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Abstract We show that the strong form of Heisenberg’s inequalities due to Robert-

son and Schrödinger can be formally derived using only classical considerations. This

is achieved using a statistical tool known as the “minimum volume ellipsoid” together

with the notion of symplectic capacity, which we view as a topological measure of

uncertainty invariant under Hamiltonian dynamics. This invariant provides a right

measurement tool to define what “quantum scale” is. We take the opportunity to dis-

cuss the principle of the symplectic camel, which is at the origin of the definition of

symplectic capacities, and which provides an interesting link between classical and

quantum physics.

Keywords Uncertainty principle · Symplectic non-squeezing · Symplectic

capacity · Hamiltonian mechanics

1 Introduction

Common sense tells us that classical mechanics is not “quantum”; in fact “nonclas-

sicality” is a key concept supporting the need for a quantum theory. One of the most

decisive hallmarks of nonclassical behavior seems to be, no doubt, the uncertainty

principle since it appears to be a phenomenon that classical physics cannot account

for. One way of expressing this principle mathematically is, in one degree of free-

dom, to use the Heisenberg inequality �P�X ≥ 1
2
� which is a particular case of the

Schrödinger–Robertson inequality

�X2�P 2 ≥ Cov(X,P )2 +
1

4
�

2. (1)
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The aim of this article is to show that the inequality (1), and its generalization to

several degrees of freedom

(�Xj )
2(�Pj )

2 ≥ Cov(Xj ,Pj )
2 +

1

4
�

2, j = 1,2 . . . (2)

can be derived for large statistical ensembles by using only classical arguments, the

co-variances being here interpreted in terms of measurement errors.

A caveat: I do not claim that quantum mechanics can been derived using solely

classical arguments; for quantum uncertainty to emerge from the inequalities (2) one

has to justify by some physical argument the existence of a universal constant �,

the same for all possible systems. What I claim is that recent advances in symplectic

geometry and topology allow to highlight the fact that classical and quantum mechan-

ics are formally much closer than might appear at first sight; in fact the “symplectic

camel” of the title of this article provides a right measurement tool to define what a

“quantum scale” is, and allows to state the uncertainty principle in invariant (under

Hamiltonian dynamics) terms.

In the case of one degree of freedom the idea is the following. Consider a cloud �

of points lying in the phase plane, and consisting of a number K ≫ 1 of points

z1 = (x1,p1), . . . , zK = (xK ,pK); each of the points corresponds to a joint posi-

tion/momentum measurement of a physical system with one degree of freedom. It is

a standard procedure in robust statistical analysis to “clean up” such a cloud of points

by down-weighting outliers (i.e. observations that do not follow the pattern of the ma-

jority of the data). There are various procedures for doing this, but the method we are

interested in is the minimum area ellipse method; we will describe this method more

in detail in Sect. 3.1 but for the moment it suffices to say that it consists in using argu-

ments from convex geometry to replace � by an ellipse J (the John–Löwner ellipse)

containing �. The center of that ellipse is then identified with the mean (=expectation

value) and the shape of the ellipse determines the covariance. More specifically, if J

consists of all points z = (x,p) such that

(z − z)T M−1(z − z) ≤ m2 (3)

where M is a positive-definite matrix the mean is z and the covariance matrix

� =
(

�X2 Cov(X,P )

Cov(P,X) �P 2

)
(4)

is then obtained by an adequate choice m2
0 of m2, in agreement with an assumed

underlying distribution, so that � is determined by rewriting (3) as

J : (z − z)T �−1(z − z) ≤ m2
0. (5)

(For instance, if the points z1, . . . , zK are close to normally distributed one typically

chooses m2
0 = χ2

0.5(2) ≈ 1.39.) By definition, the ellipse

C :
1

2
(z − z)T �−1(z − z) ≤ 1 (6)
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is the covariance ellipse. (We have included a factor 1
2

in the definition of C in anal-

ogy of what is done in quantum mechanics, where C is called the “Wigner ellipse”;

see for instance [17].) We note that C is homothetic to J by a factor of
√

2/m0

with respect to z and that we thus have Area(C) = 2 Area(J )/m2
0. We now make the

crucial assumption that

Area(J ) ≥
1

4
m2

0h

that is, equivalently,

Area(C) ≥
1

2
h. (7)

Here h is a constant > 0 (which could be Planck’s constant in quantum mechanics!).

Since

Area(C) = 2π(det�)1/2 = 2π[�X2�P 2 − Cov(X,P )2]1/2 (8)

condition (7) is strictly equivalent to the Schrödinger–Robertson inequality (1) with

� = h/2π .

This inequality is moreover conserved in time under a Hamiltonian evolution: if it

is true at an initial time, say t = 0, it will be true for all times, past and future (I will

show why it is so in Sect. 3). But what about the case of many degrees of freedom?

Suppose that the system under scrutiny consists of N particles; we must then work in

a 6N dimensional phase space and John–Löwner’s ellipse then becomes an ellipsoid

J in R
6N ; to that ellipsoid one can again associate a statistical covariance matrix �

determined by the shape of J and a covariance ellipsoid C . What condition should

we now impose on C in order to derive the inequalities (2)? A natural guess is that we

should ask that the volume of C should be at least ( 1
2
h)3N ; this guess is in addition

perfectly consistent with the usual procedure in quantum statistical mechanics where

it is customary to coarse-grain phase space in “quantum cells” of volume ∼ h3N .

