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The Synchronized Short-Time-Fourier-Transform:
Properties and Definitions for Multichannel

Source Separation
Ruairí de Fréin, Student Member, IEEE, and Scott T. Rickard, Senior Member, IEEE

Abstract—This paper proposes the use of a synchronized
linear transform, the synchronized short-time-Fourier-transform
(sSTFT), for time-frequency analysis of anechoic mixtures. We
address the short comings of the commonly used time-frequency
linear transform in multichannel settings, namely the classical
short-time-Fourier-transform (cSTFT). We propose a series of
desirable properties for the linear transform used in a mul-
tichannel source separation scenario: stationary invertibility,
relative delay, relative attenuation, and finally delay invariant
relative windowed-disjoint orthogonality (DIRWDO). Multisensor
source separation techniques which operate in the time-frequency
domain, have an inherent error unless consideration is given to
the multichannel properties proposed in this paper. The sSTFT
preserves these relationships for multichannel data. The crucial
innovation of the sSTFT is to locally synchronize the analysis
to the observations as opposed to a global clock. Improvement
in separation performance can be achieved because assumed
properties of the time-frequency transform are satisfied when
it is appropriately synchronized. Numerical experiments show
the sSTFT improves instantaneous subsample relative parameter
estimation in low noise conditions and achieves good synthesis.

Index Terms— Signal analysis, source separation.

I. INTRODUCTION

T
HE authors of [1] show that partitions of a time-frequency
representation of a mixture of speech signals exist which

can be used to demix mixtures of several speech signals. This
is because speech is sparse in the time-frequency domain. The
degenerate unmixing estimation technique (DUET) algorithm,
proposed in [1], demixes an arbitrary number of sources from
a two channel observation of the mixture using masks obtained
from relative attenuation and delay estimates. However, the au-
thors of [1] report a bias in their parameter estimates. This error is
due to the application of unsynchronized time-frequency trans-
forms on each channel. Previously, the authors of [2] identified
a similar bias in magnitude-squared coherence estimation which
was also due to misalignment of the signals; they suggested a re-
alignment prior to coherence estimation. In this paper, we query
the candidature of the cSTFT as a time-frequency transform for
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generating sparse representations of a general multichannel ane-
choic mixture. We propose a revised set of properties the appro-
priate transform should have. These properties supersede those
proposed in [1]. Our proposed properties have broader scope than
the DUET setting, and may be selectively applied where sim-
ilar assumptions are made to facilitate demixing. As an embod-
iment of such a transform, we introduce the synchronized short-
time-Fourier-transform (sSTFT) which satisfies our properties
and makes performance gains possible in the class of algorithms
of interest. This class of algorithms consists of supervised or un-
supervised multichannel direction-of-arrival (DOA) and source
separation algorithms, with a convolutive mixing model, which
use co-information between channels, for example, [1], [3]–[8].
As an example of co-information, relative delay estimates are
commonly used to determine the underlying sources in an ane-
choic environment.

This paper discusses the attributes of the sSTFT, assuming
that the appropriate synchronization is known a priori. A com-
panion paper [9] deals with the practical implementation of the
sSTFT and has its novelty in that it shows how the synchroniza-
tion parameter may be learned and then used for basis adapta-
tion. Moreover, [9] shows how the sSTFT maybe applied in a
multisource setting and a new algorithm called Iterative DUET
is proposed. Iterative DUET incorporates contextual informa-
tion available via the sSTFT into the algorithm, which facilitates
gains in separation performance. This partitioning of our work
into: 1) the properties of the sSTFT (in this paper) and 2) how to
synchronize the sSTFT, allows for a more focussed discussion
the sSTFT as a general stand-alone contribution.

This paper is organized as follows. In Section II, we review
the properties (p1, p2, p3, and p4) introduced in [1]. Section III
introduces the notation used for fractional sample delay of
discrete signals. Section IV reviews time-frequency analysis
and the role of windows functions. The sSTFT is presented in
Section V. The sSTFT is mathematically defined in Section V-A
and graphically motivated in Section V-B. The short comings
of the cSTFT analysis windows are discussed in Section V-C.
Section V-D, Section V-E and Section V-F illustrate new proper-
ties of the sSTFT which make it appealing for relative attenuation
and delay estimation, and also, the fractional delay problem.
Section VI demonstrates the bin-wise improvement achievable
via linear transform synchronization, and, the suitability of a
range of window functions for use with the sSTFT, specifically,
the effect of subsample delay error. We discuss the structure
of candidate window functions for use with the sSTFT and
conclude with a thematic review of the paper in Section VI-C.

1053-587X/$26.00 © 2010 IEEE
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II. PROPERTIES OF TIME-FREQUENCY LINEAR TRANSFORMS

FOR MULTICHANNEL ANALYSIS

In this section we describe the assumptions DUET makes
about the properties of time-frequency analysis in [1] and how
these assumptions are typical of a whole suite of algorithms.

