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THE SYMMETRIC EIGENVALUE
COMPLEMENTARITY PROBLEM

MARCELO QUEIROZ, JOAQUIM JÚDICE, AND CARLOS HUMES, JR.

Abstract. In this paper the Eigenvalue Complementarity Problem (EiCP)
with real symmetric matrices is addressed. It is shown that the symmetric

(EiCP) is equivalent to finding an equilibrium solution of a differentiable op-
timization problem in a compact set. A necessary and sufficient condition for
solvability is obtained which, when verified, gives a convenient starting point
for any gradient-ascent local optimization method to converge to a solution of
the (EiCP). It is further shown that similar results apply to the Symmetric
Generalized Eigenvalue Complementarity Problem (GEiCP). Computational
tests show that these reformulations improve the speed and robustness of the
solution methods.

1. Introduction

The computation of eigenvalues is of crucial importance in a variety of practical
problems in physics and engineering. Eigenvalues are related to the resonance
frequency of structures and to stability of dynamical systems [4]. Real symmetric
matrices appear in a large portion of these practical problems [13].

A classical approach to solving large-scale eigenvalue problems with real sym-
metric matrices is to apply unconstrained optimization techniques to the so-called
Rayleigh quotient. This function has the property that every equilibrium point is
an eigenvector with a corresponding eigenvalue given by the Rayleigh quotient.

The Eigenvalue Complementarity Problem (EiCP) appears in the study of static
equilibrium states of finite dimensional mechanical systems with unilateral frictional
contact [5] and takes the form

(EiCP): Find λ > 0, x 6= 0 such that


w = (λB −A)x,
w ≥ 0,
x ≥ 0,
wTx = 0.

The reader is referred to [5, 14] for further details.
The purpose of this paper is to study the (EiCP) when A and B are symmetric

matrices and B is positive definite. This particular problem is shown to be equiv-
alent to finding an equilibrium point of a generalized Rayleigh quotient satisfying
x ≥ 0 and λ > 0, which can be solved using any gradient ascent method, from
a convenient starting point. This result is akin to a classical result for Nonlinear
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Complementarity Problems (NCP) with symmetric jacobians, although the classi-
cal result is not applicable to an NCP reformulation of the (EiCP) (Section 4). The
result is extended to a generalization of the symmetric (EiCP) of practical interest,
the symmetric (GEiCP). Computational tests show that these reformulations im-
prove the speed and robustness of the solution methods. Some preliminary research
on the asymmetric case is also presented.

The structure of the paper is as follows. In Section 2 the classical eigenvalue
problem is discussed, with emphasis on symmetric matrices. The relationship of
this problem with the optimization of the Rayleigh quotient is established, showing
that the eigenpairs can be computed with gradient related methods.

In Section 3 the Eigenvalue Complementarity Problem (EiCP) and the General-
ized Eigenvalue Problem (GEiCP) are introduced. Some general results concerning
the solvability of these problems and the number of complementary eigenvalues are
presented. It is shown that in general these problems are NP-hard. In this paper
the term solvability when applied to the (EiCP) or (GEiCP) means the existence
of a complementary solution.

The symmetric case is studied in Section 4. It is shown that in this case both the
(EiCP) and the (GEiCP) are equivalent to finding equilibrium points of optimiza-
tion problems and therefore are relatively easy to solve. Computational experience
is reported in Section 5.

Some preliminary work on the asymmetric case is presented in Section 6, and
the last section (Section 7) presents some conclusions and future work.

2. Eigenvalue problems and optimization

Given a matrix A ∈ Rn×n, the classical Eigenvalue Problem (EiP) is

(EiP): Find λ ∈ R, x 6= 0 such that Ax = λx.

A necessary and sufficient condition for the existence of a solution with x 6= 0 is
that the kernel of (A− λI) be nontrivial, and this occurs if and only if λ is a root
of the polynomial equation det(A−λI) = 0. Such values of λ are referred to as the
solutions of the (EiP) and correspond to the eigenvalues of A. Since the polynomial
above has degree n, the (EiP) has at most n distinct solutions.

If λ̄ is an eigenvalue of A, computing a corresponding eigenvector amounts to
finding a nontrivial solution of the linear system (A− λ̄I)x = 0. Since this system
is homogeneous, x is an eigenvector corresponding to λ̄ if and only if αx is also an
eigenvector corresponding to λ̄, for any α 6= 0. An extensive treatment of properties
and algorithms for the (EiP) can be found in [13] and [4].

A classical approach to solving large-scale (EiP) problems with real symmetric
matrices is to apply unconstrained optimization techniques to the Rayleigh quotient

λ(x) =
xTAx

xTx
.

This quotient is only defined for x 6= 0. The gradient of the Rayleigh quotient is

∇λ(x) =
2
xTx

[A− λ(x)I]x.