Unfortunately this idea fails. It turns out that the correct assumption for dealing with

multi-dimensional systems is of a much more subtle nature. It consists in demanding

that the symplectic capacity of the covariance ellipsoid C be at least 1
2
h which we

write symbolically as

c(C) ≥
1

2
h. (9)

I will fully justify this apparently mysterious statement in Sect. 3. The existence of

symplectic capacities follows from a deep result of symplectic topology nicknamed

the “principle of the symplectic camel”, which I review in Sect. 2. That principle was

already advertised by Ian Stewart in Nature [41] in 1987; as Stewart put it “. . . we are

witnessing just the tip of the symplectic iceberg.” Unfortunately, this iceberg seems

not to have received the attention it deserves in the physical literature.

Notation and Terminology

The phase space of a system with n degrees of freedom is R
n × R

n ≡ R
2n; for in-

stance if we are dealing with N point-like particles in 3-dimensional configuration

space we have n = 3N .
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We will write x = (x1, . . . , xn), p = (p1, . . . , pn) and z = (x,p). Whenever ma-

trix calculations are performed, x,p, and z are viewed as column vectors. The matrix

J =
(

0n In

−In 0n

)

is the standard symplectic matrix and σ(z, z′) = (z′)T Jz is the associated symplec-

tic form. A 2n × 2n real matrix S is symplectic if ST JS = SJST = J ; equivalently

σ(Sz,Sz′) = σ(z, z′) for all vectors z and z′. A symplectic matrix has determinant

one. Symplectic matrices form group: the real symplectic group Sp(2n). A transfor-

mation f (x,p) = (x′,p′) of phase space R
2n is said to be canonical if its Jacobian

matrix

Df (x,p) =
∂(x′,p′)

∂(x,p)

calculated at any phase space point (x,p) were f is defined is symplectic.

In this paper h and � = h/2π denote positive constants. We leave it to the Reader

to decide whether h should be identified with Planck’s constant, or not.

2 The Principle of the Symplectic Camel

We will consider a physical system S consisting of N point-like particles moving in

physical 3-dimensional space. The position (resp. momentum) coordinates of the first

particle are denoted by x1, x2, x3 (resp. p1,p2,p3), those of the second particle by

x4, x5, x6 (resp. p4,p5,p6), and so on. We assume that the phase-space evolution of

that system is governed by Hamilton’s equations

dxj

dt
=

∂H

∂pj

(x,p),
dpj

dt
= −

∂H

∂xj

(x,p). (10)

They form a system of 2n = 6N differential equations; they determine a phase space

flow f H
t which consists of canonical transformations (see Goldstein’s book [10]).

2.1 Gromov’s Non-Squeezing Theorem

A Hamiltonian flow f H
t is volume preserving: this is Liouville’s theorem, one of

the best known results from elementary statistical mechanics. It is easy to see this

using the fact that the Jacobian matrix of f H
t is symplectic at each point and thus

has determinant equal to one. Liouville’s theorem is perhaps also one of the most

understated results of classical mechanics, because in addition of being volume-

preserving, Hamiltonian flows have a surprising—I am tempted to say an extraor-

dinary—additional property as soon as the number of degrees of freedom is superior

to one.

Assume that the number N of particles of the system S is very large and that

the particles are very close to each other. We may in this case approximate S with a
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“cloud” of points in phase space R
2n. Suppose that this cloud is, at time t = 0 spher-

ical so it is represented by a phase space ball B(r) with center (a, b) and radius r :

B(r) : |x − a|2 + |p − b|2 ≤ r2. (11)

The orthogonal projection of that ball on any plane of coordinates will always be a

circle with area πr2. Let us watch the motion of this spheric phase-space cloud as

time evolves. It will distort and may take after a while a very different shape, while

keeping constant volume. However—and this is the surprising result—the projec-

tions of that deformed ball on any plane of conjugate coordinates xj ,pj .will never

decrease below its original value πr2! If we had chosen, on the contrary, a plane of

non-conjugate coordinates (such as x1,p2 or x1, x2, for example) then there would

be no obstruction for the projection to become arbitrarily small. The property just de-

scribed is not a physical observation, but a mathematical theorem proved by Mikhail

Gromov [11] in 1985. If we choose r =
√

� then Gromov’s theorem says that the

projection of the ball B(
√

�) on a conjugate plane will always be at least 1
2
h and this

is of course strongly reminiscent of the uncertainty principle of quantum mechanics,

of which it can be viewed as a classical geometrical version!

Gromov’s theorem—which is often called the “symplectic non-squeezing theo-

rem” in the mathematical literature—is indeed an extraordinary result, because it

seems at first sight to conflict with the usual conception of Liouville’s theorem: ac-

cording to conventional wisdom, the ball B(r) can be stretched in all directions by

Hamiltonian flows, and eventually get very thinly spread out over huge regions of

phase space, so that the projections on any plane could a priori become arbitrary

small after some (admittedly, perhaps very long) time t . In fact, one might very well

envisage that the larger the number of degrees of freedom, the more that spreading

will have chances to occur since there are more and more directions in which the ball

is likely to spread! A relevant phenomenon in symplectic geometry is provided by

Katok’s lemma [16]: consider two bounded domains � and �′ in R
2n which are both

diffeomorphic to the ball B(r) and have same volume. Katok proved that for every

ε > 0 there exists a Hamiltonian diffeomorphism f such that Vol(f (�)��′)) < ε

(here � denotes the symmetric difference of two sets). Thus, up to sets of (arbitrar-

ily small) measure ε any kind of spreading is possible; the rigidity effects imposed

by the non-squeezing theorem are about point-wise behavior of sets (or C0 behavior

of functions). This possible spreading phenomenon has led to many philosophical

speculations about the stability of general Hamiltonian systems. For instance, in his

1989 book Roger Penrose [27, p. 174–184] comes to the conclusion that phase space

spreading suggests that “classical mechanics cannot actually be true of our world”

