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Abstract. In this paper we investigate the semigroup structure of the syn-
tactic monoid Syn(C+) of C+, the semigroup generated by a maximal prefix
code C for which C+ is a single class of the syntactic congruence. In partic-
ular we prove that for such a prefix code C, either Syn(C+) is a group or it
is isomorphic to a special type of submonoid of G× T (R) where G is a group
and T (R) is the full transformation semigroup on a set R with more than
one element. From this description we conclude that Syn(C+) has a kernel J
which is a right group. We further investigate separately the case when J is a
right zero semigroup and the case when J is a group.

1. Introduction and background

Prefix codes probably represent the class of relatively general codes which have
been studied most and whose structure is best understood. In spite of this, there
are many questions about them whose answer would further illuminate their nature
but which are not available. One of these would be the structure of their syntactic
monoids about which not much is known. One way to circumvent this lacuna is
to study the semigroup C+ generated by a prefix code and attempt to determine
the make-up of its syntactic monoid. Even this is not special enough to arrive at a
syntactic monoid whose structure can be well understood. We thus specialize C to
be a maximal prefix code and (must) additionally assume that C+ is a class of its
syntactic congruence.

Section 2 contains a minimum of needed notation and terminology. The proof of
the main result of this paper comprises most of section 3. This theorem provides two
semigroup-theoretical descriptions of the syntactic monoid of C+, the semigroup
generated by a maximal prefix code C for which C+ is a class of its syntactic
congruence. One of these descriptions indicates that Syn(C+) has kernel J which
is a right group. The case when J is a right zero semigroup is handled in section 4
and when J is a group in section 5. These cases represent specializations of the main
theorem in section 3. The only result in section 6 represents a kind of generalization
of the main theorem in which the syntactic monoid also has a zero.
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2. Notation and terminology

For the semigroup part, we follow [Cl] and [Pe] and for the language part [Be] as
far as notation and terminology are concerned. For the convenience of the reader
we review the following.

Let X be a nonempty set (alphabet) and L ⊆ X∗. The syntactic congruence
of L is denoted by PL, the syntactic monoid X∗

/
PL by Syn(L). The semigroup

generated by L is denoted by L+, the monoid generated by L by L∗. The residue
and the right residue of L are the sets

W (L) = {w ∈ X∗|X∗wX∗ ∩ L = ∅},
Wr(L) = {w ∈ X∗|wX∗ ∩ L = ∅},

respectively. Further, L is a prefix code if L ⊆ X+, L 6= ∅, and if u, uv ∈ L and
v ∈ X∗ imply that v = 1, the identity of X∗; maximality of L is meant under
inclusion. Finally, L is reflective if u, v ∈ X∗ and uv ∈ L imply vu ∈ L.

The set of all transformations on X written and composed as right operators is
denoted by T(X). The set of all constant functions in T(X) is denoted by T0(X)
while the identity mapping on X is denoted by ι. If x ∈ X , then 〈x〉 denotes the
constant function on X whose value is x.

The identity of the monoid M which appears throughout this paper is denoted
by 1; the identity of the group G which occurs equally often by f . The cardinality
of a set A is denoted by |A|.

Let S be a semigroup and e an idempotent of S. Then e is said to be right dense
if e is contained in every right ideal of S and and it is said to be right adherent if,
for all x ∈ S, ex = e implies x ∈ {1, e}. The left-right duals of these concepts are
defined in an obvious manner.

Let G be a group, R be a set and λ0 ∈ R. Let M be a submonoid of G× T(R)
satisfying the following conditions.

(i) M contains G× T0(R).
(ii) M \ {(1, ι)} is a subsemigroup.
(iii) If µ, ν ∈ R are such that for all (g, ϕ) ∈ M, µϕ = λ0 ⇐⇒ νϕ = λ0, then

µ = ν.
(iv) If (f, ϕ) ∈M and λ0ϕ = λ0, then either ϕ = ι or ϕ = 〈λ0〉.

Call such an S a special submonoid of G×T(R). If G is trivial, we consider S as
a submonoid of T(R). In the above notation, the identities of M and G×T(R) are
both equal to (f, ι) since the identity of M acts as such on all ofG×T (R). Note that
M is a dense extension of the right group G× T0(R) (cf. [Pe, Definition III.5.4]).

3. The main theorem

The principal result of this paper is preceded by an auxiliary statement of general
interest.