Since ∇λ(x) = 0 if and only if [A − λ(x)I]x = 0, any equilibrium point (x, λ(x))
of the Rayleigh quotient is a solution of the (EiP). The expression of the gradient
of the Rayleigh quotient above is only valid when A is symmetric. If A 6= AT , the
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correct expression is ∇λ(x) = 1
xT x [A+AT −2λ(x)I]x, and the relationship between

equilibrium points and solutions of the (EiP) ceases to hold.
The Generalized Eigenvalue Problem (GEiP) is often referred to in the literature:

given A,B ∈ Rn×n,

(GEiP): Find λ ∈ R, x 6= 0 such that Ax = λBx.

The λ-solutions of this problem are referred to as general eigenvalues of (A,B).
This problem is in general more difficult than the (EiP) [13]. When B is symmetric
positive definite and A is symmetric, a generalized Rayleigh quotient can be defined
as

λ(x) =
xTAx

xTBx
and the (GEiP) can also be solved by optimization. The gradient in this case is

∇λ(x) =
2

xTBx
[A− λ(x)B]x,

and the equilibrium points of λ(x) correspond to general eigenvectors and eigenval-
ues of (A,B).

The lemma below presents two fundamental properties of the generalized
Rayleigh quotient. Its proof is straightforward.

Lemma 1. For all x 6= 0 the following equalities hold:
(1) λ(αx) = λ(x), ∀α > 0;
(2) xT∇λ(x) = 0.

Since the case B = I and B symmetric positive definite are subject to the
same approach with respect to the optimization of the Rayleigh quotient, all the
complementary problems introduced in the next section are formulated with two
matrices (A,B), where B is required to be positive definite.

Other functions whose equilibrium points correspond to pairs of eigenvalues
and eigenvectors exist for special classes of matrices. For instance, the functions
SA(x) = xTx− 2

√
xTAx, PA(x) = (xTx)2 − 2xTAx and LA(x) = xTx− ln(xTAx),

for a symmetric positive definite matrix A, have their equilibrium points corre-
sponding to eigenvectors of A, whereas SA(·) and PA(·) also have the origin as
an equilibrium point. The papers [9, 1, 2] present theoretical results and computa-
tional experience comparing these functions to the Rayleigh quotient for symmetric
positive definite matrices. The present work does not address these functions in
order to keep the framework more general.

3. The eigenvalue complementarity problem

As stated in the Introduction, the Eigenvalue Complementarity Problem (EiCP)
appeared in the study of static equilibrium states of mechanical systems with uni-
lateral friction, in [5]. It may be expressed as

(EiCP): Find λ > 0, x 6= 0 such that


w = (λB −A)x,
w ≥ 0,
x ≥ 0,
wTx = 0,

whereB is a positive definite matrix. Note that any solution with w = 0 corresponds
to a solution of the (GEiP).
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The Generalized Eigenvalue Complementarity Problem (GEiCP)J is

(GEiCP)J : Find λ > 0, x 6= 0 such that


w = (λB −A)x,
wJ̄ = 0,
wJ ≥ 0,
xJ ≥ 0,
wTJ xJ = 0,

where B is a positive definite matrix, J ⊆ {1, 2, . . . , n} is given, and J̄ =
{1, 2, . . . , n}\J . The (EiCP) is clearly the particular case of the (GEiCP)J with
J = {1, 2, . . . , n}.

For any solution (λ, x, w), the value λ is called a (general) complementary eigen-
value of (A,B), and x is a corresponding (general) complementary eigenvector.
Since the set of complementary eigenvectors of a given complementary eigenvalue
is a cone, there is no loss of generality in restricting the problem to finding solutions
satisfying ‖x‖2 = 1, which replaces the constraint x 6= 0. In the case of the (EiCP)
the linear constraint ‖x‖1 = eTx = 1 can be considered instead of ‖x‖2 = 1, since
x ≥ 0.

It is easy to see that any solution of the (EiCP) (or (GEiCP)) with w = 0 is a
positive eigenvalue of (A,B) with a corresponding eigenvector satisfying some sign
constraints. The following two results, originally by Seeger [14], have been slightly
expanded to include the (GEiCP) case.

Proposition 2 (Seeger). For any solution (λ, x) of (GEiCP)J , there is a set I
satisfying J̄ ⊆ I ⊆ {1, 2, . . . , n}, such that λ is a positive eigenvalue of (AII , BII)
and xI is a corresponding eigenvector satisfying xJ∩I ≥ 0.

Proof. Set I = {i | wi = 0}. Then I ⊇ J̄ , and xĪ = 0, by complementarity.
Therefore AIIxI = λBIIxI . �

For the (EiCP), this result says that given a solution (λ, x), λ is a positive
eigenvalue of (AII , BII) and xI is a corresponding nonnegative eigenvector. A
direct corollary says that the number of λ-solutions of the (EiCP) and (GEiCP) is
finite.

