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Abstract-This paper describes SyMPVL, an al- 
gorithm for the computation of multi-port trans- 
fer functions of RLC circuits. SyMPVL employs 
a J-symmetric Lanczos-type algorithm for multiple 
starting vectors to reduce the original circuit matrices 
to a pair of banded symmetric matrices. These nia- 
trices, which are typically much smaller than the cir- 
cuit matrices, determine a reduced-order model of the 
original multi-port. The transfer function of the model 
represents a matrix-Pad6 approximation of the multi- 
port matrix transfer function. Numerical results for 
SyMPVL applied to interconnect simulation problems 
are reported. 

I. INTRODUCTION 

Iii recent years. reduced-order modeling techniques 
Imsed on Pad4 approximation have been recognized t,o 
be powerful t,ools for t,he siiiiula,tioii of large 1inea.r or lin- 
earized electronic circuits. The first such kchnique wa.s 
asymptotic waveform evaluation (AWE) [l], [ a ] .  AWE 
generates a Pad6 approximation to the circuit's transfer 
function via explicit moment matching, which is an in- 
herently numerically unstable procedure, and due to this 
instability, it is limited to Pad6 approximations of low or- 
der. The problems of AWE can be remedied by exploiting 
the well-known Lanczos-Pad6 connection [3] that allows 
to compute Pad& approximations stably via the Lanczos 
process [4]. The use of t,he resulting PVL (Pad4 Via a 
Lanczos) algorithm was advoca.t,ed in [5], [GI; see also [7] 
for further references. 

Both AWE and PVL a.re t,echniques for the simulation 
of circuits with single inputs and outputs. In [8], we in- 
troduced the MPVL (Matrix Pad6 Via. a Lanczos-type 
process) algorithm that extends PVL t80 the general case 
of multi-input multi-output circuits. The behavior of such 
circuits is characterized by a matrix-valued transfer func- 
t8ioii. MPVL generates a reduced-order model, the matrix 
transfer function of which represents the matrix-Pad6 a.p- 
proximation of the original circuit's matrix t,ransfer func- 
tion. MPVL is a general algorithm, in the sense that it. 
can sta.hly coinpute reduced-order models for any linear 
or linearized circuit. 

Electronic circuits often colitmain large linear RLC SUI,- 
networks, especially in interconnect simulations. For es- 
a,mple, such subnetworks may represent interconnect au- 
tomatically extracted from layout as large RLC networks, 
models of IC packages, or models of wireless propagation 

channels. RLC circuits can be characterized in terms of 
square and symmetric matrix transfer functions. Direct 
a.pplication of the MPVL algorithm to RLC circuits does 
not t,a.ke adva.ntage of this specia.1 structure a.nd cannot 
guarantee in general the preserva.tion of sta.bility and pas- 
sivity of t,he approxiinat,ion. 

In this paper, we describe SyMPVL, a va,riant, of MPVL 
t1ia.t is tailored to the computation of the symmetric 
multi-port transfer function of a.n RLC circuit. SyMPVL 
employs a J-symmetric Lanczos-type algorithm for mul- 
tiple starting vectors to reduce the original circuit matri- 
ces to a pair of banded symmetric matrices. These ma- 
trices, which are typically much smaller than the circuit 
matrices, determine a reduced-order model of the original 
multi-port. The tmnsfer function of the model represents 
a matrix-Pad4 a.pproxiinatioii of t,he multi-port matrix 
tra.nsfer funct,ion. Numerical result,s for SyMPVL applied 
t,o int,erconnect simula.tion problems a.re reported. 

11. FORMULATION OF CIRCUIT EQUATIONS 

In this section, we show how, for RLC circuits, a suit- 
able formulation of the circuit equations result in sym- 
metric multi-port transfer functions. 

