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The symbiotic magnetic-sensing
hypothesis: do Magnetotactic Bacteria
underlie the magnetic sensing capability of
animals?
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Abstract

The ability to sense Earth’s magnetic field has evolved in various taxa. However, despite great efforts to find the
‘magnetic-sensor’ in vertebrates, the results of these scientific efforts remain inconclusive. A few decades ago, it was
found that bacteria, known as magnetotactic bacteria (MTB), can move along a magnetic field using nanometric
chain-like structures. Still, it is not fully clear why these bacteria evolved to have this capacity. Thus, while for MTB
the ‘magnetic-sensor’ is known but the adaptive value is still under debate, for metazoa it is the other way around.
In the absence of convincing evidence for any ‘magnetic-sensor’ in metazoan species sensitive to Earth’s magnetic
field, we hypothesize that a mutualism between these species and MTB provides one. In this relationship the host
benefits from a magnetotactic capacity, while the bacteria benefit a hosting environment and dispersal. We provide
support for this hypothesis using existing literature, demonstrating that by placing the MTB as the ‘magnetic-sensor’,
previously contradictory results are now in agreement. We also propose plausible mechanisms and ways to test the
hypothesis. If proven correct, this hypothesis would shed light on the forces driving both animal and bacteria
magnetotactic abilities.
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Background
Magnetoreception-based navigation
The geomagnetic field is an omnipresent feature of
Earth. It is therefore not surprising that various organ-
isms, including invertebrates, vertebrates and bacteria,
use magnetotactic abilities for orientation and navigation
[1–6]. Magnetoreception has been of significant scien-
tific interest [1, 5, 7–9] both for its navigation-based
capacity as well for other uses [5, 10]. Intensive work
has demonstrated the existence of magnetic sensing and
its possible function in animal navigation [11–13].
Earth’s magnetic field is rather weak, with 60–65 μT at
the poles, and 25–30 μT near the equator [14]. To put
this in perspective, a standard fridge magnet produces a

magnetic force that is ~200 times stronger. Thus, sens-
ing a magnetic field as weak as the Earth’s is challenging.
Most of magnetoreceptive animals sense the magnetic
field’s inclination angle, meaning the magnetic field lines,
rather than the magnetic field polarity, i.e. north and
south [1, 8, 13]. This provides the animal with a proxy
for its latitude, an essential measure for wandering or
long-distance migrating animals. The ability of animals
to sense the magnetic field’s inclination angle has been
well documented for over 40 years [1] and has been
reported in various taxa across the animal kingdom
including fish [15], insects [16] and apparently all tetra-
pods except mammals, e.g. reptiles [8] and birds
[1];reviewed in ref. [11]. However, the sensor and sen-
sory mechanism behind this remain an enigma and are
widely debated. In vertebrates, for example, it has been
suggested that the ‘magnetic-sensor’ or sensing organ is
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located in the ethmoid region of the head, between the
eyes orbits and the naris [17–19].
To date, two not necessarily mutually exclusive

hypotheses to explain magnetic-sensing in animals have
been proposed [20]: (i) “radical-pair” based magnetore-
ception [21] and (ii) magnetite-based magnetoreception
[2]. The “radical-pair” hypothesis suggests that following
a short wavelength excitation, a specific molecule that
contains two unpaired electrons, such as the crypto-
chrome protein, could serve as the sensor for Earth’s
magnetic field. The magnetite-based magnetoreception
hypothesis suggests that biogenic magnetite crystals
serve as Earth’s magnetic field sensors. Support and criti-
cism for both hypotheses are summarized in Table 1.

Magnetotactic bacteria
In contrast to all other organisms, an unequivocal dem-
onstration of the use of the geomagnetic field’s inclin-
ation angle for orientation was found in magnetotactic
bacteria (MTB). Magnetotactic bacteria (MTB) are a
diverse group of aquatic prokaryotes, ubiquitously found
in both fresh and marine sediment habitats. MTB show
magnetotaxis - the ability to align with a magnetic field
using specialized intracellular organelles called magneto-
somes [22]. In most MTB, magnetosomes comprise
chain-like, nanometer-sized crystals (typically between
35 and 120 nm) of magnetic iron minerals [22]. It has
been suggested that the magnetotaxis redirects MTB
towards an anaerobic environment [23]. In aquatic envi-
ronments, there are opposing gradients of oxygen and
sulfide from the surface to the bottom of the sediment,
which create an oxi-anoxic transition zone (OATZ).
Most MTB prefer to reside at, or close to, the OATZ.
While recent experiments support the general assump-
tion that MTB use the magnetic field to vertically locate
the OATZ [24, 25] there are a few unresolved issues
with this model. For example, MTB recognize and move
along the oxygen gradient even if the magnetic cue