(p. 183, l.–3). He however adds that “quantum effects can prevent this spreading”

(p. 184, l. 9). Penrose’s second observation goes right to the point: while phase space

spreading a priori opens the door to classical chaos, quantum effects have a tendency

to “tame” the behavior of physical systems by blocking and excluding most of the

classically allowed motions. However, Gromov’s no-squeezing theorem shows that

there is a similar taming in Hamiltonian mechanics preventing anarchic and chaotic

spreading of the ball in phase space which would be possible if it were possible to

stretch it inside arbitrarily thin tubes in directions orthogonal to the conjugate planes.
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Now, why do we refer to a symplectic camel in the title of this paper? This is

because one can restate Gromov’s theorem in the following way: there is no way to

deform a phase space ball using canonical transformations in such a way that we can

make it pass through a hole in a plane of conjugate coordinates xj ,pj if the area of

that hole is smaller than that of the cross-section of that ball. Recall that in [35]) it is

stated that

“. . . It is easier for a camel to pass through the eye of a needle than for one who

is rich to enter the kingdom of God. . . ”

The Biblical camel is here the phase space ball and the eye of the needle is the hole in

the xj ,pj plane! For this reason it is usual to call Gromov’s theorem and its variant

just described the principle of the symplectic camel.

The discussion above was of a purely qualitative nature. It turns out that we can

do better, and produce quantitative statements. For this purpose it is very useful to

introduce the topological notion of symplectic capacity.

2.2 The Notion of Symplectic Capacity

Consider an arbitrary region � in phase space R
2n; this region may be large or small,

bounded or unbounded. By definition, the Gromov capacity of � is the (possibly in-

finite) number cmin(�) calculated as follows: assume that there exits no canonical

transformation sending any phase space ball B(r) inside �, no matter how small its

radius r is. We will then say that cmin(�) = 0. Assume next that there are canonical

transformations sending B(r) in � for some r (and hence also for all r ′ < r). The

supremum R of all such radii r is called the symplectic radius of � and we define

cmin(�) = πR2. Thus cmin(�) = πR2 means that one can find canonical transforma-

tions sending B(r) inside �. for all r < R, but that no canonical transformation will

send a ball with radius larger R inside that set. By its very definition we see that the

Gromov capacity is a symplectic invariant, that is

cmin(f (�)) = cmin(�) if f is a canonical transformation; (12)

it is obviously also monotone with respect to inclusion:

cmin(�) ≤ cmin(�
′) if � is a subset of �′ (13)

and 2-homogeneous under phase space dilations:

cmin(λ�) = λ2cmin(�) for any scalar λ (14)

(λ� consists of all points λz such that z is in �). However, the most striking property

of the Gromov capacity is the following: let us denote by Zj (R) the phase-space

cylinder based on the plane of conjugate variables: it consists of all phase space points

whose j -th position and momentum coordinate satisfy x2
j + p2

j ≤ R2. We have

cmin(B(R)) = πR2 = cmin(Zj (R)). (15)
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While the equality cmin(B(R)) = πR2 is immediate by definition of cmin, the equality

cmin(Zj (R)) = πR2 is a reformulation of the non-squeezing theorem, and hence a

very deep property! In fact that theorem says that there is no way we can squeeze a

ball with radius R′ > R inside that cylinder, because if we could then the orthogonal

projection of the squeezed ball would be greater than the cross-section πR2 of the

cylinder, and this would contradict the non-squeezing theorem. We must thus have

cmin(Zj (R)) ≤ πR2. That we actually have equality is immediate, observing that we

can translate the ball B(R) inside any cylinder with same radius, and that phase space

translations are canonical transformations in their own right.

More generally one calls symplectic capacity any function associating to sub-

sets � of phase space a non-negative number c(�), or +∞, and for which the prop-

erties listed in (12), (13), (14), and (15) are verified (see Hofer and Zehnder [14],

Polterovich [28], or Schlenk [36] for the general theory of symplectic capacities;

in [3, 5] I have given a souped-down review of the topic). There exist infinitely many

symplectic capacities, and the Gromov capacity is the smallest of all: cmin(�) ≤ c(�)

for all � and c. Is there a “biggest” symplectic capacity cmax? Yes there is one, and

it is constructed as follows: suppose that no matter how large we choose r there

exists no canonical transformation sending � inside a cylinder Zj (r). We then set

cmax(�) = +∞. Suppose that, on the contrary, there are canonical transformations

sending � inside some cylinder Zj (r) and let R be the infimum of all such r . Then,

by definition, cmax(�) = πR2. It is not difficult, using the non-squeezing theorem, to

show that cmax indeed is a symplectic capacity and that we have

cmin(�) ≤ c(�) ≤ cmax(�) (16)

for every other symplectic capacity c.

Note that by definition cmin(�) and cmax(�) both have the dimension of an area.

The homogeneity property (14) c(λ�) = λ2c(�) satisfied by every symplectic ca-

pacity together with the fact that c(B(R)) = πR2 suggests that symplectic capacities

have something to do with the notion of area. In fact, the following is true: the Gro-

mov capacity cmin(�) of a subset in the phase plane R
2 is the area of � when the

latter is connected, and the maximal capacity cmax(�) is the area when � is simply

connected; it follows from the inequalities (16) that c(�) coincides with the area for

all connected and simply connected domains. (The reader may easily convince him-

self that cmin(�) is not the area when � is disconnected, and that cmax(�) is not the

area when � is, say, an annulus.) There exists one particular example where this re-

lation is quite explicit, albeit in an indirect way: it is provided by the Hofer–Zehnder

capacity cHZ (see [14]). It has the property that whenever � is a bounded convex set

in phase space then

cHZ(�) =
∮

γmin

pdx (17)

where pdx = p1dx1 +·· ·+pndxn and γmin is the shortest Hamiltonian periodic orbit

carried by the boundary of � (it is easy to show that the integral in the right-hand side

of (17) is independent of the choice of the Hamiltonian, see [14]).
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2.3 The Symplectic Capacity of an Ellipsoid

A very nice property is that all symplectic capacities agree on phase space ellipsoids.

