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Abstract—This paper describes SyMPVL, an al-
gorithm for the computation of multi-port trans-
fer functions of RLC circuits. SyMPVL employs
a J-symmetric Lanczos-type algorithm for multiple
starting vectors to reduce the original circuit matrices
to a pair of banded symmetric matrices. These ma-
trices, which are typically much smaller than the cir-
cuit matrices, determine a reduced-order model of the
original multi-port. The transfer function of the model
represents a matrix-Padé approximation of the multi-
port matrix transfer function. Numerical results for
SyMPVL applied to interconnect simulation problems
are reported.

I. INTRODUCTION

In recent years, reduced-order modeling techniques
based on Padé approximation have been recognized to
be powerful tools for the simulation of large linear or lin-
earized electronic circuits. The first such technique was
asymptotic waveform evaluation (AWE) [1],[2]. AWE
generates a Padé approximation to the circuit’s transfer
function via explicit moment matching, which is an in-
herently numerically unstable procedure, and due to this
instability, it is limited to Padé approximations of low or-
der. The problems of AWE can be remedied by exploiting
the well-known Lanczos-Padé connection [3] that allows
to compute Padé approximations stably via the Lanczos
process [4]. The use of the resulting PVL (Padé Via a
Lanczos) algorithm was advocated in {5}, [6]; see also {7]
for further references.

Both AWE and PVL are techniques for the simulation
of circuits with single inputs and outputs. In [3], we in-
troduced the MPVL (Matrix Padé Via a Lanczos-type
process) algorithm that extends PVL to the general case
of multi-input multi-output circuits. The behavior of such
circuits is characterized by a matrix-valued transfer func-
tion. MPVL generates a reduced-order model, the matrix
transfer function of which represents the matrix-Padé ap-
proximation of the original circuit’s matrix transfer func-
tion. MPVL is a general algorithm, in the sense that it
can stably compute reduced-order models for any linear
or linearized cireuit.

Electronic circuits often contain large linear RLC sub-
networks, especially 1n interconnect simulations. For ex-
ample, such subnetworks may represent interconnect au-
tomatically extracted from layout as large RLC networks,
models of IC packages, or models of wireless propagation
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channels. RLC circuits can be characterized in terms of
square and symmetric matrix transfer functions. Direct
application of the MPVL algorithm to RLC circuits does
not take advantage of this special structure and cannot
guarantee in general the preservation of stability and pas-
sivity of the approximation.

In this paper, we describe SyMPVL, a variant of MPVL
that is tailored to the computation of the symmetric
multi-port transfer function of an RLC circuit. SyMPVL
employs a J-symmetric Lanczos-type algorithm for mul-
tiple starting vectors to reduce the original circuit matri-
ces to a pair of banded symmetric matrices. These ma-
trices, which are typically much smaller than the circuit
matrices, determine a reduced-order model of the original
multi-port. The transfer function of the model represents
a matrix-Padé approximation of the multi-port matrix
transfer function. Numerical results for SyMPVL applied
to interconnect simulation problems are reported.

1. FORMULATION OF CIRCUIT EQUATIONS

In this section, we show how, for RLC circuits, a suit-
able formulation of the circuit equations result in sym-
metric multi-port transfer functions.

The connectivity of a circuit can be captured using a di-
rectional graph. The nodes of the graph correspond to the
nodes of the circuit, and the edges of the graph correspond
to each of the circuit elements. An arbitrary direction is
assigned to graph edges, so one can distinguish between
the source and destination nodes. The adjacency matrix,
A, of the directional graph describes the connectivity of
a circuit. Each row of the matrix corresponds to a graph
edge and, therefore, to a circuit element. Each column of
the matrix corresponds to a graph or circuit node. The
column corresponding to the datum (ground) node of the
circuit is omitted in order to remove redundancy. By con-
vention, a row of the connectivity matrix will contain +1
in the column corresponding to the source node, —1 in
the column corresponding to the destination node, and 0
everywhere else. It is easy to see that Kirchhoff’s laws,
which depend only on connectivity, can be expressed using
the adjacency matrix as follows:

KCL:
KVL:

ATy, =0,

Av, = vy

{1

Here, 1; and v, are the vectors of branch currents and
voltages, respectively, and v, 1is the vector of the non-
datum node voltages.
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We are interested in analyzing RLC circuits, and for
simplicity, we assume that the circuit is excited just by
current sources. In this case, the adjacency matrix and
the branch current and voltage vectors can be partitioned
according to circuit-element types as follows:

A; Vi i
A v 1

—_ g — 3 -
A= A s Vp = 9 , 1 = .g
c Ve 1.
Ay v i

Here, the subscripts i, g, ¢, and [ stand for branches con-
taining current sources, resistors, capacitors, and induc-
tors, respectively.

