
The SWR1 Histone Replacement Complex Causes Genetic
Instability and Genome-Wide Transcription
Misregulation in the Absence of H2A.Z
Macarena Morillo-Huesca1., Marta Clemente-Ruiz1., Eloı́sa Andújar2, Félix Prado1*
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Abstract

The SWR1 complex replaces the canonical histone H2A with the variant H2A.Z (Htz1 in yeast) at specific chromatin regions.
This dynamic alteration in nucleosome structure provides a molecular mechanism to regulate transcription, gene silencing,
chromosome segregation and DNA repair. Here we show that genetic instability, sensitivity to drugs impairing different
cellular processes and genome-wide transcriptional misregulation in htz1D can be partially or totally suppressed if SWR1 is
not formed (swr1D), if it forms but cannot bind to chromatin (swc2D) or if it binds to chromatin but lacks histone
replacement activity (swc5D and the ATPase-dead swr1-K727G). These results suggest that in htz1D the nucleosome
remodelling activity of SWR1 affects chromatin integrity because of an attempt to replace H2A with Htz1 in the absence of
the latter. This would impair transcription and, either directly or indirectly, other cellular processes. Specifically, we show
that in htz1D, the SWR1 complex causes an accumulation of recombinogenic DNA damage by a mechanism dependent on
phosphorylation of H2A at Ser129, a modification that occurs in response to DNA damage, suggesting that the SWR1
complex impairs the repair of spontaneous DNA damage in htz1D. In addition, SWR1 causes DSBs sensitivity in htz1D;
consistently, in the absence of Htz1 the SWR1 complex bound near an endonuclease HO-induced DSB at the mating-type
(MAT) locus impairs DSB-induced checkpoint activation. Our results support a stepwise mechanism for the replacement of
H2A with Htz1 and demonstrate that a tight control of this mechanism is essential to regulate chromatin dynamics but also
to prevent the deleterious consequences of an incomplete nucleosome remodelling.
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Introduction

Genome organization and function rely on the precise assembly

and dynamics of chromatin. The repeating unit of chromatin, the

nucleosome, is formed by 146 bp of DNA wrapped twice around

an octamer of histones. Histones H3 and H4 are first assembled

into a core (H3/H4)2 tetramer, which is the stable entity at

physiological ionic strength. An H2A/H2B dimer associates on

each side of the tetramer to form the histone octamer that is

stabilized by the nucleosomal DNA [1]. ATP-dependent remod-

elling complexes, histone post-translational modifications and

replacement of canonical with variant histones can later modify

nucleosomes, thus altering the function of specific chromatin

regions [2–4].

Variant histones alter the physicochemical properties of

nucleosomes and thereby not only the interactions of nucleosomes

with other factors but also their stability and DNA accessibility.

One such variant, H2A.Z – Htz1 in yeast –, is an evolutionary

conserved histone (90% sequence identity across species) with roles

in transcription, silencing, genome integrity and cell cycle

progression [5,6]. Htz1 is widely distributed throughout the yeast

genome (in more than 65% of the genes) occupying preferentially

the nucleosomes flanking the nucleosome-free region located at

the transcription start site [7–11]. Htz1 is enriched at the promoter

of basal/repressed genes where it facilitates transcription activa-

tion by histone loss [7–13]. Additionally, Htz1 antagonizes

silencing by collaborating in the formation of a boundary that

prevents the spreading of heterochromatin proteins [14]. These

mechanisms, which appear to be conserved in vertebrate cells

[15], provide an explanation for the elevated number of down-

regulated genes in the absence of Htz1 [14,16,17]. The fact that a

similar number of genes is up-regulated in htz1D has also led to

proposing a role for Htz1 in repression, even though no evidence

has been provided yet.

H2A.Z/Htz1 is also involved in genome stability. It is a

structural component of centromeres [18,19] required for proper

chromosome segregation [19,20]. In addition, the absence of Htz1

affects DNA replication and cell cycle progression and causes

lethality or sickness in combination with S-phase checkpoint

mutants [21]. These results, together with the sensitivity of htz1D
to drugs causing DNA damage during DNA replication [16,17],

suggest a role for Htz1 in the DNA damage response by replicative
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stress. Whether or not associated with these phenotypes, Htz1 is

transiently recruited to double-strand breaks (DSBs) [22] but its

role in DNA repair remains unclear.

H2A.Z/Htz1 is incorporated into chromatin by the Swi2/Snf2-

related SWR1 complex [10,16,17,23]. The 14-subunit yeast

SWR1 has been extensively characterized in vitro. Purified

SWR1 complex can specifically replace H2A/H2B with Htz1/

H2B in an ATP-dependent manner [17]. Swr1 is the catalytic

subunit of the complex and the main scaffold for the assembly of

the remaining subunits; Swc5, Swc2, Yaf9 and Arp4 are also

required for histone replacement in vitro. In addition, Swc2, and

less strongly the N-terminal region of Swr1, are the two

components that interact directly with Htz1 [24,25]. Little is

known, however, about the mechanisms of SWR1 targeting and

Htz1 replacement in vivo. It has been shown that Swr1, Yaf9, the

bromodomain-containing Bdf1 protein and the module formed by

Swc2, Swc6, Arp6 and Swc3 are required for Htz1 incorporation

into chromatin [9,10,16,17,23], but except for Swr1 the specific

function of the remaining subunits and therefore the mechanism of

replacement are still obscure.

Here we show that in the absence of Htz1 the SWR1 complex

causes genetic instability, sensitivity to stress conditions and

genome-wide transcriptional misregulation. Our results are

consistent with a stepwise mechanism of histone replacement

that, in the absence of Htz1, affects chromatin integrity and

function.