Let us show how this capacity can be calculated explicitly. Assume that �ell is an

ellipsoid centered at z = 0; then there exists a positive-definite 2n × 2n matrix M

such that

zT Mz ≤ 1. (18)

Consider now the eigenvalues of the product matrix JM ; they are the same as those

of the antisymmetric matrix M1/2JM1/2 and are hence of the type ±iλ1, . . . ,±iλn

where λj > 0. I claim that we have

c(�ell) = π/λmax (19)

for every symplectic capacity c; here λmax is the largest of all the positive numbers λj

(this formula remains true if �ell is centered at an arbitrary point z since symplectic

capacities are invariant under phase space translations). We first note that in view

of Williamson’s famous diagonalization theorem (see [43]) there exists a symplectic

matrix S such that ST MS is diagonal; more precisely

ST MS =
(

� 0

0 �

)
with � = diag(λ1, . . . , λn). (20)

Since symplectic capacities are invariant by canonical transformations it follows that

c(�ell) = c(S(�ell)) so that it suffices to prove formula (19) when �ell is replaced by

S(�ell). Since phase space translations also are canonical, we may moreover assume

that z = 0 so that we have reduced the proof to the case

�ell :
n∑

j=1

1

R2
j

(x2
j + p2

j ) ≤ 1 (21)

where we have set λj = 1/R2
j . Suppose that there exists a canonical transformation

f sending a ball B(R) inside �ell. Then f (B(R)) is also contained in each cylinder

Zj (R) : x2
j +p2

j ≤ R2 and hence R ≤ Rmax =
√

1/λmax in view of the non-squeezing

theorem. It follows that cmin(�ell) ≤ πR2
max = π/λmax; since on the other hand

B(Rmax) is anyway contained in �ell we must have equality: cmin(�ell) = π/λmax.

A similar argument shows that we also have cmax(�ell) = π/λmax; formula (19) fol-

lows since cmin and cmax are the smallest and largest symplectic capacities.

3 The Uncertainty Principle

3.1 The Minimum Volume Ellipsoid

We now extend (and explain) the minimum area ellipse sketched in the Introduction

to the case where the phase space is R
2n. We perform again simultaneous position
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and momentum measurements on K identical copies of the physical system S and

plot the results of these measurements as a set � = {z1, . . . , zK } of points in the phase

space R
2n. If the number K is very large we get a cloud of points which we iden-

tify with a domain of R
2n; we assume that these points are in generic position, so

that � is not contained in any subspace with dimension less than 2n. We are going

to associate an optimal ellipsoid to � using a method from robust multivariate sta-

tistical analysis, called the minimum volume ellipsoid (MVE) method. That method

is based on the use of the John–Löwner’s ellipsoid of a set of points, and has ap-

plications in various fields such that computational geometry, convex optimization,

image processing, etc. For us its main interest comes from the fact that it is a well-

established tool in multivariate statistics, and whose importance was recognized by

the statistician Peter Rousseeuw in [32] (see the book [33] by Rousseeuw and Leroy

for a detailed exposition; readable descriptions of the method are also given in Lop-

uhäa and Rousseeuw [18] and in Rousseeuw and Zomeren [34]). The MVE is a tool

of choice for the study of data sets that can reasonably be assumed to come from a

normally distributed random variable, but it applies to more general cases as well. The

MVE method is a “high breakdown” estimator; loosely speaking this means that it

can theoretically cope with data sets in which as many as 50% of the observations are

unreliable. This is a decisive superiority of the method compared to, for instance, the

calculation of sample mean and covariance which are not robust estimators, because

only one outlier may cause highly biased estimates!

Geometrically, the MVE method amounts to finding the smallest ellipsoid circum-

scribing a set of points: assume that the retained points in � are labeled z1, . . . , zK ;

the set S = {z1, . . . , zK } determines a convex polyhedron S in R
2n. Let now S̃ be

the convex hull of S : it is the intersection of all convex sets in R
2n which contain

S (alternatively, it consists of all finite linear combinations
∑

j αjzj of points in S

with coefficients αj ≥ 0 summing up to one). A famous theorem in convex geometry

proved by Fritz John in [15] in 1948 guarantees the existence of a unique ellipsoid J

in R
2n containing S̃ and having minimum volume among all other ellipsoids contain-

ing that set; this ellipsoid is precisely the John–Löwner ellipsoid (Ball gives in [1] a

review and some extensions of John’s construction). Practically one proceeds as fol-

lows: letting k be the integer part of 1
2
(K +2n+1) we consider the following convex

optimization problem:

Find a pair (M,z) where M is a real positive-definite 2n × 2n matrix and z

a point in R
2n such that the determinant of M is minimized subject to

#
{
j : (zj − z)T M−1(zj − z) ≤ m2

}
≥ k (22)

(the symbol # stands for “number of elements of”).

