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1 Introduction

As the string theory is virtually a unique candidate for a theory of quantum gravity, the

consistency between a low energy effective field theory and the string theory is a prime

concern for physics beyond the Standard Model. So far, several consistency conditions

have been conjectured from the string theory [1–4]. Low-energy effective field theories

which do not satisfy those conjectures are said to be not in the string landscape, but in

the swampland and are disfavored.

Among various conjectures, the most recent one [4], the so-called de Sitter swampland

conjecture, stimulates intensive studies of its phenomenological and cosmological conse-

quences [5–36]. Under the conjecture, the scalar potential of a set of scalar fields {φ},
Vtotal, satisfies the condition,

MPL|∇Vtotal| > cVtotal . (1.1)

Here, c is a positive constant of O(1) and MPL is the reduced Planck scale. The size of the

potential gradient, |∇Vtotal|, is given by

|∇Vtotal| =

∑
φ

(∂Vtotal/∂φ)2

1/2

, (1.2)

for the canonically normalized scalar fields.

Immediate consequences of the conjecture are
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• The observed dark energy cannot be explained by a positive cosmological constant.

• The local maximum of the Higgs potential at the symmetric point, H = 0, is incon-

sistent with the conjecture.

As discussed in refs. [4, 13, 26], the most straightforward resolution of these tensions is to

couple the cosmological constant and the Higgs potential to the so-called quintessence field

Q, whose coupling is suppressed by the Planck scale [37–39].

In this paper, we show that such a modified Higgs potential generically predicts a

Q-dependent vacuum expectation value (VEV) of the Higgs field. The Q-dependence of

the Higgs VEV induces a long-range force which is severely excluded by the tests of the

equivalence principle [40]. In addition, the Q-dependence results in a time-dependent Higgs

VEV. We show that the precise spectroscopic measurements of the proton-to-electron mass

ratio in distant astrophysical systems [41, and references therein] put stringent constraint

on the time-varying Higgs VEV. Consequently, we argue that most of the habitable vacua

in the string landscape are in tension with the phenomenological constraints unless there

is an additional fine-tuning that is justified neither by the swampland conjecture nor the

anthropic principle. We further show that, even if such an unjustified fine-tuning condition

is imposed at the tree level, it is inevitably violated by radiative corrections. Therefore, un-

der the de Sitter swampland conjecture, most of the habitable vacua in the string landscape

contradict with the observations.

The organization of the paper is as follows. In section 2, we first discuss how we can

retrofit the Higgs potential so that it can be salvaged from the swampland at the tree

level argument. We then show that, such a modified potential generically leads to a Q-

dependent Higgs VEV, which is severely constrained by phenomenological requirements.

We argue that an additional fine-tuning condition is required, which is justified neither by

the swampland conjecture nor the anthropic principle. In section 3, we study radiative

corrections to the Q-dependent Higgs potential, and show that they generically upset the

fine-tuning condition imposed at the tree level. The final section is devoted to our conclu-

sions. In appendix A, we give a rough estimate of the excursion of the quintessence field

from the early universe to the present.

2 Salvaging the Higgs potential from swampland

2.1 Higgs potential with a tiny dark energy

The most straightforward way to make the observed dark energy consistent with the de

Sitter swampland conjecture is to introduce the so-called quintessence field [4]. Here, we

take the simplest form of the potential of the (real-valued) quintessence field, Q, in the

present universe (i.e., in the universe after the electroweak phase transition):

VQ(Q) = 3ξccH
2
0M

2
PLe
−cQQ/MPL , (2.1)

where H0 is the expansion rate of the present universe, while ξcc and cQ are positive-valued

constant parameters.1 We set Q = 0 as the present value without loss of generality. Then,

1For cQ < 0, we redefine Q′ = −Q
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ξcc is set to be ξcc ' ΩDE ' 0.7 [42] (with ΩDE being the density parameter of the dark

energy) to explain the observed dark energy density (see appendix A for more details).

The potential does not have any local extrema with a positive energy density, and hence it

satisfies the swampland conjecture for cQ = O(1).2 It should be noted that the following

arguments do not depend on the details of VQ(Q) as long as it satisfies the swampland

conjecture.

Now, let us discuss how the swampland conjecture restricts the Higgs sector. The

potential for the Higgs field in the Standard Model is given by

VH(H) = −M2
H |H|2 + λ|H|4 + Λ4

EW , (2.2)

where M2
H > 0 is a squared Higgs mass parameter and λ > 0 the Higgs quartic coupling

constant. A cosmological constant parameter, Λ4
EW, is required so that the vacuum energy

is cancelled at the Higgs vacuum expectation value,3

〈H〉2 =
v2
H

2
=
M2
H

2λ
, (2.3)

where the fine-tuning condition is

VH(〈H〉) = −
M4
H

4λ
+ Λ4

EW ' 0 . (2.4)

As pointed out in [13, 26], the Higgs potential in eq. (2.2) does not satisfy the de

Sitter swampland conjecture at the symmetric point, H = 0. In fact, the left-hand side of

eq. (1.1),

MPL|∇Vtotal||H=0 = MPL|∂VQ/∂Q| = 3cQξccH
2
0M

2
PLe
−cQQ/MPL , (2.5)

is much smaller than the right-hand side,

Vtotal|H=0 ' VH(H = 0) = Λ4
EW '

M4
H

4λ
� H2

0M
2
PL . (2.6)

An immediate remedy to make the Higgs potential consistent with the de Sitter swamp-

land conjecture is to retrofit the Λ4
EW term to couple to the quintessence field, i.e.,

V
(a)
H (H,Q) = −M2

H |H|2 + λ|H|4 + Λ4
EWe

−cHQ/MPL , (2.7)

with cH = O(1). With the modification, the left-hand side of eq. (1.1) becomes

MPL|∇Vtotal|H=0 ' |∂V
(a)
H /∂Q|H=0 = |cH |Λ4

EW e−cHQ/MPL , (2.8)

which is comparable with the right-hand side,

Vtotal|H=0 ' Λ4
EWe

−cHQ/MPL . (2.9)

2We assume that the quintessence field satisfies the slow-role condition, cQ <
√

6.
3Here, 〈H〉 denotes the VEV of the second component of the Higgs doublet.
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In this way, the Higgs potential in eq. (2.7) can be consistent with the de Sitter swamp-

land conjecture.