Results

The SWR1 complex causes genetic instability in the
absence of Htz1

To uncover new mechanisms by which chromatin prevents

genetic instability, we have analyzed the effects on recombination of

mutants affected either in structural components or in remodelling

factors of chromatin. This screening revealed a new function for the

histone variant Htz1 in preventing the accumulation of recombino-

genic DNA damage, as shown by an increase in the frequency of

both genetic recombination between inverted repeats and budded

cells with foci of the recombination protein Rad52 fused to the

yellow fluorescence protein (Rad52-YFP) in htz1D cells (Figure 1A

Figure 1. The SWR1 complex causes genetic instability in the absence of Htz1. (A) Effect of htz1D, swr1D and htz1D swr1D (BY4741) on the
frequency of inverted-repeat recombination. (B) Effect of htz1D, swr1D, swc2D, swc5D, htz1D swr1D, htz1D swc2D, htz1D swc5D, swr1D swc2D and
htz1D swr1D swc2D (BY4741) on the frequency of budded cells with Rad52-YFP foci. (C) Effect of htz1D, hta1/2S129* and htz1D hta1/2S129* (W303-1a) on
the frequency of budded cells with Rad52-YFP foci. (D) Scheme with the pathways of accumulation of recombinogenic DNA damage in htz1D, swr1D
and swc2D. The frequency of recombination and budded cells with Rad52-YFP foci is presented as the average and standard deviation as described in
Materials and Methods. Asterisks and circles indicate statistically significant differences compared to wild type and htz1D, respectively, according to a
Student’s t-test, where one asterisk/circle represents a P-value ,0.0001, two represents ,0.005, and three represents ,0.025.
doi:10.1371/journal.pone.0012143.g001
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and B, respectively). As expected by the fact that Swr1 is required

for the incorporation of Htz1 into chromatin [17,23], the absence of

Swr1 led to similar phenotypes (Figure 1A and B). Notably,

however, htz1D swr1D displayed levels of genetic recombination and

Rad52-YFP foci close to the wild type (Figure 1A and B). These

results therefore support the existence of two pathways that lead to

an accumulation of recombinogenic DNA damage, one associated

with htz1D that depends on Swr1, and another associated with

swr1D that depends on Htz1 (Figure 1D).

The effect of Swr1 in htz1D is likely to be mediated by the

SWR1 complex because SWR1 remains intact in the absence of

Htz1 [24]. Given that Swr1 is essential for the integrity of the

complex, we decided to study genetic stability in the absence of

either Swc2 or Swc5, two SWR1 subunits required for Htz1

transfer in vitro but not for the integrity of the complex [24]. Swc2

binds directly to Htz1 and this interaction is responsible for most

of the Htz1 bound to the complex. By contrast, Swc5 is the only

subunit absent in the complex purified from swc5D cells [24,25]

and therefore a convenient mutant to explore if the phenotypes

mediated by Swr1 in htz1D require the histone transfer activity of

the SWR1 complex.

The absence of Swc2 increased the proportion of budded cells

with Rad52-YFP foci (Figure 1B; [26]). However, this increase was

also detected in the triple mutant htz1D swr1D swc2D, despite the

fact that the double mutant htz1D swr1D does not accumulate

Rad52-YFP (Figure 1B), supporting the existence of a swc2D-

associated mechanism leading to Rad52-YFP foci that is

independent of Swr1 and Htz1 (Figure 1D). By contrast, swc5D
caused just a slight increase in the frequency of cells with Rad52-

YFP foci, and more importantly, swc5D partially suppressed the

hyper-recombination phenotype of htz1D (Figure 1B).

Phosphorylation of H2A is one of the earliest molecular events

in response to DNA damage [27,28] that is required for SWR1

binding to H2A in vitro [29] and to damaged DNA in vivo [30,31].

Therefore, we analyzed the effect of a H2A mutant that cannot be

phosphorylated (hta1/2S129*) on htz1D-induced genetic instability.

As shown in Figure 1C, hta1/2S129* displayed a 5-fold increase in

cells with Rad52-YFP foci, consistent with its defect in NHEJ but

not in HR [28], but two-fold lower than in htz1D. Importantly, the

effect of hta1/2S129* was epistatic over htz1D, indicating that the

accumulation of Rad52-YFP in htz1D requires phosphorylation of

H2A.

The SWR1 complex causes DNA damage sensitivity in the
absence of Htz1

The response to DNA damage is not similar in htz1D and swr1D
cells. While htz1D is highly sensitive to the replication inhibitor

hydroxyurea (HU) and the alkylating agent methyl methanesul-

fonate (MMS), swr1D is either resistant or moderately sensitive

depending on the genetic background (Figures 2A and S1A;

[16,17]). Since the high density of cells in the drop-test assays can

exacerbate growth defects and does not distinguish between

lethality and slow growth, we determined the efficiency of plating

in media with drug relative to the controls without drug. At the

analyzed concentrations htz1D cells died in HU and grew slowly in

MMS (Figure S2), consistent with the fact these two agents cause

different types of replicative DNA damage. We hypothesized that

DNA damage sensitivity in htz1D might be mediated by Swr1. In

agreement with this possibility we observed that swr1D suppresses

– totally or partially depending on the genetic background –

htz1D-mediated DNA damage sensitivity (Figures 2A, S1A and

S2), further demonstrating that Swr1 leads to genetic instability in

the absence of Htz1. Also, we observed that both swc2D and

swc5D, while displaying the same low sensitivity to HU as swr1D,

suppressed htz1D lethality (Figures 2B and S2A).

These results suggest that DNA damage sensitivity in the

absence of Htz1 requires the histone exchange activity of SWR1.

To further support this point we analyzed a mutant carrying a K

to G substitution in the ATP binding site of Swr1 that completely

abolish its histone replacement activity but has no effect on the

integrity of the complex [17]. We transformed swr1D and htz1D
swr1D mutants with a plasmid expressing either SWR1 or swr1-

K727G and tested their sensitivity to HU and MMS. Expression of

the wild-type but not of the Swr1 ATPase-dead protein in htz1D
swr1D caused DNA damage sensitivity, indicating that the histone

replacement activity of SWR1 is responsible for genetic instability

in the absence of Htz1 (Figures 2A and S2A). Finally, and in

contrast to the accumulation of Rad52 foci, htz1D sensitivity to

HU was independent of H2A phosphorylation (Figure 2A).

In response to a DSB the SWR1 complex incorporates Htz1 at

the proximity of the break [22,32]. Therefore, we decided to

determine whether Swr1 also lead to defective DSB repair in the

absence of Htz1, as shown above for HU and MMS. To assess this

possibility we first determined the sensitivity of mutant and wild

type cells to DSBs generated by the endonuclease PvuII expressed

from a GAL1 promoter variant with reduced basal activity [33].

While the growth of wild type and swr1D was not affected by the

residual expression of PvuII under non-inducing conditions and

equally affected upon induction of the GAL1 promoter for 8 hours,

htz1D was highly sensitive even under residual PvuII expression.

Remarkably, swr1D suppressed htz1D sensitivity to DSBs under

both conditions (Figures 2C and S1B). Similar results were

obtained with the DSB-inducing drug phleomycin; htz1D but not

swr1D was highly sensitive to the drug and this sensitivity was

partially or totally suppressed – depending on the genetic

background – in the double mutant (Figure 2D and S1B). Further

analysis showed that phleomycin caused a loss of viability in htz1D
(Figure S2A). These data indicate that the absence of Htz1 at

chromatin has a minor impact in DSB repair and that Swr1 causes

sensitivity to DSBs in htz1D. However, and despite the fact that

SWR1 has been shown to be recruited to DSBs via P-H2A [31],

the phosphoacceptor mutant hta1/2S129* did not suppress htz1D
sensitivity to phleomycin (Figure 2D).