One proves that this problem has a unique solution if every subset of � with

k elements is in general position (which we always assume is the case) and that the

center z, which is identified with the mean, does not depend on m2. The John–Löwner

ellipsoid (MVE) J is then unambiguously defined by the condition

(z − z)T M−1(z − z) ≤ m2. (23)
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As in the Introduction we choose an adequate value m2
0 determining the covariance

matrix:

J : (z − z)T �−1(z − z) ≤ m2
0. (24)

For instance if the sample of phase space points zj is normally distributed then a stan-

dard choice would be m2
0 = χ2

0.5(2n) (see the discussion in Lopuhäa and Rousseeuw

[18]). We next associate to J a covariance ellipsoid

C :
1

2
(z − z)T �−1(z − z) ≤ 1. (25)

The ellipsoids J and C are homothetic; in fact

C − z =
√

2

m2
0

(J − z), (26)

where C − z (resp. J − z) is the set of all points z − z when z is in C (resp. in J ). We

see that when the points zj are normally distributed C will be smaller J as soon as

n > 1: we have χ2
0.5(4) ≈ 3.36, χ2

0.5(10) ≈ 9.34, χ2
0.5(30) ≈ 29.34, and χ2

0.5(2n) goes

to infinity with n; the covariance ellipse will be more and more concentrated near the

center of the MVE.

We will write � in the usual block-matrix form

� =
(

�XX �XP

�PX �PP

)
(27)

where the blocks �XX , �XP , �PX , and �PP are n × n matrices, which we find

appropriate to write as

�XX = (Cov(Xj ,Xk))j,k, �PP = (Cov(Pj ,Pk))j,k (28)

and

�XP = (Cov(Xj ,Pk))j,k, �PX = (Cov(Pj ,Pk))j,k . (29)

Since a covariance matrix is symmetric we must have �XX = �T
XX , �PP = �T

PP ,

and �XP = �T
PX .

We assume from now on that:

The covariance matrix � is positive-definite; equivalently all its eigenvalues are

positive numbers.

The covariance matrix just defined corresponds to some (here undefined) phase

space probability density ρ, that is, we have

Cov(Xj ,Xk) =
∫∫

xjxkρ(x,p)dnxdnp

Cov(Xj ,Pk) =
∫∫

xjpkρ(x,p)dnxdnp
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Cov(Pj ,Pk) =
∫∫

pjpkρ(x,p)dnxdnp,

where dnx = dx1 · · · dxn and dnp = dp1 · · · dpn; the integrations are performed

over R
2n. It is customary to write

(�Xj )
2 = Cov(Xj ,Xj ), (�Pj )

2 = Cov(Pj ,Pj ).

In the particular case where the probability law is normally distributed we have

ρ(z) =
(

1

2π

)n

(det�)−1/2 exp

[
−

1

2
(z − z)T �−1(z − z)

]
. (30)

3.2 Derivation of the Uncertainty Principle

Let us now return to the cloud of points � in phase space R
2n. We assume from now

on that the convex hull S̃ of the set S ={z1, . . . , zK } of reliable points satisfies

c0(S̃) ≥
1

4
m2

0h (31)

for some symplectic capacity c0. Since J ⊃ S this implies that the John–Löwner

ellipsoid of S̃ satisfies

c(J ) ≥
1

4
m2

0h (32)

for every symplectic capacity c. In view of the translational invariance of symplectic

capacities and property (14) satisfied by every symplectic capacity, condition (32) is

equivalent to

c(C) ≥
1

2
h (33)

where C is the covariance ellipsoid defined by (26). I make the following claim:

The geometric condition (31), that is c0(S̃) ≥ 1
4
m2

0h implies that the inequal-

ities

(�Xj )
2(�Pj )

2 ≥ Cov(Xj ,Pj )
2 +

1

4
�

2 (34)

hold for all j = 1, . . . , n.

When one identifies h with Planck’s constant, the inequalities (34) are, formally,

the strong quantum uncertainty principle, due to Robertson ([31]) and Schrödinger

([37]); they imply at once the textbook Heisenberg inequalities

�Xj�Pj ≥
1

2
�

if one neglects the covariances Cov(Xj ,Pj ). To prove the claim above it suffices of

course to show that

c(C) ≥
1

2
h =⇒ Ineqs. (34); (35)
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the condition c(C) ≥ 1
2
h thus appears a strong version of the uncertainty principle,

expressed in terms of a topological object.1

The key to the argument is the following algebraic property of the covariance

matrix:

� +
i�

2
J ≥ 0 =⇒ Ineqs. (34) (36)

where ≥ 0 means “is semi-definite positive”. This property, which is implicit in the

papers [39, 40] by Simon et al., was proved by Narcowich in [24, 25] (also see Nar-

cowich and O’Connell [26]). It is easily checked using a characterization of the non-

negativity of � + i�
2

J . The argument goes as follows: we first observe that � + i�
2

J

indeed is Hermitian (and hence has real eigenvalues) since �∗ = � and (iJ )∗ = iJ .

The next step consists in noting that this Hermiticity allows to reformulate the non-

negativity of � + i�
2

J in terms of every submatrix

(
(�Xj )

2 �i,j+n + i
2
�

�i,j+n − i
2
� (�Pj )

2

)

which is non-negative provided � + i�
2

J is, which is equivalent to the inequali-

ties (34).

We also remark that it is easy to show that the condition � + i�
2

J ≥ 0 implies that

� is positive-definite (Lemma 2.3 in Narcowich [25]).

In view of formula (19) for the symplectic capacity of a ellipsoid, we have c(C) =
2πμmax where μmax is the modulus of the largest eigenvalue of the matrix 1

2
J�−1

that is, equivalently, of the matrix 1
2
�−1/2J�−1/2. Let us show that

μmax ≥
1

2
�; (37)

this will prove the implication (35). Using a Williamson diagonalization as in (20)

we may assume that

� =
(

Ŵ 0

0 Ŵ

)
, Ŵ = diag(μ1, . . . ,μn)

(this amounts to replace J by S(J ) for a conveniently chosen symplectic matrix S);

with this assumption we have

1

2
�−1/2J�−1/2 =

1

2

(
0 Ŵ−1

−Ŵ−1 0

)
.

