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Abstract. This paper investigates the swallowtail and butterfly catastrophes from the
point of view which is applicable in the theory of elastic stability. Thus, the results are
concerned with the various forms of these instabilities as well as the determination of the
critical load surfaces which are of engineering significance. It is demonstrated that the
results are applicable to an axially loaded beam resting on a nonlinear elastic foundation.

Introduction. Catastrophe theory [1] and the theory of elastic stability [2, 3, 4] are
known to be similar in nature. For example, Thompson and Hunt [5] showed that
imperfection sensitivity in the anticlinal point of bifurcation results in an elliptic umbilic
catastrophe. Further, they showed that the stability analysis of a two-mode axially
loaded stiffened flat plate could be classified as a hyperbolic umbilic catastrophe. In
addition, the parabolic umbilic and its application to a two-mode pressurized spherical
shell and to a two-mode uniformly compressed plate on a nonlinear elastic foundation
were examined by Hui and Hansen [6, 7]. For single-mode systems, the catastrophes
which have been considered are the fold, cusp, swallowtail and butterfly cuspoids. The
fold model occurs when the cubic term of the potential energy is non-zero. It arises, for
example, in the single-mode overall buckling of a wide integrally stiffened flat plate
(where the stringers are closely spaced so that overall buckling occurs first) under axial
compression [8] and in the Cox buckling problem [2]. The cusp model is found in both
the single local mode and the single overall mode buckling of axially stiffened cylindrical
shells under compressive loads [9, 10, 11], oval cylindrical shells under axial compression
[12], compressed sandwich cylindrical panels [13] as well as in the initial post-buckling
analysis of a spherical cap under a concentrated or an axisymmetric distributed load [14,
15). The reason for the present investigation is that all of the above-mentioned elemen-
tary catastrophes have been investigated and applied to structural instability problems
except the swallowtail and the butterfly cuspoids. Thus, it is of interest to investigate the
implications of these remaining catastrophes and to determine the role they play in the
theory of elastic stability.

In this paper, the swallowtail and butterfly cuspoids are unfolded and analyzed in
terms of the theory of elastic stability. They are solved in the most general form so that

* Received June 21, 1979.



18 DAVID HUI AND JORN S. HANSEN

the results are applicable to any system where the potential energy expression falls into
their standard forms. Previous work [16, 17, 18] has been done on these models;
however, it was not specifically toward the theory of elastic stability. In particular, the
equilibrium paths of the present work illustrate important physical insight and as a result
emphasize the distinction between primary and secondary critical surfaces. The swallow-
tail and butterfly cuspoids are in general applicable to any cusp catastrophe (including
all the aforementioned examples) when the quartic term of the potential energy is either
zero or sufficiently small. Therefore, in order to demonstrate the general results, a stabi-
lity analysis of a beam resting on a nonlinear elastic foundation is presented in the final
section. This analysis is based on a Koiter-style approach [2].

Classification of single-mode systems. The most general form of the potential energy
of a single-mode system expanded about the classical critical load of the perfect system is

1
PE= |A5(4 — 4,) + ng('{ —Aa) 4 8+ [As + AR - ) + 18

+ [Ag + AG(h = ) + 18 + [As + AS(A — i) + )8
+[A6+A’6(,1_/1d)+...]é6+...

+ [e1By + & By(A — Ay) + )¢ + [62B; + £, By(A — Ag) + - ]&?

+ [e3Bs + &3By(A — Ay) + )& + [eaBa + €4 By — Ag) + - JE* + - (1)

where A,, A}, 4], ... and A, vanish because of the condition that the first and second
variations of the potential energy are zero in the critical state of equilibrium. In the
above A is the applied load parameter, A, is the classical critical load, £ is the amplitude
of the buckling mode, A), A3, A5, A%, ..., By, B}, B,, ... are constants and ¢, ¢, , &3 and
¢, are the amplitudes of various imperfection quantities. That is, these imperfections
represent deviations from the idealized model of the structure. Thus, they may appear as
initial geometric deformation changes in material specification or any other similar quan-
tity. It should be noted that, for an asymptotic analysis, it is usual to retain only the first
non-vanishing term in each of the above square brackets.