The modified Higgs potential in eq. (2.7), however, has a serious problem. At the

present vacuum, the fine-tuning condition of the vacuum energy is given by

V
(a)
H (H = 〈H〉, Q = 0) = −

M4
H

4λ
+ Λ4

EWe
−cHQ/MPL

∣∣∣∣
Q=0

' 0 . (2.10)

However, the quintessence field feels a strong potential force from the coupling to Λ4
EW at

the present vacuum,

|∂V (a)
H /∂Q|

∣∣∣
H=〈H〉

= |cH |
Λ4

EW

MPL
e−cHQ/MPL , (2.11)

which makes the quintessence field moves from Q = 0. Accordingly, the fine-tuning condi-

tion in eq. (2.10) is immediately violated once the quintessence field evolves in time, within

a time scale of τ ∼MPL/Λ
2
EW ∼ O(10−10) sec.4 Therefore, although the Higgs potential in

eq. (2.7) is consistent with the swampland conjecture, it is not habitable, and hence, does

not satisfy the anthropic principle [43–45].

In order to avoid this problem, the Higgs potential needs to be further modified so that

the fine-tuning condition of the vacuum energy at H = 〈H〉 is not affected by the motion

of the quintessence field. Such a requirement can be satisfied, for example, by extending

the quintessence-Higgs coupling to

V
(b)
H (H,Q) = −M2

He
−cMQ/MPL |H|2 + λe−cλQ/MPL |H|4 + Λ4

EWe
−cHQ/MPL , (2.12)

where cM and cλ are O(1) coefficients. For a given value of the quintessence field Q, the

Higgs VEV is then given by

〈H〉2
∣∣
V

(b)
H

=
vH(X)2

2
=
M2
He
−(cM−cλ)X

2λ
, (2.13)

where X = Q/MPL. As a result, the fine-tuning condition of the vacuum energy is given by

V
(b)
H (〈H〉, Q) =

(
−
M4
H

4λ
e−(2cM−cλ−cH)Q/MPL + Λ4

EW

)
e−cHQ/MPL ' 0 . (2.14)

Therefore, the stability of the small dark energy is achieved by imposing a fine-tuning

condition,

2cM − cλ − cH = 0 . (2.15)

In this way, we arrive at a Higgs potential which is consistent with the de Sitter

swampland conjecture and the anthropic principle. It should be stressed that the additional

fine-tuning condition in eq. (2.15) for the stability of the small vacuum energy does not

make the model less plausible, since we anyway need to find habitable vacua in the string

landscape [43–45].

4In this case, the quintessence field evolves so rapidly that the observed current Universe is never realized.
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2.2 Constraints on the quintessence dependent Higgs VEV

A crucial feature of the Higgs potential, V
(b)
H , is that the Higgs VEV generically depends

on the quintessence field, as shown in (2.13). This Q-dependent Higgs VEV induces ef-

fective Yukawa couplings between the quintessence field and the matter fields in the Stan-

dard Model,5

Leff '
∑

i=
quarks
leptons

mi

MPL

d ln vH(X)

dX

∣∣∣∣
X=0

Qψ̄iψi , (2.16)

with

d ln vH(X)

dX

∣∣∣∣
X=0

= −1

2
(cM − cλ) . (2.17)

Here, mi denotes the mass of the corresponding fermion.

The coupling of the quintessence field to the quarks leads to its coupling to the nucle-

ons [46],

Leff =
mNfN
MPL

d ln vH(X)

dX

∣∣∣∣
X=0

Qψ̄NψN , (2.18)

where mN is the nucleon mass, and fN is defined as

fN =
∑

q=u,d,s,c,b,t

fNq =
2

9
+

7

9

∑
q=u,d,s

fNq , (2.19)

with

fNq =
1

mN
〈N |mqψ̄qψq|N〉 . (2.20)

In the following, we use the scalar coupling estimated by using phenomenological and lattice

QCD calculations [47],

fN = 0.308(18) . (2.21)

The isospin violating effect is also estimated to be,

fp − fn ' −1.5× 10−3 , (2.22)

with an O(10)% accuracy [48]. Altogether, we find that the electron and nucleons couple

to the quintessence field,

Leff = qeQψ̄eψe + qpQψ̄pψp + qnQψ̄nψn , (2.23)

where

qe =
me

MPL

d ln vH(X)

dX

∣∣∣∣
X=0

, (2.24)

qp,n =
mp,nf

N
p,n

MPL

d ln vH(X)

dX

∣∣∣∣
X=0

. (2.25)

5The effective Yukawa couplings can also be obtained by diagonalizing the mass matrix of the Higgs and

quintessence fields, which leads to a mixing between them in the basis of mass eigenstates.

