

uniformly sampled from 72 training scenes.4 As described

in Sec. 3.5, each data point dCt→Ct+1
consists of a pair of

observations as well as ground-truth translation and rotation:(
(It, It+1), ξCt→Ct+1

, θCt→Ct+1

)
. We generate data points

from each scene by repeating the following three-step proce-

dure: 1) randomly sample a starting position and orientation

of the agent and a navigable PointGoal in the scene; 2) fol-

low the shortest path to navigate from starting point to the

point goal; and 3) randomly sample data points dCt→Ct+1

along the trajectory. We find that due to actuation noise, the

action leads to collisions approximately 11.25% of the time.

The distribution of the ground-truth translation and rotation

in this VO dataset Dtrain is illustrated in Fig. 4. We observe

move forward, turn left, and turn right to have distinct

distributions. This finding motivates to train action-specific

models, which is effective for this task.

Metrics. PointGoal Navigation is evaluated on several cri-

teria, summarized by Anderson et al. [2]. An episode is

considered successful (S = 1) if the agent stops within

0.36m (2× the agent radius) of the target global coordinate,

otherwise the episode is marked as failed (S = 0). Using

3http://www.locobot.org/
4Trajectories are shortest paths computed on ground-truth layout map.

Table 1: Online evaluation as of 1:30 am CST, Mar. 17th, 2021. S,

SPL, and SoftSPL are reported in %.

Rank Team S ↑ SPL↑ dG ↓ SoftSPL↑ Time (h)↓

1-1 Ours w/ finetuning 71.7 52.5 0.802 66.5 5.83
1-2 Ours w/o finetuning 69.8 52.0 0.823 65.7 6.63
2 Karkus et al. [24] 64.5 37.7 0.697 52.1 37.50
3 Ramakrishnan et al. [38] 29.0 22.0 2.567 47.3 11.06
4 Information Bottleneck 16.3 12.2 2.075 56.1 2.73
5 Datta et al. [11] 15.7 11.9 2.232 58.6 2.31
6 cogmodel team (39) 1.3 0.9 4.879 30.4 5.47
7 cso 1.2 0.7 4.632 24.7 5.57
8 UCULab 0.8 0.5 6.555 10.4 15.12
9 Habitat Team 0.3 0.0 6.929 3.8 -

the length of the shortest-path trajectory l and the length of

an agent’s path la for an episode, Success Weighted by Path

Length (SPL) is defined as S l
max(la,l)

. SPL intuitively cap-

tures how closely the agent followed the shortest path and

successfully completed the episode. Distance to goal (dG)

captures the geodesic distance between the agent and the

goal upon episode termination averaged across all episodes.

Finally, the challenge also introduced the new SoftSPL met-

ric [11]: using the starting geodesic distance to the goal dinit

and the termination geodesic distance dG, SoftSPL is defined

as (1− dG

dinit
) l

max(la,l)
. It replaces the binary success S with a

progress indicator that measures how close the agent gets to

the target global coordinate at episode termination.

4.2. Results on the Online Leaderboard

Tab. 1 shows the results from the online leaderboard on

the test-standard split5 of the Habitat Challenge PointNav

Benchmark 2020 (we will call it Challenge hereafter). The

2020 winners achieved a success of 29.0% by integrating

occupancy anticipation [38] into active neural SLAM [7]

(Rank 3 in Tab. 1). Karkus et al. [24] proposed an end-to-

end particle SLAM-net to generate a global occupancy map

and utilized D∗ to plan the path, pushing SOTA to 64.5%

in Nov. 2020 (Rank 2 in Tab. 1). Our approach of training

a visual odometry model taking into account robustness

as discussed in Sec. 3 and aforementioned action-specific

design improves SOTA to 71.7%. Specifically, we evaluate

the VO model quality in two settings: 1) direct integration

into a pre-trained navigation policy as a drop-in module;

2) fine-tuning of a pre-trained policy w.r.t. the VO using

a small budget.6 Rank 1-1 and 1-2 in Tab. 1 verify that

combining all of the discussed techniques achieves state-of-

the-art performance on three out of four metrics, irrespective

of fine-tuning. Besides success rate, it improves SPL by

14.8 points (from 37.7% to 52.5%). Regarding SoftSPL, it

improves 7.9 points (from 58.6% of Rank 5 to 66.5%). Note,

VO in the navigation policy executes evaluation 6.4 times

faster than Rank 2 [24] (5.83 vs. 37.50 hours) and 1.9 times

faster than Rank 3 [38] (5.83 vs. 11.06 hours).

5https://evalai.cloudcv.org/web/challenges/

challenge-page/580/leaderboard/1631
6We finetuned the policy using 14.7 million frames, instead of billions

of frames required to train a policy.

http://www.locobot.org/
https://evalai.cloudcv.org/web/challenges/challenge-page/580/leaderboard/1631
https://evalai.cloudcv.org/web/challenges/challenge-page/580/leaderboard/1631

Table 2: Evaluation on the Gibson-4+ validation split. VO prediction errors are presented in the order of (ξ̂xCt→Ct+1
, ξ̂zCt→Ct+1

, θ̂Ct→Ct+1
).

Results are reported from three evaluations with different seeds. We use D as abbreviation for depth. S, SPL, and SoftSPL are reported in %.