Given two mixtures, namely and

; where and are the relative
attenuation and delay due to the propagation of the source
to the second sensor and is the number of sources;
the DUET algorithm attempts to recover the various sources

. DUET relies on four assumptions given below with
their accompanying explanations. These assumptions involve
a linear transform on the set of sources , (that is
we assume sources to be square integrable), which we assume
to be a vector space. The linear transform maps

to , where examples of appropriate transforms
will be discussed later. The four assumptions are now rigor-
ously stated as follows:

p1) : is in-
vertible.
p2) for , where is the support of

, i.e., : the
images of different sources under have disjoint supports.
p3) for any

, where is some appropriate
bound.
p4) For every there exist two operators
and such that

As an example, consider, to be the Fourier transform, .
As it is invertible, it clearly satisfies p1. Looking to p2, for
two source signals, and

, p2 is satisfied if the signals are disjoint in frequency, i.e.,
. It is a property of the Fourier transform

that a delay in time is a phase shift in frequency, and thus a
delay by does not change the support of a signal in the fre-
quency domain, and the Fourier transform thus satisfies p3. For
the functions and of p4, DUET uses

which extract the relative attenuation and delay from the mix-
tures for each source, and all four conditions are satisfied.

Of course, if were in practice the Fourier transform,
condition p2 that the sources are disjoint in frequency is quite
restrictive and not likely to be satisfied for many interesting
classes of signals. DUET uses, therefore, the Windowed
Fourier Transform [10], [11] which greatly increases the set of
applicable signals. However, condition p2, due to properties of
time-frequency analysis, cannot be satisfied in a strict sense for
signals such as speech signals. Nevertheless, DUET replaces
the equality in p1–p4 with appropriately defined approximate

equality and the robustness and success of the demixing results
provides evidence that these approximations are valid. The
purpose of this paper is to investigate the following caveat;
mixing parameter estimates in [1] exhibit a bias.

Signals that satisfy p2 using the Windowed Fourier Trans-
form were termed windowed disjoint orthogonal (WDO) sig-
nals by Jourjine et al., in [12], however, WDO time-frequency
representations of speech are typically sparse representations
[13]. Sparsity is commonly assumed in multichannel anechoic
mixing source separation algorithms, thus the scope of appli-
cations for a time-frequency transform that improves the signal
representation (in the spirit of p1–p4) is potentially broad. As
a first example, properties p3 and p4 resonate strongly with the
assumptions made by the generalized cross correlation (GCC)
algorithm where signal dominance in a frequency bin is em-
phasized by an appropriate weighting scheme. Time delay es-
timation via the GCC algorithm can be used as an approach for
source separation or localization, see [14] or the more recent ap-
proach taken by Benesty et al. in [15].

Property p2 is reminiscent of the assumption made by the
class of algorithms which seeks to separate and localize latent
sources by projecting them onto a representative time-fre-
quency signal dictionary, typically in a supervised manner [4],
[16], [17]. Two sources cannot physically inhabit the same
location, and thus while sparsity is the stated assumption,
WDO is implied. Similarly, independent component analysis
(ICA) approaches commonly leverage the parsimonious nature
of speech in time-frequency to perform separation [18], [19].
Moreover, approaches that solve the related instantaneous
mixing model, [20]–[22], leverage properties p1 and p2. The
contribution in [23] defines a well-posed nonnegative matrix
factorization (NMF) as being a member of a separable factorial
articulation family, which implicitly links sparsity and WDO
as being crucial for a unique NMF solution. The approximate
WDO condition [24] is more representative of speech (and
other signals of interest) mixtures than the WDO and, therefore,
will be one of the key assumptions underpinning the results in
this paper, however, the approximate WDO condition is more
demanding than simply requiring that the sources are sparse. In
summary, the WDO measure of the constituents of the mixture
in [1] is a good indicator of the attainable success possible via
DUET demixing, thus, a time-frequency representation that
boosts the measure of WDO of the sources is appealing for
source separation applications.

III. NOTATION AND DEFINITIONS FOR SUBSAMPLE DELAY

Delaying discrete signals by a noninteger number of samples
is a challenging problem in array and multirate signal processing
[25]. Anticipating possible ambiguity in the notation, we use
a signal delay/interpolation problem to define our notation and
our benchmark method. Accurately delaying a signal by a sub-
sample delay in discrete time and in discrete time-frequency is
crucial to the definition of our synchronized linear transform.

A continuous time signal is denoted by
in the discrete time domain where is the sampling period and

. This continuous time signal, delayed by
seconds, is given by . Similarly, the discrete signal,

, can be delayed by an integer number of samples giving
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. When is not necessarily an integer, we use
the notation

(1)

to indicate that the signal is discrete but that the delay in samples
could in fact be noninteger. Explicitly, the sample values of
for noninteger sample delay are given by

(2)

where indicates a Dirac pulse, is delay in seconds and
the indicator function when
and 0 otherwise. Using sinc interpolation, given that the signal
is bandlimited and sampled at a sufficiently high sampling rate,
results in

(3)

when and . This fol-
lows from the shift and convolution properties of the Fourier
transform

(4)
where the rectangular function, when
and 0 when . In practice a finite length approxima-
tion of the sinc function leads to error in the estimate of .

Noninteger sample delay of a bandlimited signal sampled
above the Nyquist rate can also be approximated by multiplying
the discrete Fourier transform of

(5)

where and , by a linear
phase term . This corresponds to a circular shift of the
signal by samples when . Using a functional notation,
we define the zero-padding function

(6)

which appends and zeros to the beginning and end of the
signal, respectively. The inverse-pad function
removes and samples from the beginning and end of the
signal. Zero-padding by , where is the ceiling function;
taking the DFT; multiplying by the linear phase term; taking the
IDFT; and inverse-padding gives the desired result. We define

to be the inverse

DFT. The frequency domain method in (7) is the benchmark
method used for the remainder of this paper.

(7)

The error measured by the Euclidean distance
is considered to be sufficiently small, although it is still greater
than machine error.