Proposition 3 (Seeger). The (EiCP) has at most n2n−1 distinct λ-solutions. The
(GEiCP)J has at most (2n− |J |)2|J|−1 distinct λ-solutions.

Proof. Consider first the (GEiCP)J . There are 2|J| possible subsets I such that
J̄ ⊂ I ⊂ {1, 2, . . . , n}. For each possible subset I there are at most |I| distinct
λ-solutions, namely the eigenvalues of B−1

II AII . Therefore the total number of
λ-solutions is at most

|J|∑
i=0

(∣∣J̄∣∣+ i
)( |J |

i

)
= (n− |J |)

|J|∑
i=0

(
|J |
i

)
+
|J|∑
i=1

|J|∑
k=i

(
|J |
k

)
= (n− |J |)2|J| + |J |2|J|−1

= (2n− |J |)2|J|−1.

Since the (EiCP) is the particular instance of the (GEiCP)J with J = {1, 2, . . . , n},
the number of λ-solutions of the (EiCP) is at most

(2n− |J |)2|J|−1 = n2n−1. �
The complete set of solutions of both (EiCP) and (GEiCP) can be obtained via

complete enumeration, as follows.
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Complete set of solutions of (GEiCP)J .
(1) For each subset I such that J̄ ⊆ I ⊆ {1, 2, . . . , n} compute the set Λ(I) of

eigenvalues of B−1
II AII .

(2) For each λ̄ ∈ Λ(I) such that λ̄ > 0, try to compute xI such that
AIIxI = λ̄BIIxI ,
AJIxI ≥ λ̄BJIxI ,
xI∩J ≥ 0,
‖xI‖2 = 1.

If such a solution exists, then x = (xI , 0) is a general complementary
eigenvector corresponding to the general complementary eigenvalue λ̄.

The soundness of this method is a direct consequence of Proposition 2. This
algorithm also provides a necessary and sufficient test for solvability of a given
(GEiCP). The following proposition shows that any necessary and sufficient test
for the solvability of a general (GEiCP) is doomed to be computationally expensive.

Proposition 4. The solvability of the (GEiCP)J is an NP-complete decision prob-
lem.

Proof. Any solution (λ, x) of the (GEiCP)J satisfies xJ ≥ 0 and

xTAx = xT (λBx − w) = λxTBx− xTw = λxTBx > 0,

since x 6= 0, λ > 0 and B is positive definite. Therefore, deciding if the (GEiCP)J is
solvable is at least as difficult as deciding if there exists an x such that xJ ≥ 0 and
xTAx > 0, for a given matrix A. The latter problem is NP-complete [11, Theorem
2.20]. Since the solvability of the (GEiCP)J is in NP (i.e., one can polynomially
check whether a given pair (λ, x) is a solution of the (GEiCP)J), the result of the
proposition follows. �

It follows that solving the (GEiCP) is in general an NP-hard problem. Despite
this fact, for some classes of matrices the solvability of the corresponding (EiCP)
or (GEiCP) can be answered easily.

Lemma 5. If A is negative semi-definite (i.e., xTAx ≤ 0 for all x), the corre-
sponding (GEiCP) is unsolvable.

Proof. Since A is negative semi-definite, it follows that AII is negative semi-definite
for all I ⊆ {1, 2, . . . , n}. Therefore xTI AIIxI ≤ 0, for any x, and the problem is
unsolvable. �

Lemma 6. If A is positive (Aij > 0, ∀i, j) and B = I, then the (EiCP) has
a solution λ̄ > 0, with a corresponding eigenvector x̄ > 0. Moreover, if A is
symmetric, then the solution λ̄ is unique.

Proof. Since A is positive, any feasible solution x̄ 6= 0 has to satisfy x̄ > 0, for
otherwise x̄i = 0 and x̄ 6= 0 implies w̄i = λ̄x̄i − Aix̄ = −Aix̄ < 0. By complemen-
tarity, w̄ = 0, and therefore this (EiCP) is equivalent to the (EiP). The existence
of a solution of the (EiP) with a positive matrix is Perron’s Theorem [12, Theorem
6.1.2]. The uniqueness in the symmetric case is verified as follows. Let λ̂ 6= λ̄, and
consider a vector x̂ such that Ax̂ = λ̂x̂. Then,

(λ̂− λ̄)x̂T x̄ = (Ax̂)T x̄− x̂T (Ax̄) = x̂TAT x̄− x̂T (Ax̄) = 0,
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and since λ̂ 6= λ̄, it follows that x̂T x̄ = 0. Since x̄ > 0, there is an index i such that
x̂i < 0, and therefore x̂ is not a solution of the (EiP). �

Lemma 7. If there is some index j such that Ajj > 0 and Aij ≤ 0, ∀i 6= j, then
(λ, x) is a solution of the (EiCP), with λ = Ajj and x = ej.

