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Abstract. The dramatic exponential speedups of quantum algorithms over their best existing
classical counterparts were ushered in by the technique of Fourier sampling, introduced by Bernstein
and Vazirani and developed by Simon and Shor into an approach to the hidden subgroup problem.
This approach has proved successful for abelian groups, leading to efficient algorithms for factoring,
extracting discrete logarithms, and other number-theoretic problems. We show, however, that this
method cannot resolve the hidden subgroup problem in the symmetric groups, even in the weakest,
information-theoretic sense. In particular, we show that the Graph Isomorphism problem cannot be
solved by this approach. Our work implies that any quantum approach based upon the measurement
of coset states must depart from the original framework by using entangled measurements on multiple
coset states.
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1. Introduction: The hidden subgroup problem. Many problems of in-
terest in quantum computing can be reduced to an instance of the hidden subgroup
problem (HSP). We are given a group G and a function f with the promise that, for
some subgroup H ⊆ G, f is invariant precisely under translation by H; that is, f is
constant on the left cosets of H and takes distinct values on distinct cosets. We then
wish to determine the subgroup H by querying f . Most algorithms for the HSP use
the following approach, referred to as the standard method or Fourier sampling [5].
Step 1. Prepare two registers, the first in a uniform superposition over the elements

of G and the second with the value zero, yielding the state

|ψ1〉 =
1√
|G|

∑
g∈G

|g〉 ⊗ |0〉 .

Step 2. Query (or calculate) the function f defined on G and XOR it with the second
register. This entangles the two registers and results in the state

|ψ2〉 =
1√
|G|

∑
g∈G

|g〉 ⊗ |f(g)〉 .

Step 3. Measure the second register. This puts the first register in a uniform su-
perposition over one of f ’s level sets, i.e., one of the left cosets of H, and

∗Received by the editors November 11, 2005; accepted for publication (in revised form) Novem-
ber 12, 2007; published electronically March 26, 2008. This work was supported by NSF grants CCR-
0093065, PHY-0200909, PHY-0456720, EIA-0218443, EIA-0218563, CCR-0220070, CCR-0220264,
CCF-0524828, and CCF-0524613, and ARO grants W911NF-04-R-0009 and W911NF-05-1-0294.

http://www.siam.org/journals/sicomp/37-6/64489.html
†Department of Computer Science, University of New Mexico, Albuquerque, NM 87131, and the

Santa Fe Institute, Santa Fe, NM 87501 (moore@cs.unm.edu).
‡Department of Computer Science and Engineering, University of Connecticut, Storrs, CT 06269

(acr@cse.uconn.edu).
§Computer Science Department, California Institute of Technology, Pasadena, CA 91125

(schulman@cs.caltech.edu).

1842



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

THE SYMMETRIC GROUP DEFIES STRONG FOURIER SAMPLING 1843

disentangles it from the second register. If we observe the value f(c), we have
the state ψ3 ⊗ |f(c)〉, where

|ψ3〉 = |cH〉 =
1√
|H|

∑
h∈H

|ch〉 .

Alternately, we can view the first register as being in a mixed state with
density matrix

ρ =
1

|G|
∑
g∈G

|cH〉 〈cH| .

Step 4. Carry out the quantum Fourier transform on |ψ3〉 and measure the result;
that is, observe the “frequency” corresponding to one of the Fourier basis
functions.

For example, in Simon’s problem [35], G = Zn
2 and f is an oracle such that, for

some y, f(x) = f(x+y) for all x; in this case H = {0, y} and we wish to identify y. In
Shor’s factoring algorithm [34], G is essentially the group Z∗

n, where n is the number
we wish to factor, f(x) = cx mod n for a random c < n, and H is the subgroup
of Z∗

n whose index is the multiplicative order of c. (However, Shor’s algorithm does
not operate on Z∗

n directly—indeed, knowing |Z∗
n| would provide an efficient classical

algorithm. Instead, it performs the quantum Fourier transform over Zq for some
q = poly(n); see [34] or [13, 14].)

In both Simon’s and Shor’s algorithms, the group G is abelian and finite. It is
not hard to see that, in this case, a polynomial number (i.e., polynomial in log |G|) of
experiments of this type determine H. In a cyclic group, for instance, the observed
frequency is a random multiple of the index of H, so we can determine this index with
high probability by taking the greatest common divisor of these frequencies. More
generally, each experiment yields a random element of the dual space H⊥ perpen-
dicular to H’s characteristic function. After O(log |G|) such experiments, with high
probability these elements span H⊥, and we can determine H via linear algebra.

While the nonabelian HSP appears to be much more difficult, it has very attrac-
tive applications. In particular, solving the HSP for the symmetric group Sn would
provide an efficient quantum algorithm for the Graph Automorphism and Graph

Isomorphism problems (see, e.g., Jozsa [21] for a review). Another important mo-
tivation is the relationship between the HSP over the dihedral group with hidden
shift problems [7] and cryptographically important cases of the shortest lattice vector
problem [29].

So far, algorithms for the HSP are known for only a few families of nonabelian
groups, including groups whose commutator subgroup is of polynomial size [30, 20];
“smoothly solvable” groups [10]; and some semidirect products of abelian groups [28,
18, 3]. Ettinger and Høyer [8] provided another type of result by showing that Fourier
sampling can solve the HSP for the dihedral groups Dn in an information-theoretic
sense. That is, a polynomial number of experiments gives enough information to
reconstruct the subgroup, though it is unfortunately not known how to determine H
from this information in polynomial time.

Extending the notion of Fourier sampling to nonabelian groups requires that
we define a nonabelian version of the Fourier transform. For abelian groups, the
Fourier basis functions are simply the homomorphisms φ : G → C such as the familiar
exponential function φk(x) = e2πikx/n for the cyclic group Zn. In the nonabelian case,



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1844 C. MOORE, A. RUSSELL, AND L. J. SCHULMAN

there are not enough such homomorphisms to provide a basis for all C-valued functions
on G. To create such a basis, we generalize to the representations of the group,
namely, homomorphisms ρ : G → U(V ), where U(V ) is the group of unitary matrices
acting on some C-vector space V of dimension dρ. It suffices to consider irreducible
representations, namely, those for which no nontrivial subspace of V is fixed by the
various operators ρ(g); Fourier analysis over abelian groups then corresponds to the
special case where all irreducible representations have dimension one, the single entry
in these 1×1 matrices being the values of the Fourier basis functions. In general, once
a basis for each irreducible ρ is chosen, the matrix elements ρij provide an orthogonal
basis for the vector space of all C-valued functions on G.

The quantum Fourier transform then consists of transforming (unit-length) vec-
tors in C[G] = {

∑
g∈G αg |g〉 | αg ∈ C} from the basis {|g〉 | g ∈ G} to the basis

{|ρ, i, j〉}, where ρ is the name of an irreducible representation and 1 ≤ i, j ≤ dρ
index a row and a column (in a chosen basis for V ). Note, however, that a repre-
sentation ρ : G → U(V ) does not intrinsically distinguish any specific basis for the
underlying space V and, for high-dimensional representations, this appears to require
a rather dramatic choice on the part of the transform designer. For instance, in a
group such as Sn, in most bases a typical representation ρ(g) is a dense matrix of
exponential size, but for a carefully chosen basis it is sparse and highly structured.
Making such choices of bases allows us to efficiently carry out the quantum Fourier
transform for a wide variety of groups [4, 17, 27].