The connectivity of a circuit can be captured using a di- 
rectional graph. The nodes of the graph correspond to the 
nodes of t8he circuit, and the edges of the graph correspond 
to each of t,he circuit, elements. An arbitrary direction is 
assigned to gra.pli edges, so one can distinguish between 
the source and dest,ina.t,ion nodes. The adja.ceiicy ma.trix, 
A, of t,he directional gra.ph describes the connectivity of 
a circuit. Each row of the nmtrix corresponds t.0 a. graph 
edge and, therefore, to a circuit element. Each column of 
the matrix corresponds to a graph or circuit node. The 
column corresponding to the datum (ground) node of the 
circuit is omitted in order to remove redundancy. By con- 
vention, a row of the connectivity matrix will contain +1 
in the column corresponding to the source node, -1 in 
the column corresponding t,o t,he destination node, and 0 
everywhere else. It, is ea.sy t.0 see that Kirchhoff's laws, 
which depend only on connect,ivity, can be expressed using 
t,lie a.dja.cency ina,trix as follows: 

Here, i h  and vb are the vectors of branch currents and 
voltages, respectively, and v, is the vector of the non- 
datum node voltages. 
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We are interested in analyzing RLC circuits, and for 
simplicity, we assume that the circuit is excited just by 
current sources. In this case, the adjacency matrix and 
the branch current and voltage vectors can be partitioned 
according to circuit-element types as follows: 

Here, the subscripts i, g ,  c, and 1 sta.nd for branches con- 
t,aining current sources, resistors, capacitors, and induc- 
tors, respectively. 

The set of circuit equations is completed by adding the 
so-called branch constitutive relationships (BCR's), which 
describe the physical behavior of the circuit elements. In 
the case of RLC circuits, the BCR's are as follows: 

Here, It@) is t8he vect,or of current#-source values, (i and 
C are appropriately-sized diagonal matrices whose diago- 
nal entries are the conductance and capacitance values of 
each element. It is clear that these values are positive for 
any physical circuit. The matrix C is also diagonal in the 
absence of inductive coupling. Inductive coupling intro- 
duces off-diagonal terms in the inductance matrix, but .C 
remains symmetric and positive definite. 

The modified nodal formulation (MNA) of the circuit 
equations is obtained by combining the Kirchhoff equa- 
tions (1) with the BCRs (2), and eliminating as many 
current unknowns as possible. For the case of RLC cir- 
cuits, only inductor currents need to be left as unknowns. 
Setting 

the resulting MNA equations can be written compactly in 
nmtrix form as follows: 

Note that the matrices G and C in (3)  are symmetric. 
They are however indefinite in general. 

We are interested in determining the network func- 
tions of the RLC block viewed as a yterminal compo- 
nent. Since we allowed only current sources in our for- 
mulation, it is natural to determine the matrix Z(s) of 
Z-parameters. By applying the Laplace transform to (4) 
and assuming zero initial condit,ions, we obtain 

Here, X, Is(.), and Vi represent the Laplace transforms 
of the unknown vector x, tjhe excitation current I t( t) ,  and 
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the vector of voltages across the excitation sources, re- 
spectively. Eliminating X in (5) gives 

Vi = [Ai 03 X = Z(S)I,(S), 
(6) 

where Z(s) = BT (G + s C)-' B. 

Here, G and C are symmetric N x N matrices, and B is 
an N x p matrix. For general RLC circuits, G and C are 
indefinite. In the important special cases of RC, RL, and 
LC circuits, the formulation can be modified such that G 
and C become positive definite. 

In the next section, we describe the SyMPVL algorithm 
for computing matrix-Pad6 approximants of the matrix- 
valued transfer function Z in (6). 