Proof. Trivial. �

In particular this property holds for the well-known class of nonsingular M-
matrices, which are defined as P-matrices (all principal minors are positive) with
nonpositive off-diagonal elements.

The following section is devoted to the special case of the Eigenvalue Comple-
mentarity Problems with symmetric matrices. Some additional properties of the
general (GEiCP) are presented in Section 6.

4. The symmetric Eigenvalue Complementarity Problem

In this section the symmetric versions of (EiCP) and (GEiCP) are studied. Some
properties of these problems are derived, including a necessary and sufficient con-
dition for solvability. When this condition is verified, the problem can be solved by
a variety of well-known methods in differentiable nonlinear programming.

For clarity of exposition, the results are presented separately for the (EiCP) and
the (GEiCP).

The symmetric (EiCP). An interesting known property of the symmetric (EiCP)
regards the number of λ-solutions; in this case a smaller upper bound than the one
presented in the general case can be found. The proof of this result can be found
in [14].

Proposition 8 (Seeger). The number of λ-solutions of the symmetric (EiCP) is
at most 2n − 1.

The symmetric (EiCP) is closely related to the classical eigenvalue problem.
Since x 6= 0 for any solution, the complementarity condition wTx = 0 may be
rewritten as xT (λBx−Ax) = 0, or equivalently,

λ(x) =
xTAx

xTBx
.

This is again the generalized Rayleigh quotient. Analogously to the classical case,
equilibrium points of the Rayleigh quotient in the nonnegative orthant with λ(x) >
0 are solutions of the (EiCP). This is the main result concerning the practical
solution of the symmetric (EiCP).

Proposition 9. The symmetric (EiCP) is equivalent to

(OEiCP )

 max λ(x)
s.t. x ≥ 0,

eTx = 1,

in the sense that every equilibrium solution x of (OEiCP) with λ(x) > 0 is a solution
of the (EiCP).
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Proof. The optimization problem (OEiCP) is equivalent to

max
x∈Rn

inf
u≥0
α∈R

xTAx

xTBx
+ uTx+ α(eTx− 1).

Any equilibrium solution of this problem satisfies the Kuhn-Tucker conditions
u+ αe = 2

xTBx [λ(x)B −A]x,
u ≥ 0,
x ≥ 0,
uTx = 0,
eTx = 1.

By performing the scalar product of the first equation with x and noticing that
uTx = 0, eTx = 1, and λ(x) = xTAx

xTBx , it follows that α = 0. The resulting system of
equations corresponds closely to the (EiCP), with w = xTBx

2 u. Since B is positive
definite and λ(x) > 0, it follows that (λ, x, w) is a solution of the (EiCP), and the
result follows. �

The conclusion that α = 0 in the proof of Proposition 9, though apparently
nonintuitive, may be motivated by the homogeneity of λ(·) and the orthogonality
between x and ∇λ(x) (Lemma 1). Consider, for instance, an equilibrium point
of the (OEiCP) satisfying x > 0. By the homogeneity of λ(·), the projection of
∇λ(x) on the half-line {αx | α ≥ 0} vanishes. By the equilibrium property with
respect to the constraint eTx = 1, the projection of ∇λ(x) on the affine manifold
{x | eTx = 1} also vanishes. Therefore, ∇λ(x) = 0, and so the Lagrange multiplier
α in the Kuhn-Tucker conditions becomes superfluous.

Proposition 9 resembles a classical result for nonlinear complementarity problems
of the form 

x ≥ 0,
F (x) ≥ 0,
xTF (x) = 0,

with ∇F (x) symmetric for all x. In fact, such problems can be solved as optimiza-
tion problems because F (x) is shown to correspond to the gradient of a primitive
function f(x), whose equilibrium points are solutions of the NCP [7]. In the present
case the constraint eTx = 1 (or x 6= 0) breaks the symmetry of the enlarged NCP,
obtained by considering an additional complementary variable α satisfying

w = (B − µA)x,
α = −1 + eTx,
x, w ≥ 0,
µ, α ≥ 0,
wTx = αµ = 0,

where µ = 1
λ with respect to the original problem. In this setting, the hypothesis

of the symmetric jacobians does not hold. Therefore, it is not possible to use the
classical theorem to conclude that the NCP above is solvable as an optimization
problem.

From the reformulation of the (EiCP) as a nonlinear programming problem sev-
eral conclusions are drawn. The first one is a characterization of solvability of the
(EiCP).
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Proposition 10. (EiCP) is solvable if and only if there exists some x ≥ 0 such
that xTAx > 0.