In catastrophe theory, the form of a single mode instability is classified according to
the first non-vanishing coefficient 4,, where n = 3, 4, .... The standard form after divi-
sion by A, and a suitable scaling is

PE={"4 0, ;8" 2 4o, 3" 3+ +ay 8 + a8 +ay &
With An#o, An_1="'A2=0 (2)

where a4, a,, ..., a,_, are control parameters and are associated with quantities such as
applied load(s) and deviations of the real system from the idealized model. Furthermore,
all these control parameters are assumed to be zero in the reference state and it is the
stability of the perturbations of the reference state which is under consideration.

The fold cuspoid occurs whenever the cubic term of the potential energy is non-zero.
The standard form is

PE=8 +a,& Ay #0. (3)
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Also, the standard form of the cusp model is given by
PE= +& + a8 +,&,  A3=0, A, #0. (4)

The swallowtail cuspoid instability occurs when both the cubic and quartic terms of the
potential energy vanish (that is, when the quartic term of the cusp model vanishes) and
the quintic term is non-zero. Its standard form is

PE=8 4+ a8+ 0,82 +0,¢,  A;=A,=0, A5#0. (5)

Continuing, if the quintic term along with the cubic and quartic terms of the potential
energy vanish, the next higher form of instability is called the butterfly cuspoid. The
standard form of this model is

PE= 4+ + 0, 8% + o383 + a, &2 + o, &
Ay=A,=A5=0, Ae #0 (6)

where the plus or minus sign corresponds respectively to the butterfly catastrophe and to
its dual. In the present, because of physical implications, the plus sign corresponds to
what is defined as the stable butterfly cuspoid and the negative sign to the unstable
butterfly cuspoid. The forms of the instability such as the fold and swallowtail cuspoids
which begin with the odd powers of ¢ are always unstable at the classical critical load. It
is noted that one of the objectives of this paper is to emphasize the importance of the
sign of the leading term of the even-ordered catastrophes such as the cusp and the
butterfly models. Other higher forms of instability are also of possible interest; however,
they are out of the scope of the elementary catastrophes. For example, the standard form
of the Wigwam and Star catastrophes are [16], respectively,

PE={¢7 +ag8 + a8 + 038 + 0,82 + ay &

Ay=A,=A5=4,=0, A;#0, (7)
PE= iés+asé6+a565+a4é4+a3és+a262+alé
Ay=A,=Ag=Ag=A,=0, Ag+#0. 8)

Swallowtail cuspoid. By setting the first and second variations of the appropriate
potential energy expression to zero, the equilibrium and stability equations of the swal-
lowtail cuspoid are

5E4 4+ 332 + 20,8 +ay =0, 1063 + 33 + a, = 0. 9)

The critical load surface is obtained by eliminating the behavior variable from the
equilibrium and stability equations. The primary critical load surface is defined to be the
first intersection of the equilibrium path with the stability boundary as the applied load
is increased from zero. Any subsequent intersection with the stability boundary is termed
the secondary surface. Throughout this paper, the primary surfaces are shown as solid
lines while the secondary surfaces are shown as dotted lines. All stability boundaries are
shown as dash-dot lines. Stable and unstable equilibrium paths are shown as solid and
dotted lines respectively.

Fig. la shows the swallowtail cuspoid critical load surface of 1 — «, versus «, for
various values of a;. The corresponding equilibrium paths for three typical values of a5
are shown in Figs. 1b-d. Fig. 1b shows that for a system with positive values of «; and
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negative values of a, the initially stable equilibrium paths do not intersect the stability
boundary. Hence, there is no critical load surface as shown in Fig. 1a. Fig. 1d shows that
when a3 is negative, the stability boundary has two peaks and therefore, for sufficiently
small (in magnitude) negative values of a; the equilibrium paths intersect the stability
boundary and the critical surface exists.