Since the work of [15, 12], the most fundamental question concerning the HSP has
been whether there is a basis for the irreducible representations of a given group such
that measuring coset states in this basis provides enough information to determine
H and, if so, whether this information can be extracted by an efficient algorithm.
This framework is known as strong Fourier sampling. In this article, we answer
this question in the negative for the symmetric group Sn, showing that this process
cannot distinguish relevant subgroups from each other, or from the trivial subgroup,
even information-theoretically. Indeed, we show that no measurement whatsoever,
including arbitrary positive operator-valued measurements (POVMs), on single coset
states can succeed. We remark that the subgroups on which we focus are among
the most important special cases of the HSP, as they are those to which Graph

Isomorphism naturally reduces.
Related work. The terminology “strong Fourier sampling” [12] was invented to

distinguish this approach from the natural variant, called weak Fourier sampling,
where one only measures the name of the representation ρ and ignores the row and
column information. Weak Fourier sampling is basis-independent, making it attractive
from the standpoint of analysis; however, it cannot distinguish conjugate subgroups
from each other, and Hallgren, Russell, and Ta-Shma [15] showed that it cannot
distinguish the trivial subgroup from an order-2 subgroup of Sn consisting of n/2
disjoint transpositions. Specifically, they used character bounds to show that the
probability distributions obtained on representation names for the trivial and order-
2 subgroups are exponentially close in total variation distance: thus one needs an
exponential number of such experiments to distinguish them. Kempe and Shalev [22]
have generalized this result to other conjugacy classes and conjectured that one can
do no better than classical computation with this approach.

In an effort to shed light on the power of strong Fourier sampling, Grigni et al. [12]
showed that, for groups such as Sn, measuring in a random basis yields an exponen-
tially small amount of information. This can be explained, roughly, by the fact that
projecting a vector into a sufficiently high-dimensional random subspace results in
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tightly concentrated length. On the other hand, Moore et al. [28] showed that for the
affine groups and some q-hedral groups, measuring in a well-chosen basis can solve
the HSP in cases where random bases cannot.

Our contribution. In this paper we show that strong Fourier sampling, in an
arbitrary basis of the algorithm designer’s choice, cannot solve the HSP for Sn. As
in [15] we focus on order-2 subgroups of the form {1,m}, where m is an involution
consisting of n/2 disjoint transpositions. We show that strong Fourier sampling—
and more generally, arbitrary measurements of single coset states—cannot distinguish
most subgroups of this form from each other, or from the trivial subgroup, without
an exponential number of experiments.

The motivation for looking at this case of the HSP is as follows. If we fix two rigid
connected graphs of size n, then the automorphism group H of their disjoint union
is a subgroup of S2n. If they are isomorphic, then H is of the form {1,m}, where
m is the involution that swaps the two graphs, while if they are nonisomorphic, then
H is trivial. This yields a classical reduction from Graph Isomorphism to Graph

Automorphism, and our results preclude a quantum algorithm for the latter problem
that works by reducing to the HSP on the symmetric group.

However, the involutions m which switch the two graphs are not generic elements
of the conjugacy class in S2n consisting of n disjoint transpositions, since they switch
the first n vertices with the last n vertices. The set of such elements forms a conjugacy
class in the wreath product Sn 	 Z2 ⊂ S2n, and it is the HSP on this group, rather
than all of S2n, to which Graph Isomorphism naturally reduces. To address the
possibility of a quantum algorithm that uses this reduction, we present an additional
result showing that this case of the HSP also requires an exponential number of
experiments.

We remark that our results do not preclude the existence of an efficient quantum
algorithm for the HSP on Sn or Sn 	 Z2. Rather, they force us to either abandon
coset states or consider multiregister algorithms, in which we prepare multiple coset
states and subject them to entangled measurements, rather than performing a product
measurement where each coset state is measured independently. Some progress in
this direction has been made: Ettinger, Høyer, and Knill [9] showed that the HSP on
arbitrary groups can be solved information-theoretically with a polynomial number
of coset states, and two of the present authors have shown how to carry out such
a measurement in the Fourier basis [25]. Kuperberg [24] devised a subexponential

(2O(
√

logn)) algorithm for the HSP on the dihedral group Dn that uses entangled
measurements, and Alagic, Moore, and Russell [1] obtained a similar algorithm for
the HSP on groups of the form Gn. Bacon, Childs, and van Dam determined the
optimal multiregister measurement for the dihedral group [2] (see also [26]) and used
this approach to construct an algorithm for a class of semidirect product groups [3].

Whether a similar approach can be applied to the symmetric group is a major open
question. Hallgren et al. [16] have shown, however, that no family of measurements
across o(n log n) coset states can distinguish H = {1,m} from the trivial group in Sn

with a polynomial number of repetitions. We remark that in light of the upper bounds
of [9, 25], O(n log n) coset states do, at least information-theoretically, determine the
answer. Constructing such highly entangled measurements poses a major conceptual
challenge, and it is far from clear in what cases they can be carried out efficiently.
Of course, it is also possible that a completely different approach—one which does
not use coset states, or which does not start by reducing to the HSP—will provide an
efficient quantum algorithm for Graph Isomorphism.

The paper is organized as follows. In section 2 we give a brief introduction to
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representation theory and nonabelian Fourier analysis. In section 3 we discuss the
general structure of quantum measurements on coset states and show that the optimal
measurement takes the form of strong Fourier sampling. In section 4 we show how
to bound the variance of the resulting probability distributions with respect to the
choice of hidden subgroup. In section 5 we record some specific facts about the rep-
resentations of the symmetric group, and in section 6 we use these facts to show that
an exponential number of measurements are necessary. Finally, in section 7 we adapt
the argument for the specific family of involutions relevant to Graph Isomorphism.

2. Fourier analysis over finite groups. We briefly discuss the elements of the
representation theory of finite groups. Our treatment is primarily for the purposes of
setting down notation; we refer the reader to [11, 33] for complete accounts.

Let G be a finite group. A representation ρ of G is a homomorphism ρ :
G → U(V ), where V is a finite-dimensional Hilbert space and U(V ) is the group
of unitary operators on V . The dimension of ρ, denoted dρ, is the dimension of the
vector space V . By choosing a basis for V , we can then identify ρ(g) with a unitary
dρ × dρ matrix so that for every g, h ∈ G, ρ(gh) = ρ(g) · ρ(h).

Fixing a representation ρ : G → U(V ), we say that a subspace W ⊂ V is invariant
if ρ(g)W ⊂ W for all g ∈ G. We say ρ is irreducible if it has no invariant subspaces
other than the trivial space {0} and V . If two representations ρ and σ are the same
up to a unitary change of basis, we say that they are equivalent. It is a fact that
any finite group G has a finite number of distinct irreducible representations up to
equivalence, and, for a group G, we let Ĝ denote a set of representations containing
exactly one from each equivalence class. The irreducible representations of G give
rise to the Fourier transform. Specifically, for a function f : G → C and an element
ρ ∈ Ĝ, define the Fourier transform of f at ρ to be

f̂(ρ) =

√
dρ
|G|

∑
g∈G

f(g)ρ(g) .

The leading coefficients are chosen to make the transform unitary, so that it preserves
inner products:

〈f1, f2〉 =
∑
g

f∗
1 (g)f2(g) =

∑
ρ∈Ĝ

tr
(
f̂1(ρ)

† · f̂2(ρ)
)

.

Given a representation ρ and pair of integers 1 ≤ i, j ≤ dρ, we can associate a basis
vector |ρ, i, j〉, which assigns the matrix entry ρ(g)i,j to each element g. As described
above, these form an orthonormal basis for C[G], which implies∑

ρ∈Ĝ

d2
ρ = |G| .