The set of circuit equations is completed by adding the
so-called branch constitutive relationships (BCR’s), which
describe the physical behavior of the circuit elements. In
the case of RLC circuits, the BCR’s are as follows:

1 = =L(1), ig =G vy, 1.=C -}tvc, vi=L %il. (2)
Here, I,(t) is the vector of current-source values, G and
C are appropriately-sized diagonal matrices whose diago-
nal entries are the conductance and capacitance values of
each element. It is clear that these values are positive for
any physical circuit. The matrix £ is also diagonal in the
absence of inductive coupling. Inductive coupling intro-
duces off-diagonal terms in the inductance matrix, but £
remains symmetric and positive definite.

The modified nodal formulation (MNA) of the circuit
equations is obtained by combining the Kirchhoff equa-
tions (1) with the BCRs (2), and eliminating as many
current unknowns as possible. For the case of RLC cir-
cuits, only inductor currents need to be left as unknowns.
Setting

ATgAa, AT ATCA, o
—— g g ! . e [
G=[Mih A e=er 9

_|V¥n ___A;‘P
)

the resulting MNA equations can be written compactly in
matrix form as follows:

3)

Gx+Cix:BIt(t). (4)
dt

Note that the matrices G and C in (3) are symmetric.

They are however indefinite in general.

We are interested in determining the network func-
tions of the RLC block viewed as a p-terminal compo-
nent. Since we allowed only current sources in our for-
mulation, it is natural to determine the matrix Z(s) of
Z-parameters. By applying the Laplace transform to (4)
and assuming zero initial conditions, we obtain

(G+sC)X = BL(s),

5
V; = BTX. )

Here, X, I,(s), and V; represent the Laplace transforms
of the unknown vector x, the excitation current L;(¢), and

the vector of voltages across the excitation sources, re-
spectively. Eliminating X in (5) gives

V; = [Ai 0] X = Z(s)I,(s),

where Z(s) = BT (G+5sC)™'B. ©

Here, G and C are symmetric N x N matrices, and B is
an N x p matrix. For general RLC circuits, G and C are
indefinite. In the important special cases of RC, RL, and
LC circuits, the formulation can be modified such that G
and C become positive definite.

In the next section, we describe the SyMPVL algorithm
for computing matrix-Padé approximants of the matrix-
valued transfer function Z in (6).

II1. THE SYMPVL ALGORITHM

Note that Z is a rational matrix function whose or-
der 18 N in general, where N is very large. The ba-
sic idea of matrix-Padé approximation [9], [10] is to re-
place Z by a rational matrix function of much lower order
n <€ N such that the Taylor expansions of Z and Zj,
about some expansion point sy € C agree in as many
leading terms as possible; without loss of generality, we
set s = 0. More precisely, a matrix-valued function
Zn : Cr—— (CU{co})P™? is called an nth matriz-Padé
approzimant of Z if Z,, 1s of the form

Zﬂv(s) = prVI; (A” + SB")~1 pn’

where A, and B, are symmetric n x n matrices and p,
is an n X p matrix, and

Z(s) = Zn(s) + (9(3‘1("')) with maximal ¢(n).

In general, we have q(n) > 2|n/p], with ¢(n) > 2|n/p]
if, and only if, so-called deflation occurs due to certain
linear dependencies.

SyMPVL uses a J-symmetric Lanczos-type algorithm
for multiple starting vectors (namely the p columns of
B) to generate a sequence of nth matrix-Padé approxi-
mants Z,, to Z. This algorithm is a special case of the
more general procedure described in [11]. We stress that
Lanczos-type algorithms for multiple starting vectors are
necessarily quite involved for two reasons. First, in the
course of the algorithm, some of the generated vectors can
become linearly dependent and thus need to be deflated.
Second, so-called look-ahead techniques are required to
avold potential breakdowns due to division by quantities
that cannot be excluded to be zero. For simplicity, in this
paper we only state the algorithm without look-ahead.

First, we precompute a factorization of the symmetric
matrix G of the form

G=LJ'LT, (7

where L is a lower triangular matrix or a permutation of
a lower triangular matrix, and J is a very simple matrix
such that multiplications with J are basically free. For
example, J could be a permutation matrix or a diagonal
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matrix with diagonal entries 1. Recall that G is positive
definite for RC, RL, and LC circuits, and in these cases,
we can choose J = Iin (7). Note that linear systems
with coefficient matrices L and LT are “easy” to solve.
Using (7), we rewrite Z from (6) as follows:
Z(s)= (IL'B)" (T+sL'CcL-TJ) ' (L7'B).
The Lanczos-type algorithm is then applied to the ma-
trix A = L™' CL~TJ and the right initial blocks L~! B.
Note that A satisfies ATJ =J A, ie., A is J-symmetric.
The J-symmetric Lanczos-type algorithm generates a
sequence of vectors {v,},>; that are J-orthogonal:

bn
vidv, = {07

After n steps of Algorithm 1 below, the Lanczos vectors
Vi,Vs,...,V, have been constructed. In addition, at the
end of each nth step, there are p. = p.(n) “auxiliary” vec-
tors, V41, Vg2, ..., Vp,, available. These vectors will be
turned into Lanczos vectors or deflated in successive iter-
ations. Here, p. denotes the current block size. Initially,
pe = p, and then within the algorithm p. is reduced by
one every time a deflation occurs.

ifi = n,

ifi #n,

forall i,n=1,2,....