directs them against it [23]. In addition, some MTB pro-
duce a large number of magnetosomes, far greater than
would be needed to align along Earth’s magnetic field
[26]. Finally, MTB have been found at, or near the equa-
tor, where magnetotaxis has no advantage in directing
vertical movement, as the inclination angle is ~0° [27].
These confounding observations elicited the formulation
of alternative hypotheses as to the possible advantages
gained by MTB through the production of magneto-
somes, yet none of these hypotheses have been proven
conclusive [23]. Although the adaptive value of MTB’s
magnetotaxis is still under some debate, MTB’s ability to
act upon the magnetic field inclination angle is well
established.
In contrast to MTB, no one has directly observed

magnetite crystals serving as a ‘magnetic-sensor’ in ani-
mals [20]. This is despite repeated reported observations
of magnetite crystals, in various taxa [1, 2, 18].

Main text
The symbiotic magnetic-sensing hypothesis and sug-
gested mechanisms
Here, we suggest that MTB serve a symbiotic function,
providing a ‘magnetic-sensor’ for the host. We further
suggest that the lacrimal glands of vertebrates are poten-
tial habitats for symbiotic MTB. The hypothesis is sum-
marized in Fig. 1.
Our hypothesis is derived from the magnetite-based

magnetoreception hypothesis. As mentioned above,
magnetite crystals have been found in a large number of
organisms [2, 20, 28], including birds [29], and have
been described as being “strikingly similar to the MTB
crystals” [2]. However, magnetite crystals have not con-
vincingly been located within bird tissues or neuron cells
[30–32] but instead appear to be extracellular contamin-
ation [32] or within macrophages [30]. Interestingly, it is
known that macrophages engulf commensal bacteria, so

Table 1 Support and criticism for the “radical-pair” and “magnetite-based” magnetoreception hypotheses

Support Criticism

Radical–Pair Experiments showing that birds can only
sense the magnetic field under illumination
with relative short wavelength, as opposed
to longer wavelengths [41]

The effect of the magnetic field on the spin-state
of the molecule has not been demonstrated, either
in vitro or in vivo, under the Earth’s weak magnetic
field, but only under a field orders of magnitude
stronger [20, 47]

The activation mechanism is missing, meaning how
the signal transduces to initiate a neural response.

Magnetite-Based Magnetite crystals have been detected
in magnetic sensing fish, reptiles and
birds [18, 28, 48]

The magnetites found in some magnetic-sensing
animals are not associated to the animals’ neuronal,
or other tissue, but rather located in macrophages
[30] or as contaminants [32]

Magnetotactic-bacteria (MTB) can act
upon the field via similar magnetite
crystals [2, 22]

No one has seen magnetite crystals serving as a
‘magnetic-sensor’ except in bacteria [20]
The activation mechanism is missing, meaning how
the signal transduces to initiate a neural response.
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it is possible that these crystals may have originated
from MTB.
The magnetite-based magnetoreception hypothesis

requires magnetite to be organized in a chain-like man-
ner [33], similar to that seen in MTB, as the crystals
individually are too small to contribute to effective mag-
netoreception. The majority of magnetic-sensing animals
use an inclination compass, as MTB do. This similarity
may be because MTB underlie the animal’s inclination
sensing capacity; alternatively, the capacity may have
evolved independently in both kingdoms. In addition,
the ubiquity of MTB means that the host is constantly
exposed to them.
Previous studies have suggested that the magnetic sens-

ing organ is located in the ethmoid region of the head
[20]. Within the eye orbit, there are several glands such as
the Harderian and other lacrimal glands [34]. The primary
function of these glands is bathing and lubricating the eye,
but they also serve other functions including photorecep-
tion, immunocompetence and habitats for endosymbiotic
bacteria [34, 35]. The lacrimal glands also secret sub-
stances to the naris or the eye, such as hormones, pory-
pherins and symbiotic bacteria [34, 35].