We next observe that the condition � + i�
2

J ≥ 0 is equivalent to

I +
i�

2
�−1/2J�−1/2 ≥ 0

1A caveat: the condition c(C) ≥ 1
2
h is not equivalent to the uncertainty principle; I wish to thank a referee

for having provided me with a counterexample.
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and hence to
(

I i�
2

Ŵ−1

− i�
2

Ŵ−1 I

)
≥ 0.

The characteristic polynomial of this matrix is the product of the polynomials

Pj (t) = t2 − 2t + 1 −
�

2

4
μ−2

j

for j = 1, . . . , n, hence its eigenvalues are non-negative if and only if 1 − �
2

4
μ−2

j ≥ 0

for all j ; this is equivalent to condition (37), and we are done.

I am going to show that the inequalities (34) are conserved in time under linear

Hamiltonian evolution; I will thereafter briefly discuss the difficulties in the general

case.

Assume the Hamiltonian function H is a homogeneous quadratic polynomial in

the position and momentum variables:

H(z) =
∑

j

ajp
2
j + bjx

2
j + 2cjpjxj .

In this case the Hamiltonian flow f H
t consists of linear canonical transformations St

(i.e. symplectic matrices).

Let us show that if we have

(�Xj )
2(�Pj )

2 ≥ Cov(Xj ,Pj )
2 +

1

4
�

2 (38)

at time t = 0, then we will have

(�Xj,t )
2(�Pj,t )

2 ≥ Cov(Xj,t ,Pj,t )
2 +

1

4
�

2 (39)

for all times t , both future and past, where �Xj,t , etc. are defined by the new covari-

ance ellipsoid. To see why it is so, let us return to the initial phase space cloud �.

Recall that we have downweighted outliers , which led us to define the MVE as being

the John–Löwner ellipsoid of the convex hull S̃ of S ; this was achieved by determin-

ing the solution (M,z) of a convex optimization problem: one looks for the positive-

definite matrix M with smallest determinant such that (22) holds. In the present case

the problem is: find Mt with smallest determinant and zt such that

#
{
j : (St (zj ) − zt )

T M−1
t (St (zj ) − z̄t ) ≤ c2

}
≥ k.

Since SH
t is linear this can be rewritten as

#
{
j : [St (zj − (S−1

t zt ))]T M−1
t [St (zj − (St )

−1zt )] ≤ m2
}

≥ k

or, equivalently,

#
{
j : (zj − S−1

t zt )
T [ST

t M−1
t St ](zj − S−1

t zt ] ≤ m2
}

≥ k.
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But this is exactly the initial problem (22) with M replaced by S−1
t Mt (S

−1
t )T and z

by S−1
t zt . Since this solution is unique we must thus have

Mt = StMST
t and zt = Stz.

It follows that we have Jt = St (J ) and also Ct = St (C); the covariance matrix

�t =
(

�XX,t �XP,t

�PX, t �PP,t

)
(40)

at time t is given by the formula �t = St�ST
t , exactly as would be the case in quan-

tum mechanics (see e.g. Littlejohn [17]). To prove that the uncertainty relations (39)

hold is now very easy: in view of the discussion of last subsection we have

�t +
i�

2
J ≥ 0 =⇒ Ineqs. (39) (41)

(cf. implication (36)). Now, � + i�
2

J ≥ 0 (because we are assuming the inequali-

ties (38), hence we also have

�t +
i�

2
J = St

(
�t +

i�

2
J

)
ST

t ≥ 0 (42)

since StJST
t = J (because St is symplectic).

The argument above can be modified without difficulty to the case where the

Hamiltonian is of the slightly more general type

H(z) =
∑

j

ajp
2
j + bjx

2
j + 2cjpjxj + dpj + exj ;

the flow consists in this case of affine symplectic transformations.

Let us now consider the case of general Hamiltonian dynamics, where one has

a phase-space flow f H
t consisting of arbitrary canonical transformations. We can

reformulate the problem as follows: Let Mt and zt be the solution of the problem

#
{
j : (f H

t (zj ) − z̄t )
T M−1

t (f H
t (zj ) − z̄t ) ≤ m2

}
≥ k.

such that Mt has smallest determinant. Defining z by the formula zt = f H
t (z) this is

the same thing as

#
{
j : (f H

t (zj ) − f H
t (z))T M−1

t (f H
t (zj ) − f H

t (z)) ≤ m2
}

≥ k.

In view of Taylor’s formula we have

f H
t (zj ) − f H

t (z) = St (zj , z)(zj − z)

where the matrix

St (zj , z) =
∫ 1

0

Df H
t (szj + (1 − s)z)ds
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is symplectic (because Df H
t (szj + (1 − s)z) is). Assume now that the points zj

are all very close to z; we can then approximate each St (zj , z) by St (z, z) which

is just the Jacobian matrix Df H
t (z) of f H

t calculated at z. If this approximation is

valid, we may proceed as in the linear case, by replacing the covariance matrix �t

by Df H
t (z)�Df H

t (z)T . The limit of validity of this method is that of the so-called

“nearby orbit approximation” to Hamiltonian flows (see Littlejohn [17] for a detailed

discussion of the method; I have given a review of it in [6]). More precisely, one

can show that the method is very accurate (for arbitrary values of �) for short times;

in fact it breaks down as soon for t > tEhr where tEhr is the “Ehrenfest time”, i.e. the

time characterizing the departure of quantum dynamics for observables from classical

dynamics. tEhr depends on the system under consideration (typically tEhr ∼ − log�).