In the case when ρ is not irreducible, it can be decomposed into a direct sum
of irreducible representations, each of which operates on an invariant subspace. We
write ρ = σ1 ⊕ · · · ⊕ σk and, for the σi appearing at least once in this decomposition,
σi ≺ ρ. In general, a given σ can appear multiple times, in the sense that ρ can have
an invariant subspace isomorphic to the direct sum of aρσ copies of σ. In this case aρσ
is called the multiplicity of σ in ρ, and we write ρ =

⊕
σ≺ρ a

ρ
σσ.

For a representation ρ we define its character as the trace χρ(g) = tr ρ(g). Since
the trace is invariant under conjugation, characters are constant on the conjugacy
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classes, and if m is a conjugacy class, we write χρ(m) = χρ(m), where m is any
element of m. Characters are a powerful tool for reasoning about the decomposition
of reducible representations. In particular, for ρ, σ ∈ Ĝ, we have the orthogonality
conditions

〈χρ, χσ〉G =
1

|G|
∑
g∈G

χρ(g)χσ(g)∗ =

{
1, ρ = σ ,

0, ρ = σ .

If ρ is reducible, we have χρ =
∑

σ≺ρ a
ρ
σχσi , and so the multiplicity aρσ is given by

aρσ = 〈χρ, χσ〉G .

If ρ is irreducible, Schur’s lemma asserts that the only matrices which commute
with ρ(g) for all g are the scalars, {c1 | c ∈ C}. Therefore, for any A we have

(2.1)
1

|G|
∑
g∈G

ρ(g)†Aρ(g) =
trA

dρ
1dρ

since conjugating this sum by ρ(g) simply permutes its terms. In particular, consider
the average of ρ over a conjugacy class m, which we denote ρ(m):

ρ(m) = Expm∈m ρ(m) = Expg ρ(g
−1mg) = Expg ρ(g)

†ρ(m)ρ(g) .

Then since tr ρ(m) = χρ(m), we have

(2.2) ρ(m) =
χ(m)

dρ
1dρ .

Similarly, if ρ is reducible, ρ(m) is scalar in each irreducible subspace, giving

(2.3) ρ(m) =
∑
σ≺ρ

χσ(m)

dσ
Πρ

σ ,

where Πρ
σ projects onto the subspace aρσσ spanned by copies of σ. We use these facts

below.
There is a natural product operation on representations: if ρ : G → U(V ) and

σ : G → U(W ) are representations of G, we may define a new representation ρ ⊗ σ :
G → U(V ⊗W ) by extending the rule (ρ⊗σ)(g) : u⊗v �→ ρ(g)u⊗σ(g)v. In general,
the representation ρ ⊗ σ is not irreducible, even when both ρ and σ are. This leads
to the Clebsch–Gordan problem, that of decomposing ρ ⊗ σ into irreducibles. For
example, since χρ⊗σ(g) = χρ(g) · χσ(g), the multiplicity of τ in ρ⊗ σ is 〈χτ , χρχσ〉G.

Group elements can act on each other on the left or right. Thus we can consider
subspaces of C[G] that are invariant under left multiplication, right multiplication, or

both; these subspaces are called left-, right-, or bi-invariant, respectively. Each ρ ∈ Ĝ
corresponds to a d2

ρ-dimensional bi-invariant subspace of C[G]. We can think of the bi-
invariant subspace as a single d2

ρ-dimensional representation, consisting of the space of
dρ×dρ matrices A. If ρ(g) acts on A by left or right multiplication, the left- and right-
invariant subspaces correspond to A’s columns and rows, respectively; for instance,
each column of A is acted on independently by left multiplication by ρ(g), and the
space of matrices A which are nonzero only in this column form a dρ-dimensional
left-invariant subspace. Thus, each bi-invariant subspace can be decomposed into
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dρ dρ-dimensional left-invariant subspaces, or (transversely) dρ dρ-dimensional right-
invariant subspaces.

However, this decomposition is not unique. If we think of A as the space of linear
operators on the same dρ-dimensional vector space V on which ρ acts, changing the
orthonormal basis for V transforms the matrices A. Thus, each orthonormal basis
B of V gives a way to divide the bi-invariant subspace into left-invariant columns
and right-invariant rows, and each such subspace is associated with some basis vector
b ∈ B.

3. The structure of the optimal measurement. In this section we show that
starting with a single coset state, the optimal measurement for the HSP is precisely
an instance of strong Fourier sampling (possibly in an overcomplete basis). This has
been pointed out several times in the past, at varying levels of explicitness [19, 24];
we state it here for completeness. Everything we say in this section is true for the
HSP in general. However, for simplicity we focus on the special case of the HSP called
the hidden conjugate problem in [28]: there is a (nonnormal) subgroup H, and we are
promised that the hidden subgroup is one of its conjugates, Hg = g−1Hg for some
g ∈ G.

We may treat the states arising after Step 3 of the procedure above as elements
of the group algebra C[G]. We use the notation |g〉 = 1 · g ∈ C[G] so that the vectors
|g〉 form an orthonormal basis for C[G]. Given a set S ⊂ G, |S〉 denotes a uniform
superposition over the elements of S, |S〉 = (1/

√
|S|)

∑
s∈S |s〉.

3.1. The optimal POVM consists of strong Fourier sampling. The most
general type of measurement allowed in quantum mechanics is a POVM. A POVM
with a set of possible outcomes J consists of a set of positive operators {Mj | j ∈ J}
subject to the completeness condition,

(3.1)
∑
j

Mj = 1 .

Since positive operators are self-adjoint, they can be orthogonally diagonalized, and
since their eigenvalues are positive, they can be written as a positive linear combina-
tion of projection operators (see, e.g., [32, sect. 10]). Any POVM may thus be refined
so that each Mj = ajμj , where μj is a projection operator and aj is positive and real.

The result of this refined measurement on the state |ψ〉 is a random variable,
taking values in J , that is equal to j ∈ J with probability Pj = aj 〈ψ|μj |ψ〉. Note
that the outcomes j need not correspond to subgroups directly; the algorithm designer
is free to carry out t of these experiments (where t is, ideally, polynomial), observing
outcomes j1, . . . , jt, and then apply some additional computation to find the most
likely subgroup given these observations.

If g is chosen from G uniformly so that the hidden subgroup is a uniformly random
conjugate of H, we wish to find a POVM that maximizes the probability of correctly
identifying g from the coset state |Hg〉. (Of course, to identify a conjugate Hg, we
need only specify g up to an element of the normalizer of H.) Since a random left
coset of Hg can be written cgHg = cHg for a random c ∈ G, the probability we
observe outcome j is

(3.2) Pj = aj
1

|G|
∑
c∈G

〈cHg|μj |cHg〉 .

Ip [19] observed that in the special case that each outcome j corresponds to a sub-
group, maximizing the probability that j is correct subject to the constraint (3.1)
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gives a semidefinite program. Since such programs are convex, the optimum is unique
and is a fixed point of any symmetries possessed by the problem.

However, our proof relies on an elementary “symmetrization” argument. Given
a group element x ∈ G, let Lx |g〉 = |xg〉 denote the unitary matrix corresponding to
left group multiplication by x. In particular, applying Lx maps one left coset onto
another: |cHg〉 = Lc |Hg〉. Writing

Pj = aj
1

|G|
∑
c∈G

〈cHg|μj |cHg〉 = aj

〈
Hg

∣∣∣∣∣ 1

|G|
∑
c∈G

L†
cμjLc

∣∣∣∣∣Hg

〉
,

we conclude that replacing μj for each j with the symmetrization

μ′
j =

1

|G|
∑
g∈G

L†
gμjLg

does not change the resulting probability distribution Pj . Since μ′
j commutes with

Lx for every x ∈ G and provides exactly the same information as the original μj , we
may assume without loss of generality that the optimal POVM commutes with Lx for
every x ∈ G.