Since SWR1 is closely related to the chromatin remodelling

complex INO80 and both SWR1 and INO80 are recruited to

DSBs [29–31,34], where they appear to regulate the level of Htz1

[32], we decided to address the possibility that the effect of SWR1

on DSB repair in htz1D was mediated by INO80. Figure 2E shows

that both swr1D and ino80D displayed a similar low sensitivity to

phleomycin-induced DSBs, consistent with the minor role, if any,

played by SWR1 and INO80 in NHEJ and DSB-induced HR

[31,32]. Unlike swr1D, however, ino80D did not suppressed htz1D
sensitivity, indicating that INO80 is not required for SWR1-

dependent htz1D sensitivity to DSBs. Altogether, our results,

performed in two genetic backgrounds, demonstrate that SWR1

causes sensitivity to a number of different DNA lesions.

The SWR1 complex impairs DSB-induced checkpoint
activation in the absence of Htz1

To understand why SWR1 affects DSB repair in htz1D we first

analyzed by ChIP the binding of the SWR1 complex to an

induced DSB using a Myc-tagged version of Swr1. We used a

yeast strain in which an unrepairable DSB at the mating-type

(MAT) locus can be synchronously generated by continuous

expression of the endonuclease HO from the galactose-inducible

GAL1 promoter, and in which the deletion of the donor sequences

HML and HMR prevents the repair of the DSB by HR (Figure 3A;

SWR1-Mediated Defects in htz1D
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[35]). The efficiency of HO-induced cleavage at MAT was reduced

as compared with previous results due to growth conditions

(minimal versus rich medium; data not shown) and slightly affected

in htz1D, swr1D and htz1D swr1D (Figure 3B; [22]). As shown in

Figure 3C, and in contrast to a previous result [31], Swr1 was

present at MAT before formation of the DSB and this binding was

not altered over HO digestion. The accumulation of SWR1 at

MAT before cleavage was not due to incomplete repression of the

GAL1 promoter in raffinose because a similar enrichment was

detected in glucose (data not shown). Also, Swr1 binding to MAT

before and after DSB formation was not affected in htz1D,

indicating that the absence of Htz1 has no effect on SWR1 binding

to intact and broken DNA molecules.

It is well established that during DSB repair the 59-ends

generated upon the break are resected leaving 39-ended single-

strand DNA molecules that trigger the activation of the DNA

damage checkpoint [36]. Notably, processing of the break has

been shown to be different in htz1D and swr1D mutants. DNA

resection and checkpoint activation – as determined by accumu-

lation of phosphorylated H2A (P-H2A) and Rad53 (P-Rad53) –

are affected during HO endonuclease-induced DSB repair in

htz1D [22] but not in swr1D [31,32]. We hypothesized that SWR1

might impair DSB processing in the absence of Htz1. To address

this possibility we followed the accumulation of P-H2A and P-

Rad53 in response to an unrepairable DSB at the MAT locus

(Figure 3D). As previously shown, the kinetics of Rad53 and

histone H2A phosphorylation were not affected in swr1D and

delayed in htz1D despite equivalent cleavage efficiencies. More

importantly, the absence of Swr1 suppressed the defect in

checkpoint activation associated with htz1D (Figure 3D).

Swr1 causes sensitivity to stress conditions in htz1D
In addition to DNA damage, htz1D and swr1D have been

reported to be sensitive to stress conditions that impair different

cell processes. In particular, they are sensitive to the microtubule

polymerization inhibitor benomyl, a result consistent with their

Figure 2. The SWR1 complex causes DNA damage sensitivity in the absence of Htz1. (A) DNA damage sensitivity of htz1D, swr1D, htz1D
swr1D, hta1/2S129*, htz1D hta1/2S129* and of swr1D and htz1D swr1D transformed with plasmids pRS416-SWR1-2Flag or p416-swr1-2Flag-k727G (W303-
1a) as determined by plating ten-fold serial dilutions from the same number of mid-log phase cells onto SMM or SMM-U plates with or without HU or
MMS, respectively. (B) DNA damage sensitivity of htz1D, swr1D, swc2D, swc5D, htz1D swr1D, htz1D swc2D and htz1D swc5D (BY4741) as indicated in
(A). (C) Sensitivity of htz1D, swr1D and htz1D swr1D (W303-1a) to DSBs generated by expression of the endonuclease PvuII from a GAL1 promoter
variant. DSB sensitivity of cells transformed with either pV10 (GAL1pr::PvuII) or pRS316 (empty vector) was determined by plating onto SMM-U ten-
fold serial dilutions from the same number of mid-log phase cells growth under non-inducing (glucose) or inducing (galactose for 8 hours)
conditions. (D) DSB sensitivity of htz1D, swr1D, htz1D swr1D, hta1/2S129* and htz1D hta1/2S129* (W303-1a) as determined by plating ten-fold serial
dilutions from the same number of mid-log phase cells onto YPD with or without phleomycin. (E) Phleomycin-induced DSBs sensitivity of htz1D,
swr1D, htz1D swr1D, ino80D and htz1D ino80D (BY4733) as determined in (D). Cells were incubated at 30uC for 1–3 days as indicated.
doi:10.1371/journal.pone.0012143.g002
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genetic interactions with mutations in components of the

kinetochore and the Swr1-mediated deposition of Htz1 at

centromeric regions [19]. However, this sensitivity is more

pronounced in htz1D than in swr1D (Figures 4A; [16,19]). The

absence of Htz1 has also been shown to cause sensitivity to the

denaturing agent formamide and to the phosphatidylinositol-3-

OH kinase related kinases (PIKKs) inhibitor caffeine, these

sensitivities also being high in htz1D and moderate in swr1D
(Figures 4A [16]). Finally, the absence of both Htz1 and

components of SWR1 display synthetic growth defects with the

absence of the transcriptional elongation factor Dst1 [23], a result

that, together with the sensitivity of htz1D to the transcriptional

elongation inhibitor 6-azauracil (6-AU) [37], points to a role for

Htz1 during transcription elongation. We observed that htz1D
sensitivity to 6-AU was less pronounced in swr1D than in htz1D
(Figure 4B). In all cases, however, the differential sensitivity to

drugs of htz1D as compared to swr1D was dependent on genetic

background (compare Figure 4 with S1C). In addition, these drugs

did not lead to a significant loss of viability and only in the case of

formamide to a dramatic slow growth, being the growth defects

exacerbated by the drop-test assay (Figure S2). More importantly,

our study in two different genetic backgrounds showed that the

absence of Swr1 suppresses the growth defects of htz1D under all

tested stress conditions, including unperturbed conditions

(Figures 4, S1C and S2).