111. THE SYMPVL ALGORITHM 

Note that Z is a rational matrix function whose or- 
der is N in general, where N is very large. The ba- 
sic idea of mat,rix-PadC approximation [9], [lo] is to re- 
place Z by a rational matrix funct.ion of much lower order 
n, << N such that t,lie Ta,ylor expansions of Z and Z, 
about some expansion point SO E C agree in as many 
leading terms as possible; wit,hout loss of generality, we 
set, SO = 0. More precisely, a matrix-valued function 
Z, : C ++ (CU {KI})"~ is called an nth matrix-Pad6 
approxamant of Z if Z, is of the form 

where A, and B, are symmetric n x n matrices and pn 
is an n x p matrix, and 

In general, we have ~ ( 7 2 )  2 2 L n / p ] ,  with q ( n . )  > 2Ln/pJ 
if, a.nd only if, so-called de,f lation occurs due to certain 
linear dependencies. 

SyMPVL uses a J-symmetric Lanczos-type algorithm 
for multiple starting vectors (namely the p columns of 
B) to generate a sequence of nth matrix-Pad6 approxi- 
mants Z, to Z. This algorithm is a special case of the 
more general procedure described in [ 111. We stress that 
Lanczos-type algorithms for multiple starting vectors are 
necessarily quite involved for two reasons. First, in the 
course of the algorithm, some of the generated vectors can 
become linearly dependent and t,lius need to be deflated.  
Second, so-ca.lled look-ah ead techniques are required to 
a.void potential breakdowns due to division by quantities 
that cannot be excluded to be zero. For simplicity, in this 
pa.per we only stat8e the algorithm without look-ahead. 

First, we precompute a fact,orization of the symmetric 
ma.trix G of the form 

G = L J-' LT, (7) 

where L is a lower triangular matrix or a permutation of 
a lower triangular matrix, and J is a very simple matrix 
such that multiplications with J are basically free. For 
exa.mple, J could be a permutation matrix or a diagonal 



matrix with diagonal entries f l .  Recall that G is positive 
definite for RC, RL, and LC circuits, and in these cases, 
we can choose J = I in (7). Note that linear systems 
with coefficient matrices L and LT are "easy" to solve. 
Using (7), we rewrite Z froin (6) a.s follows: 

z ( ~ )  = (J L - I  B ) ~  (I + s ~ - l  c L-T J ) - ~ ( L - ~  B) . 

The Lanczos-type algorithm is t.hen a.pplied to the ma- 
trix A = L-' C L-T J and the right initial blocks L-' B. 
Note that A satisfies AT J = J A ,  i.e., A is J-symmetric. 

The J-symmetric Lanczos-type algorithm generates a 
sequence of vectors {v,},, - 1 t,liat are J-orthogonal: 

After n st,eps of Algorithm 1 below, the Lanczos vectors 
v1 , vg, . . . , v, have been constructed. In addition, at the 
end of each nth step, there are p ,  = p,(n,) "auxiliary" vec- 
tors, +,+I ,  i n + 2 , .  . . , ipc, available. These vectors will be 
turned into Lanczos vectors or deflated in successive iter- 
ations. Here, p ,  denotes the current block size. Initially, 
p ,  = p ,  and then within the algorithm p ,  is reduced by 
one every time a deflation occurs. 

Algorithm 1 (J-symmetric Lanczos-type method with 
deflation, but without look-ahead.) 
INPUT: 

Matrices G = GT = L J - l  LT, C = CT E R N x N ;  
A block B = [bl bg . . .  bP] E RNxp; 
The deflation tolerance d t o l .  

The Pl x P matrix P = [ P i , j l l y p l ,  I < j < p '  where 
pl = p-(# of deflations during the first p iterations); 
The n x n matrices T, = [ t i , j ] 1 5 i , j 5 ,  and 
A, = d i a g ( & , & , .  . . , &) ,  where n is the value of the 
iteration counter at termination. 