Thus, the uncertainty relations (39) will hold with good accuracy for such times.

3.3 A Possible Extension

The use of the MVE method described above is perfectly legitimate from a “practical”

point of view: first of all it is obtained using robust methods from statistics, and sec-

ondly, we have obtained a classical form of the uncertainty principle which is, as its

quantum version, covariant under linear (or, more generally, affine) symplectic trans-

formations. As discussed above, one can obtain an approximate conservation of this

uncertainty principle under arbitrary (non-linear) Hamiltonian flows. This leads us to

the following question: is there a version of the uncertainty principle which is covari-

ant under arbitrary Hamiltonian flows? In this subsection I suggest one approach that

could lead to such a restatement; it could be of a greater theoretical interest, because it

elaborates on an ideal situation where all the measurements are, a priori, acceptable.

Let us again perform position and momentum measurements on K identical copies

of the physical system S and plot the results of these measurements as a set points

{z1, . . . , zK } in the phase space R
2n. In the limit K → ∞ we get a cloud of points

which we identify with a region � of R
2n. Let now �̃ be the convex hull of � and

denote by J the John–Löwner ellipsoid of �̃: it is the (unique) ellipsoid having

minimum volume among all other ellipsoids containing �̃. Let z be the center of J

and define the matrix � > 0 by

J :
1

2
(z − z)T �−1(z − z) ≤ 1. (43)

Setting again

� =
(

�XX �XP

�PX �PP

)
(44)

we define “covariances” Cov(Xj ,Xk), (�Xj )
2 = Cov(Xj ,Xj ), etc. by the formu-

lae (28) and (29). Assume now that the region � satisfies

c(�) ≥
1

2
h (45)
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for some symplectic capacity c. The inclusions � ⊂ �̃ ⊂ J imply, in view of the

monotonicity property of symplectic capacities, that we have

c(J ) ≥ c(�̃) ≥ c(�) ≥
1

2
h (46)

and hence, by the same argument as above, we will have

(�Xj )
2(�Pj )

2 ≥ Cov(Xj ,Pj )
2 +

1

4
�

2. (47)

It turns out that these conditions are conserved in time under Hamiltonian evolution—

as they would be in the quantum case. Thus, if we have

(�Xj )
2(�Pj )

2 ≥ Cov(Xj ,Pj )
2 +

1

4
�

2 (48)

at time t = 0, then we will have

(�Xj,t )
2(�Pj,t )

2 ≥ Cov(Xj,t ,Pj,t )
2 +

1

4
�

2 (49)

for all times t , both future and past. To see why it is so, let us return to the phase

space cloud �, assuming again that c(�) ≥ 1
2
h. The Hamiltonian flow f H

t will de-

form � and after time t it will have become a new cloud �t = f H
t (�) with same

symplectic capacity (recall that symplectic capacities are invariant under canonical

transformations):

c(�t ) ≥
1

2
h; (50)

it follows that c(�̃t ) ≥ 1
2
h where �̃t is the convex hull of �t , and hence after time t

the John ellipsoid Jt of the convex hull will also satisfy c(Jt ) ≥ 1
2
h. This condition

is equivalent to the inequalities (49) where �Xj,t , etc. are defined in terms of the

covariance matrix

�t =
(

�XX,t �XP,t

�PX, t �PP,t

)
(51)

determined by Jt via the time t version of (43).

A caveat: there is no particular reason to claim that (�Xj )
2, (�Pj )

2, etc. can be

identified, as the notation suggests, with (co-)variances in the usual statistical sense;

however one could perhaps identify these quantities with some new kind of mea-

surement of uncertainty, expressed in terms of the topological notion of symplectic

capacity. This possibility certainly deserves to be studied further.

4 Discussion

4.1 Classical or Quantum? Popper’s Objection

As I said above, one should not be too surprised by the emergence of a mock quantum

mechanical world in Classical Mechanics. It is today reasonably well-known that the
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uncertainty principle does not suffice to characterize a quantum state, except in the

Gaussian case. Assume for instance that ρ̂ is a candidate for being the density matrix

of a Gaussian mixed state, that is, its Wigner distribution function (WDF) is of the

type

ρ(z) =
(

1

2π

)n

(det�)−1/2 exp

(
−

1

2
zT �−1z

)

where � is positive-definite. The operator ρ̂ is then automatically self-adjoint and has

trace one; but to qualify for being a density matrix ρ̂ must in addition be non-negative,

and this property is equivalent to the condition

� +
i�

2
J ≥ 0 (52)

(see e.g. Theorem 2.4 in Narcowich [25]). However, when the WDF is of a gen-

eral type, this condition is necessary, but not sufficient. For instance, Narcowich and

O’Connell [26] give the following example of a self-adjoint operators ρ̂ with trace

one, and whose covariance matrix � satisfies the uncertainty principle (52) but which

nevertheless fails to be positive: choose a function ρ(z) whose symplectic Fourier

transform

ρσ (z) =
1

2π�

∫

R2
e− i

�
σ(z,z′)ρ(z′)dz′

is given by

ρ(z) =
(

1 −
1

2
αx2 −

1

2
βp2

)
e−(α2x4+β2p4) (53)

where α,β > 0 (we assume n = 1). It is easy to verify that the corresponding operator

is of trace class and self-adjoint. Its covariance matrix is

� =
(

α 0

0 β

)

hence the condition � + 1
2
i�J ≥ 0 is equivalent to αβ ≥ �

2/4. However ρ̂ is never

non-negative, because for all choices of α,β one has 〈p4〉ρ̂ = −24α2. In recent work

with Franz Luef [7, 8] I have discussed these facts from a mathematical point of

view; our reflections were inspired by Narcowich’s results (the first of our papers was

intended to be a comment on Man’ko et al. [23]). I also note that Luo discusses in [19]

the variances of mixed states; these variances are hybrids of quantum and classical

uncertainties. Can this be better understood using the approach of the present paper?