IV. THE CLASSICAL SHORT-TIME-FOURIER-TRANSFORM

In this section we outline the principles of time-frequency
analysis and window selection as a background for the sSTFT.
The window most frequently associated with the Gabor trans-
form [26] is the Gaussian bell, . The
Gabor transform of , an inner product of the signal
with weighted exponential basis functions, is

(8)

where and . One
interpretation of (8) is that the lowpass filter (LPF), , is
modulated and shifted in time such that the signal is filtered with
a set of bandpass filters (BPF) yielding time-frequency coeffi-
cients. The inverse Gabor transform of the time-frequency rep-
resentation is defined as

(9)

where the synthesis window . Bastiaans general-
ized the above expressions in [27] via the Zak transform. We de-
fine to be the discrete “Classical” short-time-Fourier-
transform (cSTFT) of

(10)

positioned at sample where is the analysis
window function and is the number of window hop-size sam-
ples, e.g., the rational oversampling factor. The notation
and denotes the reference signal. The discrete-time
representations of and are related by a relative
delay, . In discrete-time-frequency these signals are denoted
by and . [k,m] are the discrete frequency
and time indices, respectively. is the DFT size. The cSTFT is
inverted using the synthesis window and overlap
and add (OLA) resynthesis given .

(11)

Regarding window selection, if both the root mean square
duration and bandwidth of the window , , and
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respectively, are finite then is a time-frequency
window. Time-frequency windows satisfy the property,

, thus, they are localized in both time and
frequency domains. For example, when
and are Gaussian windows in the time and frequency
domain, respectively. For the classic text on analysis windows
see [28] and the subsequent comments in [29]. The set of
discrete analysis functions based on the analysis window is
defined as

(12)

which is a discrete set of signals obtained by shifting and mod-
ulating the elementary analysis window . The locally static
nature of these basis functions is the underlying problem when
they are used for multichannel anechoic observations.

V. THE SSTFT

We define the sSTFT mathematically and then motivate it
graphically. The appealing properties of the sSTFT are defined
in the following subsections; they supersede the properties of
the cSTFT in both accuracy and scope. The term classical STFT
(cSTFT) or unsynchronized STFT refers to the unsynchronized
time-frequency analysis in (10) and the term synchronized
STFT (sSTFT) refers to our synchronized time-frequency
transform.

A. Definition of the sSTFT

Definition 1: The reference analysis and synthesis windows
are nonzero for samples and zero-padded by zeros
and are defined as

(13)

They form a pair of windows of length samples.
Definition 2: Locally translated and dilated versions of these

analysis and synthesis windows are defined as

(14)

Definition 3: For a delay of samples and
, the synchronized STFT of , is

(15)

where the window hop-size or oversampling factor is
samples. By convention . Similar to the cSTFT, the
analysis basis functions are obtained by shifting and modulating
the elementary signal

(16)

However, the structure of the reference analysis window
allows the windowed signal to be shifted by

samples such that the circular shift property
still holds for each local windowed version of without
wrap-around in time. Consequently, , can be synchro-
nized with the delayed source signal using an additional local
synchronization parameter, , so that the same samples of
and are weighted by the same samples of . Thus,
the analysis basis functions have an additional flexibility over
the functions in (12) due to the synchronization parameter

(17)

Definition 4: The inverse synchronized STFT is defined as

(18)

B. Graphical Motivation of the sSTFT

Consider a discrete time source signal which is
delayed by seconds as it propagates to sensor yielding

. Without loss of generality we neglect propagation attenu-
ation effects such that the direct path attenuation is 1.
(or ) and (or ) are the cSTFT (or
sSTFT) of the delayed and reference signals, e.g. and
respectively. When the windows are not synchronized with the
observed signals but with some absolute clock time across the
channels, the estimated relative attenuation and delay between
the channels is typically inaccurate. Fig. 1(a), (d), (g), and (j)
illustrates the inaccuracies of the cSTFT in a multichannel
setting where instantaneous relative parameter information
[Fig. 1(g), (j)] is desired between two windowed observations
[Fig. 1(a), (d)]. In contrast, the windows in Fig. 1(b) and (e) are
locally synchronized to each signal. The relative attenuation
and delay estimates are accurate [Fig. 1(h), (k)]. However, the
window used in Fig. 1(b) and (e) is suitable due to the support
of the signal; it is unreasonable to assume every signal is ze-
ropadded, and thus, for more general signals the synchronized
windows in Fig. 1(b) and (e) are not appropriate.

Definition 5: The term FFT-support describes the
frame/vector of samples which is analyzed. Typically,
this is the set of signal indices .

Definition 6: Window-support describes the samples of the
signal which are not attenuated to zero by the window, for ex-
ample, for the cSTFT