VO Policy
S ↑ SPL↑ dG ↓ SoftSPL↑ Pred Error per Step (e−2) ↓

Visual DD S-Proj Dropout ActInfo DataAug GeoInv #param (M) Tune

0 DeepVO [49] 100.49 50±1 39±1 0.93±0.02 65±0 (2.40, 1.83, 1.62)±(0.00, 0.00, 0.01)

1 RGB 3.92 52±1 39±1 0.94±0.01 64±1 (1.96, 1.62, 1.37)±(0.02, 0.02, 0.01)

2 D 3.92 54±2 40±1 1.21±0.04 61±1 (1.88, 1.53, 1.38)±(0.01, 0.02, 0.02)

3 RGB-D 3.93 61±1 46±1 1.14±0.05 62±1 (1.72, 1.10, 1.23)±(0.04, 0.00, 0.00)

4 RGB-D ✓ 3.93 68±1 51±1 0.78±0.03 66±0 (1.42, 0.98, 1.03)±(0.01, 0.01, 0.02)

5 RGB-D ✓(rnd10) 3.93 42±1 31±1 1.64±0.07 57±0 (1.71, 1.35, 1.84)±(0.00, 0.01, 0.01)

6 RGB-D ✓ 12.4 70±1 52±1 0.89±0.04 65±0 (1.39, 1.02, 1.01)±(0.01, 0.01, 0.01)

7 RGB-D ✓ Embed 12.4 72±0 53±0 0.83±0.10 65±0 (1.36, 0.89, 0.93)±(0.02, 0.01, 0.01)

8 RGB-D ✓ SepAct 3×3.93 75±0 56±0 0.68±0.06 66±0 (1.24, 0.86, 0.82)±(0.00, 0.00, 0.01)

9 RGB-D ✓ SepAct ✓ 3×3.93 75±2 56±1 0.67±0.03 66±0 (1.15, 0.85, 0.78)±(0.00, 0.00, 0.01)

10 RGB-D ✓ SepAct ✓ ✓ 3×3.93 77±1 57±0 0.65±0.04 67±0 (1.13, 0.85, 0.76)±(0.01, 0.00, 0.01)

11 RGB-D 5 ✓ SepAct ✓ ✓ 3×3.96 74±2 57±1 0.70±0.05 68±0 (1.07, 1.03, 0.69)±(0.01, 0.01, 0.01)

12 RGB-D 10 ✓ SepAct ✓ ✓ 3×3.96 79±1 60±1 0.54±0.00 69±0 (1.08, 0.90, 0.67)±(0.00, 0.00, 0.00)

13 RGB-D 20 ✓ SepAct ✓ ✓ 3×3.96 79±0 60±0 0.52±0.03 69±0 (1.06, 0.85, 0.67)±(0.00, 0.00, 0.01)

14 D 10 ✓ ✓ SepAct ✓ ✓ 3×3.95 72±1 55±1 0.72±0.01 68±0 (1.40, 0.84, 0.86)±(0.00, 0.00, 0.00)

15 RGB-D ✓ ✓ SepAct ✓ ✓ 3×3.93 77±1 59±1 0.54±0.04 70±0 (1.12, 0.91, 0.72)±(0.00, 0.00, 0.00)

16 RGB 10 ✓ ✓ SepAct ✓ ✓ 3×3.96 79±1 61±1 0.52±0.02 69±0 (1.18, 0.78, 0.75)±(0.00, 0.00, 0.01)

17 RGB ✓ SepAct ✓ ✓ 3×3.92 59±2 45±1 0.74±0.05 67±0 (2.02, 1.73, 1.15)±(0.01, 0.00, 0.01)

18 RGB-D 10 ✓ ✓ SepAct ✓ ✓ 3×3.96 81±1 62±1 0.51±0.03 70±0 (1.10, 0.84, 0.68)±(0.00, 0.00, 0.01)

19 RGB-D 10 ✓ ✓ SepAct ✓ ✓ 3×3.96 ✓ 82±1 63±1 0.48±0.00 71±0 (1.08, 0.85, 0.65)±(0.01, 0.01, 0.00)

20 Ground-Truth 97±0 71±0 0.42±0.02 70±0

4.3. Ablations

To better understand the role of each technique, we per-

form an extensive ablation study (Row 1 - 19) in Tab. 2.

Specifically, we ablate over all combinations of: 1) visual

sensors (RGB and/or depth); 2) geometric invariance learn-

ing discussed in Sec. 3.2; 3) dropout and depth discretization

detailed in Sec. 3.3; 4) soft egocentric projection described

in Sec. 3.4; 5) use of action-specific models mentioned

in Sec. 4.1. Note, the VO is a drop-in replacement in a

pretrained navigation policy in Row 1 - 18 (no fine-tuning).

Evaluation is conducted on 994 episodes from 14 val-

idation scenes, each of which provides 71 episodes. We

abbreviate the discretized depth d-depth defined in Eq. (8)

via DD and use S-Proj to indicate use of the top-down projec-

tion discussed in Sec. 3.4. In addition to the aforementioned

metrics, we also report the VO prediction absolute error

per navigation step for ξ̂xCt→Ct+1
, ξ̂zCt→Ct+1

, and θ̂Ct→Ct+1
,

discussed in Sec. 3.5.

Note, prior work showed that without GPS+Compass sen-

sor, the policy achieves 0 SPL after 100-million-frame train-

ing and 15% SPL after 2.5-billion-frame training [53].7 In

contrast, when evaluated with perfect GPS+Compass sensors

under noisy observations and actuations (Row 19 in Tab. 2),

the policy obtains 71% SPL with 97% success rate. We

now discuss to what extent each of the techniques detailed

in Sec. 3 and Sec. 4.1 shrinks this gap.

Both RGB and Depth observations help visual odometry.

Row 1 - 3 study the role of visual modalities for visual

odometry. We find that the RGB-D model (Row 3) has lower

7Note, [53] do not train with observation and actuation noise, 15% SPL

is hence an upper bound.

per-step prediction error and higher navigation success rate

compared to RGB-only (Row 1) and depth-only (Row 2) VO

models. This finding overturns the accepted conventional

wisdom in this sub-field [53, 11] that RGB models overfit

and depth-only models outperform RGB-D models. We

find that both RGB and depth observations are important for

training a visual odometry model. We hypothesize that RGB

enables better feature matching between frames. In addition,

this result highlights the advantage of separately training

VO model and navigation policy as they capture different

features of the input observations.

Adding Dropout in the VO model learns a more robust

egomotion estimator. We find significant performance im-

provements when using Dropout to economically mimic an

ensemble for more robust egomotion prediction. Empirical

results demonstrate the effectiveness of this design as suc-

cess rate and SPL improve 7 and 5 points respectively (Row

3 vs. 4 in Tab. 2). To demonstrate the advantage of a single

forward pass over multiple ones during inference, we con-

duct additional experiments (Row 5). We randomly select

hidden units with ratio p at test time and average results of

10 forward passes. Apart from the apparent inferior results

(success 42% vs. 68% for Row 5 vs. 4), the VO model’s

throughput drastically decreases from 118.8 FPS (frames per

second) for Row 4 to 8.45 FPS for Row 5.

Learning action-specific models helps. As mentioned in

Sec. 4.1, action-specific model design (SepAct) improves

the navigation’s success rate from 68% (Tab. 2 Row 4) to

75% (Row 8) while improving other metrics as well. Further-

more, SepAct increases the accuracy of VO prediction for all

three components. To validate that this improvement is due

to SepAct and not from an increased parameter count, we

add two more ablations (Row 6 and 7): 1) in Row 6, a VO

model was trained with 3× more parameters (12.4M) than

the single-action model (3.93M) by increasing the ResNet-

18 layer width twofold. Note, we observed that wider models

work better than deeper ones for PointGoal navigation. Com-

paring Row 8 to Row 6, we can see that simply adding more

parameters performs worse in success rate (75% to 70%),

SPL (56% to 52%) as well as VO prediction; 2) in Row 7,

instead of training separate models, we exposed a unified

model to action information via an action embedding. Per-

formance increases from Row 6 to Row 7 on success rate

(70% to 72%), SPL (52% to 53%) and VO prediction, estab-

lishing that action information is important for such a task.

