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THE SYMBOLIC REPRESENTATION OF

BILLIARDS WITHOUT BOUNDARY CONDITION

TAKEHIKO MORITA

Abstract. We consider a dynamical system with elastic reflections in the whole

plane and show that such a dynamical system can be represented as a symbolic

flow over a mixing subshift of finite type. This fact enables us to prove an

analogue of the prime number theorem for the closed orbits of such a dynamical

system.

INTRODUCTION

Let Ox,02, ... ,0L (L > 3) be a finite number of bounded domains in

R2 with smooth boundaries dOx, d02, ... , dOL. We assume that the closures

O. = Oj U dOj of O   are strictly convex and mutually disjoint. Consider the

motion of a particle in the exterior domain 0 = R \\J.=l 0¡, which obeys the

law of reflection: "the particle moves along the straight line with unit speed in O

and reflects at the boundary dO = \Jj=x dOj so that the angle of the reflection

coincides with the angle of the incidence." We can describe this motion of a

particle by a dynamical system (a flow) St on the unit tangent bundle over O.

We call the flow St a billiard without boundary condition in the light of the

Sinai's billiard in [6], which is defined on the unit tangent bundle over 2-torus

T , i.e., the billiard with periodic boundary condition.

The purpose of this paper is to prove the following theorems:

Theorem 1. Under the hypotheses (HA) and (H.2) (see §2), the flow St restricted

to the nonwandering set can be represented as a symbolic flow ot over an appro-

priate subshift of finite type so that the corresponding closed orbits have the same

period (see Proposition 3.1).

Theorem 2. Under the hypotheses (H.l) and (H.2), there is a positive constant A

such that an analogue of the prime number theorem

#{y;exp[hTy]<x}.l-^^l       (x -, oo)

holds, where y and T denote the prime closed orbit of St and its period respec-

tively.
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820 TAKEHIKO MORITA

It is not hard to see that Theorem 2 is obtained by combining Theorem 1

and the result in Parry and Pollicott [5] (see §3).

It will be meaningful to note that the closed orbits of the dynamical system

St make the essential contribution to the singular support of the distributional
1 II

function ^ €SpecA C0SV t (see [1 ]) and they are closely related to the poles of

the scattering matrix as mentioned in Ikawa [2] and [3] etc., where Spec A de-

notes the set of eigenvalues of the self adjoint realization of the Laplace operator

with the appropriate boundary condition.

The author would like to express his sincere gratitude to Professor M. Ikawa

for introducing him to such an interesting topic. He would also like to express

his thanks to Professor M. Wada for his helpful suggestions on the symmetric

orbits of the flow St.

1. Preliminaries

In this section we prepare the basic notions for the later convenience.

Let Ox, 02, ... , 0L  (L > 3) be a finite number of bounded domains in R
2 2 1

as in the beginning of Introduction. We denote by SR =R x S = {(q, v) £

R2 x I2; \v\ = 1} the unit tangent bundle over R2 and n : SR2 -» R2 the

natural projection, where | • | denotes the usual Euclidean norm. Choose a

point qi £ dOj for each j and define the following quantities for x = (q, v) £

dO = (jUd°j:

(ï0(x)=j,     if q£dOj;

r(x) = the arclength between q*,, and q,

measured clockwise along the curve d 0( (x) ;

tp(x) = the angle between the vector v and the

unit innernormal n(q) of dO( (x) at q,

measured unitclockwise.

Therefore n"x(dO) is parametrized as

(12)     ^(d°) = {U,r,4>);   l<j<L,

0 < r < the perimeter of dOj, and 0 < 4> < 2n).

Put

( M_ = {x£7t'x(dO),  f <(p(x) < \n],  and

\ M+ = {x£7t'x(dO),  f <(f)(x) + n< \nmod2n).

We introduce the following equivalence relation '~' to n~ (dO) :

(1.4) x~v    if and only if Inv(x) = y or x = y,

where Inv : n~x(dO) —> n~x(dO) is defined by

(1.5) Inv(;', r, 0) = (;', r, n - <p) mod 2n .

(i.i:
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SYMBOLIC REPRESENTATION OF BILLIARDS 821

It is natural to identify (n~x(dO))/~ with M_ and we often use this identifi-

cation without specification. Put

(1.6) M = n~X(0) U (n~X(dO)l ~) = n~x(0) U M_ .