The SWR1 complex causes transcriptional misregulation
in the absence of Htz1

A number of studies have provided strong genetic and

molecular evidence for a function of Htz1 in transcription

regulation [7,9,10,14,17,23]. Interestingly, comparison of the

genome-wide transcription profiles for htz1D and swr1D showed

a high percentage of genes whose misregulation was specific to

each mutation, a result that suggested the existence of non-

Figure 3. The SWR1 complex impairs DSB processing in the absence of Htz1. (A) Schematic representation of the MAT locus and deleted
HML and HMR donor sequences at chromosome III. The position of the DNA fragments amplified by qPCR for cleavage efficiency and ChIP analysis is
indicated. (B) Accumulation of HO-induced DSBs at MAT over time. (C) Swr1-Myc enrichment at both sides of the cleavage site at MAT by ChIP
analysis. Both input and ChIP DNA were amplified by real-time PCR with amplicons situated at the regions shown in (A) (see Table S4 for oligos). The
enrichment at each zone is graphed relative to the enrichment in the wild-type strain incubated with IgG, taken as 1. Similar results were obtained
using as a control the untagged strain incubated with the anti-Myc antibody. (D) DSB-induced phosphorylation of Rad53 (Rad53-P) and histone H2A
(P-H2A) over HO digestion by western blot. All the experiments were performed in JKM179.
doi:10.1371/journal.pone.0012143.g003
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overlapping functions for Swr1 and Htz1. This effect was

particularly relevant in the case of htz1D with percentages of

86% and 64% of the total amount of htz1D up- and down-

regulated genes, respectively [17]. In light of our previous results

we decided to explore the possibility that Swr1 caused transcrip-

tional misregulation in htz1D. With this aim the transcription

profiles of single and double mutants and wild-type cells were

determined by whole-genome microarray analysis (Figure 5 and

Tables S1 and S2). A 2-fold expression change cutoff relative to

wild type yielded 126 and 41 up-regulated genes and 198 and 108

down-regulated genes by htz1D and swr1D, respectively

(Figure 5A). Overall these numbers are 10–20-fold higher than

those obtained by Mizugushi and co-workers with the same strains

but in a rich medium [17], indicating that the unexpected low

number of genes regulated by Swr1 and Htz1, considering that

Htz1 is present in most yeast promoters, was mostly due to growth

conditions. Apart from this effect and consistent with the spreading

of heterochromatin proteins in the absence of Htz1 incorporation

into chromatin [14], 25% of the genes down-regulated in htz1D
accumulated near telomeres in small clusters (Htz1-activated

domains; HZADs) and 60% of these genes were also down-

regulated by swr1D (Table S2).

A comparative analysis of htz1D and swr1D transcriptional

profiles shows that the number of misregulated genes was much

higher in htz1D than in swr1D. Also, most of the genes misregulated

by htz1D were not misregulated by swr1D (84% and 63% for up- and

down-regulated), as opposed to the number of genes misregulated

by swr1D that were not misregulated by htz1D (51% and 31% for

up- and down-regulated) (Figure 5A). More importantly, most of the

htz1D-misregulated genes were suppressed by more than 1.5-fold by

swr1D (68% and 49% of the up- and down-regulated genes)

(Figure 5B) without a preferential association with genes located at

HZADs or randomly distributed (Table S2). It is noted that this

suppression by swr1D mainly affected the genes that were

specifically misregulated by htz1D (79% and 73% for up- and

down-regulated, respectively) and not the genes misregulated by

both htz1D and swr1D (10% and 9% for up- and down-regulated,

respectively) (Figure 5B). By contrast, the changes in the level of

mRNA caused by the absence of Swr1 were not significantly

affected by htz1D (Figure 5E). These results indicate that Swr1

affects the expression of a large number of genes in the absence of

Htz1, and suggest that the major role for Htz1 in transcription is

mediated by Swr1. Similar results were obtained with 1.5-fold-

expression and 1.2-fold-suppression cutoffs (Tables S1 and S2).

Next, we decided to determine whether transcriptional

misregulation in the absence of Htz1 was also dependent on

Swc2 and Swc5. As shown in Figure 5A, the number of genes up-

and down-regulated either by htz1D alone or htz1D and swc2D (or

swc5D) together were similar to those obtained with either htz1D
alone or swr1D and htz1D together, respectively. Also, these groups

of genes displayed a significant overlapping (Figures S3A and

S3B). Importantly, swc2D and swc5D suppressed a similar

(Figure 5C and 5D) and common (Figure 5F) number of htz1D-

misregulated genes as did swr1D, indicating that the SWR1

complex impairs transcription in the absence of Htz1 and that the

major role of Htz1 in transcription occurs via SWR1-mediated

histone replacement. It is also noted that misregulation by swc2D
and swc5D was not affected by the absence of Htz1, except for a

reduced number of genes (23 out of 172) whose swc5D-mediated

change in mRNA levels was suppressed by htz1D (Figure 5E and

Table S1), and that may reflect a residual activity of the

SWR1swc5D complex. Interestingly, the genes misregulated

specifically by the absence of Swr1, Swc2 or Swc5 do not show

a significant overlapping (Figure S3C), suggesting that the SWR1

complex does not have a physiological role in transcription

regulation independent of Htz1.

Swc2, but not Swc5 and Htz1, is required for Swr1
binding to chromatin, while Swc5 is required for histone
replacement

Our previous results indicate that genetic instability, sensitivity

to stress and transcriptional misregulation in htz1D are, to a

greater or lesser extent, the consequence of the activity of the

SWR1 complex. To get better insight into this mechanism we

decided to determine what steps of the histone replacement

reaction were prevented in our mutants. First, we analyzed SWR1

targeting to chromatin by ChIP analysis of strains harbouring a

TAP-tagged version of Swr1. This construct is functional as

indicated by the fact that SWR1-TAP displayed the same resistance

to HU as the wild type (Figure 6A). We chose the promoter and an

internal region of the BUD3 gene known to be enriched or not in

Figure 4. Swr1 causes sensitivity to stress conditions in the absence of Htz1. Stress sensitivity of htz1D, swr1D and htz1D swr1D (W303-1a)
as determined by plating ten-fold serial dilutions from the same number of mid-log phase cells onto YPD plates with or without benomyl, caffeine or
formamide, or SMM without uracil (SMM-U) plates with or without 6-AU. Cells were incubated at 30uC for 2–3 days as indicated.
doi:10.1371/journal.pone.0012143.g004

SWR1-Mediated Defects in htz1D

PLoS ONE | www.plosone.org 6 August 2010 | Volume 5 | Issue 8 | e12143



Htz1, respectively [9], and three Swr1 enriched promoters (TOA1,

SSM4 and YNL116w) [10]. As can be seen in Figure 6C, Swr1-

TAP bound to chromatin in wild-type cells and, as shown above

for the MAT locus, this binding did not require Htz1 (similar

results were obtained with Myc-Swr1 binding to the TOA1

promoter in samples of Figure 3C; Figure S4A). Similarly, Swr1

binding to chromatin was not prevented by the absence of Swc5.