However, the worse results compared to Row 8 (success and

SPL both drop 3 points) confirm the effectiveness of SepAct.

Encouraging geometric invariance in the egomotion pre-

dictions is helpful. As discussed in Sec. 3.2, the VO model

can benefit from exploiting the geometric invariance prop-

erties. Row 8 vs. Row 10 in Tab. 2 confirms the effective-

ness of this technique: success rate and SPL improves two

and one points respectively. To verify that this improve-

ment indeed stems from the self-supervised signal instead

of data augmentation, we conduct an ablation with a simple

data augmentation for invertible actions like turn left and

turn right. Specifically, when training the VO model for

turn left, apart from using the original pair of frames

collected for turn left, we also utilize the frames col-

lected for the turn right action by reversing the pair of

observations and computing the corresponding ground-truth

SE(2). Similar processing is applied when training the VO

model for turn right. We do not apply data augmentation

to move forward since there do not exist situations where

agents move backward. Tab. 2 shows that sole data augmen-

tation does not help navigation performance (success and

SPL remain the same across Tab. 2 Row 9 vs. Row 8).

Depth discretization and top-down projection account

for more satisfactory results. As shown in Sec. 3.3, we

add depth discretization d-depth to obtain a more robust

egomotion estimation. Indeed, use of d-depth increases

success rate from 77% to 79% and SPL from 57% to 60%

(Tab. 2 Row 10 vs. Row 12). To understand whether the

performance is robust to the number of d-depth’s channels,

we ablate over 5, 10, and 20 channels in Row 11 - 13. The

results verify that coarse discretization harms the navigation

performance (Row 11 vs. Row 12). However, when the gran-

ularity increases (20 channels instead of 10), the gains from

adding more channels are not significant (Row 12 vs. Row

13). Meanwhile, use of the soft projection discussed in

Sec. 3.4 benefits PointGoal navigation improving success

and SPL by two points (Row 12 vs. Row 18 in Tab. 2).

Every representation feature is indispensable for VO. To

verify that every input feature is required, we conduct abla-

(a) SPL 85%. (b) SPL 80%. (c) SPL 85%.

Figure 5: Qualitative results. Agent is asked to navigate from blue

square to green square. Blue curve is the actual path the agent takes

while red curve is based on the agent’s estimate of its location from

the VO model by integrating over SE(2) estimation of each step.

tions by removing each feature (RGB, D, DD, S-Proj) from

the VO model. Specifically, if we ignore the RGB repre-

sentation, success drops from 81% to 72% (Row 14 vs. 18

in Tab. 2). Trends are similar for depth (success drops two

points from Row 16 vs. 18), depth discretization (success

drops 4 points from Row 15 vs. 18), and egocentric top-down

projection (Row 12 vs. 18). Moreover, we train our VO with-

out any depth-related parts, i.e., depth, DD, and S-Proj (Row

17). Row 17 vs. 18 again verifies the importance of depth.

Note, the difference between Row 1 and Row 17 is that

Row 17 uses Dropout, SepAct, DataAug, and GeoInv. the

7-point success rate improvement validates those technique’s

usefulness (Row 1 vs. Row 17).

Tuning RL policy with VO further improves perfor-

mance. The VO model’s efficiency (36 FPS for Row 18

in Tab. 2 on a 3.10GHz Intel Xeon Gold 6254 CPU and an

Nvidia GeForce RTX 2080 Ti GPU) permits fine-tuning of

the RL policy with respect to the VO module. In Tab. 2’s

Row 19, we observe overall best performance across all crite-

ria after tuning the RL policy with only 14.7 million frames,

which is much more affordable than billions of frames [53].

Comparison to other VO methods. We further compare to

DeepVO [49], a supervised RNN-based VO, on PointGoal

Navigation. Please see the appendix for implementation

details. We train DeepVO on our collected dataset. We found

DeepVO to fall short of the simplest VO model as success

rate drops from our 52% to 50% (Row 0 vs. 1 in Tab. 2). We

hypothesize that the RNN does not perform well due to little

overlap between consecutive frames.

4.4. Qualitative Results

Fig. 5 shows several successful trajectories that overlay

the ground-truth top-down map. We show that integrating

VO techniques into a navigation policy permits to accurately

guide the agent towards the point goal. For example, in

Fig. 5c, the VO model is able to precisely estimate SE(2)
around corners and in case of collisions. More examples and

failure cases are available in the appendix.

5. Conclusion

To conclude, we find classical visual odometry techniques

to be surprisingly effective and yield a very strong baseline

for Embodied PointGoal Navigation in a realistic setting

(noisy actuation and perception; no localization sensor).

Acknowledgements: This work is supported in part by NSF

under Grant #1718221, 2008387, 2045586, MRI #1725729,

and NIFA 2020-67021-32799, UIUC, Samsung, Amazon,

3M, and Cisco Systems Inc. (Gift Award CG 1377144 -

thanks for access to Arcetri).

References

[1] Habitat Challenge 2020, 2020. 6

[2] Peter Anderson, Angel X. Chang, Devendra Singh Chaplot,

Alexey Dosovitskiy, Saurabh Gupta, Vladlen Koltun, Jana

Kosecka, Jitendra Malik, Roozbeh Mottaghi, Manolis Savva,

and Amir Roshan Zamir. On evaluation of embodied navigation

agents. ArXiv, 2018. 1, 2, 3, 6

[3] Peter Anderson, Qi Wu, Damien Teney, Jake Bruce, Mark John-

son, Niko Sünderhauf, Ian D. Reid, Stephen Gould, and Anton

van den Hengel. Vision-and-language navigation: Interpreting

visually-grounded navigation instructions in real environments.

CVPR, 2018. 2

[4] Pierre Baldi and Peter Sadowski. Understanding dropout. NIPS,

2013. 4

[5] Dhruv Batra, Aaron Gokaslan, Aniruddha Kembhavi, Olek-

sandr Maksymets, Roozbeh Mottaghi, Manolis Savva, Alexan-

der Toshev, and Erik Wijmans. ObjectNav Revisited: On

Evaluation of Embodied Agents Navigating to Objects. ArXiv,

2020. 2

[6] Angel X. Chang, Angela Dai, Thomas A. Funkhouser, Maciej

Halber, Matthias Nießner, Manolis Savva, Shuran Song, Andy

Zeng, and Yinda Zhang. Matterport3D: Learning from rgb-d

data in indoor environments. 3DV, 2017. 2

[7] Devendra Singh Chaplot, Dhiraj Gandhi, Saurabh Gupta, Ab-

hinav Gupta, and R. Salakhutdinov. Learning to Explore using

Active Neural SLAM. ICLR, 2020. 6

[8] C. Chen and et al. A survey on deep learning for localization

and mapping: Towards the age of spatial machine intelligence.

arxiv/2006.12567, 2020. 13

[9] Sungjoon Choi, Qian-Yi Zhou, and Vladlen Koltun. Robust

reconstruction of indoor scenes. CVPR, 2015. 1, 6

[10] Abhishek Das, Samyak Datta, Georgia Gkioxari, Stefan Lee,

Devi Parikh, and Dhruv Batra. Embodied question answering.