.
Fig. 1(c) and (f) illustrates a practical sSTFT implementa-

tion where the FFT-support is the same as the FFT-support of
the cSTFT. Window dilation and zeropadding facilitate local
synchronization of which extends the applicability of
the sSTFT to multichannel settings without misalignment for
a range interesting signals as the signal-window product can be
circularly shifted without wrap-around in time. Previously the
physical displacement of the sensors combined with the global
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Fig. 1. cSTFT versus sSTFT analysis. � ���, is shown (stems) in (a), (b), (c). � ���, observed at a physically displaced sensor is shown (stems) in (d), (e), (f). A
Hamming window � ��� (solid line) is positioned at the same global position in (a), (d). The Hamming window (solid line) in (b), (e) is synchronized to � ���
and � ��� respectively. (c), (f) show a practical synchronized window for more general signals. In (g), (j) estimation using the cSTFT of the observations in (a), (d)
does not give the correct ��� ��. (h), (k) show the ��� �� estimates using the sSTFT shown in (b), (e). The ideal and the estimated ��� �� match exactly for the
sSTFT in (h), (k), (i), (l). A subset of bins with significant signal power is used to illustrate the estimates. (a) cSTFT analysis (Ref. Sig.). (b) sSTFT analysis (Ref.
Sig.). (c) sSTFT analysis (Ref. Sig.). (d) cSTFT analysis (Del. Sig.). (e) sSTFT analysis (Del. Sig.). (f) sSTFT analysis (Del. Sig.). (g) cSTFT instantaneous Rel.
Atten.. (h) sSTFT instantaneous Rel. Atten.. (i) sSTFT instantaneous Rel. Atten.. (j) cSTFT instantaneous Rel. Del. (k) cSTFT instantaneous Rel. Del. (l) sSTFT
instantaneous Rel. Del.

window placement of the cSTFT conspired to violate the prop-
erties set out by the authors of [1], unless the propagation path or
the signal had special properties, e.g., periodicity or both obser-
vations of the signal had an equal propagation distance, how-
ever, now local STFT synchronization removes this error. In
summary the window-support, the set

, and the FFT-support of the sSTFT,
, are different. Combining the local

synchronization parameter with the zero-padded structure of the
window, , allows the windowed signal to be shifted arbi-
trarily, locally to the reference signal within the FFT-support of
the window up to without wrap-around in time. Con-
sequently, the same portions of the test signal are scaled by the
appropriate samples of the analysis function on all channels and
multichannel time-frequency error is removed. Assuming the
constituent signals of the mixture are WDO—the underpinning
assumption made by [1], [4]–[6], [16]—we can synchronized
the sSTFT for each source in the knowledge that in a subset of
the time-frequency points, , source is dominant, thus, the
synchronized kernel for each time-frequency bin is appropriate
for the dominant source in that set of time-frequency bins.

C. Limitations of Classical Time-Frequency Windows

The applicability of the cSTFT is limited for accurate use in
multichannel applications due to an inherent paradox in classical
time-frequency window construction. Edge effects due to the fi-
nite support of the windowed signal, and the inherent uncertainty
about the data lying outside of the window, are contributing fac-
tors in the relative delay error between the windowed reference
and delayed signal when the cSTFT is used in Fig. 1. This ef-
fect is typically coupled with signal scaling due to window mis-
alignment and bell-shaped structure. The scaling effect adversely
affects relative delay and attenuation unless the signal is a unit
impulse or has similar characteristics. Coupling of the scaling
and edge effects motivates the structure of the sSTFT window.
Fig. 2 illustrates a reference signal in row 1, and a delayed
version of this test signal in row 2, . A Kaiser window is
overlayed on both of these signals in a cSTFT-like manner. The
Kaiser window is tuned so that, first, for the window-supported
set of the signal, the weights are approximately 1, and second,
for the window-supported set of the signal the weights are bell-
shaped. The flat window (Kaiser with ) seems to be ideal as
the signal is periodic for a region and then zero elsewhere, thus,
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Fig. 2. Scaling and edge effect tradeoff. Translatable and dilatable windows
preserve the co-information between two relatively delayed observations. Nei-
ther a flat nor bell-shaped window has the desired properties.

the signal samples are scaled by 1 on both channels (there are
no relative miscaling effects). The disadvantage of this window
is that any change in the characteristics of the signal at the bounds
of the frame can affect the co-information between both obser-
vations of the windowed signal quite dramatically. Undesirable
innovations in the delayed signal are weighted, without preju-
dice, by an equal amount as the desired portion. The bell-shaped
window would appear then to be ideal as it focusses on a narrower
range of samples, and discriminates against the undesirable sam-
ples. Conversely, the bell-shaped window significantly
alters the spectrum of the windowed delayed signal relative to the
reference signal, due to the global positioning of both windows.
Different samples on the second channel are weighted compared
to the first channel.

Inappropriate scaling due to misalignment of the window is
inherently dependent on these edge effects as new information
comes into view as the signal is shifted relative to the reference
signal. Uncoupling these effects necessitates knowledge of the
form of the data appearing outside of the frame. In a multichannel
anechoic setting we can estimate or sometimes assume that prior
knowledge has informed us of the structure of the signal in the
near future, and thus, choose the appropriate window. Taking the
sSTFT of two signals which have a relative delay between them,
we assume we know more than just the statistics of the refer-
ence signal lying within the time frame under observation. Con-
sequently, we dilate the analysis windows and zero-pad them. By
translating the window within an acceptable range we uncouple
the edge and scaling effects. Consequently, the sSTFT now as-
sumes the role of supplying the “prior knowledge” (cf. [9]).

D. Properties of the sSTFT

We now motivate and define the appealing properties of
the sSTFT. An injective mapping to the related properties in
Section II for the Fourier transform is not intended because
windowing issues do not arise there. We define each property
for integer sample delays; for subsample delay the accuracy is
typically sufficiently good so that approximate equality can be
assumed.

Local Stationary Invertibility

for
and and and .

Fig. 3. Local stationary invertibility: the sSTFT using either synchronization
parameter (row 2, � , or row 3, � ) is invertible.

Proposition 1: The start time of the global clock, which
aligns the windows in time, is irrelevant as long as the appropri-
ately positioned synthesis window is used which corresponds
to the translated analysis window.