Lemma 3.1. Let M be a monoid such that M \ {1} is a semigroup containing a
disjunctive, right dense, right adherent idempotent e. Let X be an alphabet and
ϕ : X∗ →M an epimorphism with 1ϕ−1 = {1}. Then S = eϕ−1 is a subsemigroup
of X+ generated by a maximal prefix code, S is a PS-class and Syn(S) ∼= M .

Proof. Since 1ϕ = {1} and e is an idempotent, we see that S is a subsemigroup
of X+. Now let Sw ∩ S 6= ∅ for some w ∈ X∗. Then e(wϕ) = e and so by right
adherence of e we have wϕ ∈ {1, e}, whence w ∈ S1 since 1ϕ−1 = {1}. By [Be,
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Chapter I, Proposition 2.5], S is generated by a prefix code C, say. Maximality of C
is an easy consequence of the right density of e and [Be, Chapter II, Theorem 3.3].

Since S is the coarsest congruence saturating S, it follows that S is a PS-class.
By a well-known result, disjunctivity of e gives Syn(S) ∼= M .

We are now ready for our main result.

Theorem 3.2. The following statements concerning a monoid M are equivalent.

(i) M ∼= Syn(C+) for some maximal prefix code C over a nonempty alphabet X
such that C+ is a PC+-class.

(ii) M \{1} is a subsemigroup of M containing an idempotent e which is disjunc-
tive, right dense and right adherent in M .

(iii) M is either a group with an identity adjoined or is isomorphic to a special
submonoid of G× T(R) for some group G and set R with |R| > 1.

Proof. (i) implies (ii). For T ⊆ X∗, denote the set of PC+-classes with representa-
tives from T by T . Assume w ∈ 1. Then for c ∈ C+, we have cw ∈ C+, whence
w ∈ C∗ by [Be, Chapter 1, Proposition 2.5] since C is a prefix code. Clearly w /∈ C+

since 1 /∈ C+ and so w = 1, proving that 1 = {1} and, consequently, that M \ {1}
is a subsemigroup of M .

Since C is a maximal prefix code, C+ intersects every right ideal of X∗ nonvoidly
[Be, Chapter II, Theorem 3.3]. Setting e = C+, this translates into e belonging to
every right ideal of M . Therefore e, which is clearly an idempotent, is right dense
in M . Moreover, e is disjunctive by a well-known result.

Finally, ex = e implies C+w ∩C+ 6= ∅ where w = x. Since C is a prefix code, it
follows that x ∈ {1, e}, proving that e is right adherent in M .

(ii) implies (iii). Let J = eM . Since e is right dense, J is contained in all right
ideals of M and is the unique minimal right ideal of M . In view of [Cl, Vol II, p.
12], J is a two-sided ideal of M and thus the kernel of M . By the dual version of [Cl,
Lemma 2.32] without zero, J is right simple and since it contains the idempotent e,
by [Cl, Theorem 1.27] it is a right group. It follows that J is isomorphic to G×R
where G is a group and R is a right zero semigroup. We consider two cases.

Case 1. J is a group. Let S = M \ {1} so that S is an extension of J . Let ρ
be a congruence on S whose restriction to J is the equality relation. Assume that
e ρ x for some x ∈ S. Then e ρ ex where ex ∈ J and thus e = ex. Now the right
adherence of e yields that x ∈ {1, e}. Since 1 /∈ S, we must have x = e. Therefore
{e} is a ρ-class. We can now extend ρ to M by letting{1} constitute a ρ-class.
Then we have a congruence on M having {e} as a class which by disjunctiveness
of e implies that ρ is the equality relation. We have proved that S is a dense
extension of J . But J has an identity and thus no proper dense extension; see [Pe,
Sections III.4 and III.5]. It follows that S = J so that M is a group with an identity
adjoined.

Case 2. J is not a group. Let ρ be a congruence on M whose restriction to J is
the identity relation. Assume that xρ e. Then ex ρ e with ex ∈ J so that ex = e.
By right adherence of e, we get x ∈ {1, e}. Suppose that x = 1. Then 1 ρ e and for
any y ∈ J we obtain y ρ ye whence y = ye. Thus e is a right identity of J , which
is a right group, whence J is a group, contrary to the hypothesis. It follows that
x = e and therefore {e} is a ρ-class. By disjunctiveness of e, we conclude that ρ is
the equality relation. Therefore M is a dense extension of J .
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By [Pe, Corollary III.5.5] M is isomorphic to a subsemigroup of the translational
hull Ω(J) of J containing the inner part Π(J). We have mentioned above that
J ∼= G×R. According to [Pe, Corollary V.3.12] Ω(G×R) ∼= G× T(R) and in this
isomorphism Π(G × R) ∼= G × T0(R). Therefore M is isomorphic to a submonoid
T of G × T(R) which contains G × T0(R). The identity of T acts as the identity
for elements of G × T0(R) which easily implies that it equals (f, ι) where f is the
identity of G and ι is the identity mapping on R. It follows that T \ {(f, ι)} is a
subsemigroup of T .