Proof. First suppose that the (EiCP) is solvable. If (λ, x) is any solution of the
(EiCP), then x ≥ 0 and xTAx = λxTBx > 0, since x 6= 0 and B is positive definite.

Suppose, on the other hand, that there is a x̂ ≥ 0 such that x̂TAx̂ > 0. Since
λ(x) is a continuous function (for x 6= 0) and the set X = {x ≥ 0 | eTx = 1}
is compact, there exists a x̄ ∈ X such that λ(x̄) ≥ λ(x), ∀x ∈ X . This is an
equilibrium point for the (OEiCP), and in particular, λ(x̄) ≥ λ(x̂) > 0. Therefore,
x̄ is a solution of the (EiCP). �

For the practical solution of the symmetric (EiCP), any ascent gradient method,
with an initial solution x̂ ∈ X such that x̂TAx̂ > 0 obtains an equilibrium point
which is a solution of the problem. The nonconvexity of the objective function
is actually not a problem, since the global optimization problem (OEiCP) need
not be solved. However, finding such an initial point is an NP-complete problem
(Proposition 4). But for a very large class of matrices this problem is trivial, as
the next proposition shows. For these matrices, an initial point can be found by
inspection, and a solution of the (EiCP) is thereafter easily obtained.

Proposition 11. Suppose that the matrix A satisfies one of the conditions
(1) ∃i : Aii > 0;
(2) ∃i, j : Aii = 0, Ajj ≤ 0 and Aij > 0;
(3) A ≥ 0, A 6= 0;
(4) A is an S-matrix (∃x ≥ 0 : Ax > 0).

Then a point x̂ ∈ X such that x̂TAx̂ > 0 can be easily obtained and the correspond-
ing (EiCP) is solvable.

Proof. (1) Let x̂ = ei; then x̂TAx̂ = Aii = 1.
(2) Let x̂j = 1, x̂i = 1−Ajj

2Aij
, and x̂k = 0, ∀k 6= i, j; then x̂TAx̂ = Ajj x̂

2
j +

2Aij x̂ix̂j = 1.
(3) If A ≥ 0, A 6= 0, then x̂ = e is such that x̂TAx̂ > 0.
(4) If A is an S-matrix, then there exists a x̂ ≥ 0 such that Ax̂ > 0. It follows

that x̂TAx̂ > 0. Such a x̂ can be found by solving the following linear
program:

(LP)


max y
s.t. Ax− ye ≥ 0,

eTx = 1,
x ≥ 0,
y ∈ R.

This problem is always feasible, and since the variable x lies in a compact
set and y ≤ min{(Ax)i}, an optimal solution exists. Now since A is an
S-matrix, the optimal solution (x̂, ŷ) satisfies ŷ > 0, x̂ ≥ 0 and so x̂TAx̂ ≥
ŷx̂T e = ŷ > 0.

�
Note that condition (1) of the previous result (A has at least one positive diagonal

entry) defines a very large class of matrices that includes nontrivial positive semi-
definite matrices (i.e., xTAx ≥ 0 for all x) and strictly copositive matrices (i.e.,
xTAx > 0 for all 0 6= x ≥ 0). Condition (2) includes nontrivial copositive matrices
(i.e., xTAx ≥ 0 for all x ≥ 0).
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For the design of an initialization algorithm, besides applying the tests indicated
above, additional heuristics may be implemented. One of these is to find local
maxima of the nonconvex quadratic problem

(QP)

 max xTAx
s.t. eTx = 1,

x ≥ 0

from a few random starting points. Other tests are given by Lemmas 5, 6 and
7 in the previous section. A general algorithmic approach is to solve a GLCP
(Generalized LCP; see [8]) as below.

Proposition 12. Given a matrix A, there exists a vector x ≥ 0 such that eTx = 1
and xTAx ≥ ε > 0 if and only if the system

u+ αe +Ax = 0,
−α ≥ ε,
u ≥ 0,
x ≥ 0,
uTx = 0,
eTx = 1

is solvable.

Proof. This system corresponds to the Kuhn-Tucker conditions of the (QP) and the
additional constraint−α ≥ ε. This additional constraint is equivalent to xTAx ≥ ε,
which can be seen by taking the inner product of the first equation with x and
noticing that uTx = 0 and eTx = 1. Since the feasible set of the (QP) is compact,
the existence of an x ≥ 0 such that eTx = 1 and xTAx ≥ ε > 0 is equivalent to the
existence of an equilibrium point of the (QP) satisfying the same conditions, which
is equivalent to the GLCP above. �

Computational methods for this problem, such as the SLCP method, can be
found in [8].

The symmetric (GEiCP). The main results from this section can be rephrased
in the context of the symmetric (GEiCP). Once again the complementarity con-
straint xTw = 0 allows λ to be expressed as a function of x,

λ(x) =
xTAx

xTBx
.