Algorithm 1 (J-symmetric Lanczos-type method with
deflation, but without look-ahead.)

INPUT:
Matrices G = GT = LJI-!LT, C = CT ¢ RV*V;
A block B = [b1 by --- bp] € RNxp,
The deflation tolerance dtol.

OUTPUT:

The p; X p matrix p = [pi’j]lsiﬁpl'ISjSp’ where

p1 = p—(F# of deflations during the first p iterations);
The n x n matrices T, = [ti’j]1Si,an and

A, = diag(é1,62,...,6,), where n is the value of the

iteration counter at termination.

0) For k=1,2,...,p, compute Vi = L™'by by solving
the linear system LV, = by.
Set pc = p. (pc is the current block size.)

Set Ty = 0. (Zy records deflation. Any newly con-
structed v vector must be explicitly J-orthogonalized
against all vectors v with k € Z,.)

For n=1,2,..., do {Build nth Lanczos vector v,.) :

1) (If necessary, deflate ¥,.)
If ||¥n]] > dtol, then continue with step 2).
Otherwise, deflate Vv, by doing the following :

la) If p. = 1, then stop.
vectors.)

1b) If ¢ =n—~p. >0, then set Iy =Z,U{ ¢}, and save

the vector v,.

(There are no more Krylov

le) Fori=mn,...,n+p.—2, set ¥; = V¥;41. (The auxil-
iary vector v, is deflated. The indices of the remain-
ing auxiliary vectors are reduced by one.)

Set p. = po — 1. (The current block size is reduced

by one.)
1d) Repeat all of step 1).
2) (Normalize v,, to obtain v,,.) Set

v”

tn,n-—p,? = ”\A/n_”r_, and V, =

N, —pe

3) (Compute é,.) Set

671 - (J Vn)T V.

If 6, =0, then stop. (The algorithm would require
look-ahead in order to be able to continue.)

4) (Advance the block Krylov subspace and obtain new
vector Vaqp,.)

4a) Obtain v=L"'CL~T (Jvy,) by first solving the lin-
ear system LTt = Jv,, for t and then solving the
Linear system Lv =Ct for v.

4bh) (J-orthogonalize v against previous vectors.)
Set iy = max{1,n — p.} and define the temporary

indez set
IT=A{iv,iv+1,...,n—1}U U{}
€Ly
1<y

ForallieZ (in aeccndzng order), set

n,—- if 1=n—p.,
7 T
(J V, .
otherwise,
=V - l 7 e
Set \AIn+pC = V.

5) (J-orthogonalize the auxiliary vectors against vy,.)
Fori=n—-p.+1,...,n, set

(J Vn)T {'pc-}vi PN .
A f i <0 ori=n,
_ 671
tn,i -
&; ,
tin — otherwise,
R 6’”
Vope+i = Vpoti — Vn tn i

6) (In the initial iterations, set up p.)
If n <p., set

Pni=tni-p forall n—p.+p<i<p.
As it is shown in [10], the quantities p, A,, and T,
generated by n steps of Algorithm 1 define an nth matrix-

Padé approximant Z,, of Z as follows:

- iy —1
Zn-(‘s) = PE (Anl + STH An 1) Pr- pn. = [g] . (8)

Moreover, for the special cases of RC, RL, and LC circuits,
it can be shown [12] that the reduced-order model given
by (8) is stable and passive.
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IV. EXAMPLES

We tested SyMPVL on a variety of interconnect-
simulation problems. Here, we report results for three of
them. The first example represents the approximation of
a 16 x 16 transfer function of an IC package modeled as an
RLC network. Figure 1 shows the transfer characteristic
of one of the pins.

The second example is the circuit resulting from the
PEEC modeling [13] of an electromagnetic problem. The
circuit consists of only inductors, capacitors, and induc-
tive couplings, and it is driven by a finite impedance
source. The LC circuit’s two-port transfer function was
approximated with SyMPVL and the excitation was ap-
plied to the reduced-order model. Figure 2 shows the
response of this circuit, the current flowing through one
of the inductors.

The final example represents the simulation of cross-
talk in a digital circuit. The interconnect is modeled by an
RC network. In this example a 7 x 7 transfer function was
approximated. Figure 3 shows the time-domain response
of an interconnect wire terminal when a signal is switching

Voltage (normalized to 1)

in a

1
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(12]

(13]
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Fig. 3. Cross-talk waveform

neighboring wire.
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