Butterfly cuspoid. The equilibrium and stability equations of the stable butterfly
cuspoid are, respectively,

6% + 4oy &3 4 33 E2 + 20,8 + oy = 0, 15% + 60, &% + 3038 +a, = 0. (10)
Similarly, for the unstable butterfly cuspoid, these equations become
— 685 + B, E3 4+ B0y &2 4 20,8 +ay, =0, —158% + 60, &% + 303 + o, = 0. (11)

It may be noted that all four of the above equations remain invariant when the pa-
rameters «,, x; and deflection ¢ change sign simultaneously. Thus the four-dimensional
(ag, 25, 25, &g critical surface will have reflective symmetry in the sense that when a5 is
replaced by —a;, the surface is symmetric with respect to the a, axis. Further, it is
obvious that by changing the signs of «;,, &, , 5 and «, in the stable butterfly cuspoid, the
result is an unstable butterfly cuspoid and vice versa. Similarly, by changing the signs of
oy, o, and ¢ in the stable butterfly cuspoid, the result is also an unstable butterfly
cuspoid and vice versa. Hence, the equilibrium curves and critical surfaces of the unstable
butterfly cuspoid are obtained by simply inverting the corresponding graphs of the stable
butterfly model (that is, by changing the signs of ay, a5, o3, o).

Fig. 2a shows the stable butterfly cuspoid critical load surface when the parameter o,
is set to .05. Also, due to symmetry considerations, only negative values of a5 are plotted.
The critical load surface for positive values of «; can be obtained by reflecting the graph
about the load axis. The corresponding equilibrium paths for typical values of o, being
— 4 are shown in Fig. 2b. Here, assuming that the applied load is increased from zero,
the system will buckle only for sufficiently small negative parameters «,. Fig. 2c shows
that when a3 = 0 the initially stable system will buckle only when a; = 0. Again, from
symmetry considerations, the equilibrium paths for positive values of a3 are similar to
Fig. 2b except o, and the deflection ¢ change sign. This implies that the system will
buckle only for sufficiently small positive values of a;.

Fig. 3a shows the stable butterfly cuspoid critical load surface for a typical negative
value of o, being —.5. Again, only negative values of a5 are plotted due to symmetry.
This figure differs from Fig. 2a in that the primary surfaces exist for sufficiently small
positive and negative values of «,. This is demonstrated in Figs. 3b,c where the stability
boundaries have two minima instead of one. Fig. 3b shows that when a3 = —1, the
relative major peak of the stability boundary corresponds to negative values of «, and
thus the primary surface for negative values of «, is higher than the primary surface for
positive values of o, as shown in Fig. 3a. The reverse is true for positive values of oy and
are therefore not plotted.

Fig. 4a shows the unstable butterfly cuspoid critical load surfaces for a typical nega-
tive value of a, being —0.05. This graph is obtained by inverting Fig. 2a and then
changing the signs of a4 and the deflection £ Although the equilibrium and stability
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% )\=l—(12

—— Primary Surface
—~- Secondary Surface

—T

-0 'l a,

F1G. 4a. Butterfly cuspoid type two critical set, (xy = —.05) <0.

equations of these two figures are the same, the primary surfaces which are of engineering
significance are totally different. The system in Fig. 4a is seen to buckle for all values of
the imperfection «,. This can be explained from the corresponding equilibrium paths of
Figs. 4b and 4c. Since the stability boundary is inverted to open downwards, there is a
severe reduction of the critical load which indicates that the system is more sensitive to
imperfections than the stable butterfly cuspoid.

Figs. 5a-c show the unstable butterfly cuspoid critical load surfaces and equilibrium
paths when «, is set to 0.5. Again, this model is shown to be more imperfection-sensitive
than the corresponding stable case. Comparison of the equilibrium paths of Fig. 4a and
Fig. 5b where the value of a5 is fixed at 0.4 shows that an initially stable system with
positive values of «, buckled at a relatively higher value of the critical load in Fig. 5b
than in Fig. 4b. This is because the stability boundary, Fig. 5b, has two peaks instead of
one, thus causing a less severe reduction of the critical load.

Koiter’s general theory of initial post-buckling: single-mode systems. In order to
demonstrate the present results in an example it is appropriate to first present a summary
of the pertinent aspects of Koiter’s general theory of elastic buckling and initial post-
buckling for single-mode systems. This section does so. The first approximation to the
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FI1G. 5c. Butterfly cuspoid type two equilibrium paths, (¢, = .5) > 0 and «; = 0.

potential energy expanded about the classical critical load of the perfect system is
PE = Ay(A = Ag)8% + - + A, (A = Ag)E"!