It is easy to see that any projection operator that commutes with left multipli-
cation projects onto a left-invariant subspace of C[G], and we can further refine the
POVM so that each μj projects onto an irreducible left-invariant subspace. Each such
space is contained in the bi-invariant subspace corresponding to some irreducible rep-
resentation ρ, in which case we write imμj ⊆ ρ. As discussed in section 2, a given
irreducible left-invariant subspace corresponds to some unit vector b in the vector
space V on which ρ acts. Thus we can write

μj = |bj〉 〈bj | ⊗ 1dρ
,

where 1dρ
is the identity operator on that left-invariant subspace. Let B = {bj |

imμj ∈ ρ}; then (3.1) implies a completeness condition for each ρ ∈ Ĝ,

(3.3)
∑

bj∈B

aj |bj〉 〈bj | = 1dρ ,

and so B is a (possibly overcomplete) basis for V . In other words, the optimal POVM
consists of first measuring the representation name ρ and then performing a POVM
on the vector space V with the set of possible outcomes B. Another way to see this is
to regard the choice of coset as a mixed state; then its density matrix is block-diagonal
in the Fourier basis, and so as Kuperberg puts it [24], measuring the representation
name “sacrifices no entropy.”

We note that in the special case that this POVM is a von Neumann measurement—
that is, when B is an orthonormal basis for V —it corresponds to measuring the column
of ρ in that basis, which is how strong Fourier sampling is usually defined. (As pointed
out in [12], nothing is gained by measuring the row, since we have a random left coset
cHg and left-multiplying by a random element c in an irreducible representation com-
pletely mixes the probability across the rows in each column. Here this is reflected
by the fact that each μj is a scalar in its left-invariant subspace.) However, in general
the optimal measurement might consist of an overcomplete basis, or frame, in each ρ,
consisting of vectors bj with weights aj .
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Now that we know μj takes this form, let us change notation. Given ρ ∈ Ĝ
acting on a vector space V and a unit vector b ∈ V , let Πρ

b = |b〉 〈b| ⊗ 1dρ denote
the projection operator onto the left-invariant subspace corresponding to b. Then
μj = Πρ

bj
, and (3.2) becomes

(3.4) Pj = aj
1

|G|
∑
c∈G

∥∥∥Πρ
bj

|cHg〉
∥∥∥2

= aj

∥∥∥Πρ
bj

|Hg〉
∥∥∥2

.

We can write this as the product of the probability P (ρ) that we observe ρ, times the
conditional probability P (ρ,bj) that we observe bj . Note that by (3.3),

Πρ =
∑

bj∈B

ajΠ
ρ
bj

is the projection operator onto the bi-invariant subspace corresponding to ρ. Then

Pj = P (ρ)P (ρ,bj) ,

where

P (ρ) = ‖Πρ |H〉‖2
,(3.5)

P (ρ,bj) = aj
∥∥Πρ

bj
|Hg〉

∥∥2 /
P (ρ) .(3.6)

Note that P (ρ,bj) depends on g, but P (ρ) does not, which is why weak sampling is
incapable of distinguishing conjugate subgroups.

3.2. The probability distribution for a conjugate subgroup. Now let us
use the fact that |H〉 is a superposition over a subgroup and calculate P (ρ) and
P (ρ,bj) as defined in (3.5) and (3.6). This will set the stage for asking whether we
can distinguish different conjugates of H from each other or from the trivial subgroup.

Fix an irreducible representation ρ that acts on a vector space V . Then Fourier
transforming the state

|H〉 =
1√
|H|

∑
h∈H

|h〉

yields the coefficient

Ĥ(ρ) =

√
dρ

|H||G|
∑
h∈H

ρ(h) =

√
dρ|H|
|G| ΠH ,

where ΠH = (1/|H|)
∑

h∈H ρ(h) is a projection operator onto a subspace of V . The
probability that we observe ρ is then the norm squared of this coefficient,

(3.7) P (ρ) =
∥∥∥Ĥ(ρ)

∥∥∥2

=
dρ|H|
|G| rkΠH ,

and, as stated above, this is the same for all conjugates Hg. The conditional proba-
bility that we observe the vector bj , given that we observe ρ, is then

(3.8) P (ρ,bj) = aj

∥∥∥Πρ
bj

|H〉
∥∥∥2

P (ρ)
= aj

∥∥∥Ĥ(ρ)bj

∥∥∥2

P (ρ)
= aj

‖ΠHbj‖2

rkΠH
.
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In the case where H is the trivial subgroup, ΠH = 1dρ
and P (ρ,bj) is given by

(3.9) P (ρ,bj) =
aj
dρ

.

We call this the natural distribution on the frame B = {bj}. In the case that B is an
orthonormal basis, aj = 1 and P (ρ,bj) is simply the uniform distribution on B.

This probability distribution over B changes for a conjugate Hg in the following
way. The Fourier transform of |Hg〉 is

Ĥg(ρ) =

√
dρ|H|
|G| ΠHρ(g) ,

and we have

(3.10) P (ρ,bj) = aj
‖ΠH(gbj)‖2

rkΠH
,

where we write gb for ρ(g)b.
Our goal is to understand, for each fixed b, to what extent P (ρ,b) varies with

g, and so to what extent measurements of this type can distinguish the conjugates
Hg from each other. Regarding this as a random variable over the choice of g, its
expectation is easy to calculate: we have

Expg ‖ΠH(gb)‖2
= Expg

〈
b, ρ(g)†ΠHρ(g)b

〉
=

〈
b,

(
Expg ρ(g)

†ΠHρ(g)
)
b
〉

=
rkΠH

dρ
,

where we used (2.1), ‖b‖2
= 1, and the fact that the trace of a projection operator is

its rank. Combining this with (3.10), the expected probability is simply the natural
distribution (3.9),

Expg P (ρ,bj) =
aj
dρ

.

We wish to show that ‖ΠH(gb)‖2, and therefore P (ρ,bj), is in fact very close
to its expectation for most conjugates. In the next section, we present our primary
technical contribution, which is a method for establishing concentration results for
this random variable.

4. The variance of projection through a random involution. In this sec-
tion we focus on the case where H = {1,m} for an element m chosen uniformly at
random from a fixed conjugacy class m of involutions. (Observe that order is pre-
served under conjugation so that if m is an involution, then so are all elements of m.)
Given an irreducible representation ρ : G → U(V ) and a vector b ∈ V , we bound the
variance, over the choice of m ∈ m, of the probability Pm(ρ,b) that b is observed
given that we observed ρ. Our key insight is that this variance depends on how the
tensor product representation ρ ⊗ ρ∗ decomposes into irreducible representations σ,
and how the vector b ⊗ b∗ projects into these constituent subspaces.

Recall that, if a representation ρ is reducible, it can be written as an orthogonal
direct sum of irreducibles ρ =

⊕
σ≺ρ a

ρ
σσ, where aρσ is the multiplicity of σ. We let

Πρ
σ denote the projection operator whose image is aρσσ, that is, the span of all the

irreducible subspaces isomorphic to σ.
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Lemma 4.1. Let ρ be a representation of a group G acting on a space V and let
b ∈ V . Let m be an element chosen uniformly from a conjugacy class m of involutions.
If ρ is irreducible, then

Expm∈m 〈b,mb〉 =
χρ(m)

dρ
‖b‖2

.

If ρ is reducible, then

Expm∈m 〈b,mb〉 =
∑
σ≺ρ

χσ(m)

dσ
‖Πρ

σb‖
2

.

Proof. Let ρ(m) denote the average of ρ over the conjugacy class m. Using (2.2),
we have

Expm 〈b,mb〉 = 〈b, ρ(m)b〉 =
χρ(m)

dρ
‖b‖2

.