Since e ∈ E(J), its image in T is of the form a = (f, 〈λ0〉) for some λ0 ∈ R. Let
µ, ν ∈ R be such that

µϕ = λ0 ⇐⇒ νϕ = λ0 ((g, ϕ) ∈ T ).(1)

We shall show that (f, 〈µ〉)Pa (f, 〈ν〉). Indeed, let (g, ϕ) ∈ T . Suppose that
(g, ϕ)(f, 〈µ〉) = (f, 〈λ0〉). Then g = f and µ = λ0. Since (f, ι) ∈ T , we may put ι
in (1), thereby obtaining that µ = λ0 implies ν = λ0. It follows that (g, ϕ)(f, 〈ν〉) =
(f, 〈λ0〉). Assume next that (f, 〈µ〉)(g, ϕ) = (f, 〈λ0〉). Then g = f and µϕ = λ0

where (f, ϕ) ∈ T . Now (1) gives that νϕ = λ0 whence (f, 〈ν〉)(g, ϕ) = (f, 〈λ0〉).
Finally also let (h, ψ) ∈ T and suppose that (g, ϕ)(f, 〈µ〉)(h, ψ) = (f, 〈λ0〉). Then
gh = f and µψ = λ0. This together with (h, ψ) ∈ T by (1) yields νψ = λ0 whence
(g, ϕ)(f, 〈ν〉)(h, ψ) = (f, 〈λ0〉). By symmetry, we deduce that (f, 〈µ〉)Pa (f, 〈ν〉).
But a is disjunctive in T whence µ = ν.

Finally let (f, ϕ) ∈ T be such that λ0ϕ = λ0. Then (f, 〈λ0〉)(f, ϕ) = (f, 〈λ0〉) and
since a is right adherent in T , we get (f, ϕ) ∈ {(f, ι), (f, 〈λ0〉)} whence ϕ ∈ {ι, 〈λ0〉}.

We have verified items (i)–(iv) of the construction which shows that T is a special
submonoid of G× T(R).

(iii) implies (ii). If M is a group with an identity adjoined, then it trivially
satisfies all the requisite conditions. Hence letM be a special submonoid ofG×T(R)
where G is a group and λ0 ∈ R has the required properties. We retain the notation
introduced above, in particular e = (f, 〈λ0〉).

In view of the discussion in [Ho, Section III.4] the congruence Pe |G×T0(R) has
the property

(g, 〈µ〉)Pe(h, 〈ν〉)⇐⇒ gh−1 ∈ N, 〈µ〉π 〈ν〉(2)

for some normal subgroup N of G and a partition π of T0(R). Since {e} is a Pe-
class, it follows immediately that |N | = 1 and that {〈λ0〉} is a π-class. Therefore
(2) implies that g = h.

Now let (g, 〈µ〉)Pe(h, 〈ν〉). Then g = h and for any (t, ϕ) ∈M , we have

(g, 〈µ〉)(t, ϕ) = (f, 〈λ0〉)⇐⇒ (g, 〈ν〉)(t, ϕ) = (f, 〈λ0〉).

This is equivalent to (1) which gives µ = ν. We have proved that Pe |G×T0(R) is the
equality relation and since M is a dense extension of G× T0(R), it follows that Pe
is the equality relation. Therefore e is disjunctive in M .

We show next that e is right dense. Let I be a right ideal of M and let a ∈ I.
Then ae ∈ J = G × T0(R) since J is an ideal of M . In the right group J there
exists x such that aex = e. Therefore e ∈ aM ⊆ I and thus e is right dense in M .