+ A+ e B+ e B L (12)
Since only the most predominant terms are retained and the prebuckling state is assumed
to be linear, Koiter’s general theory is valid only for sufficiently small amplitudes of the
imperfection parameters. (The swallowtail and butterfly cuspoids correspond to the case
when n =5 and n = 6 respectively.) Although many of the terms in the above potential
energy expression are considered to be negligibly small in Koiter’s approach, they are
considered to be essential in order to unfold the particular form of instability properly.
The coefficients of the potential energy are

d
A, = a (Pl[ucr])’

Ay = (PB[ucr])/‘.=Ad’ 3= ;7 (P3[ucr])'}.=/ld’

d
A, = (P4[ucr] - P2[¢2])z=zt,, Ay = d_i (P4[“a] - Pz[d’z])lz:xc,,
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= (Ps[ug] + Pyi[ucr, #2] + Prafuer, 21)i= 1
A6 = (Pg[u] + Pyy[ue, ¢2] + Pyylue, 2] + Ps[d2] — Pals])i=s,
( [ ])A=/1d’ = Qz[“cr] - Pll[d’o’ ¢2]);.=;.,,,
= (Qs[u.] - Pu[&o, ¢3] — P[éy, $2))i= s
B4 = (Qult] = P11[®1, ¢3] — P1s[@2, 62))i=s,- (13)

In the above P,,[u, v] represents terms in the potential energy of the perfect system
which are independent of the imperfection and are of mth order in the deflection u and
nth order in v, and Q,[u] represents terms in the potential energy which are linear both in
the applied load and generalized imperfection and are of nth order in the deflection wu.
The functions ¢,, ¢5, ¥ of the perfect system and @,, ¢,, and @, of the perfect system
are obtained by solving the appropriate differential equations, that is, from [2],

[P“[¢>2, Su] + Pyy[u,,, ou] — (;1;;‘[[”) T[4 5u]L_ =0,
4 4 “er
[P11[¢3, ou) + Py, [u,,, du] — (2};2[[: })Tu[um 6u]L_ =0,

[Pu[‘//a’ ou] + Py[u,, ou] + Py [u,, &5, ou]

. 4P4[ucr] + 2P21[ucra ¢2]
2T[41]

[Pll[éso, ou] + Q,[ou] — (EQTF%

T[Y4s 5u]] =0,

A=A

ritusa] =0

A=l

[P“[é,, ou] + Qy4[ue, ou) — (QTE[[Z“}) T\ [er (5u]}‘=. =0,
[Pn[&sz, 0u] + Ol ] = (322 T 6uJ]A=k -0, (14)

where du is a variational quantity and the functions ¢,, @5, ¥3, ¢o, @, and ¢, satisfy
the orthogonality condition

Tll[ucr’ ¢2] = Tll[ucr’ ¢3] = T“[ll", lp:&] = T“[u", 650]
= Tii[ue, @1] = Ty i[te, §2] =0 (15)

and Tj,[u, v] can be taken as the inner product of the two vector quantities u and v.

Example: beam on a nonlinear elastic foundation. The single-mode buckling prob-
lems discussed will be considered within the context of the stability analysis of a beam
resting on a nonlinear elastic foundation subjected to a concentrated axial compressive
load P (positive for compression). The potential energy of the system consists of the sum
of the strain energy of the beam due to bending and the strain energy absorbed by the
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elastic foundation and the work term, that is,
PE=U0+UF_W0rk
L
w
| W }dx

LW L
| | (KWK, W2+ KW 4} dWdX — P | (1 - /T— Wh}dX. (16)
0 0 ‘0

In the above, E is Young’s modulus, [ is the moment of inertia of the beam, W is the
vertical deflection, X is the horizontal coordinate and L is the length of the beam and K,

K,, K3, ... are the spring constants of the elastic foundation. Introducing the following
nondimensional quantities x, w, 4, kq, k,, k3, ... defined by
x=X/L, w= W/L, A= PI?/EI, k;= K,L*3/EI, i=1,213, .., (17)

the potential energy expression becomes
EIN[/ 1 wiy
PE =
(2L)l| [1 e e

+2 |' [k, w? + 3k, w? + Lkow* + - dx+2,1| [—1+,/1—w7]dx (18)
‘0

By grouping the terms according to the order of the deflection, the potential energy can
be expressed as

PE = Pifu] + Pi[u] + Pifu] + Pifu] + Pilu] + - (19)
where

1

i[u] = 2L, Wiy + kyw?) — Iwk dx
x=0

Pi[u] = (f}{) (2k2| =0w3 dx)

El
Pi[u] = (2L) ’ (w?xxw?x + 3kaw?) — Aws dx

Pi[u] = (EI)(2k4| w5dx)

= (ZE)]7 (vhamtor Bhow) — bt (0)

It is worth noting that the odd functionals Pi[u], P4[u], P4[u], ... are independent of the
applied load and that / is a positive quantity which is assumed to increase from zero.
Furthermore, the prebuckling state admits the zero-displacement solution.