Graphically, Fig. 3 row 1 shows a random signal, , drawn
from a normal distribution. Row 2 shows a windowed portion of
the signal using the window with , where

is an arbitrary synchronization parameter, and also the train
of window functions positioned at multiples of . The appro-
priate synthesis window for , e.g. is
overlayed over the frame of the illustrated signal portion of in-
terest, . Similarly, row 3 shows a windowed
portion of the same signal but positioned using , e.g.,

. The train of analysis windows positioned at
multiples of is also shown along with the appropriately posi-
tioned synthesis window for , e.g.

. Either synchronization parameter can be used to linearly
transform the data as long as the appropriate synthesis window
is used.

Lemma 1:

(19)
unless, for example, the test signal is periodic and an ap-
propriate and are chosen.

In effect the relative shift of the two window functions causes
the linear transform to consider two different observations of the
same signal. The window-supports for both frames of data are
not the same whereas the FFT-supports are the same.

(20)

For the analysis window is typically asym-
metric ( is the complement of set relative to set ).
Generally, even windows are desirable as they are linear phase
functions in the frequency domain, however, with

is an approximately linear phase window as a subsample
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shift can be used to center this window such that it has a real
spectrum.

Relative Delay

when
and

Proposition 2: Local shifts of a partitioned signal introduce
error to the globally shifted signal unless each frame is invariant
to circular shifting for a given delay, i.e., by invariant we mean
that the circular shift of each frame is a conventional linear shift.
Integer sample signal delay can be implemented on a frame by
frame basis if it is segmented using a sSTFT type segmentation
with the appropriate analysis parameters.

Lemma 2: If the window-support of the analysis windows
used with the sSTFT satisfies the condition

(21)

the windows are not wrapped around in time.
Lemma 3:

(22)

and ,
and not wrapped around in time.

The circular shift operator is defined for

(23)

where is the delayed unit impulse for
, and and are length sequences. The Rel-

ative Delay property allows signal delay to be performed
accurately in the time-frequency domain (even with overlapping
windows) as a local shift of each individual frame of the win-
dowed data followed by reconstruction via the appropriate syn-
thesis windows. Fig. 4(a) shows an sample frame of a win-
dowed signal in row 1 (where ). The signal
is not wrapped around in time (22) when it is shifted in time
using the circular shift operator (23) if the delay is less than

. In Fig. 4(a) row 2 is linearly shifted by 150
samples relative to . A suitable synthesis window

can be used to resynthesize the signal if it is synchro-
nized with the analysis window [Fig. 4(a) row 3] and
consequently generate the appropriate contribution towards the
delayed signal .

In comparison, each frame of the observed data taken by the
cSTFT is not guaranteed to satisfy (22) as is not zero-
padded.

(24)

If the frame of data in Fig. 4(b) was part of a longer signal and
each frame of data was locally delayed similar to Fig. 4(a), and

Fig. 4. The whole signal can be analyzed, delayed locally in time-frequency
and then resynthesized frame-by-frame: In (a) � ��� is windowed with � ���
(row 1 stems) and circularly shifted (23) by 150 samples (without time
wrap-around), � ���� ��� (row 2 stems). � ���� ��� is resynthesized with
� ���, (row 3 full-line). Other windowed segments of the signal (row 1, 2)
give the context of the locally delayed signal portion. (b), row 1 shows � ��� (2
delta pulses) and � ���. When � ���� ��� is circularly shifted, � ��� causes
distortion when the whole signal is resynthesized using OLA. (a) Relative
delay: sSTFT. (b) Relative delay: cSTFT.

then combined using OLA, the wrap-around in time in each
frame would cause significant distortion to the resynthesized
signal.

E. Window Dependence for Fractional Delay

Property becomes a window dependent approximation
for fractional or subsample delay, however, the performance of
the sSTFT for the sequence of operations; analysis and then
resynthesis—for subsample delay—is sufficiently good for win-
dows of practical interest.

Proposition 3: Delaying the signal in the time-frequency
domain using property is exact for integer sample delay,

, and an approximation for subsample delay .
Let the reference signal be an infinitely long sinc function,

. The analysis window, , is samples
long and an sample FFT is used. We approximate the infin-
itely long sinc with an -sample sinc where , ideally

. We delay the sinc exactly by a subsample number of
samples using its closed form . We window

by taking a truncated windowed portion of length
samples, positioned at in discrete time. This forms the

left-hand side (LHS) of (25) and is the ideal way to analyze the
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delayed signal, with respect to the sSTFT analysis paradigm. Al-
ternatively, the right-hand side (RHS) of (25) is another way of
computing the frequency domain representation of this fraction-
ally delayed windowed signal segment. The reference signal is
windowed and then delayed on the RHS. The inequality in (25)
explains the error inherent in subsample sSTFT processing.

(25)

for . The sSTFT assumes that the LHS of (25) is
equivalent to the RHS of (25). For the more general case of the
signal , we write (26).

Lemma 4: The discrete sSTFT is inaccurate for fractional
delay because, for finite length sinc filters

(26)

Conversely, for integer sample shifts, , (25) re-
duces to a delayed delta pulse times a delayed window yielding
equality in this relationship

(27)

is a unit impulse delayed by samples. , and
are length signals. In summary, the cSTFT suffers

from misalignment error which increases as integer sample
delay gets larger, whereas the sSTFT is correct for integer
sample delay and inaccurate for subsample delay.