Since x is not necessarily nonnegative (only xJ is nonnegative), the condition
x 6= 0 cannot be replaced by eTx = 1. The cumbersome constraint ‖x‖2 = 1 is
adopted for the sake of theory only. It is later dropped from the computational
model, which is able to handle this constraint implicitly. The symbol ‖·‖ without
sub-index is used to denote the euclidean norm.

Proposition 13. The symmetric (GEiCP) is equivalent to

(OGEiCP )


max λ(x)
s.t. xJ ≥ 0,

‖x‖ = 1,

in the sense that every equilibrium solution x of (OGEiCP) with λ(x) > 0 is a
solution to the (GEiCP).
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Proof. The proof is analogous to that of Proposition 9. �

The difficulty of the optimization problem (OGEiCP) is revealed by the non-
concavity of the objective function (maximization problem) and by the nonconvex
constraint ‖x‖ = 1. The nonconvexity of the objective function is not really a
problem, since one looks after equilibrium solutions, and not globally optimal solu-
tions, exactly as in the (EiCP) case. The feasible region of (OGEiCP) is a spherical
surface with sign constraints, and therefore projection methods can be easily im-
plemented via renormalization of iterates. See, for instance, the projected steepest
ascent method below and Proposition 15.

The solvability condition for the (GEiCP) is analogous to the one for the (EiCP).

Proposition 14. (GEiCP)J is solvable if and only if there exists some x ∈ Rn
such that xJ ≥ 0 and xTAx > 0.

It is clear that if the (EiCP) is solvable, then the (GEiCP)J is solvable. But the
solvability of the (GEiCP)J holds for a larger class of matrices. For instance, the
(GEiCP)J with n = 2, J = {1}, B = I and

A =
[

0 − 1
2

− 1
2 −1

]
is solvable, since x = (2,−1)T is such that xJ = 2 ≥ 0 and xTAx = 1 > 0. A
solution is obtained with x = (0.8844,−0.3663) and λ = 0.2071. However, the
corresponding (EiCP) is unsolvable, since −A is copositive.

For the practical solution of the symmetric (GEiCP)J , a starting point satisfying
xJ ≥ 0 and xTAx > 0 is needed, as well as an ascent gradient method for the
optimization problem (OGEiCP).

The initialization for the solution of the (GEiCP)J is akin to the (EiCP) case.
The heuristics of Lemmas 5, 6 and 7 and Proposition 11 are applicable in this
framework as well, and a general method for the initialization is to solve the GLCP
below [8]. 

u+ αe +Ax = 0,
−α ≥ ε,
uJ ≥ 0,
xJ ≥ 0,
uTJ xJ = 0,
uJ̄ = 0,
eTJ xJ = 1.

In this problem x 6= 0 is replaced by eTJ xJ = 1. This is not done in the opti-
mization problem (OGEiCP) to ensure compactness of the feasible region, which is
needed in the convergence proof of the method presented below.

Given a good starting point, a gradient-ascent method can be easily adapted
to handle the constraint ‖x‖ = 1 implicitly, by renormalizing every iterate of the
sequence. As an example, the canonic steepest ascent method is slightly rewritten
to solve the symmetric (GEiCP), using Armijo’s step-length choice.

Projected Steepest Ascent Method for the symmetric (GEiCP)J .
(0) Let ε ∈ (0, 1).

Let x0 satisfy x0
J ≥ 0,

∥∥x0
∥∥ = 1 and (x0)TAx0 > 0.

Let k ←− 0.
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(1) Compute ∇λ(xk) = 2
(xk)TBxk

[A− λ(xk)B]xk and dk as

dkj =
{

0 if j ∈ J, xkj = 0 and ∇λ(xk)j < 0,
∇λ(xk)j otherwise.

(2) Let

τk = min
{
τ ∈ IN | (xk + 1

2τ d
k)J ≥ 0 and λ

(
xk + 1

2τ d
k
)
− λ(xk) ≥ ε

2τ

∥∥dk∥∥2
}
,

µk = 1
2τk ,

yk+1 = xk + µkd
k,

xk+1 = yk+1

‖yk+1‖ .

(3) Set k ←− k + 1 and go back to step (1).

Proposition 15. The Projected Steepest Ascent Method converges to a solution of
the symmetric (GEiCP).

Proof. First notice that the direction dk computed in step (2) is either an ascent
direction or zero. This happens since ∇λ(xk)T dk = (dk)Tdk > 0 ⇐⇒ dk 6= 0.

The renormalization in step (3) can be done, since yk+1 6= 0. This follows from
the fact that (xk)T dk = (xk)T∇λ(xk) = 2

(xk)TBxk
[(xk)TAxk−λ(xk)(xk)TBxk] = 0.