However, Swr1 binding to promoters was impaired in swc2D
despite this strain displaying wild-type levels of Swr1-TAP as

determined by western analysis (Figure 6B).

Figure 5. The SWR1 complex causes transcriptional misregulation in the absence of Htz1. (A) Venn diagrams showing the number of
genes whose mRNA levels changed by more than 2-fold in mutants relative to the wild type and the number of genes that were commonly
misregulated by htz1D and either swr1D, swc2D or swc5D. (B, C, D) Fraction of htz1D misregulated genes (2-fold cutoff) whose mRNA levels were
changed by more than 1.5-fold (either suppressed or increased) in the double mutant htz1D swr1D (B), htz1D swc2D (C) or htz1D swc5D (D) relative to
htz1D. (E) Fraction of swr1D, swc2D or swc5D misregulated genes (2-fold cutoff) whose mRNA levels changed by more than 1.5-fold in htz1D swr1D,
htz1D swc2D or htz1D swc5D relative to swr1D, swc2D or swc5D, respectively. (F) Venn diagrams showing the number of htz1D-misregulated genes (2-
fold cutoff) that were commonly suppressed by swr1D, swc2D and swc5D. The genome-wide transcriptional analysis was performed in BY4741.
doi:10.1371/journal.pone.0012143.g005
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Swc5 has been shown to be required for histone transfer in vitro

[24]. We decided to determine whether Swc5 is also required for

Htz1 transfer in vivo by ChIP analysis in strains harbouring a

functional TAP-tagged version of Htz1, as determined by HU and

6-AU sensitivity (Figure 6A; [23]). Figure 6D shows that Htz1 was

not incorporated into chromatin in the absence of Swr1, consistent

with previous results [17,23], while the absence of Swc5 nearly

eliminated the amount of Htz1 bound to chromatin. Western blot

analysis showed that the amount of Htz1-TAP in both mutants

was 3–4-fold lower than in the wild type (Figure 6B) despite the

levels of mRNA not being affected (data not shown), suggesting

that Htz1 incorporation into chromatin prevents its degradation.

Our molecular analysis demonstrates that Swc2 is required to

target the SWR1 complex to chromatin, while Swc5 participates

in the reaction of histone replacement. Altogether, our results let

us conclude that genetic instability and transcriptional misregula-

tion in the absence of Htz1 require the binding to chromatin

(prevented in swc2D) and the histone replacement (prevented in

swc5D and swr1-K727G) activities of SWR1.

The requirement for the histone replacement activity of SWR1

prompted us to look for an alteration in chromatin structure

associated with htz1D and to determine its dependence on Swr1.

The analysis of nucleosome positioning and DNA accessibility by

MNaseI and DNaseI digestion, respectively, of the INO1, DAN1

and GAL1 promoters did not reveal any difference in chromatin

structure between the wild type, htz1D, swr1D and htz1D swr1D
(Figures 6E and 6F). While a previous work reported a 20 bp shift

in the positioning of nucleosome +2 of the GAL1 promoter in

htz1D with a similar approach, this result was obtained with a wild

type strain in which Htz1 was tagged with Myc [7]. We also tried

to determine by ChIP analysis if the absence of Htz1 altered the

stoichiometry of the nucleosomal histones at three promoters

enriched in Htz1, and we did not detect any modification in the

H2B/H3 ratio (Figure S4B). Overall our results are in line with

both an independent study of four different chromatin regions [8]

and a recent genome-wide analysis on nucleosome positioning

[38] that have not detected any effect of htz1D on chromatin

structure.

Discussion

The genome-wide distribution of Htz1 and its role in a number

of processes from transcription and silencing to DNA repair and

chromosome segregation make of this histone a key regulator of

the genome dynamics. Here we show that genetic instability,

sensitivity to drugs impairing different cellular processes and

genome-wide transcription misregulation in htz1D can be partially

or totally suppressed if the SWR1 complex is not assembled

(swr1D), if it is assembled but cannot bind to chromatin (swc2D and

hta1/2S129* in case of recombinogenic DNA damage) or if it can

bind to chromatin but lacks histone replacement activity (swc5D
and swr1-K727G), indicating that in the absence of Htz1 the

nucleosome remodelling activity of SWR1 affects transcription

and genetic stability.

The mechanism of histone replacement has been suggested to

occur in a stepwise manner [17] even though these steps remain

unknown. We show that Swc2 is required for Swr1 binding to

chromatin, and that this binding is not mediated by its interaction

with Htz1 because it is not prevented by htz1D. These results,

together with the fact that the mouse homolog of Swc2 (YL-1)

binds to DNA in vitro [39] point to Swc2 being the subunit that

targets SWR1 to chromatin. Upon binding, the SWR1 complex

may promote histone replacement in a two-step manner, with the

destabilization of H2A/H2B followed by deposition of Htz1/H2B

via interactions with Swc2 and Swr1. It has been proposed that

SWR1, as shown for SWI/SNF, may generate a dynamic DNA

loop on the nucleosomal surface that promotes the intrinsic

tendency of the histone octamer to dissociate the H2A/H2B dimer

[17]. In vitro studies have shown that Swc5 is required for histone

replacement [24]; our in vivo results support this conclusion and

suggest that it is required for the destabilization of the H2A/H2B

dimer. In this regard, the presence in Swc5 of a 60-residue N-

terminal domain highly enriched in acidic amino acids (43%)

characteristic of histone chaperones might provide the binding

module to capture the H2A/H2B dimer as shown for Swi3 in

SWI/SNF [40]. In a second step, Swr1 and Swc2 may deposit

Htz1/H2B thus restructuring the nucleosome.