Similarly, if ρ is reducible, by (2.3) we have

Expm 〈b,mb〉 = 〈b, ρ(m)b〉 =
∑
σ≺ρ

χσ(m)

dσ
〈b,Πρ

σb〉 =
∑
σ≺ρ

χσ(m)

dσ
‖Πρ

σb‖
2

.

Turning now to the second moment of 〈b,mb〉, we observe that

|〈b,mb〉|2 = 〈b,mb〉〈b,mb〉∗ = 〈b ⊗ b∗,mb ⊗mb∗〉 = 〈b ⊗ b∗,m(b ⊗ b∗)〉 ,

where the action of m on the vector b⊗b∗ is precisely given by the action of G in the
representations ρ⊗ ρ∗. This will allow us to express the second moment of the inner
product 〈b,mb〉 in terms of the projections of b⊗b∗ into the irreducible constituents
of the tensor product representation ρ⊗ ρ∗.

Lemma 4.2. Let ρ be a representation of a group G acting on a space V and let
b ∈ V . Let m be an element chosen uniformly at random from a conjugacy class m

of involutions. Then

Expm∈m |〈b,mb〉|2 =
∑

σ≺ρ⊗ρ∗

χσ(m)

dσ

∥∥∥Πρ⊗ρ∗

σ (b ⊗ b∗)
∥∥∥2

.

Proof. We write the second moment as a first moment over the product represen-
tation ρ⊗ ρ∗: as above, |〈b,mb〉|2 = 〈b ⊗ b∗,m(b ⊗ b∗)〉 so that

Expm |〈b,mb〉|2 = Expm〈b ⊗ b∗,m(b ⊗ b∗)〉 ,

and applying Lemma 4.1 completes the proof.
Now let Πm = ΠH denote the projection operator given by

Πmv =
v + mv

2
.

For a given vector b ∈ B, we will focus on the expectation and variance of ‖Πmb‖2
.

These are given by the following lemma.
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Lemma 4.3. Let ρ be an irreducible representation acting on a space V and let
b ∈ V . Let m be an element chosen uniformly at random from a conjugacy class m

of involutions. Then

Expm∈m ‖Πmb‖2
=

1

2
‖b‖2

(
1 +

χρ(m)

dρ

)
,(4.1)

Varm∈m ‖Πmb‖2 ≤ 1

4

∑
σ≺ρ⊗ρ∗

χσ(m)

dσ

∥∥∥Πρ⊗ρ∗

σ (b ⊗ b∗)
∥∥∥2

.(4.2)

Proof. For the expectation,

Expm ‖Πmb‖2
= Expm 〈b,Πmb〉

=
1

2
Expm (〈b,b〉 + 〈b,mb〉)

=
1

2
‖b‖2

(
1 +

χρ(m)

dρ

)
,

where the last equality follows from Lemma 4.1.

For the variance, we first calculate the second moment,

Expm ‖Πmb‖4
= Expm |〈b,Πmb〉|2

=
1

4
Expm |〈b,b〉 + 〈b,mb〉|2

=
1

4
Expm

(
|〈b,b〉|2 + 2 Re 〈b,b〉〈b,mb〉 + |〈b,mb〉|2

)
=

1

4

(
‖b‖4

+ 2 ‖b‖4 χρ(m)

dρ
+

∑
σ≺ρ⊗ρ∗

χσ(m)

dσ

∥∥∥Πρ⊗ρ∗

σ (b ⊗ b∗)
∥∥∥2

)
,

where in the last line we applied Lemmas 4.1 and 4.2 and the fact that any character
evaluated at an involution is real. Then

Varm ‖Πmb‖2
= Expm ‖Πmb‖4 −

(
Expm ‖Πmb‖2

)2

=
1

4

[ ∑
σ≺ρ⊗ρ∗

χρ(m)

dρ

∥∥∥Πρ⊗ρ∗

σ (b ⊗ b∗)
∥∥∥2

− ‖b‖4

(
χρ(m)

dρ

)2
]

.(4.3)

Ignoring the second term, which is negative, gives the stated result.

Finally, we point out that since

Expm ‖Πmb‖2
= ‖b‖2 rkΠm

dρ
,

we have

(4.4)
rkΠm

dρ
=

1

2

(
1 +

χρ(m)

dρ

)
,

a fact which we will use below.
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5. The representation theory of the symmetric group. In this section we
record the particular properties of Sn and its representation theory which we apply
in the proofs of our main results. The irreducible representations of Sn are labeled
by Young diagrams or, equivalently, by integer partitions of n,

λ = (λ1, . . . , λt) ,

where
∑

i λi = n and λi ≥ λi+1 for all i. The number of Young diagrams, equal to
the number of conjugacy classes in Sn, is the partition number p(n), which obeys

(5.1) p(n) = (1 + o(1))
1

4
√

3 · n
eδ

√
n < eδ

√
n, where δ = π

√
2/3 .

We identify each irreducible representation with its Young diagram λ, and denote its
character χλ and its dimension dλ. In particular, λ is the trivial or parity represen-
tation if λ is a single row (n) or a single column (1, . . . , 1), respectively. Given λ, its
conjugate λ′ is obtained by flipping λ about the diagonal: λ′ = (λ′

1, . . . , λ
′
λ1

), where
λ′
j = |{i | λi ≥ j}|. In particular, λ′

1 = t. The representation λ′ is the (tensor)
product of λ with the parity representation.

The dimension of λ is given by the remarkable hook length formula:

dλ =
n!∏

c hook(c)
,

where this product runs over all cells of the Young diagram associated with λ and
hook(c) is the number of cells appearing in either the same column or row as c,
excluding those that are above or to the left of c.

For example, the partition λ = (λ1, λ2, λ3, λ4) = (6, 5, 3, 2) is associated with the
diagram shown in Figure 5.1 below. The hook associated with the cell (2, 2) in this
diagram appears in Figure 5.2; it has length 6.

1

2

3

4

Fig. 5.1. The Young diagram for λ =
(6, 5, 3, 2).

1

2

3

4

Fig. 5.2. A hook of length 6.

The symmetric groups have the property that every representation λ possesses a
basis in which its matrix elements are real, and so all its characters are real. However,
in a given basis λ might be complex, so we will refer below to its complex conjugate,
the representation λ∗ (not to be confused with λ′).

The study of the asymptotic properties of the representations of Sn typically
focuses on the Plancherel distribution (see, e.g., Kerov’s monograph [23]). For a

general group G, this is the probability distribution obtained on Ĝ by assigning ρ the
probability density d2

ρ/|G|. One advantage of this distribution is that the density at
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ρ is proportional to its contribution, dimensionwise, to the group algebra C[G]. Note
that in the context of the HSP, the Plancherel distribution is exactly the one obtained
by performing weak Fourier sampling on the trivial hidden subgroup.

In the symmetric groups a fair amount is known about representations chosen
according to the Plancherel distribution. In particular, Vershik and Kerov [36] have
given the following result, showing that with high probability they have dimension
equal to eΘ(

√
n)
√
n!.

Theorem 5.1 (see [36]). Let λ be chosen from Ŝn according to the Plancherel
distribution. Then there exist positive constants c1 and c2 for which

lim
n→∞

Pr
[
e−c1

√
n
√
n! ≤ dλ ≤ e−c2

√
n
√
n!
]

= 1 .

Vershik and Kerov have also obtained estimates for the maximum dimension of a
representation in Ŝn.

Theorem 5.2 (see [36]). There exist positive constants č and ĉ such that for all
n ≥ 1,

e−č
√
n
√
n! ≤ max

λ∈Ŝn

dλ ≤ e−ĉ
√
n
√
n! .