Furthermore, the renormalization preserves the value of the objective function,

λ(xk+1) = λ

(
yk+1

‖yk+1‖

)
= λ(yk+1),

as well as the constraint xkJ ≥ 0. Therefore the sequence {xk} is well defined and
belongs to the compact set {x | xJ ≥ 0, ‖x‖ = 1}.

For any convergent subsequence xk −→ x∗, it is clear that ∇λ(xk) −→ ∇λ(x∗)
and dk −→ d∗ where

d∗j =
{

0 if j ∈ J, x∗j = 0 and ∇λ(x∗)j < 0,
∇λ(x∗)j otherwise.

It is proved in the sequel that d∗ = 0. In fact, by the Armijo step-length choice
there exists a constant C > 0 such that λ(yk+1) − λ(xk) ≥ C

∥∥dk∥∥2. This is a
canonical proof [3, Theorem 8.6.3] that uses the Mean-Value Theorem, the Cauchy-
Schwarz inequality and the Lipschitz-continuity of∇λ(·). Since

∥∥xk+1 − xk
∥∥ −→ 0,

it follows that θk −→ 0, where θk is the angle between xk+1 and xk.

yk+1

xk

xk+1

θk

dk

Therefore

cos θk =

∥∥yk+1 − xk
∥∥

‖xk‖ =
∥∥yk+1 − xk

∥∥ −→ 0.
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Since λ(·) is continuous, λ(yk+1)−λ(xk) −→ 0. Since
∥∥dk∥∥2

< 1
C (λ(yk+1)−λ(xk)),

it follows that
∥∥dk∥∥2 −→ 0; that is, d∗ = 0.

Since ∇λ(x∗)J̄ = d∗
J̄

= 0 and ∇λ(x∗)J ≤ 0, it follows that x = x∗, α = 0 and
u = −∇λ(x∗) solve the Kuhn-Tucker conditions for the (OGEiCP)J , and since
λ(x∗) ≥ λ(x0) > 0, this is a solution of the (GEiCP)J . �

The above algorithm has been chosen for clarity of exposition. Other line search
strategies may be used, as well as other ascent directions dk (such that∇λ(xk)T dk >
0). It must be added that the line search in step (2) can be solved by exact
maximization, since the derivative of the function λ̂(µ) = λ(xk + µdk) is zero if
and only if µ is a root of a polynomial of order 3, as can easily be seen. Therefore
at most four evaluations of the function λ̂(·) are needed, namely the three roots
mentioned above and the point xk + µ̄dk corresponding to the maximal step-length
µ̄ such that (xk + µ̄dk)J ≥ 0.

5. Computational experience

In order to compare the original formulation of the (GEiCP) as a mixed NCP and
its reformulation as a nonlinear programming problem (OGEiCP), with respect to
the relative difficulty of solution, two commercial packages have been chosen within
the GAMS 2.5E system: GAMS/PATH 4.3 for mixed NCPs, and GAMS/MINOS
5.5 for NLPs.

The test problems were given by 80 randomly generated matrices A ∈ Rn×n,
grouped in small-sized matrices (n = 10, 20, 30, 40) and medium to large-sized ma-
trices (n = 100, 200, 300, 400). For each such value of n, ten matrices have been
generated. Each matrix was forced to satisfy A11 > 0, which gives a convenient
starting solution x0 = (1, 0, . . . , 0)T ≥ 0 such that λ(x0) > 0. The corresponding
problems, taking B = I and J = {1, 2, . . . , n}, were given as input for both software
packages. The tests were run in a Pentium II 333 MHz, running MS-Windows 98.

The PATH algorithm is an implementation of a Nonsmooth Damped Newton
Method [6]. This method is applied to a reformulation of the mixed NCP as a gener-
alized equation. The MINOS algorithm is loosely related to the Projected Steepest
Ascent Method presented above and combines a Reduced-Gradient Method with a
Quasi-Newton Method [10].

The computational experience is summarized by the following table. The mea-
sures for the number of iterations and running time are average measures over
the ten problems in the corresponding dimension. For the PATH algorithm, ma-
jor iterations correspond to Newton steps, and minor iterations are pivot steps in
Lemke’s Method used to construct a piecewise-linear path from an iterate to the
corresponding Newton point. Columns 4, 5 and 6 are the number of problems
solved without restarts, the number of problems solved using up to three restarts
from distinct initial points, and the number of problems not solved by the PATH
algorithm, respectively. Note that the convergence of the PATH method is only
established under the hypothesis of local inversibility of the jacobians defining the
NCP, which does not hold for the (GEiCP).