In this context, the fact that in htz1D the SWR1 complex causes

transcription misregulation and genetic instability by a mechanism

that requires both the binding of SWR1 to chromatin and its

histone replacement activity led us to propose that in the absence

of Htz1 the nucleosome would remain transiently ‘‘destabilized’’

by SWR1 because of an attempt to replace H2A without Htz1,

leading to a loss of chromatin integrity and function. However, we

note the absence of changes in chromatin structure associated with

htz1D (Figures 6 and S4B; [8,38]), a result that is consistent with

subtle and transient alterations in nucleosome structure and/or a

reduced population of affected molecules, but also with SWR1

affecting transcription and genetic stability without altering

chromatin structure. For instance, SWR1 might be ‘‘trapped’’ at

chromatin becoming a steric hindrance for DNA metabolic

processes. However, the fact that the cellular defects associated

with htz1D require the replacement activity of SWR1 (abolished in

swc5D and swr1-K727G) and that the enrichment in Swr1 at

promoters and broken DNA ends is not significantly higher in

htz1D than in wild type and swc5D questions this alternative model.

Additional analysis will thereby be required to reconcile genetic

and molecular data.

Notably, the transcriptional effect of the SWR1 complex is more

evident in genes that are specifically misregulated by htz1D. This

result may be explained if we consider gene regulation by histone

replacement as a dynamic process whose turnover rate can be low

but not absent in those genes that are regulated by SWR1/Htz1

but do not require Htz1 under our experimental growth

Figure 6. Swc2 and Swc5 are required for Swr1 binding to chromatin and histone replacement, respectively. (A) Swr1-TAP and Htz1-
TAP functionality as determined by plating ten-fold serial dilutions from the same number of mid-log phase cells onto SMM plates with or without
200 mM HU. Cells were incubated at 30uC for 2–3 days as indicated. (B) Swr1-TAP and Htz1-TAP protein levels in mutants and wild type as
determined by western blot. (C) Swr1-TAP and (D) Htz1-TAP enrichment at the promoters of BUD3, TOA1, SSM4 and YNL116w and an internal region
of the coding sequence of BUD3 by ChIP analysis. Both input and ChIP DNA from untagged and tagged cells were amplified by real-time PCR with
amplicons situated at the indicated regions (see Table S4 for oligos). The enrichment in the tagged strain at each zone is graphed relative to the
enrichment in the untagged strain, taken as 1. ChIP experiments were performed in BY4741. (E) Nucleosome positioning at GAL1 in W303-1a and
INO1 and DAN1 in BY4741 as determined by MNaseI digestion and indirect-end labelling. Spheroplasts from W303-1a cells were treated with different
amounts of MNaseI, while BY4741 cells expressing the MNaseI were incubated with Ca2+ to activate the nuclease for the indicated times. (F) DNA
accessibility at the genes indicated in (E) by DNaseI digestion and indirect-end labelling. A scheme with the position of the upstream activation (UAS)
and coding sequences (CDS) is shown on the left of each panel.
doi:10.1371/journal.pone.0012143.g006
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conditions. The transcriptional defect by htz1D in those genes

would be caused by SWR1; this effect would be masked by the

transcriptional defects associated with the absence of Htz1 in the

chromatin of those genes that do require regulation by SWR1/

Htz1 under our experimental growth conditions. Importantly, our

results suggest that the low overlapping of misregulated genes in

swr1D and htz1D (Figure 5; [17]) is not due to independent

functions of these two genes and strengthen the idea that the main

role of Htz1 is associated with SWR1. Similarly, our genome-wide

transcriptional analysis suggests that SWR1 does not have a

prominent role in transcription regulation independent of Htz1.

Finally, our results suggest that the sensitivity of htz1D to drugs

impairing different cellular processes is due to, at least in part, the

effect of SWR1 on transcription.

We have also shown that in htz1D the histone replacement

activity of SWR1 leads to an accumulation of recombinogenic

DNA damage. Notably, this accumulation can be suppressed by a

mutation at the H2A phosphoacceptor S129. This is particularly

important because H2A phosphorylation is a DNA damage-

specific chromatin mark [28], suggesting that the high frequency

of Rad52 foci in htz1D results from a direct effect of SWR1 at

DNA lesions. This is also supported by the absence of genes

involved in DNA damage repair among those misregulated by

htz1D (Table S2). In addition, the fact that H2A phosphorylation

occurs in response to the damage [27,28] indicates that this

accumulation of Rad52 foci is associated with defective DNA

repair rather than with the generation of new DNA lesions. In this

context it is noteworthy that hta1/2S129* also suppresses the slow

growth of htz1D (Figure 2A), which results from a delayed S phase

[21], because points to defects in spontaneous DNA damage repair

during DNA replication as a major problem in the absence of

Htz1 and account for the synthetic interactions of htz1D with S-

phase but not with DNA-damage checkpoint mutants [21]. These

results also suggest that spontaneous DNA lesions leading to HR

foci in htz1D are not DSBs because DSB sensitivity in htz1D is

independent of H2A phosphorylation. Consistent with this, htz1D
cells accumulate P-H2A (data not shown; [32]) despite DSB-

induced H2A phosphorylation is retarded (Figure 3), and neither

htz1D nor swr1D accumulate DSBs as determined by pulse-field

genome electrophoresis (Figure S5).

SWR1 and Htz1 have been shown to bind near a DSB

[22,31,32]. We show that Swr1 is present at MAT before

formation of a DSB, in contrast to an earlier report [31] but

consistent with the Swr1-dependent presence of Htz1 at MAT

before cleavage detected by two other groups [22,32]. Normal-

ization to an internal DNA fragment may be responsible for the

result obtained by van Attikum and Gasser, since this locus might

also be enriched in Swr1. These authors also showed that SWR1 is

recruited to sites of DSB after 2–4 hours of HO expression [31].

We found no significant increase in Swr1 binding in response to a

DSB, which might be due to differences in growth conditions

(minimal versus rich medium). It worth noting, however, that no

significant [31,32] or just a subtle accumulation of Htz1 after 30

minutes of HO expression have been detected [22]. This suggests

that Htz1 binding to chromatin in response to DSBs is, at best,

slight and transient. Consistently, the function of SWR1/Htz1 at

DSBs is unclear, because htz1D, but not swr1D is defective in DSB

processing, and swr1D is proficient in HR and only slightly affected

in non-homologous end joining (NHEJ) [22,31]. In agreement

with this, we show that swr1D is hardly sensitive to DSBs. By

contrast, SWR1 causes sensitivity to DSBs in htz1D. Further

molecular analysis shows that SWR1 causes a delay in DSB-

induced checkpoint activation in htz1D, likely as a consequence of

defects in DNA resection as suggested by the fact that this process

is affected in htz1D but not in swr1D [22,31]. As previously

mentioned, the absence of DSB repair genes misregulated by

htz1D makes unlikely an indirect effect by transcriptional defects.