In Fig. 5(a) we highlight the inaccuracy in (26) by using a
rectangular window. The rectangular window does not taper
the signal thus the effect of subsample delay on the circular
shift assumption of the sSTFT is emphasized. The rectangular
window suffers from severe Gibbs effect and high side lobes.
A tapered window reduces these side lobe levels but spreads
the main lobe width, and thus, decreases the resolution. Firstly,
signal delay using the expression
is illustrated with squares. The signal is an element-wise non-
negative signal drawn from a rectified Gaussian distribution (il-
lustration convenience). There is uncertainty as to the structure
of the signal in the near future and hence appropriate synchro-
nization is critically important. Secondly, signal delay using the
method is illustrated using circles. Finally,
the original windowed signal, , is illustrated using
dot-stems. The discrepancy between each of the implementa-
tions can be improved via tapered windows.

Fig. 5. Comparing fractional delay of a windowed signal: A rectified
Gaussian distributed signal � ��� and rectangular window � ��� (���
samples long and zero-padded either-side by ���) is used. Dot-stems denote
� ���� ���. Estimates using the LHS (squares) and RHS (circles) of (26)
for a 1.75 sample delay are shown, e.g., ������ ���� �������� ���� �� and
������ ���� ���� ��. Smooth windows reduce the difference. The SNR
between the LHS and RHS of (28) demonstrates a dependence on the window
for a sinc signal in Fig. 5(b). Kaiser 1 (1 denotes curvature) is best; the
sinc window is the worst. (a) sSTFT error for fractional delays. (b) sSTFT
dependence on the window.

F. Limitations of Synchronized Time-Frequency Windows

The error in the approximation in (28), measured by the SNR
between the LHS and RHS, is illustrated for a range of window
functions (flat to bell-shaped to pulse-like) for subsample and
integer sample delays in Fig. 5(b).

(28)

A sinc function is used as an analysis window function as
an example of inappropriate window dilation. Naturally, the SNR
deteriorates the fastest for the sinc window for subsample delay.
The approximately flat Kaiser window, for , and the Rect-
angular window give the best performance for subsample delay
for this particular signal. The more bell-shaped the window be-
comes, e.g., the Hamming, Kaiser with and Gaussian
window, the worse the approximation becomes for subsample
delay. Fig. 5(b) gives an intuition of the effect of 1) truncation
before or truncation after delaying the signal and 2) weighted
truncation before or after delaying the signal. For this particular
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signal, truncation without weighting is best. For subsample delay
the sSTFT is window and signal dependent. Integer delay ef-
fectively gives equality in (28), up to machine error. Subsample
delay gives a slightly poorer approximation. The performance
using the cSTFT is not plotted as its deterioration as a function
of delay would necessitate a significantly larger dynamic range
in SNR in Fig. 5(b). The variation in performance supports the
hypothesis that for subsample shifts the sSTFT is window de-
pendent. Although the subsample performance is a function of
both the window and the signal, the dynamic range of the SNR
is small for reasonable window functions, e.g., bell-shaped win-
dows. Note, the Gaussian window performs the worst for sub-
sample delay. We will book-end this discussion which began in
Section V-C, with a complementary discussion in Section VI-C.
To conclude, signal delay in the time-frequency domain is exact
for integer sample delay. For subsample delay, the approxima-
tion is sufficiently good for signals of practical interest, due to
the mitigation of a suitable taper.

Relative Attenuation

for
and .

Proposition 4: The sSTFT preserves the relative attenuation
between the received signals, and , at two spatially
displaced sensors, up to a relative delay of samples, when

.
Property requires that the relative delay property is

satisfied. Given that the window-support of the time-frequency
transform is not wrapped around with relative delay, as spec-
ified by Lemma 2, (27) shows that delaying a signal by an in-
teger number of samples, by first windowing it and subsequently
delaying the window-signal product, is equivalent to delaying
the window and delaying the signal separately and then taking
the product. If these two paradigms lead to the same signal,
then the magnitude of the signals delivered by both methods are
equivalent. The magnitude is not necessarily preserved when the
cSTFT is applied as the window scales different parts of the de-
layed signal.

In the case of subsample delay we propose

for where is a small error which is a
function of the signal, the window and the delay.

Taking the difference between the absolute value of the DFT of
both sides of (26) gives an expression for the error in the rela-
tive scaling between both observations of the signal due to sub-
sample delay. Empirical trials are undertaken in [30] to deter-
mine the best window one should use for speech. Furthermore,
Section VI-B shows that the window that best minimizes some
function of the error in is not necessarily the same window
that minimizes the corresponding error for relative delay.

WDO is a crucial assumption in multichannel anechoic
mixing source separation algorithms, however, the cSTFT
reduces the measure of WDO of two sources observed at
different physical locations. The authors of [1] do not measure
and compare the quality of the WDO approximation on both
channels, as a function of relative delay. A first empirical
evaluation of this distortion in the special case of the DUET al-
gorithm is demonstrated in [30] for speech where this property

is a necessity for good separation performance and empirical
evaluation is more meaningful.

Delay Invariant Relative WDO

for where is the support
of , i.e.

, moreover, and
.

Proposition 5: The images of different sources (from the
class of signals of interest) under the synchronized time-fre-
quency transform, sSTFT, have disjoint support.