Note that the PATH algorithm, without restarts, fails in 30% to 70% of the
small-sized tests. Thanks to the restart mechanism and the heuristics employed,
a considerable portion of these problems has been eventually solved. None of the
medium and large-sized tests have been solved by the PATH algorithm. The MINOS
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PATH MINOS
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10 33.6 165.5 7 2 1 0.30 16.8 0.04
20 47.9 588.7 7 3 - 0.39 35.6 0.05
30 77.1 958.8 4 6 - 0.71 52.5 0.09
40 93.9 2418.7 3 6 1 1.30 67.8 0.15

100 - - - - 10 - 162.4 3.63
200 - - - - 10 - 324.0 23.96
300 - - - - 10 - 451.8 62.61
400 - - - - 10 - 619.9 120.43

algorithm, on the other hand, has always found a solution, with running times
ranging from 7.5 to 8.7 times faster for the small tests. The number of iterations
for the MINOS algorithm is roughly linear as a function of n (ranging from 1.5n to
1.8n).

It is possible to conclude from the above experience that the MINOS algorithm
applied to the (OGEiCP) performs better than the PATH algorithm applied to the
original formulation of the (GEiCP), with respect to running time and robustness
(in finding a solution). It is important to add that the PATH algorithm is consid-
ered to be the most robust procedure for solving mixed complementarity problems.
So the numerical results of this experience clearly indicate the relevance of the
optimization formulation for finding a solution of the (GEiCP) in the symmetric
case.

6. The asymmetric case for n = 2

In this section the (EiCP) with B = I is considered, without the symmetry
assumption on the matrix A. It is shown that the existence of a solution when all
the diagonal elements of A are positive and the number of λ-solutions established
for symmetric matrices also hold for asymmetric matrices of order 2.

Proposition 16. If A is a 2 × 2-matrix, then the (EiCP) has at most three λ-
solutions.

Proof. The upper bound given by Proposition 3 is 4. If Aii ≤ 0 for some i, or if a
column of A is positive, then the solutions corresponding to I = {i} or I = {j} are
infeasible, and so the result follows.

On the other hand, if Aii > 0 and Aij ≤ 0, for all i 6= j, then the solutions
corresponding to I = {i} or I = {j} are feasible. The remaining case is I = {1, 2},
for which it is shown next that at most one solution is feasible.
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The characteristic polynomial of A

f(λ) = det
(
λ−A11 −A12

−A21 λ−A22

)
= λ2 − (A11 +A22)λ+ [A11A22 −A12A21]

has at most two positive roots. Furthermore,

f(A11) = f(A22) = −A12A21 ≤ 0.

If A12A21 = 0, then either A11 or A22 is an eigenvalue of A, with the same
solution of the cases I = {i} or I = {j}. Therefore the (EiCP) has at most three
λ-solutions.

Now suppose that A12, A21 < 0. Then f(A11) = f(A22) < 0, and there is an
eigenvalue λ > max{A11, A22} > 0. The corresponding eigenvector x must satisfy

(λ−A11)x1 = A12x2,
x1 + x2 = 1,
x1, x2 ≥ 0.

This is impossible, since A12 < 0 and λ > A11. Therefore this λ is not a solution
of the (EiCP), and the maximal number of λ-solutions is three. �

Proposition 17. If A is a matrix of order 2 with positive diagonal elements, then
the (EiCP) is solvable.

Proof. If there is some j 6= i such that Aij ≤ 0, then the result follows. Otherwise,
Aij > 0, ∀i, j, and f(A11) = f(A22) = −A12A21 < 0, where, as before, f(λ) is the
characteristic polynomial ofA. Then there is some eigenvalue λ > max{A11, A22} >
0. Since A12 > 0, the following system has a solution (x1, x2),

(λ−A11)x1 = A12x2,
x1 + x2 = 1,
x1, x2 ≥ 0.

This solution satisfies A21x1 = (λ−A22)x2, since λ is an eigenvalue of A. Therefore,
the (EiCP) is solvable. �

This result implies that the (EiCP) is solvable when A is a strictly copositive or
a P-matrix (in particular, when A is positive definite) of order 2. Notice that all
these classes of matrices satisfy the necessary condition for the solvability of the
(EiCP)

∃x ≥ 0 such that xTAx > 0
stated before. Furthermore they are sufficient for the symmetric case. More research
is required to investigate whether these classes of matrices are sufficient for the
solvability of the (EiCP) in the case of a general asymmetric matrix.

7. Conclusions and future work

In this paper the Eigenvalue Complementarity Problems introduced in [5] have
been considered. It has been shown that the symmetric cases are solvable with op-
timization techniques applied to the Rayleigh quotient subject to linear constraints.
The initialization for the optimization process is a NP-complete problem, but for
the majority of practical cases the initial point can be found by inspection.

Some preliminary work on the general case with asymmetric matrices of order
2 concerning the characterization of solvability and the number of λ-solutions has
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been presented. The generalization of these results for asymmetric matrices of any
order is the subject of ongoing research.
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