Another possibility to explain these results would be a direct effect

of SWR1 impairing DSB repair in htz1D; consistent with this idea

Htz1 is not required for SWR1 binding to chromatin. Notably,

phleomycin-induced DSB sensitivity in htz1D is not suppressed by

hta1/2S129*, despite P-H2A has been shown to be required for

SWR1 binding in response to a DSB [31], suggesting that the pool

of SWR1 at chromatin before the breaks are made is responsible

for defective DSB repair. In agreement with this, SWR1 is present

at MAT before HO cleavage. This situation mimics the role for the

INO80 complex at MAT, where the pre-existing, but not the P-

H2A-dependent pool of INO80 recruited in response to DSBs, is

responsible for nucleosome removal from broken ends [41].

In addition to the SWR1-dependent genetic instability in htz1D,

the analysis of mutations in SWR1 subunits have revealed two

other mechanisms leading to an accumulation of recombinogenic

DNA damage that require further analysis to be understood. The

first one occurs in the absence of Swr1 and is mediated by Htz1,

while the second occurs in the absence of Swc2 and is independent

of Swr1 and Htz1. Whether or not these phenotypes are a

consequence of swr1D (or swc2D) specific transcriptional defects or

are related to unknown mechanisms of genetic instability is well

worth addressing.

In summary our results in yeast provide new insights into the

mechanism of histone replacement and highlight the importance

of a tight control of this process not only to assemble a proper

chromatin structure but also to prevent the deleterious conse-

quences of an incomplete nucleosome remodelling. The ample

range of cellular defects mediated by the nucleosome remodelling

activity of SWR1 in htz1D prompts us to predict that reductions in

the pool of available H2A.Z/Htz1 may have an impact in cell

fitness, in particular in the context of the demanding structural

complexity of metazoan chromatin. In this regard it is tempting to

speculate about the possibility that some of the phenotypes

associated with the absence of H2A.Z in metazoan cells, in

particular lethality [42,43], could be influenced by the corre-

sponding SWR1-like complexes.

Materials and Methods

Yeast strains, growth conditions and plasmids
Yeast strains used in this study are listed in Table S3. Tagged

strains and deletion mutants were constructed by a PCR-based

strategy [44]. Yeast cells were grown in supplemented minimal

medium (SMM), except for the analysis of benomyl, caffeine,

formamide and phleomycin sensitivity, which was performed in

YPD rich medium [45]. For the analysis of DSB-induced Swr1-

Myc binding to chromatin and checkpoint activation JKM179

derived strains were grown in SMM with 2% raffinose instead of

glucose and HO expression was induced by the addition of 2%

galactose. pRS316 [46], pRS416-SWR1-2Flag, p416-swr1-2Flag-

K727G [17], pRS316-SU [47], pWJ1344 (by R. Rothstein,

Columbia University), pV10 [33] and pADS14-nlsMN (by U. K.

Laemmli, Geneva University) are centromeric plasmids containing

URA3, SWR1, swr1-K727G, the SU inverted repeat recombination

system, and the RAD52-YFP, GAL1pr*::PvuII and ADH1pr::nlsMN

constructs, respectively.

Genetic recombination and DNA damage and stress
sensitivity/viability assays

The frequency of Leu+ recombinants generated by spontaneous

recombination between inverted repeat sequences was determined
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in cells transformed with plasmid pRS316-SU by fluctuation tests

as the median value of six independent colonies [48]. The average

and standard deviation of 8 fluctuation tests performed with 4

independent transformants of each strain are shown. DNA

damage and stress sensitivity was determined by plating ten-fold

serial dilutions from the same number of mid-log phase cells onto

medium containing different drugs at the indicated concentrations.

Cells were previously transformed either with pV10 or pRS316 for

PvuII-mediated DSBs sensitivity and with pRS316 for 6-AU

sensitivity. Cell viability in response to DNA damage and stress

conditions was determined as the frequency of cells from a colony

able to grow in plates containing the different drugs relative to

SMM or YPD. The average and standard deviation of 4

independent colonies are shown.

Analysis of Rad52-YFP foci
The proportion of budded cells with Rad52-YFP foci was

performed as described previously [49]. Cells transformed with

pWJ1344 were grown to mid-log-phase at 30uC and visualized

with a Leica CTR6000 fluorescence microscope. The total

numbers of analyzed cells were 600 for swr1D, htz1D swr1D and

htz1D swr1D swc2D, 1000 for swc2D, swc5D, htz1D swc2D and

swr1D swc2D, 1500 for htz1D and 2500 for htz1D swc5D and the

wild type in Figure 1B, and 600 for htz1D, hta1/2S129*, htz1D hta1/

2S129* and the wild type in Figure 1C. The average and standard

deviation of 6–25 independent measures are shown.

Pulse-field genome electrophoresis (PFGE)
Total DNA from exponentially growing cultures was extracted

in low-melting agarose plugs as previously shown [50] and

resolved by PFGE (Biorad; 120u field angle; 6 V/cm; 14uC; initial

block: switch time of 70 s for 12 h; final block: switch time of 120 s

for 16 h).

Western blot analysis
Yeast protein extracts were prepared using the TCA protocol as

described previously [51] and run on a 5%, 7%, 10%, 8% and

15% sodium dodecyl sulfate-polyacrilamyde gel for TAP-Swr1,

Myc-Swr1, TAP-Htz1, Rad53 and histones, respectively. TAP

constructs were detected by western blot with the rabbit

peroxidase anti-peroxidase soluble complex antibody (Sigma).

Rad53 was detected with the rabbit polyclonal antibody JDI47 as

previously shown [52], Swr1-Myc with the mouse monoclonal

antibody MMS-150R against Myc (Covance), and H4 and

phosphorylated histone H2A with the rabbit polyclonal antibodies

ab10158 and ab15083 (Abcam), respectively.

HO-induced DSB efficiency
The efficiency of DNA cleavage by HO endonuclease was

measured by qPCR on input DNA with oligos spanning the break

(pDSB) and an uncut control DNA sequence (p1kbL) as the ratio

pDSB/p1kbL in galactose-induced cells relative to that in uninduced

cells [31].