CVPR, 2018. 2

[11] Samyak Datta, Oleksandr Maksymets, Judy Hoffman, Stefan

Lee, Dhruv Batra, and Devi Parikh. Integrating Egocentric

Localization for More Realistic Point-Goal Navigation Agents.

CoRL, 2020. 2, 4, 6, 7

[12] Daniel DeTone and et al. Superpoint: Self-supervised interest

point detection and description. CVPRW, 2018. 14

[13] Shivam Duggal, Shenlong Wang, W. Ma, R. Hu, and R. Ur-

tasun. DeepPruner: Learning Efficient Stereo Matching via

Differentiable PatchMatch. ICCV, 2019. 13

[14] F. Fraundorfer and D. Scaramuzza. Visual odometry : Part

ii: Matching, robustness, optimization, and applications. IEEE

Robotics Automation Magazine, 19(2), 2012. 2

[15] Andreas Geiger, Philip Lenz, and R. Urtasun. Are We Ready

for Autonomous Driving? The KITTI Vision Benchmark Suite.

CVPR, 2012. 13

[16] Saurabh Gupta, Varun Tolani, James Davidson, Sergey

Levine, Rahul Sukthankar, and Jitendra Malik. Cognitive

mapping and planning for visual navigation. IJCV, 2019. 2

[17] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. CVPR, 2016. 2,

5, 12

[18] Geoffrey E. Hinton, Nitish Srivastava, A. Krizhevsky, Ilya

Sutskever, and R. Salakhutdinov. Improving Neural Networks

by Preventing Co-Adaptation of Feature Detectors. ArXiv,

2012. 4

[19] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term

memory. Neural Computation, 1997. 5

[20] Sergey Ioffe and Christian Szegedy. Batch normalization: Ac-

celerating deep network training by reducing internal covariate

shift. ArXiv, 2015. 12

[21] U. Jain∗, L. Weihs∗, E. Kolve, A. Farhadi, S. Lazebnik, A.

Kembhavi, and A. G. Schwing. A Cordial Sync: Going Beyond

Marginal Policies For Multi-Agent Embodied Tasks. ECCV,

2020. 2

[22] U. Jain∗, L. Weihs∗, E. Kolve, M. Rastegrari, S. Lazebnik,

A. Farhadi, A. G. Schwing, and A. Kembhavi. Two Body

Problem: Collaborative Visual Task Completion. CVPR, 2019.

2

[23] Abhishek Kadian, Joanne Truong, Aaron Gokaslan, Alexan-

der Clegg, Erik Wijmans, Stefan Lee, M. Savva, S. Chernova,

and Dhruv Batra. Sim2Real Predictivity: Does Evaluation in

Simulation Predict Real-World Performance? IROS, 2020. 6

[24] Peter Karkus, Shaojun Cai, and David Hsu. Particle SLAM-

Net for Visual Navigation. CVPR, 2021. 1, 6

[25] Alex Kendall and Roberto Cipolla. Modelling uncertainty in

deep learning for camera relocalization. ICRA, 2016. 2, 3

[26] Diederik P. Kingma and Jimmy Ba. Adam: A method for

stochastic optimization. ArXiv, 2015. 5, 12

[27] Eric Kolve, Roozbeh Mottaghi, Winson Han, Eli VanderBilt,

Luca Weihs, Alvaro Herrasti, Daniel Gordon, Yuke Zhu, Ab-

hinav Gupta, and Ali Farhadi. AI2-THOR: An Interactive 3D

Environment for Visual AI. ArXiv, 2017. 2

[28] Jacob Krantz, Erik Wijmans, Arjun Majumdar, Dhruv Batra,

and Stefan Lee. Beyond the nav-graph: Vision-and-language

navigation in continuous environments. ECCV, 2020. 2

[29] Hamid Laga, Laurent Valentin Jospin, Farid Boussaı̈d, and

M. Bennamoun. A survey on deep learning techniques for

stereo-based depth estimation. IEEE Transactions on Pattern

Analysis and Machine Intelligence, 2020. 13

[30] Zakaria Laskar, Iaroslav Melekhov, Surya Kalia, and Juho

Kannala. Camera Relocalization by Computing Pairwise Rela-

tive Poses Using Convolutional Neural Network. ICCV Work-

shop, 2017. 2

[31] I.-J. Liu, U. Jain, R. Yeh, and A. G. Schwing. Cooperative

Exploration for Multi-Agent Deep Reinforcement Learning. In

Proc. ICML, 2021. 2

[32] I.-J. Liu, Z. Ren, R. Yeh, and A. G. Schwing. Semantic

Tracklets: An Object-Centric Representation for Visual Multi-

Agent Reinforcement Learning. In Proc. IROS, 2021. 2

[33] I.-J. Liu, R. Yeh, and A. G. Schwing. High-Throughput

Synchronous Deep RL. In Proc. NeurIPS, 2020. 2

[34] I.-J. Liu∗, R. Yeh∗, and A. G. Schwing. PIC: Permutation

Invariant Critic for Multi-Agent Deep Reinforcement Learning.

In Proc. CORL, 2019. ∗ equal contribution. 2

[35] Adithyavairavan Murali, Tao Chen, Kalyan Vasudev Alwala,

Dhiraj Gandhi, Lerrel Pinto, Saurabh Gupta, and Abhinav

Gupta. PyRobot: An open-source robotics framework for

research and benchmarking. ArXiv, 2019. 1, 6

[36] Medhini Narasimhan, Erik Wijmans, Xinlei Chen, Trevor

Darrell, Dhruv Batra, Devi Parikh, and Amanpreet Singh. See-

ing the un-scene: Learning amodal semantic maps for room

navigation. ECCV, 2020. 2

[37] N. Nilsson. Shakey the Robot. 1984. 1

[38] Santhosh K. Ramakrishnan, Z. Al-Halah, and K. Grauman.