Studies have shown that a complex nerve system,
whose function is unknown, runs through the glands
and is associated with the ophthalmic nerve, e.g. ref.
[36]. Sectioning of the ophthalmic nerve impairs birds’
magnetic sensing [19], while other works support a role
for the visual system [37, 38]. The Harderian gland sur-
rounds the ophthalmic nerve, thus experiments section-
ing that nerve have impaired the nerves that are
connected to the gland.
There are several plausible mechanisms by which the

MTB and host may communicate, enabling the host to
sense the magnetic field. One possible mechanism is by
the bacteria moving and accumulating at a specific loca-
tion on the gland, allowing cell-to-cell communication.
Whether the MTB move passively or actively in
response to the magnetic field, their movement and/or
accumulation could be detected by the host (Fig. 1).
Interestingly, most MTB show exceptionally high num-
ber of proteins that are predicted to have functions in
chemotaxis, sometimes order of magnitude higher than
other types of bacteria [39]. These secretions may excite
a specific nerve connected to the ophthalmic nerve,
passing on information to the host about the Earth’s

Fig. 1 Visual abstract of the symbiotic magnetotactic hypothesis
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magnetic field. This type of communication between
commensal bacteria and the host nervous system has
been shown in various animal systems [40].
A different mechanism by which the host could detect

the MTB movement could be through the host’s visual
system. For example, secreted bacteria from the lacrimal
glands may move along the cornea. This movement
could be perceived by the visual system similarly to the
way in which humans perceive blood droplets movement
along the cornea. It has been shown that birds sense the
magnetic field under illumination of a relative short
(443-550 nm), but not long (630 nm), wavelength [41],
which means that the detection of small objects such as
bacteria is a valid possibility. It should be noted that
these experiments have been proposed to support the
“radical–pair” hypothesis [41]. Collectively, the “radical-
pair” supporting experiments are not in conflict with the
possibility of MTB being the underline mechanism of
animals’ magnetic sensing. In fact, MTB magnetic orien-
tation is also affected by light: green light decreases the
translation velocity whereas red light increases it, in
comparison to blue and white light [42].
The results from experiments in which an animal’s

magnetic sensing has been manipulated are consistent
with both proposed mechanisms [19, 37, 38, 41] as sec-
tioning of the ophthalmic nerve may alter sensing or
secretion of bacteria from the gland. Similarly, lack of
illumination may affect magnetic sensing by making bac-
teria less detectable or reducing the secretory response
within the gland [34].
Handling and isolating anaerobe MTB requires dedi-

cated methods [22]. Naturally, previous studies aiming
to detect magnetite in metazoan used methods that were
not suitable for identifying MTB, yet recent methodo-
logical progress (e.g. magnetoscope) should aid in bridg-
ing this gap [32, 43]. Recent progress in molecular
methods has greatly increased the knowledge of genes
that regulate magnetosome formation [39, 44]. These
genes could potentially serve to detect symbiotic MTB.
However, due to their polyphyletic nature and great vari-
ation [45], to date there is no general primer set which
would enable the detection of all MTB species.

Conclusion
It was well established that animals’ behavior can be
manipulated by microorganisms. For example, recent
evidence show that the gut microbiota integrate into the
gut–brain axis interact to change brain function [40], or
the multitude effect of parasites on the hosts’ personality
and behavior [46]. We predict that similar mechanisms
between the host and the microorganism exist to gener-
ate the magnetic sensing capability in birds and possibil-
ity other animals.

Previously, the presence of magnetite in many animals
and fossils, led Kirschvink et al. to hypothesize that
magnetite crystals may have been intra-cellularly incor-
porated, similarly to the endosymbiosis incorporation of
mitochondria billions of years ago [2]. Here, we suggest
that extant animal magnetotactic abilities are still endo-
symbiont, meaning the bacteria reside side by side to the
eukaryote cells.
The proposed symbiotic magnetic sensing hypothesis

can be proved or refuted experimentally using an
approach similar to Koch’s Postulates. If proved correct,
this hypothesis will shed light on the ecological and evo-
lutionary forces driving, maintaining, and shaping
magnetic-sensing abilities for both bacteria and animals,
solving a long-lasting scientific mystery.
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