Along with these estimates, we will use the following (one-sided) large-deviation
versions of Theorem 5.1.

Lemma 5.3. Let λ be chosen according to the Plancherel distribution on Ŝn.
1. Let δ = π

√
2/3 as in (5.1). Then for sufficiently large n,

Pr
[
dλ ≤ e−δ

√
n
√
n!
]
< e−δ

√
n .

2. Let 0 < c < 1/2. Then there is a constant γ > 0 such that

Pr[dλ ≤ ncn] < n−γn .

Proof. For the first bound, setting d = e−δ
√
n
√
n! and using (5.1), we have∑

λ:dλ≤d

d2
λ

n!
≤ p(n)

d2

n!
< e−δ

√
n .

For the second bound, recalling Stirling’s approximation n! > nne−n, we have∑
λ:dλ≤ncn

d2
λ

n!
≤ p(n)n2cn

n!
= n−(1−2c)neO(n) ,

and setting γ < 1 − 2c completes the proof.
Finally, we will also apply Roichman’s estimates [31] for the characters of the

symmetric group.
Definition 5.4. For a permutation π ∈ Sn, define the support of π, denoted

supp(π), to be the cardinality of the set {k ∈ [n] | π(k) = k}.
Theorem 5.5 (see [31]). There exist constants b > 0 and 0 < q < 1 so that for

n > 4, for every conjugacy class C of Sn, and for every irreducible representation λ
of Sn, ∣∣∣∣χλ(C)

dλ

∣∣∣∣ ≤ (
max

(
q,

λ1

n
,
λ′

1

n

))b·supp(C)

,
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where supp(C) = supp(π) for any π ∈ C.
In our application, we take n to be even and consider involutions m in the

conjugacy class of elements consisting of n/2 disjoint transpositions, m = mn =
{σ ((12)(34) · · · (n − 1 n))σ−1 | σ ∈ Sn}. Note that each m ∈ mn is associated with
one of the (n − 1)!! = (n − 1)(n − 3)(n − 5) · · · 1 perfect matchings of n things, and
that supp(m) = n.

6. Strong Fourier sampling over Sn. We consider the hidden subgroup H =
{1,m}, where m is chosen uniformly from m = mn ⊂ Sn, the conjugacy class

{π−1((1 2)(3 4) · · · (n− 1 n))π | π ∈ Sn} ;

we assume throughout that n is even. We start by performing weak sampling, i.e.,
measuring the name of an irreducible representation λ; the resulting probability distri-
bution on Ŝn is the same for all m ∈ Mn, and Hallgren, Russell, and Ta-Shma [15] es-
tablished that this probability distribution on λ is exponentially close to the Plancherel
distribution in total variation. We continue on to strong sampling, by allowing the
algorithm designer to choose an arbitrary POVM with a frame B = {bj} and weights
{aj} obeying the completeness condition (3.3). We will show that with high proba-
bility (over m and λ), the conditional distribution induced on the vectors B is expo-
nentially close to the natural distribution (3.9) on B. It will follow by the triangle
inequality that it requires an exponential number of experiments of this type to dis-
tinguish two involutions from each other or, in fact, to distinguish H from the trivial
subgroup.

For simplicity, and to illustrate our techniques, we first prove this for a von
Neumann measurement, i.e., where B is an orthonormal basis for λ. In this case,
we show that the probability distribution on B is exponentially close to the uniform
distribution.

6.1. Von Neumann measurements.
Theorem 6.1. Let B be an orthonormal basis for an irreducible representation

λ. Given the hidden subgroup H = {1,m}, where m is chosen uniformly at random
from m, let Pm(b) = Pm(λ,b) be the probability that we observe the vector b ∈ B
conditioned on having observed the representation name λ, and let U(b) = U(λ,b)
be the uniform distribution on B. Then there is a constant β > 0 such that for
sufficiently large n, with probability at least 1 − e−βn in m and λ, we have

‖Pm − U‖1 < e−βn .

Proof. First, recall from (3.8) in section 3 that the conditional distribution on B
is given by (since aj = 1)

(6.1) Pm(b) = Pm(λ,b) =
‖Πmb‖2

rkΠm
.

Our strategy will be to bound Varm ‖Πmb‖2 using Lemma 4.3 and apply Chebyshev’s
inequality to conclude that ‖Πmb‖2 is almost certainly close to its expectation (4.1).
Recall, however, that our bounds on the variance of ‖Πmb‖2 depend on the decom-
position of λ ⊗ λ∗ into irreducibles and, furthermore, on the projection of b ⊗ b∗

into these irreducible subspaces. Matters are somewhat complicated by the fact that
certain irreducibles μ appearing in λ⊗ λ∗ may contribute more to the variance than
others. Specifically, while Theorem 5.5 allows us to bound the contribution of those μ
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with Young diagrams whose width μ1 and height μ′
1 are much smaller than n, those

which violate this condition could have large normalized characters χμ(m)/dμ, and
thus could conceivably contribute large terms to the sum (4.2).

Fortunately, we will see that the total fraction of the space λ⊗λ∗, dimensionwise,
consisting of such μ is small with overwhelming probability. Despite this, we cannot
preclude the possibility that for a specific vector b, the quantity Var ‖Πmb‖2 is large,
as b may project solely into spaces of the type described above. On the other hand,
as these troublesome spaces amount to a small fraction of λ ⊗ λ∗, only a few b can
have this property, and this will suffice to control the distance in total variation from
the uniform distribution.

Specifically, let 0 < c < 1/4 be a constant, and let Λc denote the collection of
Young diagrams μ with the property that either μ1 ≥ (1 − c)n or μ′

1 ≥ (1 − c)n. We
have the following upper bounds on the cardinality of Λc and the dimension of any μ
with μ ∈ Λc.

Lemma 6.2. Let p(n) denote the number of integer partitions of n. Then |Λc| ≤
2cn · p(cn), and dμ < ncn for any μ ∈ Λc.

Proof. For the first statement, note that removing the top row of a Young diagram
μ with μ1 ≥ (1− c)n gives a Young diagram of size n−μ1 ≤ cn. The number of these
is at most p(cn), and summing over all such μ1 gives cn ·p(cn). The case μ′

1 ≥ (1−c)n
is similar, and summing the two gives |Λc| ≤ 2cn · p(cn).

Now let μ ∈ Λc with μ1 ≥ (1− c)n. By the hook-length formula, since the ith cell
from the right in the top row has hook(c) ≥ i, dμ < n!/μ1! ≤ n!/((1 − c)n)! ≤ ncn.
The case μ′

1 ≥ (1 − c)n is similar.

To introduce a bit more notation, given a constant d, let Md denote the set of
irreducibles λ such that dλ ≤ ndn. Now Lemma 5.3, part 2 shows that if λ is drawn
according to the Plancherel distribution, the probability that it falls into Md for some
d < 1/2 is n−Ω(n). The following lemma shows that this is also true for the distribution

P (ρ) induced on Ŝn by weak Fourier sampling the coset state |H〉.
Lemma 6.3. Let d < 1/2 be a constant and let λ be drawn according to the

distribution P (·) of (3.7). Then there is a constant γ = γ(d) > 0 such that for
sufficiently large n we have Prλ[dλ ∈ Md] ≤ n−γn.

Proof. As |H| = 2, |G| = n!, and rkΠH ≤ dρ, we have

P (ρ) =
dρ|H|
|G| rkΠH ≤

2d2
ρ

n!
.

Thus P (·) is at most twice the Plancherel measure, and applying Lemma 5.3, part 2
completes the proof.