Occupancy Anticipation for Efficient Exploration and Naviga-

tion. ECCV, 2020. 6

[39] Paul-Edouard Sarlin and et al. Superglue: Learning feature

matching with graph neural networks. CVPR, 2020. 14

[40] Manolis Savva, Angel X. Chang, Alexey Dosovitskiy,

Thomas A. Funkhouser, and Vladlen Koltun. MINOS: Mul-

timodal indoor simulator for navigation in complex environ-

ments. ArXiv, 2017. 2

[41] Manolis Savva, Abhishek Kadian, Oleksandr Maksymets,

Yili Zhao, Erik Wijmans, Bhavana Jain, Julian Straub, Jia Liu,

Vladlen Koltun, Jitendra Malik, Devi Parikh, and Dhruv Batra.

Habitat: A platform for embodied ai research. ICCV, 2019. 2,

6, 12

[42] D. Scaramuzza and F. Fraundorfer. Visual odometry [tutorial].

IEEE Robotics Automation Magazine, 18(4), 2011. 2

[43] John Schulman, Philipp Moritz, Sergey Levine, Michael I.

Jordan, and Pieter Abbeel. High-dimensional continuous con-

trol using generalized advantage estimation. ArXiv, 2016. 12

[44] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Rad-

ford, and Oleg Klimov. Proximal policy optimization algo-

rithms. ArXiv, 2017. 5, 12

[45] Mohit Shridhar, Jesse Thomason, Daniel Gordon, Yonatan

Bisk, Winson Han, Roozbeh Mottaghi, Luke Zettlemoyer, and

Dieter Fox. Alfred: A benchmark for interpreting grounded

instructions for everyday tasks. ArXiv, 2019. 2

[46] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya

Sutskever, and Ruslan Salakhutdinov. Dropout: a simple way

to prevent neural networks from overfitting. JMLR, 2014. 2, 3,

4

[47] Julian Straub, Thomas Whelan, Lingni Ma, Yufan Chen, Erik

Wijmans, Simon Green, Jakob J. Engel, Raul Mur-Artal, Carl

Ren, Shobhit Verma, Anton Clarkson, Mingfei Yan, Brian

Budge, Yajie Yan, Xiaqing Pan, June Yon, Yuyang Zou, Kim-

berly Leon, Nigel Carter, Jesus Briales, Tyler Gillingham,

Elias Mueggler, Luis Pesqueira, Manolis Savva, Dhruv Ba-

tra, Hauke M. Strasdat, Renzo De Nardi, Michael Goesele,

Steven Lovegrove, and Richard A. Newcombe. The Replica

Dataset: A Digital Replica of Indoor Spaces. ArXiv, 2019. 2

[48] Jesse Thomason, Michael Murray, Maya Cakmak, and Luke

Zettlemoyer. Vision-and-dialog navigation. ArXiv, 2019. 2

[49] Sen Wang, Ronald Clark, Hongkai Wen, and Agathoniki

Trigoni. DeepVO: Towards end-to-end visual odometry with

deep recurrent convolutional neural networks. ICRA, 2017. 2,

4, 7, 8

[50] Xiangwei Wang, Daniel Maturana, Shichao Yang, Wenshan

Wang, Qijun Chen, and Sebastian A. Scherer. Improving

learning-based ego-motion estimation with homomorphism-

based losses and drift correction. IROS, 2019. 2

[51] David Watkins-Valls, Jingxi Xu, Nicholas R. Waytowich, and

Peter K. Allen. Learning your way without map or compass:

Panoramic target driven visual navigation. ArXiv, 2019. 2

[52] Erik Wijmans, Samyak Datta, Oleksandr Maksymets, Ab-

hishek Das, Georgia Gkioxari, Stefan Lee, Irfan Essa, Devi

Parikh, and Dhruv Batra. Embodied question answering in pho-

torealistic environments with point cloud perception. CVPR,

2019. 2

[53] Erik Wijmans, Abhishek Kadian, Ari S. Morcos, Stefan Lee,

Irfan Essa, D. Parikh, Manolis Savva, and Dhruv Batra. DD-

PPO: Learning near-perfect pointgoal navigators from 2.5 bil-

lion frames. ICLR, 2020. 1, 2, 4, 5, 7, 8, 12

[54] Yuxin Wu and Kaiming He. Group Normalization. ECCV,

2018. 12

[55] Yi Wu, Yuxin Wu, Georgia Gkioxari, and Yuandong Tian.

Building generalizable agents with a realistic and rich 3d envi-

ronment. ArXiv, 2018. 2

[56] Fei Xia, Amir R. Zamir, Zhi-Yang He, Alexander Sax, Ji-

tendra Malik, and Silvio Savarese. Gibson Env: real-world

perception for embodied agents. CVPR, 2018. 2, 12

[57] Fei Xia, William B Shen, Chengshu Li, Priya Kasimbeg,

Micael Edmond Tchapmi, Alexander Toshev, Roberto Martı́n-

Martı́n, and Silvio Savarese. Interactive gibson benchmark: A

benchmark for interactive navigation in cluttered environments.

IEEE Robotics and Automation Letters, 2020. 2

[58] Fei Xia, Amir Roshan Zamir, Zhi-Yang He, Alexander Sax,

Jitendra Malik, and Silvio Savarese. Gibson env: Real-world

perception for embodied agents. CVPR, 2018. 6

[59] A. Zamir, T. Wekel, Pulkit Agrawal, Colin Wei, Jitendra

Malik, and S. Savarese. Generic 3D Representation via Pose

Estimation and Matching. ECCV, 2016. 2

Appendix:

The Surprising Effectiveness of Visual Odometry Techniques

for Embodied PointGoal Navigation

This appendix is structured as follows:

• Sec. A provides the formal derivation of the geometric

invariance loss described in Sec. 3.2.

• Sec. B describes the technical details to generate the

egocentric top-down projection discussed in Sec. 3.4.

• Sec. C describes the navigation policy’s architecture

and hyperparameters used for training.

• Sec. D gives details about the visual odometry model’s

training and inference.

• Sec. E states implementation details of DeepVO as well

as our model’s performance on KITTI.

• Sec. F demonstrates that we cannot accurately estimate

relative pose from depth due to sensor’s noises.

• Sec. G provides more qualitative results to demonstrate

the performance of our model.

A. Formal Derivation for Geometric Invari-

ance Loss

Recall that we predict ĤCt→Ct+1
∈ SE(2) from two

consecutive egocentric observations (It, It+1). Intuitively,

invariance is obtained when observing (It, It+1) followed

by (It+1, It). Due to the invertibility of transformations be-

tween coordinate systems Ct and Ct+1, we have the following

relation between ground-truth transformations:

HCt→Ct+1
HCt+1→Ct

= I3×3, (S1)

where I3×3 is the three-dimensional identity matrix.

Meanwhile, an element from SE(2) is defined as follows:

HCt→Ct+1
,

[
RCt→Ct+1

ξCt→Ct+1

1

]

where RCt→Ct+1
=

[
cos(θCt→Ct+1

) − sin(θCt→Ct+1
)

sin(θCt→Ct+1
) cos(θCt→Ct+1

)

]
.