– 5 –



J
H
E
P
1
2
(
2
0
1
8
)
0
2
3

2.2.1 Long-range force

The Yukawa interaction of the quintessence field to the electron and the nucleons, eq. (2.23),

induces a long range force among electrons and nucleons, which are severely constrained

by the tests of the equivalence principle [40]. In our setup, the parameters g̃ and ψ̃ in [40]

are identified as

g̃2 = (qe + qp)
2 + q2

n , (2.26)

tan ψ̃ =
qn

qe + qp
. (2.27)

The angle ψ̃ is given by ψ̃ ' π/4 for qe � qn ' qp, and the constraint reads√
(qe + qp)2 + q2

n . 4× 10−24 . (2.28)

Thus, in the model with the Higgs potential V
(b)
H , we find a stringent constraint,

|cM − cλ| . 0.4× 10−4 . (2.29)

Consequently, the Higgs potential V
(b)
H is in tension with observations, although it is con-

sistent with the de Sitter swampland conjecture and the anthropic principle.

2.2.2 Time-varying electron-to-proton mass ratio

Let us also note that the quintessence field is in motion at present due to the potential

force in eq. (2.1), which leads to a non-trivial shift of Q. We have numerically solved the

cosmological evolution of Q, and the results are summarized in appendix A. For example,

the shift of Q from z = 1 to the present (with z being the redshift parameter) is estimated as

∆Q

MPL

∣∣∣∣
z=1

' −0.24× cQ . (2.30)

Accordingly, the masses of the electron and the proton also depend on time through the

quintessence couplings in eq. (2.23);

∆me

me

∣∣∣∣
z=1

=
d ln vH(X)

dX

∣∣∣∣
X=0

× ∆Q

MPL

∣∣∣∣
z=1

, (2.31)

∆mp

mp

∣∣∣∣
z=1

= fp ×
d ln vH(X)

dX

∣∣∣∣
X=0

× ∆Q

MPL

∣∣∣∣
z=1

. (2.32)

Thus, we find that the ratio of the proton-to-electron mass, µpe = mp/me, exhibits a time

dependence,

∆µpe
µpe

∣∣∣∣
z=1

' −0.7× d ln vH(X)

dX

∣∣∣∣
X=0

× ∆Q

MPL

∣∣∣∣
z=1

. (2.33)

Such a time dependence of µpe is severely constrained by spectroscopic measurements of

distant astrophysical systems. A compilation of the spectroscopic tests [41, and references

therein] amounts to

∆µpe
µpe

∣∣∣∣
z<1

= (−0.24± 0.09)× 10−6 . (2.34)
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Therefore, we find that the constraint on a time-varying proton-to-electron mass ratio

leads to

cQ|cM − cλ| . 0.4× 10−5 , (2.35)

similarly to the condition obtained from the long-range force constraint (2.29).

So far, we assumed that the field which tilts the local maximum of the Higgs potential

(which we denote as QH here) and the quintessence field of the vacuum energy, Q, are the

same field. One may argue that the tensions with the tests of the time-varying proton-to-

electron ratio can be resolved by assuming that these fields are independent with each other

and the motion of the quintessence field does not affect the Higgs VEV at all even if the

Higgs VEV depends on QH . However, as we will discuss, not only the tree level contribution

but also radiative contributions to the vacuum energy from the Higgs sector are required to

be cancelled to explain the tiny observed dark energy. Thus, the coupling of QH to the Higgs

field inevitably results in a coupling of QH to the dark energy. Therefore, it is generically

expected that QH is also in motion as in the case of Q, and hence, the assumption of

the independent QH does not resolve the tension, unless there is a fundamental reason to

forbid a time-varying Higgs expectation value.

2.2.3 Unjustified fine-tuning

From the phenomenological constraints (2.29) and (2.35), we arrive at an additional fine-

tuning condition

cM − cλ ' 0 . (2.36)

By combining eqs. (2.14), (2.15) and (2.36), the Higgs potential is then restricted to a form

V
(c)
H (H,Q) =

(
−M2

H |H|2 + λ|H|4 + Λ4
EW

)
e−cHQ/MPL = λe−cHQ/MPL

(
|H|2 − 1

2
v2
H

)2

,

(2.37)

which corresponds to the Higgs-quintessence coupling proposed in [13].6 As the

quintessence coupling is factored out as an overall factor, the Higgs VEV does not de-

pend on the quintessence field.

It should be stressed that the additional fine-tuning in eq. (2.36), or more generically an

independence of the Higgs VEV on the quintessence field, is justified neither by the swamp-

land conjecture nor the anthropic principle, but it is required from purely phenomenological

reasons.7 In other words, under the assumption that the swampland conjecture is satisfied

by a quintessence-like field, most of the habitable vacua in the string landscape are excluded

by the observational constraints, unless there is an additional fine-tuning that is justified

neither by the conjecture nor the anthropic argument.

6See ref. [49] for related discussions on the Higgs-quintessence couplings.
7As discussed in [50], the Higgs VEV in the era of the Big-Bang Nucleosynthesis (BBN) is allowed to be

different from the current value by a factor O(1) for habitable universe. See also [51] for a related discussion.
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In principle, it is possible to assume Q-dependent Yukawa couplings which make the

fermion masses independent of the quintessence field. Again, however, such fine-tunings

are not required by the swampland conjecture nor the anthropic principle. Therefore, this

possibility does not explain why there is no long-range force nor why the proton-to-electron

mass ratio is time-independent. Besides, the Q-dependent Yukawa couplings lead to Q-

dependences of the gauge couplings through radiative corrections, which are also restricted

by the tests on the time-varying coupling constants [41, and references therein]. In this

paper, we do not pursue these possibilities any further.