Although the WDO property assumed by DUET is only ap-
proximately true for real signals, such as speech, it is typically
better realized in the synchronized time-frequency domain
when the analysis is synchronized to the sources. The redefini-
tion of WDO (p2) as DIRWDO accounts for the relative delay
between the channels. The sSTFT window removes relative
window misalignment effects from the images of the signals
whereas the cSTFT introduces new components to the signal
observed at some displaced sensor relative to the reference
and may increase the likelihood of erroneous time-frequency
bins being activated, and worse, overlap. As DUET uses mul-
tiple channels to obtain the masks , the WDO assumption
should acknowledge this multichannel dependence. DIRWDO
naturally extends p2 to the multichannel case and is more
suited to multichannel scenarios. Consequently, the relation-
ship typically deteriorates as a function of relative
delay when the cSTFT is used. The superscript on the mask

indicates the set of time-frequency bins where the source
is dominant. The source is delayed by seconds

relative to the same source observed at another physical
location. The mask is associated with and should be
the same set of time-frequency bins. For notational complete-
ness,
denotes the set of time-frequency bins which comprise the
mask for the source delayed by using the cSTFT linear
transform. In summary, DIRWDO is an approximation
for both the cSTFT and sSTFT when . Nevertheless,
the sSTFT gives better approximation accuracy outside of this
range whereas the cSTFT deteriorates badly as a function of
relative delay. DIRWDO is better realized when the data is lin-
early transformed using the sSTFT because the mask for signal
separation is obtained using the same portion of the signal
from multichannel scenarios. Moreover, DIRWDO specifies
that the linear transform used should allow either observation
to be used to demix the sources; choosing the inappropriate
cSTFT transformed channel may reduce the level of separation
possible.

Returning to the theme of the relationship between the sparse
constraint and the WDO constraint, we infer from that using
the appropriate sSTFT on each channel will also preserve the
signal sparsity across the channels. Consider the scenario of a
signal which comprises of a pure tone, observed on multiple
spatially displaced sensors. An interfering, yet disjoint signal
consists of a more broadband signal. If the windowing is glob-
ally positioned, e.g., in a cSTFT fashion, smearing could reduce
the level of the disjoint support of the two signals at the different
sensors. The appropriate synchronization preserves the joint or
relative sparsity across the observations in this scenario.
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Fig. 6. Improvements in instantaneous parameter estimation via time-frequency synchronization vs. signal delay. (a) % bins the sSTFT improves Rel. Parameter
Est. (b) Mean improvement.

VI. WINDOW COMPARISON

We demonstrate the effect of linear transform synchroniza-
tion by comparing bin-wise parameter estimation for the sSTFT
and cSTFT. We then show that for subsample delay the sSTFT
exhibits dependence on the window function used.

A. Better Bin-Wise Parameter Estimation via the sSTFT

We demonstrate the percentage of time-frequency bins that
give improved instantaneous relative parameter estimates when

the sSTFT is used. Speech from the TIMIT database, sampled
at 16 kHz and analyzed with the cSTFT and sSTFT with a
Hamming window of length samples, is observed at
two sensors. Additive white Gaussian noise is mixed on each
channel consecutively with SNRs of { , 100, 50, 40, 30, 20,
10} dB. The target source is consecutively relatively delayed in
steps from 0.01-to-3 samples. Prior synchronization knowledge
is assumed for the sSTFT. Instantaneous relative attenuation and
delay estimation is performed in each time-frequency bin for
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the cSTFT and sSTFT. Fig. 6(a) demonstrates the percentage of
bins the sSTFT gives better parameter estimates than the cSTFT.
Because phase-wrap-around bins are discarded, the percentage
increases for the estimated relative delay as the true delay in-
creases. The percentage is greater than 50% for all noise levels.
Even though we use rudimentary estimators—instantaneous es-
timates are sensitive to noise—that do not exploit speech source
dominance in a few of the time-frequency bins, nor denoising,
the sSTFT improves parameter estimation. Moreover, Fig. 6(b)
illustrates the mean improvement achieved by the sSTFT in
comparison with the cSTFT estimates. This improvement, de-
fined as the mean of the difference between the absolute error
for both classical and synchronized estimators increases as a
function of relative integer delay for all SNR levels (but de-
grades slightly for subsample delay). In short, the sSTFT im-
proves the instantaneous relative parameter estimates which can
then be used in weighted estimators which are more robust to
noise. Noise is ubiquitous in real applications, however, similar
to source separation, leveraging the sparsity of speech, particu-
larly its dominance in the formant frequencies could yield fur-
ther improvement.

B. Illustrating sSTFT Subsample Delay Window Dependence

Due to the inaccuracy of the sSTFT assumption

when , we illustrate the dependence of the sSTFT
on the curvature of the window for subsample delay. We em-
pirically investigate properties and and determine the
window that yields the smallest estimation error from a small
set of candidate windows. The degree to which improvement in
subsample parameter estimation is possible based on window
choice is an open problem, however. We use two observations
of a white Gaussian noise (WGN) signal measured at spatially
displaced sensors so that all frequency bins contribute equally
to the estimate. The signal is 4096 samples long, and experi-
ences consecutive intersensor delays. We analyze both observa-
tions using the appropriately synchronized sSTFT, with an FFT
of 4096 bins, and analysis window of length 4096 sam-
ples. We vary the Kaiser window curvature used with (14) to
construct . We also vary the relative delay for a given
curvature. We perform 100 Monte Carlo experiments for each

and average the results.
On average, for a WGN fractionally delayed signal, relative

attenuation and relative delay are best estimated using a slightly
curved window in Fig. 7. Fig. 7(a) and (b) shows that the best
on average approximation of the relative attenuation and delay
is given when . The variance is lowest for both estimates
for . The metric of comparison for each set is the
mean instantaneous relative attenuation and relative delay over
each frame. The ideal relative attenuation and delay are 1 and
0.6 samples, respectively.