Upon setting the first variation of the quadratic terms P3[u] to zero, the differential
equation for classical buckling is

W.xxxx + lw,xx + kl w= 0 (21)
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where the forced boundary conditions are w =0 at x =0, 1, and the natural boundary
conditions are w , = 0 at x = 0, 1. The solution to this eigenvalue problem is

w=¢, Y sin mnx (22)
n=1
so that the eigenvalues are
4.4
k
LG L.I S (23)

mn?

where m is a positive integer. By minimizing 4, with respect to m, it follows that the
critical wave number m,, = j must lie somewhere near the value (4,/k,)/r. In addition, for

j*n* + k,
jZnZ

/lcl = '{j = N (24)
Ay > 4;, 1 <jand A, > 4;, n> j. Further, the least upper bounds may be shown to occur
for I=j— 1and n=j + 1 respectively. Thus it follows that the critical wave number j is
obtained from the inequalities

( — D°n* < ky < (j + 127 (25)
In order to investigate the stability of the critical state, it is necessary to consider

higher-order terms in the potential energy. Thus, substituting w = w,, into P}[u], the
quantity A4; is found to be (m,, = j)

El !
45 = Pu] = (o7 @) (3a | ingmxp ax)=0. = even
*x=0

El 8 .
= (ifa)(ﬁn’“)’ J= odd.

Thus, the swallowtail or butterfly catastrophes will only occur if k, = 0, or if the critical
wave number j is even.

In order to compute A,, it is necessary to solve the differential equation for ¢, , that
18,

(26)

OPy[¢,] = —P3[u,]. (27)

If it is assumed that k, is zero, the right-hand side of the above equation is zero.
Furthermore, since the displacement ¢, must be orthogonal to the buckling mode w,,, it
follows that ¢, = 0. Thus the quantity A, becomes

EI\ !
A4§4 = P4[ucr] ’/I=/Id = (Z)’O .Wfr.x,,wfr'x + %k3 W?, — %/{C, W?,.‘x dx

El
~ (5 *Jorne - mk + 3k (s)

It follows from the expression for A, that the only situation in which a higher-order
catastrophe will arise is when A, =0, or

50m)° + 2ky = (jm)%k,. (29)
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Using our previous result that ¢, = 0, the quantity A5 is found to be

EI o1
458 = Pfulliosa= (5] (e | wode)=0. = even
*x=0

32
(_65)(75171 ) j=odd

Thus with k, = 0 and by relating k, and k5, one obtains A; = 4, = 0. The swallowtail
catastrophe occurs when k, is non-zero and j is an odd integer.

The butterfly catastrophe arises if A5 = 0, which implies that the spring constant k, is
zero or that j is odd. The quantity A is, using our previous result that ¢, =0,

(30)

A6&® = Pelug]|i=3, — Pal¥rsli=.., (31)
where the differential equation for the function v/, is
OP;[¥5] ’;.=zc, = _6P4[ucr]|}.=).d' (32)

This equation, when expanded, becomes

2(‘//3,xxxx + kl l/j3 + 'Icllp3.xx)(5¢3)
= [2(W2 w x) x 2(Wcrchr xx).xx - 2k3W 3)%-1 Wcrx cr JU(] (SW (33)

Cr xx ' Cr,

with the forced and natural boundary conditions being those of the buckling mode.
Substituting the buckling mode w,, into the right-hand side of the above equation and
assuming the solution for /5 in the form

o

Y3 = ) ¢, sin nnx, (34)

n=1
then the result is obtained that
& (n)*[3k, — 7(n)*]
48[9(jm)* — k4]

C3 =

and
cp=cy=cy=c5="-=0. (35)

Substituting u = i, into P,[u] and carrying out the integration yields

EI )
P,[ys] lz:;.,, =3 (c3)*(36/%n* — 4k,). (36)
Thus, the term A4 &6 is found to be
AgE® = Pglu,] liziq — Pa[¥s]li=s,
El ) ;
= (e 57 )RIa R — gtnk + k) - P06 - 4k, (D)

where it should be noted that the sign of 44 dictates whether the problem is classified as
stable or unstable butterfly catastrophe.