3 Radiatively induced Q-dependent Higgs VEV

As we have discussed in the previous section, it is required to choose Higgs-quintessence

couplings so that the Higgs VEV does not depend on the quintessence field, although such

a condition is not required from the de Sitter swampland conjecture nor the anthropic

principle. The Higgs potential V
(c)
H in eq. (2.37) is the simplest example which satisfies this

condition. In this section, we assume V
(c)
H and discuss whether the Higgs VEV remains

independent of the quintessence field when we consider radiative corrections in the low

energy effective field theory.

3.1 Wilsonian approach

To obtain a rough idea how the radiative corrections affect the low energy effective field

theory, let us first assume that the Higgs potential in a Wilsonian effective action at around

the Planck scale is given by V
(c)
H . We also assume that the other couplings such as the gauge

coupling constants and the Yukawa coupling constants do not depend on the quintessence

field. This assumption is motivated by the fact that the Q-dependences of them are severely

constrained by the tests of the equivalence principle, by the test of the time-variation of

the fundamental couplings, and by the BBN constraints [40, 41, 52].

In this setup, the squared Higgs mass parameter and the quartic coupling and at a low

energy scale receives radiative corrections

M2
H(µR) = M2

He
−cHQ/MPL

(
1 +

∫ µR

MPL

dµ′R
µ′R

γM2
H

(µ′R)

)
'M2

H(µR)|Q=0 e
−cHQ/MPL , (3.1)

and

λ(µR) = λe−cHQ/MPL +

∫ µR

MPL

dµ′R
µ′R

βλ(µ′R)

'
[
λ(µR)|Q=0 +

(
ecHQ/MPL − 1

)∫ µR

MPL

dµ′R
µ′R

βλ(µ′R)

]
e−cHQ/MPL , (3.2)

where µ
(′)
R denotes the renormalization scale, βλ the beta functions of λ, and γM2

H
the

anomalous dimension of M2
H . In eqs. (3.1) and (3.2), we rewrite them by using the low-

energy parameters for Q = 0. Here, we neglected the Q-dependences of βλ and γM2
H

as

they are dominated by Q-independent interactions, i.e, the top Yukawa and the gauge

interactions.

– 8 –
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Once the low energy parameters are given by eqs. (3.1) and (3.2), it is no longer possible

to factor out the quintessence couplings from the Higgs potential. Thus, the Higgs VEV

has a non-trivial dependence on the quintessence field; for Q � MPL, the Higgs VEV is

obtained as

〈H〉2 '
M2
H(µR)

2λ(µR)

∣∣∣∣
Q=0

×

(
1− cHQ/MPL

λ(µR)|Q=0
×
∫
dµ′R
µ′R

βλ(µ′R)

∣∣∣∣
Q=0

)
. (3.3)

Thus, the shift of the quintessence field induces the shift of the VEV. Numerically, we found

d ln vH(X)

dX

∣∣∣∣
X=0

' −0.5× cH , (3.4)

where λ(mt) ' 0.126 and the integration of βλ is∫ mt

MPL

dµ′R
µ′R

βλ(µ′R) ' 0.13 , (3.5)

obtained by using RGErun2. Here, we take the top quark mass, mt = 173 GeV, as the low

energy renormalization scale.8

Thus, from the constraints on the long range force in eq. (2.28), we again obtain an

upper limit,

|cH | . 0.4× 10−4 , (3.6)

while the tests of the time-variation of the proton-to-electron mass ratio in eq. (2.34) gives

cQ|cH | . 0.4× 10−5 . (3.7)

Therefore, we find that the Higgs potential V
(c)
H is in tension with tests of the equivalence

principle and the time-variation of the proton-to-electron mass ratio.

In the above argument, we have implicitly assumed that the quadratic and the quartic

divergences appearing in the Higgs squared mass parameter and in the cosmological con-

stant term are fine-tuned by local counter terms even if they have non-trivial dependences

on the quintessence field. This means that the Higgs potential at high energy scale includes

local terms of the form:

VH = V c
H + Λ2

2(X)|H|2 + Λ4
4(X) , (3.8)

in addition to V
(c)
H . Here, Λ2

2(X) and Λ4
4(X) are functions of the quintessence field which

are introduced to cancel the Q-dependent quadratic and quartic divergences. These as-

sumptions are justified by the anthropic principle, since otherwise, the vacuum is no more

habitable [43–45].

We comment here that, as the local term Λ2
2(X)|H|2 is added to the high energy

Lagrangian, eq. (3.1) does not hold in general. With such a term, there should exist a

8The relative error of the integration of eq. (3.4) is of O(10−1) which is dominated by the choice of µR.

We will provide more precise discussion including the renormalization conditions in the next subsection.
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residual Q-dependent mass term due to the Λ2
2(X)|H|2 term which is not proportional to

e−cHQ/MPL in general. Such an observation does not weaken the constraints in eqs. (3.6)

and (3.7).

As another comment, it is also tempting to ask whether it is possible to realize a

phenomenologically viable scenario by assuming low energy parameters giving rise to the

Higgs potential of the form of V
(c)
H (see eq. (2.37)), i.e.,

M2
H(µR ' mt) ' M2

H(µR ' mt)|X=0e
−cHQ/MPL , (3.9)

λ(µR ' mt) ' λ(µR ' mt)|X=0e
−cHQ/MPL . (3.10)

These renormalization conditions can be satisfied by adding local counter terms of the

quartic coupling to V
(c)
H at the high energy scale with appropriate quintessence field de-

pendences. As we will see shortly, however, the Higgs VEV still depends on quintessence

field even if the renormalization conditions in eqs. (3.9) and (3.10) are imposed. Let us also

stress again that such fine-tuning conditions are not supported by the de Sitter swampland

conjecture nor by the anthropic principle.