(S2)

Note, the rotation matrix can be computed via RCt→Ct+1
=

exp
(
alg(θCt→Ct+1

)
)
, i.e., by applying the exponential map

exp on alg : R 7→ R
2×2, the function that maps an an-

gle from R to an element of the Lie algebra so(2), namely

alg(θ) = θ

[
0 −1
1 0

]
. When replacing the rotation matrix in

Eq. (S2) with this representation and expanding the relation

given in Eq. (S1), we obtain:
[
exp

(
alg(θCt→Ct+1

)
)

ξCt→Ct+1

1

]

·

[
exp

(
alg(θCt+1→Ct

)
)

ξCt+1→Ct

1

]
= I3×3. (S3)

After multiplying out the left-hand side we obtain the fol-

lowing system of equations:
{
exp

(
alg(θCt→Ct+1

+ θCt+1→Ct
)
)
= I2×2

exp
(
alg(θCt→Ct+1

)
)
· ξCt+1→Ct

+ ξCt→Ct+1
= 0

.

(S4)

Upon simplification, this results in
{
θCt→Ct+1

+ θCt+1→Ct
= 0

exp
(
alg(θCt→Ct+1

)
)
· ξCt+1→Ct

+ ξCt→Ct+1
= 0

,

(S5)

which were used in Eq. (6) and Eq. (7) of the main

manuscript to encourage the geometric invariance via the

two losses:

Linv, rot
Ct→Ct+1

,
∥∥θ̂Ct→Ct+1

+ θ̂Ct+1→Ct

∥∥2
2
. (S6)

Linv, trans
Ct→Ct+1

,
∥∥ exp

(
alg(θ̂Ct→Ct+1

)
)
· ξ̂Ct+1→Ct

+ ξ̂Ct→Ct+1

∥∥2
2

=
∥∥R̂Ct→Ct+1

· ξ̂Ct+1→Ct
+ ξ̂Ct→Ct+1

∥∥2
2
. (S7)

This concludes the derivation.

B. Technical Details for Generating Egocentric

Top-Down Projection

We describe details on how to compute the egocentric

top-down projection discussed in Sec. 3.4.

From depth map to 3D point. Given a pixel of the depth

map depth at image coordinates (u, v)8, we obtain the 3D

point’s Cartesian coordinates in the camera coordinate sys-

tem from:

(x, y, z)T = h(u, v, depth(u, v))

= (K−1 · (u+ 0.5, v + 0.5, 1)T) · depth(u, v),
(S8)

where h(·, ·, ·) represents the function for generating 3D co-

8We follow common practice and let +U point downward while +V

points to the right.

ordinates9. Here K ∈ R
3×3 is the intrinsic matrix assumed

to be known and depth(u, v) denotes the z-buffer value at

(u, v). Note u+0.5 and v+0.5 are used to compute the 3D

point from the center of the pixel and (u + 0.5, v + 0.5, 1)
is the homogeneous coordinate. Further, z = depth(u, v).
Computing bounding box for point clouds. After gener-

ating 3D point clouds, we obtain a bounding box for those

3D points. Specifically, 1) for the Cartesian Z axis, we have

zmin and zmax. They refer to the minimum and the maximum

depth values, which are specified by the sensor; 2) for the

Cartesian X axis, we have xmin and xmax which come from

leftmost/rightmost pixels in depth observation depth. These

values will be utilized to compute pixel coordinates in the

next step.

Computing 2D pixel coordinates of top-down projection.

As mentioned in Sec. 3.1, we assume that the agent’s motion

is planar. Therefore, we ignore coordinates in the direc-

tion perpendicular to the plane. Concretely, we use coor-

dinates (x, z). Therefore, we obtain pixel coordinates in

top-down projection for such a point as (row, col), where

row = ⌊H · z−zmin

zmax−zmin
⌋ and col = ⌊W · x−xmin

xmax−xmin
⌋, where

H ×W represents the top-down projection’s resolution.

Generating soft top-down projection. 1) For every pixel

in depth, we repeat the aforementioned steps to compute the

corresponding pixel coordinates (row, col) in the top-down

projection. 2) We count the number of points which fall into

each (row, col) cell. A soft egocentric top-down projection

s-proj is obtained by normalizing the count to the range of

[0, 1].

C. Navigative Policy Training Details

In Tab. S1, we provide training details of the navigation

policy used in our experiments. We explain the strucutre of

our policy in the following paragraphs.

Visual encoder. We use ResNet-18 [17] as our visual fea-

ture extractor to process an egocentric observation of size

341(width) × 192(height). Following [53], we replace ev-

ery BatchNorm [20] layer with GroupNorm [54] to deal

with highly-correlated trajectories in on-policy RL and mas-

sively distributed training. A 2x2-AvgPool layer is added

before ResNet-18 so that the effective resolution is 170× 96.

ResNet-18 produces a 256 × 6 × 3 feature map, which is

converted to a 114× 6× 3 feature map through a 3x3-Conv

layer.

Point-Goal encoder. At each time step t, the agent receives

the point-goal’s relative position v
g
t or v̂

g
t in polar coordi-

nate form. Similar to [53], we convert the polar coordinates

into a magnitude and a unit vector to alleviate the discon-

tinuity at the x-axis in polar coordinates. A subsequent

fully-connected layer transforms it into a 32-dimensional

representation.

9Following common practice, +X points to the right, +Y points up-

ward and +Z points backward.

Navigation Policy. The 2-layer LSTM in the navigation

policy takes three inputs: 1) a 512-dimensional vector of

egocentric observations, which is obtained by flattening the

114× 6× 3 feature map from the visual encoder into a 2052-

dimensional vector and then feeding it into a fully-connected

layer; 2) a 32-dimensional output of the goal encoder; 3)

a 32-dimensional embedding of the previous action (or the

start-token when beginning a new episode). The output of the

2-layer LSTM is fed into a fully-connected layer, obtaining

a distribution over the action space and an estimate of the

value function.

Table S1: Hyperparameters.

Hyperparameter Value

PPO (DD-PPO)

Clip parameter [44] 0.2

Rollout timesteps 128

Epochs 2

Value loss coefficient 0.5

Discount factor (γ) 0.99

GAE parameter (λ) [43] 0.95

Normalize advantage False

Preemption threshold [53] 0.6

Training

Optimizer Adam [26]

(β1, β2) for Adam (0.9, 0.999)
Learning rate 2.5e−4

Gradient clip norm 0.2

D. VO Model Training and Inference Details

D.1. Environment Details

Consistent with [41], in Tab. S2, we show the inventory

of all scenes from Gibson [56] that were used in our experi-

ments. Each of them is rated with quality level 4 or above

as described in [41]. From the 72 scenes of the train split,

we create a training dataset D with one million data points

as described in Sec. 4.1. Similarly, a validation dataset Dval

with 50,000 data points is generated from 14 scenes of the

val split.