Let (g, ϕ) ∈M be such that (f, 〈λ0〉)(g, ϕ) = (f, 〈λ0〉). Then g = f and λ0ϕ = λ0

which by hypothesis implies that ϕ ∈ {ι, 〈λ0〉} whence (g, ϕ) ∈ {(f, ι), (f, 〈λ0〉)}.
Therefore e = (f, 〈λ0〉) is right adherent in M .
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(ii) implies (i). Let X be an alphabet in one-one correspondence with a gener-
ating set of M \{1} and let ϕ : X∗ →M be the unique epimorphism which extends
this one-one correspondence. By Lemma 3.1, S = eϕ−1 is generated by a maximal
prefix code, S is a PS-class and Syn(S) ∼= M .

We give two examples, one of a maximal prefix code C such that C+ is a PC+-
class and the other of a maximal prefix code D such that D+ is not a PD+-class.

Example 3.3. Let X = {a, b} and T = X2. Then T ∗a2 is generated by a maximal
prefix code C and C+ is a PC+-class. A simple calculation shows that Syn(C+) has
a right group ideal isomorphic to Z2×R3 where Z2 is the group of integers mod 2
and R3 is a 3-element right zero semigroup. In addition to the identity, Syn(C+)
has another element outside the right group ideal whose square is in the ideal.

With the same alphabet X , the maximal prefix code D = {a, ba, b2} is such that
D+ is not a PD+-class.

4. The case of a combinatorial kernel

In view of Theorem 3.2, this is the case when the right group ideal is a right zero
semigroup. We start with some preparation.

Lemma 4.1. Let C be a prefix code over a nonempty alphabet X. If C+ is either
a left ideal of X∗ or is reflective, then C+ is a PC+-class.

Proof. Let u, v, xuy ∈ C+ where x, y ∈ X∗.
Suppose first that C+ is a left ideal of X∗. Then xu ∈ C+ which together with

(xu)y ∈ C+ implies that y ∈ C∗ since C∗ is right unitary in X∗ by ([Be, Chapter
I, Proposition 2.5]). But then xvy ∈ C+ since C+ is a left ideal.

Assume next that C+ is reflexive. Then uyx ∈ C+ and thus yx ∈ C∗ since C∗ is
right unitary in X∗ by ([Be, Chapter I, Proposition 2.5]). Hence vyx ∈ C+ whence
xvy ∈ C+ again by reflectivity.

Lemma 4.2. Let C be a prefix code over a nonempty set X such that C+ is a left
ideal of X∗. Then C is a semaphore code and thus a maximal prefix code.

Proof. Let x ∈ X∗ and c ∈ C. Then xc ∈ C+ since C+ is a left ideal of X∗ and
thus xc = c1c2 · · · cn for some c1, c2, . . . , cn ∈ C. Hence xc ∈ c1X∗ ⊆ C+X∗ which
implies that X∗C+ ⊆ CX∗. Thus by ([Be, Chapter II, Proposition 5.2]) C is a
semaphore code and by ([Be, Chapter II, Proposition 5.1]) it is a maximal prefix
code.

We can now prove the desired result.

Theorem 4.3. The following statements concerning a monoid M are equivalent.

(i) M ∼= Syn(C+) for some prefix code C over a nonempty alphabet X such that
C+ is a left ideal of X∗.

(ii) M \ {1} is a subsemigroup of M which contains an idempotent e which is
disjunctive, right dense, right adherent, and a right zero of M .

(iii) M is either a 2-element chain or is isomorphic to a special submonoid of T(R)
for some R with |R| > 1.

Proof. We apply Theorem 3.2 and only compare the additional conditions. Assume
that (i) holds. By Lemma 4.1, C+ is a PC+-class and by Lemma 4.2, C is a maximal
prefix code. Moreover, e is a left ideal of M = Syn(C+) and thus Me = e. This
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translates in X∗ as: the PC+-saturation of X∗C+ equals C+. Hence X∗C+ ⊆ C+

and C+ is a left ideal of X∗. Therefore (ii) is valid. Suppose (ii) holds. Then
e = (f, 〈λ0〉) is a right zero of J which is a right group, so J must be a right
zero semigroup. In particular, if J is a group, M is a 2-element chain. Therefore
(iii) is valid. Suppose (iii) holds. If M is a 2-element chain, then C = X satisfies
the conditions in (i). Otherwise, the code C constructed in Lemma 3.1 has the
additional property that C+ is a left ideal of X∗ since e is a left ideal (being a right
zero) of M .

5. The case of group kernel

In light of Theorem 3.2, this is the case when the right group ideal is actually a
group.

Theorem 5.1. The following statements concerning a monoid M are equivalent.

(i) M ∼= Syn(C+) for some maximal prefix (respectively, suffix) code over a
nonempty alphabet X such that C+ is reflective.