3.2 Analysis in the MS prescription

To make our statement more precise and concrete, let us consider an effective field theory

where the bare Higgs potential is given by

VHB(HB) = −M2
HB(X)|HB|2 + λB(X)|HB|4 + Λ4

EWB(X) , (3.11)

with the subscript B denoting the bare parameters and fields. The Q-dependences of the

coefficient parameter functions are not specified at this point. As for the other coupling

constants in the Standard Model, we assume that they are independent of the quintessence

field. We treat the quintessence field as a background field and do not consider the path-

integration of the quintessence field.

In this setup, the quantum effective potential of the Higgs boson is given by

VHeff(H) = −M2(MS)
H (X)|H|2 + λ(MS)(X)|H|4 + Λ

4(MS)
EW (X) + V

(1)
Heff + · · · , (3.12)

where the first three terms are renormalized tree-level contributions while V
(n)
Heff (n > 0)

are n-loop contributions.9 At the tree level, i.e., neglecting V
(n)
Heff with n > 0, the Higgs

VEV is given by

v
(MS)2
H (X)

∣∣∣
tree

=
M

2(MS)
H (X)

λ(MS)(X)
. (3.13)

In the following, we discuss how the Higgs VEV behaves after taking into account radiative

corrections.

9In this paper, the quantum effective potential denotes the one calculated perturbatively for a quantum

state whose wave functional is localized at around a particular field value. It differs from the one defined

by the Legendre transformation of the partition function of the connected Green functions, W [J ] [53].
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We adopt the MS prescription for the renormalization for a given value of X. The

one-loop effective potential V
(1)
Heff is given by [54, 55]

16π2V
(1)
Heff =

F 2
H

4

(
lnFH −

3

2

)
+

3F 2
G

4

(
lnFG −

3

2

)
− 3F 2

T

(
lnFT −

3

2

)
+

3F 2
W

2

(
lnFW −

5

6

)
+

3F 2
Z

4

(
lnFZ −

5

6

)
, (3.14)

in the MS prescription. The functions F ’s are given by

FH = −M2(MS)
H (X) + 3λ(MS)(X)h2 , (3.15)

FG = −M2(MS)
H (X) + λ(MS)(X)h2 , (3.16)

FT = y
(MS) 2
t h2/2 , (3.17)

FW = g(MS) 2h2/4 , (3.18)

FZ = (g(MS) 2 + g′(MS) 2)h2/4 , (3.19)

lnF = lnF/µ2
R , (3.20)

where yt, g and g′ are the top Yukawa and the gauge coupling constants of the SU(2)L and

U(1)Y gauge interactions in the MS prescription, respectively. Here, we parametrize the

Higgs doublet as follows without loss of generality,

H =
1√
2

(0, h)T . (3.21)

Following refs. [54, 55], we define the MS VEV, v
(MS)
H (X), by the field value of h

which minimizes VHeff in the MS prescription. Then, the MS Higgs VEV does not satisfy

the tree-level relation given in eq. (3.13). As the VEV of the renormalized Higgs field is

not a physical observable, its definition beyond the tree level is arbitrary and a matter

of convention. The advantage of the definition in refs. [54, 55] is that the Higgs tadpole

diagrams are cancelled by definition. With the present definition of v
(MS)
H (X), the pole

electron mass is given by

me(X) =
1√
2
y(MS)
e v

(MS)
H (X)×

(
1−<ΣS(m2

e)−<ΣV (m2
e)
)
, (3.22)

where ΣV,S(p2) are defined by the free electron self-energy, Σe,

Σe(p) = i/pΣV (p2) + ime ΣS(p2) , (3.23)

at one loop.10 As the Higgs tadpole diagrams automatically vanish in Σe, the Q-

dependence of me(X) is dominated by the one through v
(MS)
H (X). The Q-dependence

10Since the electron mass is much smaller than those of Z and W bosons appearing in Σe, it is not

practical to calculate me by using Σe obtained in the Standard Model. Rather, we need to match the MS

electron masses in the Standard Model and in the low energy effective theory below the electroweak scale.

Those procedures do not affect our argument, though.
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though M
2(MS)
H (X) comes from the Higgs-electron loop contribution to ΣS,V (m2

e), which

is proportional to the electron Yukawa coupling squared, and is numerically unimportant.

As a result, we find,

d lnme(X)

dX

∣∣∣∣
X=0

'
d ln v

(MS)
H (X)

dX

∣∣∣∣∣
X=0

. (3.24)

Similarly, the quark masses also depend on the quintessence field via v
(MS)
H , and we find

d lnmN (X)

dX

∣∣∣∣
X=0

' fN
d ln v

(MS)
H (X)

dX

∣∣∣∣∣
X=0

. (3.25)

It should be noted that the quintessence field couples to the top quark not only through

v
(MS)
H (X) but also through radiative corrections in which the Higgs boson is circulating.

For now, we neglect these couplings and we will come back to this point later.