Now we recall the notion of the billiard without boundary condition. Con-

sider the motion of a particle which moves along the straight line with unit speed

in O = R2\ Ut.i CT and reflects at the boundary dO = \JLj=x dOj according to

the law of reflection: the angle of reflection coincides with that of incidence.

Then the motion determines a dynamical system (a flow) on M in a canonical

way (see Remark 1.2 below). We call it a billiard without boundary condition.

Remark 1.1. It is easy to see that M_ and M+ denote the set of the incidental

vectors and the set of the reflection vectors respectively.

We define the first collision time t+ and the last collision time x_ by

f T+(x) = inf{f>0,  n(Stx)£dO)

{ " } I T_(x) = sup{?<0,  %(Stx)£dO).

Here we regard x+(x) (resp. x_(x)) as +oo (resp. —oo) if the set in the

definition is empty.

Remark 1.2. Let x = (q, v), M = n~ (O) U M_ . We note that the flow St is

defined so that

Sx = { (a + tv>vî>        {x£7t~x(0)),

,X     \(q + tv,v),        (X£M_)

if 0 < t < x+(x), where v is determined by the formula Invx = (q, v).

Put

Q = {x £ M,  n(Stx) £ dO for both infinitely many

t > 0 and infinitely many t < 0} .

Clearly, Q coincides with the nonwandering set of the flow St. Put

(1.9) Q.0 = n~X(O)nn   and   Q_ = M_xlQ.

We define the local maps T and T~   by

r T(x) = S     Ax)   ifT+(*)<+po,
(l.io) ,      T+w

[ T x(x) = Sx_{x)(x)   tft_(x)>-tx>,

respectively.

It is not hard to see that the above notation T~ is compatible with the

definition of the inverse map of T and T is locally diffeomorphic.

Remark 1.3. Consider the flow St restricted to f2. The set Í2_ and the first

collision time t+ play the role of the Poincaré section and the Poincaré map

respectively.
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822 TAKEHIKO MORITA

Forx£M_   (=n  x(dO)/~), we put

(1.11) (fix) = Z0(Tjx)   if TJ is defined.

We call the sequence £ = (Zj)'JÍ_00 the itinarary of x £ Q_ if t\. = t\Ax) and

write £ as t\(x).

We conclude this section by stating the following lemma. The proof is due

to elementary calculation of the Jacobi matrix of T, and it can be found in [4].

Therefore we omit the proof.

Lemma 1.1. Let C be a curve of class Cx in M_ which is represented as

{{j ,r,4>)\ 4> - ¥ir) > ci < r < b), where ip is a Cx-function in r. Assume

that T (resp. T~ ) is defined and continuous on C. If the image Cx = TC

(resp. C_, = T~XC) is represented as {(jx, rx, </>,) ; <j>x = y/x(rx), ax < rx < bx)

(resp. {(j_x,r_x,tp_x); <p_ = y/_(r_x), a_x < r_, < b_x}), where y/x  (resp

i//_x) is Cx-function in rx (resp. r_x), then we have:

(1.12)

dy/x _ cosy/, fr+(j, r, 4>)     /d\p
- k(rx) - ~-^±      +w'   'T/ -    =f- + k(r]

drx '       cos^ \      cos \p \dr

dy_x        . .     ,     cosxp     (x_(j,r,(j))     (dip     ,,,x~
resp. -,—- = -k(r_x)-[-f- + k(r)

dr_x '        cosiy   \      cos^ V«''

^L = _ç°Sj.A_T+a,r,^)/^+        NX

dr cos \px \ cos y/      \dr ) )

( dr_x cosy/    /       r_(j, r, <t>) (dip     ...
resp. —t-1 =-—    1--f- - k(r)

\ dr cosy/_, \ cos^      \dr

where k(r) denotes the curvature of d0   at (j, r, <j>), etc.

2. Well-posedness of itinarary problem

From now on we assume:

(H.l) (convexity). For each j = 1, 2, ... , L boundary dOj of 0J is a simple

closed curve with nonvanishing curvature.

(H.2) (no eclipse). For any triple (jx, j2, j3) of distinct indices,

conv[0, uOAxxO, =0,
h h h

where conv[ß] denotes the convex hull of the set B.