In Fig. 7(c) and (d) we demonstrate that performance deteri-
orates for a given curvature as a function of relative delay. For
the particular cases of relative delay of 0.2 and 0.5 samples, the

Fig. 7. (a) and (b): Mean error and variance ������ � ���� of the relative at-
tenuation, ������, and delay, ������, estimates versus window curvature ���
given the true parameters (�� � � � � ��� �	�� samples). The dynamic range
of the error for a good (in the mean � � 	 is best) and bad �� � 
�� window
curvature is small. (c) and (d): Estimated mean error in ������ and the dif-
ference between the ������ and � versus signal delay � . The best window
for ������ and ������ for �� � � � � ����	
� and �� � � � � ����		� is
different. � � 	 is best for ������ and � � 
� is best for ������. (a) Rel.
Atten. versus window curvature �. (b) Rel. Del. versus window curvature �. (c)
Rel. Atten. versus delay for � � 	 and � � 
�. (d) Rel. Del. versus Delay for
� � 	 and � � 
�.

window curvature giving the least instantaneous relative atten-
uation error is whereas the window curvature giving the
least instantaneous relative delay estimation is . In sum-
mary, the accuracy of subsample relative parameter estimates is
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dependent on the structure of the signal, the relative delay and
the curvature of the window. The variance of the instantaneous
estimates gives an indication of the improvement possible al-
though this improvement is small compared to the that gained
by synchronizing the linear transform. Nevertheless, the devia-
tion from the true value is apparent for both relative attenuation
and relative delay estimation for fractional delay.

C. Discussion: Translatable and Dilatable Windows

Regarding window selection for the sSTFT, we propose
real even, element-wise nonnegative, even length windows
constructed using (14) in this paper. The DFT of an even length
window has a real spectrum times
a linear phase term. A half sample shift as well as a
sample shift is needed to center the window on zero due to
the definition of the window indices, e.g., .
Defining the analysis window using (13) means there is a dis-
continuity when the window transitions from the window-sup-
port region to the zero-padding on either side at indices

. We have considered analysis windows
of the form that smoothly capture the
spirit of the (14) but without discontinuities. A suitable choice
of the parameters and translates and dilates the window so
that it approximates and . The resultant function
goes to a small value in the appropriate region and goes to
zero in the limit. For example, a Gaussian window maybe pa-
rameterized so that its structure is similar to generated
using a Hamming window (13). However, there is an inherent
tradeoff between the linear phase criterion and the Gibbs
effect due to discontinuities. Translated and dilated Gaussian
windows are no longer even and symmetric due to truncation.
Moreover, the ratio of the reference and delayed window is
typically numerically unstable as the Fourier transform of the
Gaussian’s standard deviation is inversely proportional to the
standard deviation in the time domain.

Given prior knowledge of the true relative delay, one might
consider what the effect of upsampling the test signal in the ex-
periments above would be, such that fractional delay becomes
integer delay before performing parameter estimation. This
would remove the subsample dependence described above.
We have evaluated the mean processing error introduced by
interpolation and concluded that the error—coloring of the
signal—introduced by interpolation is large irrespective of the
delay [30]. Thus, for the WGN signal above we rely on the raw
data as interpolation preprocessing degrades the signal.

Regarding phase-wrap-around and the applicability of the
sSTFT, the maximum relative delay in [1] is samples.
In practice separation is successful for . However,
tiled DUET [31] is robust for large relative delays
samples. As the focus of this paper is the introduction of the
sSTFT and not specific source separation algorithms our exper-
iments consider instantaneous relative delays which are
sample. Naturally, the larger the permissable relative delay
without phase-wrap-around, the greater the potential benefits
of time-frequency synchronization [4], [16], [17].

In summary, time-frequency domain multichannel anechoic
mixing algorithms, typically rely on the existence of an invert-
ible transform which transforms the signals into a domain where

they are sparse. Assumptions pertaining to the mixing parame-
ters are typically not satisfied when the cSTFT is used. Implicit
in all four of the properties proposed in [1] is the notion that a
global shift (or delay) and attenuation of one source signal ob-
served at a sensor relative to that same signal observed at
another sensor, , can be estimated from windowed segments
of both observations. In this paper we explain that an error is
introduced to the attenuation and delay between multichannel
observations unless a synchronized linear transform is used to
transform the signal. A general framework for blind sSTFT syn-
chronization is proposed in [9] which makes this result appli-
cable to related array processing techniques, for example, [3],
[5], and [7].

VII. CONCLUSION

In this paper we identified the source of the estimation error in
the original DUET paper [1]. This error was due to a misynchro-
nization of the time-frequency analysis and as a result we pro-
posed a new approach that synchronized the transform locally to
the signal and not to a global clock, namely the sSTFT. We then
introduced a series of properties that this transform has which
we believe would be of interest to a wider audience in sparse and
multichannel signal processing. We evaluated its application in
the case of subsample delays and we concluded that depending
on the level of accuracy required when the delay was subsample,
that approximate equality could be assumed in the properties de-
pending on the window used. We demonstrated that the sSTFT
improves relative parameter estimation in many of the time-fre-
quency bins. What was not discussed in this paper was how one
would practically synchronize the window to the signal. This is
the main topic of a companion paper [9] where we demonstrate
that it is possible to learn the synchronization blindly and we
propose a new variant of the DUET algorithm which offers the
potential for improvement in the estimation step.
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