Chromatin immunoprecipitation (ChIP)
ChIP assays were performed as described [53] with the anti-

Myc mouse monoclonal antibody ab56 (Abcam) for Swr1-Myc,

the rabbit polyclonal antibodies ab13923, ab1790 and ab1791

(Abcam) for H2A, H2B and H3, respectively, and immunoglob-

ulin-sepharose for tandem affinity purification (TAP)-tagged

proteins. Oligonucleotide sequences for the real-time PCR

amplifications performed on purified DNA before (input; I) or

after (immunoprecipitated; IP) immunoprecipitation are shown in

Table S4. Protein enrichment at each specific region was

calculated as the ratio between the IP and the I in the tagged

strain relative to the same ratio either in the untagged strain (for

Swr1-TAP and Htz1-TAP) or in the tagged strain incubated with

rabbit IgG I8140 (Sigma) (for Swr1-Myc, H2A, H2B and H3). The

average and standard deviation of 2–4 independent experiments

are shown.

Chromatin analysis by MNase and DNase digestion
Nucleosome positioning and DNA accessibility were deter-

mined by micrococcal nuclease (MNaseI) and DNaseI digestion,

respectively, followed by indirect-end labelling. Nucleosome

positioning at GAL1 in W303-1a and DNA accessibility at GAL1,

INO1 and DAN1 were performed by treating spheroplasts with

different amounts of MNaseI and DNaseI, respectively, as

previously reported [51]. Nucleosome positioning at GAL1, INO1

and DAN1 in BY4741 was performed with cells previously

transformed with plasmid pADS14-nlsMN by in vivo ChEC

(Chromatin endogenous cleavage) as indicated [54]. MNaseI (or

DNaseI)-treated DNA was extracted and restricted with either

EcoRI (GAL1 and DAN1) or PvuII (INO1), resolved in a 1.2%

agarose gel, blotted onto a membrane and probed with 200-bp

PCR fragments immediately downstream of EcoRI (GAL1 and

DAN1) or PvuII (INO1).

Microarray hybridization analysis
Gene expression profiles were determined by using the ‘‘39-

Expression Microarray’’ technology by Affymetrix platform at the

Genomics Unit of CABIMER (Seville, Spain). Total RNA from

yeast cells grown on SMM at 30uC to mid-log phase was isolated

using the RNeasyH Midi kit (Qiagen) and its quality confirmed

with the BioanalyzerH (Agilent technology). Synthesis, labelling

and hybridization of cRNA to GeneChipH Yeast Genome 2.0

Arrays covering 5841 genes of S. cerevisiae was performed with

RNA from 3 independent cultures of each strain following

Affymetrix recommended protocols (http://www.affymetrix.

com/analysis/index.affx). Probe signal intensities were captured

and processed with GeneChip Operating Software 1.4.0.036

(Affymetrix), and the resulting CEL files were reprocessed using

the Robust Multichip Average (RMA) normalization [55]. Fold-

change (log2) values (M) and their FDR-adjusted p-values were

calculated with LIMMA (Linear Models for Microarray Analysis)

[56] using the affylmGUI interface [57]. Limma uses an empirical

Bayes method to moderate the standard errors of the estimated

log-fold changes. All the statistical analysis was performed using R

language and the packages freely available from the ‘‘Bioconduc-

tor Project’’ (http://www.bioconductor.org). Fold-change cutoffs

were analyzed at 95% confidence levels (FDR-adjusted p-

values,0.05). All data is MIAME compliant and the raw data

have been deposited at the Miame compliant Gene Expression

Omnibus (GEO) database at the National Center for Biotechnol-

ogy Information (http://www.ncbi.nlm.nih.gov/geo/) and are

accessible through accession number GSE21571.

Supporting Information

Figure S1 Swr1 causes DNA damage and stress sensitivity in the

absence of Htz1. DNA damage and stress sensitivity as determined

in Figures 1 and 2 but in BY4741 strains.

Found at: doi:10.1371/journal.pone.0012143.s001 (1.14 MB TIF)

Figure S2 Cell viability (A) and growth (B) in response to DNA

damage and stress conditions in W303-1a and BY4741 strains.

Found at: doi:10.1371/journal.pone.0012143.s002 (2.04 MB TIF)
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Figure S3 Venn diagrams showing the number of genes that

were commonly misregulated (2-fold cutoff) by (A) (htz1D but no

swr1D), (htz1D but no swc2D) and (htz1D but no swc5D) (B) (htz1D
and swr1D), (htz1D and swc2D) and (htz1D and swc5D), (C)

(swr1D but no htz1D), (swc2D but no htz1D) and (swc5D but no

htz1D) and (D) (htz1D swr1D), (htz1D) and (swr1D); (htz1D swc5D),

(htz1D) and (swc5D); (htz1D swc2D), (htz1D) and (swc2D).

Found at: doi:10.1371/journal.pone.0012143.s003 (0.19 MB TIF)

Figure S4 (A) Swr1-Myc enrichment at the TOA1 promoter as

determined by ChIP analysis of samples in Figure 3C. Both I and

IP DNA from cell extracts incubated either with anti-Myc

antibody or IgG were amplified by real-time PCR (see Table S4

for oligos). The enrichment is graphed relative to the enrichment

in the wild-type strain incubated with IgG, taken as 1. Similar

results were obtained using as a control an untagged strain

incubated with anti-Myc (data not shown). (B) Histone enrichment

at the promoters of BUD3, ARG3 and FIG1 by ChIP analysis.

Both I and IP DNA from cell extracts incubated either with anti-

H3, anti-H2B, anti-H2A antibodies or IgG were amplified by real-

time PCR with amplicons situated at the indicated regions (see

Table S4 for oligos). The enrichment is graphed relative to the

enrichment in the wild-type strain incubated with IgG, taken as 1.

ChIP experiments were performed in BY4741 background.

Found at: doi:10.1371/journal.pone.0012143.s004 (0.15 MB TIF)

Figure S5 Analysis of spontaneous DNA breaks as determined

by PFGE of yeast chromosomes in htz1D, swr1D, htz1D swr1D
and wild type.

Found at: doi:10.1371/journal.pone.0012143.s005 (0.57 MB TIF)

Table S1 Transcription profiles of htz1D relative to swr1D,

swc2D and swc5D.

Found at: doi:10.1371/journal.pone.0012143.s006 (0.27 MB

DOC)

Table S2 Differentially expressed genes in htz1, swr1, swc2,

swc5 and double mutants relative to wild type.

Found at: doi:10.1371/journal.pone.0012143.s007 (1.06 MB

XLS)

Table S3 Strains.

Found at: doi:10.1371/journal.pone.0012143.s008 (0.09 MB

DOC)

Table S4 Oligos.

Found at: doi:10.1371/journal.pone.0012143.s009 (0.05 MB

DOC)
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