We introduce the following shift dynamical system.   Let A be an L x L-

matrix with entries A(i, j) = (1 - <5(-),  1 < /, j < L, where <5/; denotes the
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symbolic representation of billiards 823

Kronecker's delta. Put

oo

1 = 1,-{«-«,)£_.€  n {U2,...,L};
J = — 0O

(2.1)

A(Cj,(¡j+l)= 1 for any j

We define dp : Z x Z -» Ä by

(2.2) ^({, v) = p"    if ij = ty for \j\<n and {„ ¿ 9„ or {_„ ¿ n_n.

It is easy to see that d becomes a metric on Z which defines the same topology

as the induced topology of I as a subset of the product space
oo

n {i,2,...,L}.
j= — oo

The shift transformation a : £ -» Z, (ffd;) • = £,+1 , j £ Z is well defined and

the shift dynamical system (Z, ct) is a typical example of a mixing subshift of

finite type (see [5]). Consider the billiard without boundary condition St. We

say that a point x £ Q_ solves the itinarary problem

(2.3) ÉÜ0 = £€l

or je is a solution of the itinarary problem (2.3) if the itinarary ¿;(x) of x

coincides with the sequence ¿j.

Under the hypotheses (H.l) and (H.2) we prove that the itinarary problem

(2.3) is well-posed in the following sense.

Theorem 0 (the Lipschitz well-posedness of the itinarary problem). If the hy-

potheses (H.l) and (H.2) are satisfied, there exists a unique x £ Q_ which

solves the itinarary problem (2.3) for any {el. In addition, if we denote by

x(<Z) the solution of the itinarary problem (2.3), there exist constants C > 0 and

0 < p < 1 such that

(2.4) \x+(x(^))-x+(x(n))\<Cd^,n)   for any ¿t, ne Z,

where dp denotes the metric on Z defined by (2.2).

We prepare an a priori estimate for the proof of Theorem 0.

Lemma 2.1 (a priori estimate). Let x and y be elements in M_ . Assume TJ

is well defined and Ç.(x) = ÇAy) for each j with -n < j < n (n > 1). Then

the arclength r(x,y) between n(x) and n(y) satisfies

(2.5) r(x,y)<c0l(l + n)-",

where c0 is a positive constant independent of x and y,

I = max{theperimeter ofdOj, j =1,2,..., L)   and

n = min{the distance between Oi and Oj,  1 < i < j < L]

x min{k(q), q <dOj, j =1,2, ... , L}.
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Proof. Let C be a C -curve in M_ as in Lemma 1.1. We call it an increasing

(resp. decreasing) curve if ^ > 0 (resp. ^ < 0). Assume that x, y £ M_ sat-

isfy the assumption of Lemma 2.1. Then we may write TJx = (rAx), </>(*)),

j = —n, -(« — 1),..., n — 1, n without confusion. First we connect x and

y by a line segment C0 in M . We may assume that r0(x) < r0(y). If

0o(x) - ^oiy) > ^o Decomes an increasing curve in M_ . Therefore it is not

hard to show that TJ is continuous on C0 and the image C = TJCQ turns

out to be an increasing curve for each j = 1,2,..., n in the same way as

in the proof of Lemma 4.1 in [4]. Thus C can be expressed as {(r.,</>■),

tf)j = y/j(rj), aj < '",■ < A •} with dif/j/drj > 0 for each j. In virtue of the

formula (1.13), we obtain

(2.6) p^p^...^ = MrS^flb
dr0     drn_xdrn_2      drQ cos y/0 f\ J

where bj = (1 - x+(TJ(r0, 0o))(^^y/^O + k(rj)) • since diPj/drj > 0 for all

j = 0, 1, ... , n - 1, we have

(2.7) \bj\>l + n

from the formula (1.12). Thus we have

drn

dr0
> \costp0\(l + n)r'(2.8)

Therefore we obtain

(2.9) r(A,>')<|cos(/.or1/(l + ?7)"n.

On the other hand it is easy to show that | cos </>01 is bounded below by a

positive constant which is independent of x and y in virtue of the hypotheses

(H.l) and (H.2). Hence we have proved the inequality (2.5) when 0o(x) <

4>0(y). If 4>Q(x)> 4>0(y), we can prove the estimate (2.5) in the same manner,

by using TJ, -n < j < — 1, instead of TJ, 1 < j < n .   O

Now we can prove Theorem 0. The Lipschitz continuity (2.4) of the first

collision time is an immediate consequence of Lemma 2.1 if we take (I + n)~

as p. The uniqueness of the itinarary problem follows from the estimate (2.4).