Now, let us discuss renormalization conditions. From a perspective of low energy

effective field theory, we only know the Higgs potential parameters in the present universe,

i.e. X = 0. For X 6= 0, there is no experimental data to determine the renormalization

conditions. Thus, we may, for example, impose X-dependences of the parameter functions

of X, so that

M
2(MS)
H (X) = M

2(MS)
H (X = 0)e−cHX , (3.26)

λ(MS)(X) = λ(MS)(X = 0)e−cHX , (3.27)

at a low energy scale such as the pole mass of the top quark, µR = m
(pole)
t . These con-

ditions correspond to the ones in eqs. (3.9) and (3.10) in our argument in the Wilsonian

approach. With these conditions, the tree-level Higgs VEV, v
(MS)
H |tree, is independent of the

quintessence field. We call these renormalization conditions as the low energy quintessence

(LQ) prescription. It should be stressed here that conspiratorial fine-tunings are hidden

in the renormalization conditions in eqs. (3.26) and (3.27) from a perspective of the high-

energy theory.

Beyond the tree level, the Higgs VEV does not satisfy the tree-level relation. At the

one-loop level, for example, the shift of the VEV is roughly given by

v
(MS)
H (X)− v

(MS)
H

∣∣∣
tree

v
(MS)
H

∣∣∣
tree

' 1

2λ(MS)(X) v
(MS)3
H

∣∣∣
tree

∂V (1)

∂h
∼ − 9

64π2λ(MS)(X)
y

(MS) 4
t , (3.28)

where we keep only the top Yukawa contribution in eq. (3.14) for presentation purpose.

Thus, the deviation of the Higgs VEV from the tree-level relation in eq. (3.13) results in a

non-trivial quintessence field dependence, which is enhanced by 1/λ(MS).

Our numerical analysis is as follows. We first calculate v
(MS)
H (X = 0) at µR = m

(pole)
t

from the relation between v
(MS)
H (X = 0) and the Fermi coupling constant Gµ in [56], which
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leads to11

v
(MS)
H (X = 0) = 246.8 GeV . (3.29)

Then, we obtain the quartic coupling and the Higgs mass parameters at X = 0,

λ
(MS)
H (X = 0) = 0.1261± 0.0003 , (3.30)

M
2(MS)
H (X = 0) = (92.9± 0.1 GeV)2 , (3.31)

at µR = m
(pole)
t . In evaluating these values, we use SMH [58], which takes full two-loop and

leading three-loop corrections into account.12 The uncertainties quoted here do not include

the ones from the choice of the renormalization scale. The input parameters for SMH are

taken to be

m
(pole)
Z = 91.1876± 0.0021 GeV , (3.32)

m
(pole)
W = 80.379± 0.012 GeV , (3.33)

m
(pole)
h = 125.18± 0.16 GeV , (3.34)

m
(pole)
t = 173.0± 0.4 GeV , (3.35)

α(MS)
s (mz) = 0.1181± 0.0011 , (3.36)

(see ref. [57]). The uncertainties of the parameters in eqs. (3.30) and (3.31) are dominated

by the uncertainty of m
(pole)
h . The values v

(MS)
H (X = 0), λ

(MS)
H (X = 0), and M

2(MS)
H (X = 0)

are taken as reference values to estimate the shift of the Higgs VEV for X 6= 0. As we

are interested in d ln v
(MS)
H /dX, the uncertainties of those parameters are cancelled at the

leading order.

In figure 1, we show how v
(MS)
H shifts in the LQ prescription, where λ(MS) and M

2(MS)
H

are changed while M
2(MS)
H /λMS is fixed. Here, we again utilize SMH [58] to obtain v

(MS)
H (X 6=

0) for given λ(MS)(X 6= 0) and M
2(MS)
H (X 6= 0). The figure shows that, based on a

calculation including the leading three-loop effects, the MS Higgs VEV changes as13

∆v
(MS)
H

v
(MS)
H

' 0.07× ∆λ(MS)

λ(MS)
. (3.37)

The rather large X dependence in eq. (3.37) stems from the fact that the shift of the VEV

from the tree-level relation is enhanced by 1/λ(MS) (see eq. (3.28)). Combining with the

renormalization conditions of the LQ prescription (eqs. (3.26) and (3.27)), we find

d ln v
(MS)
H (X)

dX

∣∣∣∣∣
X=0

' −0.07× cH . (3.38)

11A nominal uncertainty, v
(MS)
H (X = 0) = 246.7711 ± 0.0015 GeV (µR = m

(pole)
top ), is dominated by the

error of the top quark mass, m
(pole)
t = 173.0 ± 0.4 GeV [57], although we do not need a very precise value

of it.
12In SMH, the loop integrations are handled by TSIL [59].
13We choose the renormalization scale to be µR = m

(pole)
t even for X 6= 0.
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Figure 1. The shift of the vacuum expectation value of the Higgs VEV in the LQ prescription in

eq. (3.26) and (3.27), where SMH is used for a numerical calculation at tree, one-loop, and three-loop

level. The figure shows that the Higgs VEV does not shift at the tree-level due to the tree level

relation of the Higgs VEV in eq. (3.13). Beyond the tree-level, the Higgs VEV is shifted by changing

λ(MS).

As a result, we find that the tests of the equivalence principle and the time-variation of

the proton-to-electron mass ratio leads to slightly weakened conditions,

cH . 0.3× 10−3 , (3.39)

and

cQ|cH | . 0.3× 10−4 , (3.40)

respectively.14 Thus, the Higgs potential V
(c)
H with O(1) coefficients is in tension with the

observational constraints even in the LQ prescription.