Now, for a representation μ with μ /∈ Λc, Theorem 5.5 implies that

(6.2)

∣∣∣∣χμ(m)

dμ

∣∣∣∣ ≤ (
max(q, 1 − c)

)bn ≤ e−αn

for a constant α > 0. Thus the contribution of such an irreducible to the variance
estimate of Lemma 4.3 is exponentially small. In addition, note that Lemma 6.2
implies that Λc ⊂ Md so long as d > c; we shall in fact assume that c < 1/4 < d (and,
moreover, that 2c < d) so that conditioning on λ /∈ Md, (4.4) and (6.2) imply that

(6.3)
dλ
2

(
1 − e−αn

)
≤ rkΠm ≤ dλ

2

(
1 + e−αn

)
.
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We turn now to the problem of bounding the multiplicities with which representa-
tions μ ∈ Λc can appear in λ⊗λ∗. While no explicit decomposition is known for λ⊗λ∗,
the endomorphism representations of Sn, we record a coarse bound below which will
suffice for our purposes. Recall that a character of λ ⊗ λ∗ is χ2

λ as the characters of
Sn are real. The multiplicity of the representation μ in λ⊗λ∗ is 〈χμ, χ

2
λ〉G. However,

this is equal to 〈χμχλ, χλ〉G, the multiplicity of λ in μ⊗λ. Counting dimensions, this
is clearly no more than dim(μ⊗λ)/dimλ = dμ. Hence the multiplicity of μ in λ⊗λ∗

is bounded by

(6.4) 〈χμ, χ
2
λ〉G ≤ dμ .

Let L ⊂ λ ⊗ λ∗ be the subspace consisting of copies of representations μ with
μ ∈ Λc, and let ΠL be the projection operator onto this subspace. By Lemma 6.2, we
have

dimL ≤
∑
μ∈Λc

d2
μ ≤ 2cn · p(cn) · n2cn = n2cneO(

√
n) .

Moreover, as B is an orthonormal basis for λ, the vectors {b ⊗ b∗ | b ∈ B} are
mutually orthogonal in λ⊗ λ∗. Therefore,

(6.5)
∑
b∈B

‖ΠL(b ⊗ b∗)‖2 ≤ dimL .

Applying the general bound provided by Lemma 4.3 on the variance of ‖Πmb‖2
with

the estimates (6.5) and (6.2) above, assuming pessimistically that χμ(M)/dμ = 1 for
all μ ∈ Λc, and assuming that λ /∈ Md so that |B| = dλ > ndn yields

1

dλ

∑
b

Varm ‖Πmb‖2 ≤ 1

4dλ

[∑
b

∑
μ∈Λc

∥∥Πλ
μ(b ⊗ b∗)

∥∥2

+
∑
b

∑
μ/∈Λc

χμ(M)

dμ

∥∥Πλ
μ(b ⊗ b∗)

∥∥2

]

≤ 1

4dλ

[
n2cneO(

√
n) + e−αndλ

]
≤ 1

4

(
n(2c−d)neO(

√
n) + e−αn

)
≤ e−αn

2
,

(6.6)

for sufficiently large n.
We return to our goal of bounding ‖P (λ, ·) − U(λ, ·)‖1 for a typical λ. (We note

that the following part of the proof is considerably simplified from the conference
version of this paper and is similar to the argument in the multiregister case appearing
in [16].) First, note that for 1/2 > d > 1/4 > c and sufficiently large n,

Expλ Expm ‖Pm(λ, ·) − U(λ, ·)‖2
1 ≤ 4 Pr[λ ∈ Md] + max

λ/∈Md

Expm ‖Pm(λ, ·) − U(λ, ·)‖2
1

= 4n−γn + max
λ/∈Md

Expm

(∑
b

∣∣∣∣∣‖Πmb‖2

rkΠm
− 1

dλ

∣∣∣∣∣
)2

= 4n−γn + max
λ/∈Md

1

(rkΠm)2
Expm

(∑
b

∣∣∣∣‖Πmb‖2 − rkΠm

dλ

∣∣∣∣
)2

(6.7)
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≤ 4n−γn + max
λ/∈Md

dλ
(rkΠm)2

Expm

∑
b

(
‖Πmb‖2 − rkΠm

dλ

)2

(6.8)

≤ 4n−γn + max
λ/∈Md

4

(1 − e−αn)2

[
1

dλ

∑
b

Expm

(
‖Πmb‖2 − rkΠm

dλ

)2
]

,(6.9)

where (6.8) follows from (6.7) by the Cauchy–Schwarz inequality and (6.9) follows
from (6.8) by applying (6.3). Now observe that the bracketed expression is exactly
that bounded by (6.6) above. Thus we have

Expλ,m ‖Pm(λ, ·) − U(λ, ·)‖2
1 ≤ 4n−γn +

2e−αn

(1 − e−αn)2
≤ 3e−αn

for sufficiently large n. Finally, the assertion of the theorem follows by applying
Markov’s inequality and setting β < α/3.

6.2. Arbitrary POVMs. We now generalize the proof of Theorem 6.1 to the
case where the algorithm designer is allowed to choose an arbitrary finite frame
B = {b} of unit length vectors in λ, with a family of positive real weights ab that
satisfy the completeness condition

(6.10)
∑
b

ab |b〉 〈b| = 1 .

(Note that this is simply (3.3) where we have written b and ab instead of bj and aj .)
Theorem 6.4. Let B be a frame with weights {ab | b ∈ B} satisfying the

completeness condition (6.10) for an irreducible representation λ. Given the hidden
subgroup H = {1,m}, where m is chosen uniformly at random from m, let Pm(b) =
Pm(λ,b) be the probability that we observe the vector b conditioned on having observed
the representation name λ, and let N(b) = N(λ,b) be the natural distribution (3.9)
on B. Then there is a constant β > 0 such that for sufficiently large n, with probability
at least 1 − e−βn in m and λ, we have

‖Pm −N‖1 < e−βn .

Proof. The proof of Theorem 6.1 goes through with a few modifications. Recall
from (3.8) in section 3 that the conditional distribution on B is given by

Pm(b) = Pm(λ,b) = ab
‖Πmb‖2

rkΠm
,

and the natural distribution (3.9) is given by N(b) = ab/dλ.
First, let us change some semantics: given a subset A ⊆ B, we let |A| denote the

weighted size of A,

|A| =
∑
b∈A

ab .

With this definition, the total probability that falls in A under the natural distribution
is N(A) = |A|/dλ. With Λc and Md defined as before, Lemmas 6.2 and 6.3 still apply.
As in the development leading to (6.9), we find that Expλ Expm ‖Pm(λ, ·)−N(λ, ·)‖2

1

is no more than
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4n−γn + max
λ/∈Md

1

(rkΠm)2
Expm

(∑
b

ab

∣∣∣∣‖Πmb‖2 − rkΠm

dλ

∣∣∣∣
)2

(6.11)

≤ 4n−γn + max
λ/∈Md

dλ
(rkΠm)2

Expm

∑
b

ab

(
‖Πmb‖2 − rkΠm

dλ

)2

(6.12)

≤ 4n−γn + max
λ/∈Md

4

(1 − e−αn)2

[
1

dλ

∑
b

ab Expm

(
‖Πmb‖2 − rkΠm

dλ

)2
]

,(6.13)

where (6.12) follows from (6.11) by applying the Cauchy–Schwarz inequality in the
following way: for any function f(b) we have(∑

b

ab|f(b)|
)2

≤
(∑

b

ab

)(∑
b

ab |f(b)|2
)

= dλ
∑
b

ab |f(b)|2 .

As before, let L ⊂ λ⊗ λ∗ be the subspace consisting of copies of representations
μ ∈ Λc. In order to control the variance appearing in the bracketed expression of
(6.13), we require an analogue of (6.5) for frames, proved below.