Therefore it suffices to show the existence. First we assume that ¿¡ is periodic,

i-e., Çn+m = Çn for some m > 0, for all n £ Z . Consider the following minimal

value problem

m-X
0       1 m-X,       v-^ ,   ;' y'-l.(2.10)    l(q\qX,...,qm'X) = Y.W-QJ

j=0

qJ £dO, , j = 0,l,...,m-l,

, -1 m-X
where q     = q
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Hypotheses (H.l) and (H.2) imply that there exists (p , px, ... , pm~x)

which minimizes l(q°, qx, ... , qm~x) in virtue of the Borzano Weierstrass the-

orem. The points p°, px, ... , pm~x have to satisfy the equations

(2.11)     ^L=kdJl(p1),       j = 0,l,...,m-l   and   fc=l,2,...,
dqJk       JdqJk

where the curves dO^   are assumed to be represented as fj(qJ) = 0 in the

neighborhood of pJ, and a   denote the Lagrange multipliers.

The equations (2.11) are nothing but the law of reflections. Therefore the

existence of the solution of the itinarary problem has been proved when { is

periodic.

Let { be an element in Z which is not periodic. Choose {m £ Z which is

periodic and d ({w , {) —► 0, (m —> oo). Let xm be the unique solution of the

itinarary problem {(x) = ¿¡m . The estimate (2.5) in Lemma 2.1 implies that

r(Tjxm,TJxm+X)<Cp{'

for \j\ < the period of ¿;m . Therefore xm converges to some x £ M_ and x

satisfies C(x) = {. Now the proof of Theorem 0 is complete.

Remark 2.1. It is not necessary to use the inequality (2.5) to show the existence

of the solution of the itinarary problem. One can show it by use of the diagonal

argument.

3. Proofs of results

The purpose of this section is to complete the proofs of Theorem 1 and

Theorem 2 in Introduction. Note that we always assume the hypotheses (H.l)

and (H.2).
Define a function / on Z by

(3.1) /({) = r+(x({)),     for^eZ,

where x(t\) denotes the unique solution of the itinarary problem (2.3) as before.

We denote by (Z , ot) (simply ot) the symbolic flow over ^Z with ceiling

function /. Precisely, if is the set {({, s) ; ¿¡ £ Z, 0 < s < /(£)} with the

identification (<{, /({)) = (at\, 0) for any {el, and the flow o{ on if is

defined so that

k—X k

(3.2) ot(Z, s) = (okÇ ,u),    if ¿ f(oJQ <t + s<J2 /V'í),
7=0 y'=0

where u = t + s - X^Io /(^O and so on.

Theorem 1 and Theorem 2 follow from Proposition 3.1 and Proposition 3.2

below, respectively.
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Proposition 3.1. The map A : I1 -, Q defined by h(c¡, s) = Ss(x(Ç)) gives the

conjugacy between the flows ot and St restricted to Q so that the corresponding

closed orbits have the same period.

Proof. Theorem 0 in §2 implies that the map A0: Z -, Q_ defined by A0({) =

x(c¡) is a homeomorphism with h0(oc¡) = x(oÇ) = T(jc({)) = T(A0({)). There-

fore A0 gives a conjugacy between the Poincaré maps o of ot and T of St

restricted to Q. On the other hand, the corresponding points { and A0({)

have the same return time to Z and Q_ respectively from the definition of /.

Hence A gives a conjugacy between ot and St restricted to Q. Obviously the

corresponding closed orbits have the same period.   □

Proposition 3.2. The ceiling function f cannot be represented as

(3.3) f = g°o-g + aK,

where g denotes a real valued function, K an integer valued function, and a a

positive constant.

Remark 3.1. Proposition 3.2 implies that the symbolic flow o( is topologically

weak mixing. On the other hand the estimate (2.4) shows that the celling func-

tion / is Lipschitz continuous with respect to the metric d . Therefore we

can obtain an analogue of the prime number theorem for the distribution of the

prime closed orbits of the flow St by use of the zeta function

(OO      j

S n E exP
n=\      a"(=i

= Y[(l-exp[-sTy])-]
y

where y denotes a prime closed orbit of S, and T is its period (see Parry and

Pollicott [5]).