D.2. VO Dataset Statistics

Tab. S3 summarizes the statistics of our visual odometry

(VO) training dataset D. As mentioned in Sec. 4.1, since our

training data is sampled from shortest-path trajectories, the

ratio of actions roughly represents the percentage of actions

that appeared in actual navigation tasks.

Tab. S3 provides another reason to use a separate model

per action (SepAct) in a visual odometry model. Since the

Table S2: Gibson-4+ scene split.

Split Scenes

Train Adrian, Applewold, Bolton, Cooperstown, Goffs, Hominy, Mobridge, Nuevo, Quantico, Roxboro, Silas,

Stanleyville, Albertville, Arkansaw, Bowlus, Crandon, Hainesburg, Kerrtown, Monson, Oyens, Rancocas,

Sanctuary, Sodaville, Stilwell, Anaheim, Avonia, Brevort, Delton, Hambleton, Maryhill, Mosinee, Parole, Reyno,

Sasakwa, Soldier, Stokes, Andover, Azusa, Capistrano, Dryville, Haxtun, Mesic, Nemacolin, Pettigrew, Roane,

Sawpit, Spencerville, Sumas, Angiola, Ballou, Colebrook, Dunmor, Hillsdale, Micanopy, Nicut, Placida, Roeville,

Seward, Spotswood, Superior, Annawan, Beach, Convoy, Eagerville, Hometown, Mifflintown, Nimmons,

Pleasant, Rosser, Shelbiana, Springhill, Woonsocket

Val Cantwell, Denmark, Eastville, Edgemere, Elmira, Eudora, Greigsville, Mosquito, Pablo, Ribera, Sands, Scioto,

Sisters, Swormville

dataset is imbalanced with respect to the type of action, a uni-

fied model across all actions needs to deal with imbalanced

training data. Empirically, we find that a unified model over-

fits for turn left and turn right while the performance

of move forward has not converged yet. The SepAct de-

sign overcomes this issue. More discussion is presented in

Sec. D.4.

In Fig. S1, we illustrate the distribution of translation and

rotation caused by each action. We note that for each of the

actions, the distribution of the translation changes has a peak

around 0m, which is caused by the agent getting stuck when

encountering collisions.

D.3. Qualitative Examples from D

Fig. S2 shows qualitative examples of translation and

rotation changes resulting from each action. Apart from the

noisy egocentric observations, the complexity of estimating

the SE(2) transformation also stems from similar translation

and rotation changes across different actions. For example,

ξxCt→Ct+1
in all six figures is extremely similar.

D.4. VO Model Evaluation

Fig. S3 shows the evaluation curve on Dval for the Unified

and SepAct models, namely the VO model of Row 6 and

Row 8 in Tab. 2. We define sys error as the average abso-

lute difference between ground-truth and estimated values

if the VO model always predicts the mean of the training

data in Fig. S1. For example, if we let Dforward ⊂ D and

Dforward
val ⊂ Dval be datasets whose data points are generated

by the move forward action, we compute the sys error of

move forward on ξxCt→Ct+1
as:

sys error =
1

|Dforward
val |

∑

dCt→Ct+1
∈Dforward

val

|ξxCt→Ct+1
− µ|,

where µ =
1

|Dforward|

∑

dCt→Ct+1
∈Dforward

ξxCt→Ct+1
. (S9)

Here dCt→Ct+1
=

(
(It, It+1), ξCt→Ct+1

, θCt→Ct+1

)
and

µ = 0.018 from the first histogram of Fig. S1a. Note,

sys error is computed equivalently for ξxCt→Ct+1
, ξzCt→Ct+1

,

and θCt→Ct+1
of all three actions. The closer the evaluation

curve is to sys error, the less useful the information that

the VO model learns. Apparently, the SepAct model learns

more helpful information as its curve is further away from

the sys error line.

Meanwhile, as discussed in Sec. D.2, the training dataset,

which represents the actual path’s action distribution, is im-

balanced. A unified model may encounter overfitting on one

action while yielding unsatisfactory prediction on another.

Specifically, in the first plot of Fig. S3a, the performances on

turn left and turn right encounters overfitting at around

the 30th epoch, while the performance on move forward im-

proves even at the 120th epoch. This issue does not arise in

SepAct’s evaluation curve in Fig. S3b, verifying the efficacy

of SepAct.

E. DeepVO and KITTI

In this section we discuss implementation details of

DeepVO as well as our model’s performance on KITTI.

DeepVO implementation. There isn’t an official code of

DeepVO and the most-starred public one yields incorrect re-

sults (Tab. S4’s Col. 2)10. Our re-implementation of DeepVO

(Col. 3 in Tab. S4) matches the numbers reported in the orig-

inal DeepVO paper (Col. 1)11. Therefore, we apply our

implemented DeepVO in the PointGoal navigation task.

Our VO module on KITTI [15]. In order to run our VO

module on KITTI, we need depth information. We use one

of the best entries (DeepPruner [13]) in Tab. 3 from [29] to

obtain a depth estimate. As can be inferred from Tab. S4’s

Col. 3 vs. 4 and Tab. 2’s Row 0 vs. Row 18, outdoor and

indoor tasks have their own challenges.

10https://github.com/ChiWeiHsiao/DeepVO-pytorch
11Differences are due to the rare train/test split in the DeepVO paper

while we train on Seq00-08 and evaluate on Seq09/10 as Tab. 1 in [8].

https://github.com/ChiWeiHsiao/DeepVO-pytorch

Table S3: Visual odometry training dataset statistics.

Category

Action
move forward turn left turn right Total

Non-collided 503,890 (87.90%) 186,291 (87.32%) 197,318 (92.49%) 887,499 (88.75%)

Collided 69,342 (12.10%) 27,143 (12.68%) 16,016 (7.51%) 112,501 (11.25%)

Total 573,232 213,434 213,334 1,000,000

0.2 0.1 0.0 0.1 0.2 0.3
Meter

0
5000

10000
15000
20000
25000
30000 =0.018

=0.070

x
t t+1

0.4 0.3 0.2 0.1 0.0
Meter

0

5000

10000

15000

20000
= 0.242
=0.067

z
t t+1

15 10 5 0 5 10 15
Degree

0
2500
5000
7500

10000
12500
15000
17500 =0.840

=4.577

t t+1

(a) Action move forward.