So far, we have imposed the renormalization conditions (3.26) and (3.27) at the elec-

troweak scale without assuming any particular high energy theory. As another possibility,

we may impose them at µR ' MPL. This possibility corresponds to the case discussed

in the previous subsection, i.e., the case with the Wilsonian effective action with V
(c)
H at

around the Planck scale. We call these renormalization conditions as the high energy

MS quintessence (HQ) prescription. In this case, d ln v
(MS)
H (X)/dX|X=0 ' −0.5× cH (see

eq. (3.4)), which is an order of magnitude larger than the LQ case. Therefore, we again

conclude that the HQ prescription defined in the MS scheme is in a strong tension with

the current constraints (see eqs. (3.6) and (3.7)).

Several comments are in order. In the LQ prescription, the reason why v
(MS)
H shifts

is that the effective Higgs potential is modified by the n-loop contributions, V
(n)
Heff . At

the one-loop level, for example, the most relevant terms for the VEV shift are the second

terms of each contribution in eq. (3.14). As they are proportional to the tree-level terms

in eq. (3.12), we can eliminate the effects of those times for X 6= 0 by carefully adjusting

14Recently, it has been argued that the change of the Higgs quartic coupling by about a ten percent level

at low energy due to the quintessence field may stabilize the Higgs vacuum in the Standard Model [33].

Our result shows that such a possibility has a tension with the constraint in eq. (2.34).
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the renormalization conditions such that,

M
2(MS)
H (X) = M

2(MS)
H (X = 0)e−cHX + (1− e−cHX)

9

16π2
λ(MS)m

2(MS)
H + · · · , (3.41)

λ(MS)(X) = λ(MS)(X = 0)e−cHX

−(1− e−cHX)

(
9

32π2
y

(MS) 4
t − 15

512π2
g(MS) 4 − 5

256π2
g(MS) 2g′(MS) 2

− 5

512π2
g′(MS) 2g′(MS) 2 − 9

8π2
λ(MS) 2(X = 0)

)
+ · · · . (3.42)

Here, the ellipses denote the terms required to cancel the Q-dependence of the Higgs

VEV through higher order contributions. As we repeatedly argued in this paper, such an

additional requirements are not justified by the de Sitter swampland conjecture nor by the

anthropic principle, though.

In eq. (3.14), the terms which logarithmically depend on |H|2, on the other hand,

cannot be eliminated by local counter terms. Thus, even the meticulously-tuned renormal-

ization conditions in eqs. (3.41) and (3.42) do not cancel the Q-dependence of the Higgs

VEV completely. Numerically, we find that these renormalization conditions lead to

d ln v
(MS)
H

dX

∣∣∣∣∣
X=0

' 0.0037× cH , (3.43)

at the one-loop level. Correspondingly, the constraints on the long-range force and the

time-varying proton-to-electron mass ratio lead to

cH . 0.6× 10−2 , (3.44)

and

cQ|cH | . 0.5× 10−3 . (3.45)

Therefore, even highly conspiratorial renormalization conditions are still in tension with

the de Sitter swampland conjecture.

3.3 Another constraint

So far, we have discussed constraints which are in association with the Q-dependence of

the Higgs VEV. Here, we comment on another constraint. It is less severe compared to

the previous ones if the Higgs VEV has Q-dependence, but is applicable even if the Higgs

VEV is independent of Q as we show in the following. (The constraint in this section is

also studied in [29].)

In the model of our interest, the coupling of Q to the top quark is radiatively generated

as we have mentioned earlier. In figure 2, we show the Feynman diagram generating the Qt̄t

vertex, where the trilinear scalar interaction shows up by expanding the scalar potential

around h ' vH . As a result, the Qt̄t vertex is given as15

Leff ' −
1

32π2
y

(MS) 2
t I(M

(MS)2
t /2M

2(MS)
H )

M
(MS)
t

MPL
cHQt̄t ' −0.0015× M

(MS)
t

MPL
cHQt̄t , (3.46)

15Here, we use the tree-level relation, M
(MS)
t = y

(MS)
t v

(MS)
H /

√
2, which is enough at the one-loop level.
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Figure 2. Feynman diagram which radiatively generates Qt̄t vertex. Here, yt denotes the top-quark

Yukawa coupling constant.

where

I(x) =
1− x+ x log x

(1− x)2
. (3.47)

Here again, we assume M
2(MS)
H (X) ∝ e−cHX , while the top Yukawa coupling y

(MS)
t is

independent of X as in the case of the LQ prescription. The coupling of Q to the lighter

fermions are suppressed by the Yukawa coupling, and hence, less important.

The effective vertex in eq. (3.46) eventually leads to the coupling to the nucleons,

Leff ' −
2

27

1−
∑

q=u,d,s

fNq

× 0.0015× mN

MPL
cHQψ̄NψN

' 1× 10−4 × mN

MPL
cHQψ̄NψN . (3.48)

Thus, the tests on the long range force in eq. (2.28) put a constraint,

|cH | . 0.08 , (3.49)

while the tests of the time-variation of the proton-to-electron mass ratio in eq. (2.34) lead to

cQ|cH | . 2× 10−2 . (3.50)

Those constraints are independent of the ones derived from the Q-dependence of the

Higgs VEV.

4 Conclusions and discussions

The recently proposed de Sitter swampland conjecture excludes local extrema of a scalar

potential with a positive energy density in a low energy effective theory. Combining with

the habitable conditions of the vacua in the string landscape, the Higgs potential is required

to be retrofitted to have non-trivial couplings to the quintessence field Q so that the vacuum

energy stays very low in the course of cosmological evolution.