Proof of Proposition 3.2. Suppose that / can be represented as in (3.3). By

using the similarity transformation we may assume that a = 1, i.e.,

(3.5) f = go(j-g + K,

where g is a real valued function and K is an integer valued function.

Since we already established the conjugacy in Proposition 3.1 we can identify

the symbolic flow ot and the flow St restricted to Q without confusion. The

assumption (3.5) yields that every closed orbit of St has an integer period. Now

we restrict ourselves to three domains Ox , 02, and 03.

For each n > 1, let {" = ({p^L^ be the sequence in J2 so that Cü = 1 ;

tfj = 2 for odd j < 4n-1 ; {" = 3 for even j < An-2 ; and {^+4n = tfm for any

m £ Z . Let {° be the sequence in with {■ = 3 for even j and {" = 2 for odd

j. We denote by xn'J the unique element in f2_ which solves {(a) = o'C ,

and q"'J = n(xn'J). Namely, q"'J denotes the position where the jth collision

n-X

-s¿2f(oJC)
7=0
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occurs along the closed orbit yn = (Stxn ' )t starting from x"' , for n > 0.

We note that the period Tn of yn has the minimal property which appeared

in the proof of Theorem 0 (see the minimal value problem (2.11) in §2). The

minimal property of Tn and the uniqueness of the solution of the itinarary

problem imply that yn must by symmetric, i.e., qn' n+J = q"' n~J for j > 1 .

We claim that

(3.6) Tn+x>Tn + 2T0+l,    forn>l.

Consider a fictitious motion of a particle such that the particle moves along

the orbit y   x until it collides at q"+x' " and after that it returns to qn+x"

taking the same way as it has taken to reach qn+ ' " . It will be more convenient

to introduce the following notation:

«+1,0 «+1,1 «+1,2« «+1,2«-1 n+1,1 n+1,0
q _>q _»-,q ^q _,->q ^q

where p —> q denotes that the fictitious particle moves from p to q .

Now we obtain a fictitious closed orbit y'n whose period T'n is

,,   n+1,0       «+1,1 n+1,2«       «+1,2«-1 n+l.K
l(q ,q , ... ,q ,q , ... , q        )■

Therefore, Tn < T'n in virtue of the minimal value problem (2.11). Thus we

have

Tn+x>T'n + 2T0>Tn + 2T0.

We used the fact that yn+x is symmetric to see the first inequality in the above.

But Tn's are all integers by our assumption. Hence we obtain (3.6).

On the other hand we can show

(3.7) Tn+x<Tn + 2T0 + C'p2n

where C' is a positive constant which is independent of n and p = (l-r-f7)-1 as

before. Clearly the inequality (3.7) contradicts the inequality (3.6). Therefore

the celling function / cannot be represented as in (3.5). This completes the

proof of Proposition 3.2.

It remains to prove the inequality (3.7). We consider the following fictitious

motion of a particle:

n,0 «,1 «,2« 0,0 0,1 0,0 n,2n
q      ^q      _*->q       ^q      _> q      ^q      _, ^

« ,2«—1 «, 1 n ,0-»9 ->-yq      ^q      .

Then we obtain the fictitious closed orbit y'n+x whose fictitious period T'n+X is

,,   «,0       «,1 n,2«       0,0       0,1        0,1        «,2«       n,2n-X «,K
l(q     ,q     , ... ,q       ,q     ,q     ,q     ,q       ,q , ... ,q     ).

On the other hand we have

(3.8) T,n+1<Tn + T0 + 2\q"'2n-q°'0\.

Here we used the fact that y is symmetric. From the definition of y and

y0,  TJx"' " and Tjx '    belong to dO{0    for \j\ < 2n - 1.  Therefore the
7+1
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arclength r(x°'x, x"'2n) between q°'x = n(x°'x) and q"'2" = n(xn'2n) is less

than or equal to Cp "~   by the a priori estimate (2.5). Thus we obtain

íi f\\ *\\   «, 2« 0,0.    . T    ,   *.•-,   2«—1
(3.9) 2\q       -q     \<T0 + 2Cp

in virtue of the triangle inequality.

The inequalities (3.8) and (3.9) imply the inequality (3.7) in virtue of the

minimal property of Tn+X.

Now the proof is complete.   D

Remark 3.2. In the proof of inequality (3.7) we used the fact that ny0 and nyn

cannot intersect. We restrict ourselves to note that it is an easy consequence of

our hypotheses (H.l) and (H.2).
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