Lemma 6.5. Let L be a subspace of λ⊗λ∗, and let ΠL be the projection operator
onto L. Then

(6.14)
∑
b

ab ‖ΠL(b ⊗ b∗)‖2 ≤ dimL .

Proof. First note that a vector e ∈ λ⊗λ∗ has entries ej,k for 1 ≤ j, k ≤ dλ. There
is a unique linear operator E on λ whose matrix entries are Ej,k = ej,k, and the inner
product 〈b ⊗ b∗, e〉 in λ ⊗ λ∗ can then be written as the bilinear form 〈b, Eb〉 in λ.

The Frobenius norm of E is ‖E‖2
= trE†E = ‖e‖2

.
Now let {ei} be an orthonormal basis for L and let Ei be the operator corre-

sponding to ei. Then∑
b

ab |〈b ⊗ b∗, ei〉|2 =
∑
b

ab |〈b, Eib〉|2 ≤
∑
b

ab ‖b‖2 ‖Eib‖2
=

∑
b

ab ‖Eib‖2

=
∑
b

ab tr
(
E†

i |b〉 〈b|Ei

)
= tr

[
E†

i

(∑
b

ab |b〉 〈b|
)
Ei

]
= trE†

iEi = ‖ei‖2
= 1 ,

where we used the Cauchy–Schwarz inequality in the first line and completeness in
the second line. Summing over the dimL basis vectors ei then gives (6.14).

Applying this lemma, we control 1/dλ ·
∑

b ab Varm ‖πmb‖2 just as in (6.6). Sub-
stituting this bound for the bracketed expression of (6.13) and selecting β < α/3 (as
above) completes the proof.

7. Structured involutions and the case of graph isomorphism. The pre-
ceding development focuses on the case where the hidden subgroup is distributed
uniformly among the conjugates of the subgroup H = {1,m}. As such, this shows
that the canonical reduction of Graph Automorphism (the problem of determining
whether a given graph has a nontrivial automorphism) to the HSP does not give rise
to an efficient quantum algorithm via Fourier sampling.
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However, the canonical reduction of Graph Isomorphism to the HSP induces
a more structured set of involutions. As referred to in the introduction, fixing two
rigid graphs G1 = (V1, E1) and G2 = (V2, E2), each with n vertices, the automor-
phism group of their disjoint union (V1 ∪ V2, E1 ∪ E2) is nontrivial exactly when
they are isomorphic, in which case it is generated by an involution m with full
support such that m(V1) = V2 and m(V2) = V1. Identifying V1 and V2 with the
sets {1, . . . , n} and {n + 1, . . . , 2n}, respectively, and letting s denote the involution
(1 n+1)(2 n+2) . . . (n 2n), the standard reduction to the HSP in S2n then results in
a hidden subgroup H = {1,m}, where m is a conjugate involution a−1sa. However,
rather than a being drawn from all of S2n, it is an element of the Young subgroup
Sn,n which fixes V1 and V2:

Sn,n =
{
π ∈ S2n | π({1, . . . , n}) = {1, . . . , n}

} ∼= Sn × Sn .

In other words, rather than considering all conjugates of m in S2n, it suffices just to
consider conjugates in Sn,n. A priori, it seems that this smaller set of possible hidden
subgroups might be easier to identify. Moreover, let K be the subgroup generated
by Sn,n and s: this is the wreath product Sn 	 Z2, which can also be written as a
semidirect product K = (Sn × Sn) � Z2. Then each such H is contained in K, and it
seems that it might be more intelligent to Fourier sample over K rather than over all
of S2n.

However, we can show that nothing is gained by this approach. First, note that
the involutions described above form the (K-)conjugacy class{(

(α, α−1), 1
)
∈ (Sn × Sn) � Z2 | α ∈ Sn

}
.

We remark that the development of section 3 is unchanged and that the optimal
measurement to find a hidden conjugate again consists of strong Fourier sampling.

Now note that Fourier sampling over S2n and over K is equivalent for the following
reason: suppose we are trying to distinguish a set of hidden subgroups Hi ⊂ G, all of
which are contained in a subgroup K ⊂ G. Let T be a set of representatives for the
cosets of K. Then a random left coset of Hi in G is the product of a random left coset
of Hi in K with a random element of T . Thus the mixed state describing a uniformly
random coset of Hi in G can be written as the tensor product of the corresponding
coset state over K with the completely mixed state over T . Since this completely
mixed state (whose density matrix is the identity) contains no information, nothing
is gained, or lost, by sampling over all of G rather than over K.

To proceed, we can determine K’s irreducible representations and their characters,
using the machinery of induced representations [33] as follows. For two irreducible
representations ρ and σ of Sn, let ρ�σ denote their tensor product as a representation
of Sn,n

∼= Sn × Sn. We consider the induced representation τ{ρ,σ} = IndK
Sn,n

(ρ � σ)
and denote its character χ{ρ,σ}. It is easy to see that

χ{ρ,σ}
(
((α, β), t)

)
=

{
χρ(α)χσ(β) + χσ(α)χρ(β) if t = 0 ,

0 if t = 1 ;

as the notation suggests, this depends only on the multiset {ρ, σ}. An easy computa-
tion shows that 〈χ{ρ,σ}, χ{ρ,σ}〉 = 1+ δρ,σ. Thus, if ρ � σ, then τ{ρ,σ} is irreducible of
dimension 2dρdσ. On the other hand, if ρ ∼= σ, then it decomposes into two irreducible
representations of dimension d2

ρ,

(7.1) τ{ρ,ρ} ∼= τ{ρ,ρ},1 ⊕ τ{ρ,ρ},π ,
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where 1 and π are the trivial and sign representations, respectively, of Z2. Each of
these irreducible representations acts on Vρ ⊗ Vρ, the vector space supporting the
action of ρ � ρ. Both realize the element ((α, β), 0) as the linear map ρ(α) ⊗ ρ(β),
while τ{ρ,ρ},1 and τ{ρ,ρ},π realize the element ((1, 1), 1) as the maps which send u⊗ v
to v ⊗ u and −v ⊗ u, respectively. The characters of these representations are

χ{ρ,ρ},1
(
((α, β), t)

)
=

{
χρ(α)χρ(β) if t = 0 ,

χρ(αβ) if t = 1 ,

χ{ρ,ρ},π
(
((α, β), t)

)
=

{
χρ(α)χρ(β) if t = 0 ,

−χρ(αβ) if t = 1 .

(7.2)

In particular, since m is of the form ((α, α−1), 1), we have the normalized characters

(7.3)
χ{ρ,ρ},1(m)

d{ρ,ρ},1
=

1

dρ
,

χ{ρ,ρ},π(m)

d{ρ,ρ},π
= − 1

dρ
,

and χ{ρ,σ}(m) = 0 for all ρ � σ.

Given that the normalized characters (7.3) are very small (indeed, n−Ω(n)) for all
ρ whose Young diagram is outside Λc, the analysis of section 6 can be undertaken
mutatis mutandis and easily implies that an exponential number of strong Fourier
sampling experiments would have to be performed to distinguish the isomorphic and
nonisomorphic cases. We note that a similar result has been obtained by Childs and
Wojcan [6], who treat Graph Isomorphism as a hidden shift problem on Sn.

We remark that the above description (7.1), (7.2) of the irreducible representa-
tions and characters of groups of the form G 	Z2 works for arbitrary G. In particular,
the normalized characters of the involutions that “swap” the two copies of G are either
0 or ±1/dρ for some ρ ∈ Ĝ. It follows that strong Fourier sampling fails to find such
involutions in G 	 Z2 whenever a sufficient fraction of G’s Plancherel measure lies on
sufficiently high-dimensional representations.
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