OUTPUT: 

For k = 1 , 2 , .  . . , P I  compute 
the lznear system L i k  = bk. 
Set p ,  = p .  ( p ,  is the current block size.) 
Set Z, = 8. (Z, records deflation. Any newly con- 
structed v vector must be explicitly J-orthogonalized 
against all vectors vk with k E Zv.) 
n = 1 , 2 , .  . . , do (Build nth Lanczos vector v, .) : 

(If necessary, deflate in .) 
If 1)3,)( > dtol, then contrnue wzth step 2 ) .  
Otherwase, de f la te  in b y  doang the followzng : 

If p ,  = 1, then stop. (There are no more Krylov 
vectors.) 

If 9 = n - p ,  > 0 ,  then set Z, = Z, U { q5 }, and saiie 
the vector V C .  

For i = n,  . . . , n + p ,  - 2, set i, = $ , + I .  (The auxil- 
iary vector in is deflated. The indices of the remain- 
ing auxiliary vectors are reduced by one.) 

= L-lbk b y  soivzng 

Set p ,  = p ,  - 1. (The current block size is reduced 
by one.) 

Repeat all of step 1). 

(Normalize i,, t,o obtain v7, .) ,Set 

- Vn tn,,-p,,. - llil,& crnd v, = -. 
tn,n - - p c  

(Compute 6, . )  Set 
T 

hn = (J  vi, ) vi2 . 

If 6,, = 0 ,  then stop. (The a.lgorithin would require 
look-ahead in order to he a.ble to continue.) 

(Advance t,he block Iirylov subspa,ce and obta.in new 

Obtain v = L-l  C L-' ( J  v,) byfi,rst soloing the lin- 
ear s:ysteni. L't = J v ,  for t a n d  theii solving the 
h e a r  system L v = C t for v .  

(J-orthogonalize v against previous vectors.) 
Set i, = max{ 1, n - p ,  } cind de,fine the temporary 
andex set 

v&or ilz+ll,. .) 

z = { i V , i ,  + 1 , .  . . ,n, - 1 )  U U { i } .  
i € L  
i< i ,  

For all  i E Z (in ascending order). set 

v = v - vzt,,, , .  

Set in+p, = v.  

(J-orthogonalize the auxiliary vectors against v,, .) 
For i = l ~ - p c + l , , , , , r ~ ,  s e t  

e p c + i  = + p c + i  - v,, tn, i .  

(In the initial iterations, set up p. )  
If n 5 p,, set 

p,,i = tn,i-!, f o r  all 11 - pc + p 5 i 5 p .  

As it is shown in [lo], the quantities p,  A,, and T, 
generated by n st,eps of Algorithm 1 define an nth matrix- 
Pad6 approximant, Z, of Z as  follows: 

Moreover, for the special cases of RC, RL, and LC circuits, 
it ca,n be shown [12] that, the reduced-order model given 
by (8) is stable and passive. 

115 



I 
Il 
q 

Fig. 1. Package: Pin no. 1 external to Pin no. 1 internal 
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Fig. 2.  The PEEC circuit t,ransfer funct,ion 

IV. ESAMPLES 

We tjested SyMPVL on a variety of interconnect- 
simulation problems. Here, we report results for t51iree of 
t,heni. The first example represents the approximation of 
a 16 x 16 transfer function of an IC package modeled a.s a.n 
R.LC network. Figure 1 shows t,he transfer c1ia.racteristic 
of one of the pins. 

The second example is t,he circuit resulting from t8he 
PEEC modeling [13] of an electroirmgnetic problem. The 
circuit, consists of only induct,ors, cqmcitors, aad iiiduc- 
t , iw couplings, and it is driven by a finitme impedance 
source. The LCI circuit’s two-port transfer function wa.s 
a.pproximated with SyMPVL and the exitlation was ap- 
plied to the reduced-order model. Figure 2 shows the 
response of this circuit, the current flowing through one 
of the inductors. 

The final example represents the siiiiulation of cross- 
talk in a digital circuit. The interconnect is modeled by a.n 
RC network. In this example a 7 x 7 t,ransfer function was 
approximated. Figure 3 shows t,he time-doma.in response 
of an interconnect wire terminal when a signal is swit,chiiig 
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