(ii) M \ {1} is a subsemigroup of M which contains an idempotent e which is
disjunctive, left and right dense, and left and right adherent.

(iii) M is a group with an identity adjoined.

Moreover, in part (ii), any one of the last four conditions may be omitted.

Proof. (i) implies (ii). By Lemma 4.1, C+ is a PC+-class. By Theorem 3.2, we know
that M \{1} is a subsemigroup of M which contains an idempotent e, corresponding
to C+, which is disjunctive, right dense and right adherent. If L is a left ideal of
M and a ∈ L, then by right density of e, there exists x ∈M such that ax = e and
since C+ is reflective, it follows that xa = e and thus e ∈ L. Therefore e is also
left dense in M . If xe = e, then similarly ex = e which by right adherence gives
x ∈ {e, 1}, proving the left adherence of e.

Since part (ii) is left-right symmetric, we may assume C suffix to obtain the
same conclusion as above.

(ii) implies (iii). We assume first that e is right adherent and left and right dense.
By Theorem 3.2, M satisfies part (iii) of that theorem. In any case, M has a kernel
J which is a right group, say J = G×R. We have that e = (f, λ) ∈ J is left dense
in M . For any µ ∈ R, we get e ∈ M(f, µ) whence (f, λ) = (f, λ)(f, µ) = (f, µ)
and λ = µ. Therefore |R| = 1 and J is a group. Therefore the first alternative in
Theorem 3.2(iii) obtains.

We now suppose that e is left and right adherent and right dense. With the
same setting as above, we have that e = (f, λ) is also left adherent. If µ ∈ R, then
(f, µ)(f, λ) = (f, λ) so that µ = λ. Again|R| = 1 and we reach the same conclusion
as above.

By the left-right duality, the hypotheses on e—(1) left adherent, left and right
dense, (2) left and right adherent, left dense—lead to the same conclusion.

(iii) implies (i). By Lemma 3.1, there exists a maximal prefix code C with C+

a PC+-class such that Syn(C+) ∼= M . Now Syn(C+) \ {1} is a group and C+ its

identity. Thus for all x, y ∈ X∗ we have xy = C+ if and only if yx = C+ whence
xy ∈ C+ if and only if yx ∈ C+. Therefore C+ is reflective.

The last assertion of the theorem was proved in “(ii) implies (iii)” above.

Corollary 5.2. In Theorem 5.1 we obtain equivalent statements by adding to (i)
the hypothesis that C be thin and to (ii) and (iii) that M be periodic.
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Proof. This follows easily from Theorem 5.1 and [Be, Chapter III, Proposition
2.2].

6. The case of a monoid with zero

This is essentially an extension of the main theorem to the case of a monoid with
zero.

Theorem 6.1. The following statements concerning a monoid M with zero are
equivalent.

(i) M ∼= Syn(C+) where C is a prefix code over a nonempty alphabet X such that
C+ is a PC+-class and W (C+) = Wr(C

+) 6= ∅.
(ii) M \ {1} is a subsemigroup of M and M \ {0, 1} contains an idempotent e

which is disjunctive, right adherent and is contained in every nonzero right
ideal of M .

(iii) M \ {0} is a monoid satisfying the conditions in Theorem 3.2.

Proof. (i) implies (ii). Since W (C+) 6= ∅, it follows that M is a monoid with 0. By

a well known result, e = C+ is a disjunctive idempotent which is clearly neither
0 nor 1. Right adherence of e is an immediate consequence of C+ being a right
unitary subsemigroup of X∗. Finally,, if I is a nonzero ideal of M and w ∈ I \ {0},
then wX∗ ∩ C+ 6= ∅ since W (C+) = Wr(C

+). Thus there exists u ∈ X∗ such that
wu ∈ C+, whence wu = e ∈ I.

(ii) implies (iii). Let g ∈ E(M) be such that e ≥ g > 0. Then gM is a right
ideal of M and thus e ∈ gM whence e = ge. But g ≤ e, so g = ge whence e = g.
Therefore e is primitive.

Now eM is contained in all nonzero right ideals and thus is the unique 0-minimal
right ideal and a two sided ideal; see [Cl, Lemma 2.32]. Therefore J = eM is the
0-minimal ideal of M contained in all nonzero ideals, and is thus 0-simple. It
contains a primitive idempotent, namely e, and is thus completely 0-simple by the
Rees theorem. On the other hand, J is a 0-minimal right ideal of M so must be a
right group with zero.