One feature of our construction is that the approximation to position/momentum

measurements relies on the use of the John–Löwner ellipsoid, alias MVE. The valid-

ity of this approximation certainly deserves to be discussed more in detail. This might

very well be done using a tool from information theory, the asymptotic equipartition

principle. One of the consequences of that principle is the following2: assume that

2I am indebted to Michael Hall for having drawn my attention to this fact and for having suggested the

following discussion (private communication).
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we are dealing with a swarm of N ≫ 1 particles, and that the measurements of posi-

tions and momenta of these particles are distributed normally, say with a probability

density

ρ(z) =
(

1

2πσ

)2n

exp

(
−

1

2σ 2
|z − z|2

)
.

As shown by Shannon [38] the product distribution

ρK(z1, z2, . . . , zK) = ρ(z1)ρ(z2, ) . . . ρ(zK)

corresponding to measurements performed on large number K of identical copies of

the swarm has almost all of its support concentrated on a small neighborhood of the

2nK-sphere with center z0 and radius R = σ (“Shannon sphere”); it is the “high-

est probability set”, as opposed to the “typical set”, to use the jargon of information

theory. (This kind of result is to be related to a famous theorem of Talagrand [42]

about the concentration of measure, which plays an important role in statistical me-

chanics: see for instance the recent paper [2] by Creaco and Kalogeropoulos, and the

references therein.) Suppose now that the radius of Shannon’s sphere is
√

�; then the

symplectic capacity of the ball bounded by that sphere is π� = 1
2
h. Applying the

principle of the symplectic camel would appear to yield the result that one cannot,

with probability unity, reduce the spread of the marginal distributions on any conju-

gate plane xj ,pj to less than a support area of 1
2
h.

It is perhaps interesting to recall that Karl Popper [29, 30] thought that Heisen-

berg’s uncertainty principle did not apply to individual particles or measurements,

but only to a large number of identically prepared particles, that is to ensembles like

those considered in this paper. Popper might well have been wrong, in the sense that

what really distinguishes quantum from classical is that properties that are classi-

cally true only for ensembles become true also at the individual level in the quantum

regime (also see Kim and Shih [20] for a relevant discussion).

4.2 Other Approaches

Our discussion has been based on the use of a traditional tool from statistical

analysis, the minimum volume ellipsoid, which is particularly efficient when deal-

ing with “contaminated” data. But this is not the only possible approach. For in-

stance, Rousseeuw also considers in the aforementioned [32] (also see Rousseeuw

and Zomeren [34]) a variant of the MVE method, which is called the minimum co-

variance determinant (MCD) estimator, in which one minimizes the covariance ma-

trix over all samples consisting of k = 1
2
[K + 1] + n elements of � = {z1, . . . , zK };

both methods yield generally different results. Which is the best choice? This ques-

tion seems to be at the moment of writing unanswered, even if there seems to be a

consensus among statisticians that MVE is better, especially for computational pur-

poses. A more promising—and epistemologically interesting—approach might be to

use Michael Hall’s geometric approach in [12] to uncertainty, and to reformulate it in

terms of the symplectic camel. In fact, it is plausible that methods and objects from

information theory (Shannon entropy, for instance) might play an essential role. I will

investigate this possibility in a forthcoming paper.
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4.3 A Topological Formulation of the UP?

Perhaps, the most general formulation of the uncertainty of quantum mechanics could

be topological. For instance one could envisage that phase space is coarse-grained,

not by cubic cells with volume h3N as is customary in statistical mechanics, but rather

by arbitrary ellipsoids B with symplectic capacity c(B) = 1
2
h. I have called such cells

“quantum blobs” in [4]; I actually showed in this paper that the consideration of quan-

tum blobs as the finest possible coarse-graining can be applied to all quantum systems

with completely integrable classical counterpart to recover the ground level energy.

My attempts to use these quantum blobs to also recover the excited states have failed

until now. Perhaps some refinement of Gromov’s non-squeezing theorem might be

needed. Possibly, symplectic packing techniques as exposed in Schlenk’s book [36]

could play a crucial role here. Another very appealing possibility would to use tech-

niques from contact geometry, which is intimately related to symplectic geometry.

(Being a little bit formal, contact geometry reduces to R
+-equivariant symplectic

geometry; contact manifolds naturally appear in geometric quantization of symplec-

tic manifolds.) That this approach might be promising is clear from the paper [9] by

Eliashberg et al. where “small ellipsoids” are considered from the present author’s

point of view. I hope to come back to these possibilities in future work.

5 Concluding Remarks

In his recent contribution [13] to the conference Everett at 50 James Hartle observes

that:

“. . . The most striking observable feature of our indeterministic quantum

universe is the wide range of time, place, and scale on which the deterministic

laws of classical physics hold to an excellent approximation.”

(In this context the reader might also want to read Hideo Mabuchi’s popular science

Caltech paper [21].)

So where does the borderline go? In this paper I have tried to show that the uncer-

tainty principle of quantum mechanics is already present, as a watermark, in classical

mechanics, at least for large statistical ensembles. The mathematical facts exposed

in the present paper tend to show—to paraphrase what Basil Hiley wrote in the fore-

word to my book [3]—that it is as if “. . . the uncertainty principle has left a footprint

in classical mechanics. . . ”. They seem in a sense to comfort George Mackey’s belief

[22] that quantum mechanics is a refinement of Hamiltonian mechanics.
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