In order to unfold a catastrophe where the leading term in the potential energy is of
the form A, £, it is necessary to include all those terms which involve &, ..., "~ % and to
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perturb the coefficients of these terms about zero. Thus, in the context of the present
example, the linear term in ¢, due to the influence of a geometric imperfection in the form
of the buckling mode, is

1 o EI{—i\, ...
3 Pl =57 () @ %)
while the &2 term is
PRSI EI(. I\, ...
(%55 5, el = 57 (1~ 5 Jsezren, (39)

Moreover, the remaining cubic and quartic unfolding terms are obtained by replacing k,,
ky, ks and k, by k; + &, k, + &,, ks + &, and ky + &, respectively, where &, , &, &,
and ¢, are small perturbations of the spring constants. Doing so yields

, EI . 8 .
A =5 O gt Ba j=odd
= B, J = even, (40)
, El , :

and
EI 32
o5 (B s ( | ) -
5¢ (ZLC) 75].”1,(4 + Bs, j=odd,
=By, j=even (42)

In the above expressions, B; and B, are obtained by solving the appropriate differential
equations (as shown in Egs. (13)). These terms represent the influence of initial geometric
imperfection on the cubic and quartic terms respectively.

It should be noted that &, &, , &, and ¢, and 4 — 4, as well as the amplitude of the
geometric imperfection constitute six independent control parameters. It is the sum of
their influence, rather than the individual perturbation, which is important. For example,
the individual influence of ¢,, and ¢, is of little interest and it is the aggregate sum of
these two perturbations which form the A} coefficient which is of significance. Further-
more, the term &' (ie, A5 in the case of butterfly catastrophe and A} in the case
of swallowtail catastrophe) can be made to vanish by a straightforward coordinate
transformation.

Finally, inspection of the expanded potential energy expression shows that the single-
mode system is classified as the swallowtail catastrophe when n = 5 and as the butterfly
catastrophe (stable or unstable depending on the sign of A¢) when n = 6. Consequently,
the equilibrium paths and critical surfaces plotted provide useful information on the
buckling and initial post-buckling analysis of a beam on a nonlinear elastic foundation.

Concluding remarks. Since the swallowtail and butterfly models in catastrophe
theory are the only ones among the elementary catastrophes which have not been solved,
the present paper completes the analysis of the seven elementary catastrophes from the
point of view of the theory of elastic stability.
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The three-dimensional critical load surface of the swallowtail cuspoid has been
analyzed in its entirety. It corresponds to a stability problem where the first non-
vanishing term of the potential energy at the singularity is quintic; thus, the structural
configuration at the classical critical load is unstable. The four-dimensional butterfly
cuspoid critical load surface has been analyzed by choosing typical values of one of the
four control parameters. It arises in a stability problem where the first non-vanishing
term of the potential energy at the singularity is ¢¢. The positive sign corresponds to the
stable butterfly cuspoid and the negative sign corresponds to the unstable butterfly
cuspoid. The latter is found to be more imperfection-sensitive because of the stability
boundary opens downward rather than upward.

The equilibrium paths of the swallowtail model are antisymmetric with respect to the
load axis. On the other hand, the equilibrium paths of the stable and unstable butterfly
models are symmetric with respect to the load axis. Unlike the fold model, the slope of
the load-deflection graph of the cusp, swallowtail, butterfly and any higher order
cuspoids is always zero. Hence, the horizontal line A = 4, represents the first approxima-
tion of the post-buckling deflection path which is valid for vanishingly small control
parameters.

Koiter’s theory for single-mode structural system has been extended in a somewhat
modified form. This is because catastrophe theory requires that in order to unfold the
model, or present the form of the instability in its most general form, it is necessary to
include the imperfection terms involving B,, B, ..., B,_, in addition to the B, term
which involves the initial geometric deviation of the system. Practical application of the
swallowtail and butterfly in single-mode structural system is shown in an axially loaded
beam on a nonlinear elastic foundation. Finally, it should be emphasized that the results
presented in this paper are asymptotic in a sense that they are valid for sufficiently small
regions near the critical point.
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