In this paper, we found that the retrofitted Higgs potential generically predicts that

the Higgs VEV becomes dependent on the amplitude of the quintessence field. We first
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discussed that the Higgs VEV shows a sizable Q-dependence based on the general Higgs

potential (see e.g. V
(b)
H in eq. (2.12)), which is consistent with the de Sitter swampland

conjecture as well as the anthropic principle. We also argued that the overall coupling

of the quintessence filed to the Higgs potential at a high energy scale (see e.g. V
(c)
H in

eq. (2.37)) results in a Q-dependent Higgs VEV due to the renormalization-group runnings.

Furthermore, we also found that, even if Q has the overall coupling to the Higgs potential

at a low energy scale, the Higgs VEV is still Q-dependent. Those conclusions do not depend

on the details of the quintessence-Higgs couplings nor the potential of the quintessence field

as long as they satisfy the de Sitter swampland conjecture and the anthropic principle. As

a result, we conclude that most of the habitable vacua with a Higgs potential which satisfies

the de Sitter swampland conjecture predicts sizable Q-dependence of the Higgs VEV unless

there is a fundamental reason to exclude a Q-dependent Higgs expectation value. As we

have discussed, the scenario with the Q-dependent Higgs VEV contradicts with the tests

of the equivalence principle as well as the tests of the time-varying proton-to-electron

mass ratio.

Similarly, if there exists a scalar field which provides masses to colored particles, then

the Q-dependence of its VEV is required to be weak enough to avoid the constraints from

the long-range force and the time-varying proton-to-electron mass ratio. The examples of

such scalar fields include the field which breaks the Peccei-Quinn symmetry or the Grand

Unified gauge symmetry.

In summary, if a quintessence field Q is coupled to the Higgs potential (as well as to

dark energy) to satisfy the swampland conjecture, the scenario is severely constrained by

the long-range force and the time-dependence of the proton-to-electron mass ratio. Unless

there exists any additional principle to avoid these constraints, it seems difficult to find

ourselves living in a vacuum consistent with phenomenological constraints.

Note added. After this paper was submitted, a refined version of the de Sitter swamp-

land conjecture is proposed [60], which evades the problems discussed in this paper. In this

paper, we are concerned with the original proposal of [4] which turns out to be severely

constrained.
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A Time evolution of quintessence field

In this appendix, we briefly discuss how the (real-valued) quintessence field, Q, evolves

from the time of the redshift parameter z = O(1), to the present. (For more detailed

analysis of the evolution of the quintessence field with the potential in eq. (2.1), see e.g.

refs. [39, 61, 62].) For z < O(10), the Hubble parameter is well approximated by

H = H0

√
Ωm

a3
+

1

3H2
0M

2
PL

(
1

2
Q̇2 + VQ(Q)

)
, (A.1)

where the dot denotes the time derivative, and a the scale factor of the universe. The first

term in the right-hand side denotes the contribution of the non-relativistic matter (with

Ωm ' 0.3 being the density parameter of matter [42]), and the second term the one of the

quintessence field Q which plays a role of the dark energy. All the other scalar fields than

the quintessence field have settled to their VEVs well before z ' O(1).

To demonstrate how Q evolves, we consider the simplest potential of the quintessence

field in eq. (2.1). In the slow-rolling regime, cQ �
√

6, the energy density of the quintessence

field is dominated by the potential energy. The equation of motion of Q is given by

Q̈+ 3HQ̇ = −∂VQ/∂Q = 3ξccH
2
0MPLcQ e

−cQQ/MPL . (A.2)

By using rescaled variables,

X =
Q

MPL
, x =

√
3H0t , X ′ =

dX

dx
=

1√
3H0MPL

dQ

dt
, ṼQ(X) = ξcce

−cQX , (A.3)

the Hubble equation and the equation of motion of Q are reduced to

a′

a
=

1√
3

√
Ωm

a3
+

1

2
X ′2 + ṼQ(X) , (A.4)

X ′′ +
√

3

√
Ωm

a3
+

1

2
X ′2 + ṼQ(X)X ′ = ξcccQ e

−cQX . (A.5)

We solve these equations with the boundary conditions,

a(t0) = 1 , (A.6)

X(t0) = 0 , (A.7)

1

2
X ′2 + ṼQ(X)|t=t0 = 0.7 , (A.8)

with t0 being the present cosmic time. The initial condition of X ′ is taken so that the motion

of the quintessence is determined by the Hubble friction in the matter dominated era.

In figure 3, we show the evolution of the quintessence field as a function of the redshift

parameter z (the left panel). The figure shows that the field excursion from z = 1 to

z = 0 is

∆Q

MPL

∣∣∣∣
z=1

' −0.24× cQ , (A.9)
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Figure 3. (Left) The excursion of the quintessence field from Q(z = 0) = 0 (normalized by

MPLcQ) as a function of the redshift parameter z for cQ = 1, 0.5, 0.3, and 0.1. (Right) The

equation of state of the dark energy as a function of the redshift parameter. The (light-)gray

shaded region is disfavored by the 2σ (1σ) limit based on CMB, SNe and BAO measurements [42],

w = −1.028±0.032 (1σ). Here, the energy density of the present universe are taken to be Ωm = 0.3

and ΩDE = 0.7.

for cQ . 0.5. In the right panel, we also show the equation of state of the dark energy,

w = −1 +
Q̇2

1
2Q̇

2 + VQ(Q)
. (A.10)

The equation of state is larger than −1 as the quintessence field is in motion. The (light-

)gray shaded region is disfavored by the 2σ (1σ) limit from CMB, SNe and BAO measure-

ments [42], i.e. w = −1.028± 0.032 (1σ).16 The figure shows that cQ = 1 is excluded while

cQ < 0.5 is within the allowed region.
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