0.10 0.05 0.00 0.05 0.10
Meter

0
5000

10000
15000
20000
25000 =0.000

=0.029

x
t t+1

0.06 0.04 0.02 0.00 0.02 0.04 0.06
Meter

0
5000

10000
15000
20000
25000 = 0.000

=0.015

z
t t+1

15 20 25 30 35 40 45 50
Degree

0

2000

4000

6000

8000 =31.207
=3.685

t t+1

(b) Action turn left.

0.10 0.05 0.00 0.05 0.10
Meter

0
2000
4000
6000
8000

10000
12000
14000 =0.004

=0.030

x
t t+1

0.06 0.04 0.02 0.00 0.02 0.04 0.06
Meter

0
2000
4000
6000
8000

10000
12000
14000
16000 = 0.000

=0.015

z
t t+1

50 45 40 35 30 25 20 15
Degree

0

2000

4000

6000

8000 = 31.184
=3.706

t t+1

(c) Action turn right.

Figure S1: Translation and rotation distribution histogram of each action in our VO training dataset. Because the simulator aligns the forward

direction with the negative direction of the axis, most of the ξzCt→Ct+1
values for move forward are negative.

F. Estimate Relative Pose from Depth

Because depth is noisy as mentioned in Sec. 3, it prevents

reliable estimation of relative pose. To verify, we experiment

with the following pipeline.

1) Find matching points. To extract and match point

descriptors in adjacent RGB frames, we use the recent

SuperPoint-SuperGlue (SPSG) [12, 39] which was shown to

improve over traditional hand-engineered methods. Qualita-

tively, Fig. S4a verifies high-quality matches.

2) Compute relative pose. We use findEssentialMat and

recoverPose from OpenCV to recover rotation θ̂Ct→Ct+1
and

direction of translation. Fig. S4b shows inliers for Fig. S4a

found by OpenCV. High-quality inliers ease the analysis

as the final VO prediction error unlikely stems from mis-

matched points.

t t+1

(a) move forward, no collision, (0.05, 0.19,−0.26).

t t+1

(b) move forward, with collision, (0.00, 0.00,−0.20).

t t+1

(c) turn left, no collision, (−0.04,−0.01, 32.8).

t t+1

(d) turn left, with collision, (0.00, 0.00, 38.6).

t t+1

(e) turn right, no collision, (−0.02, 0.00,−28.4).

t t+1

(f) turn right, with collision, (0.06, 0.00,−29.4).

Figure S2: Qualitative examples of translation and rotation changes caused by each action. The changes are presented in the order of

(ξxCt→Ct+1
, ξzCt→Ct+1

, θCt→Ct+1
).

Table S4: Results on KITTI. Values are rrel(
◦)/trel(%).

1.DeepVO† 2.DeepVO‡ 3.DeepVO§ 4.RGB-D-DD-S-Proj

Seq09 N/A 33.37 / 92.97 4.016 / 11.14 7.062 / 19.22

Seq10 8.83 / 8.11 38.68 / 90.22 4.498 / 11.24 9.298 / 15.80

0 20 40 60 80 100 120
Epoch

1.00

2.00

4.00

6.00

M
et

er
 (e

2)

| x
t t+ 1

x
t t+ 1|

0 20 40 60 80 100 120
Epoch

1.00
0.80

2.00

4.00

M
et

er
 (e

2)

| z
t t+ 1

z
t t+ 1|

move_forward
move_forward, sys_error

turn_left
turn_left, sys_error

turn_right
turn_right, sys_error

0 20 40 60 80 100 120
Epoch

1.00
0.60
0.80

2.00

4.00
6.00

De
gr

ee
 (e

2)

| t t+ 1 t t+ 1|

(a) Unified model.

0 20 40 60 80 100 120
Epoch

1.00

2.00

4.00

6.00

M
et

er
 (e

2)

| x
t t+ 1

x
t t+ 1|

0 20 40 60 80 100 120
Epoch

1.00
0.80

2.00

4.00

M
et

er
 (e

2)

| z
t t+ 1

z
t t+ 1|

move_forward
move_forward, sys_error

turn_left
turn_left, sys_error

turn_right
turn_right, sys_error

0 20 40 60 80 100 120
Epoch

1.00
0.60
0.80

2.00

4.00
6.00

De
gr

ee
 (e

2)

| t t+ 1 t t+ 1|

(b) SepAct model.

Figure S3: Evaluation of VO models on generated validation dataset Dval. We show the average absolute difference between ground-truth

value and prediction from VO models. The y-axis uses log-scale. The sys error is defined in Sec. D.4.

3) Resolve scale ambiguity. 3).a With depth, we compute

3D coordinates of inliers in two camera coordinate systems.

3).b We rotate 3D coordinates in one frame with θ̂Ct→Ct+1
.

3).c We compute the scale as the averaged norm between the

rotated coordinates and the coordinates in the other frame. To

obtain the final translation (ξ̂xCt→Ct+1
, ξ̂zCt→Ct+1

), we rescale

the direction produced by OpenCV. The obtained VO error

(E1) is much larger than ours (E3) (Tab. S5) and prevents

successful navigation.

4) Additional oracle experiment. We conduct an oracle

experiment using ground-truth rotation θCt→Ct+1
in 3).b.

From E2 vs. E3 (ours): directly estimating relative pose from

depth is inferior. Note, the validation set scenes are not used

for training our VO model (Sec. 4.1).

G. More Qualitative Results

In Fig. S5, we provide additional qualitative results when

integrating the navigation policy with our VO model.

(a) Matched points from SPSG.

0 50 100 150 200 250 300

0

25

50

75

100

125

150

175

0 50 100 150 200 250 300

0

25

50

75

100

125

150

175

(b) Inliers from OpenCV.

Figure S4: Qualitative examples for feature matching.

E1 (e−2) E2 (e−2) E3 (e−2)

(15.9, 21.3, 8.51) (3.97, 10.6, 0.00) (1.22, 0.86, 0.66)

Table S5: VO prediction error on Dval (50000 entries,

see Sec. D.1). Lower is better. Following Tab. 2, we report

(ξ̂xCt→Ct+1
, ξ̂zCt→Ct+1

, θ̂Ct→Ct+1
). E1: Feature Matching; E2: Fea-

ture Matching Oracle; E3: our result.

(a) Scioto, SPL 87%.

(b) Pablo, SPL 84%.

(c) Mosquito, SPL 83%.

(d) Denmark, SPL 82%.

(e) Greigsville, SPL 81%.

(f) Cantwell, SPL 78%.

(g) Eastville, SPL 78%.

(h) Edgemere, SPL 75%.
(i) Eudora, SPL 35%.

(j) Sisters, fail.

Figure S5: Qualitative results (best viewed in color). Agent is asked to navigate from blue square to green square. Blue curve is the actual

path the agent takes while red curve is based on the agent’s estimate of its location from the VO model by integrating over SE(2) estimation

of each step.