Now let a, b ∈ M \ {0}. By disjunctiveness of e, there exist x, y ∈ M such that
e = xay. Hence e = (ex)ay where (ex)a is a nonzero element of J . Letting u = ex
we get ua ∈ J \ {0} and similarly there exists v ∈ M such that bv ∈ J \ {0}. But
J \ {0} is a right group so that (ua)(bv) ∈ J \ {0}. Therefore ab 6= 0 and M \ {0}
is a subsemigroup of M .

It remains to show that the monoid M \ {0} has the properties in Theorem 3.2.
Let ρ be a congruence on M \ {0} having {e} as a class. We can extend ρ to a
congruence λ on M by letting {e} be a λ-class. Then λ is a congruence on M
having {e} as a class and thus λ = ε. But then also ρ = ε, which verifies that e is
disjunctive in M \ {0}.

Trivially e is right adherent in M \ {0}. Now J is a 0-minimal ideal of M
contained in all nonzero ideals of M and is a right group with zero. Hence J \ {0}
is a minimal ideal of M \{0} and since it is right simple, J \{0} must be a minimal
right ideal of M \ {0} contained in all right ideals of M \ {0}. Since e ∈ J \ {0}, it
is right dense in M .

(iii) implies (ii). To see that e is disjunctive in M , let ρ be a congruence on M
having {e} as a class and let λ = ρ|M\{0}. Then λ is a congruence on M \ {0}
having {e} as a class so that λ is the equality relation. Suppose 0 ρ a with a 6= 0.
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Now let x be an element of the unique minimal right ideal J of M \ {0}. Then
xa ∈ J and 0 ρ xa. Since J is a right group,we obtain that 0 ρ y for every y ∈ J .
But {e} is a λ-class and λ is the equality relation which forces J = {e}. But then
M \{0} = {e, 1} and M = {0, e, 1}. In such M clearly {e} is disjunctive. Otherwise
0 is not ρ-related to any nonzero element which implies that ρ = ε. In either case,
e is disjunctive in M . Trivially e is right adherent in M .

Furthermore, J = eM is a 0-minimal right ideal of M since e is disjunctive. Let
R be a nonzero right ideal of M . Then by 0-minimality of J , we have either J ⊆ R
or J ∩ R = {0}. In the second case, let a ∈ R, a 6= 0. Then ea 6= 0, since e is not
a zero divisor, and ea ∈ J . Hence eaM ⊆ J so by 0-minimality of J , eaM = eM
so that e = eau for some u ∈ M . By right adherence od e, au = e. But au ∈ R,
whence e ∈ R, contradicting J ∩ R = {0}. Therefore e is contained in all nonzero
right ideals of M .

(ii) implies (i). Let X be an alphabet in one-one correspondence with a gen-
erating set of M \ {1} and let ϕ : X∗ → M be the unique homomorphism ex-
tending this correspondence. Set S = eϕ−1. Right adherence of e implies that
S is a right unitary subsemigroup of X∗ and so is generated by a prefix code C.
Moreover, since e 6= 1, we have S = C+ ⊂ X+ and disjunctiveness of e yields
Syn(C+) ∼= M . Now 0ϕ−1 is an ideal of M and 0ϕ−1 ∩ S = ∅ since e 6= 0, whence
0ϕ−1 ⊂ W (S). Clearly W (S) ⊂ Wr(S). Suppose wϕ 6= 0 for some w ∈ X∗. Then
(wϕ)(uϕ) = e for some u ∈ X∗ since e belongs to every nonzero right ideal of M .
Hence wu ∈ S and so wX∗ ∩ S 6= ∅. Contrapositively we have Wr(S) ⊆ 0ϕ−1

whence 0ϕ−1 = W (S) = Wr(S) 6= 0.

In order to deduce the form of a prefix code satisfying the conditions in Theo-
rem 6.1, we first prove an auxiliary result. If S is a semigroup with zero, we say
that 0 is isolated if S \ {0} is a subsemigroup of S. If L is a language over an
alphabet X , we denote by α(L) the set of all letters in X occurring in words of L.

Lemma 6.2. Let L 6= {1} be a nonempty nondense language contained in X∗.
Then Syn(L) is a monoid with isolated zero if and only if L is dense in [α(L)]∗.

Proof. Necessity. By hypothesis, X+ 6= W (L) 6= ∅. Letting Z denote the set of
words in W (L) that are minimal with respect to the infix order, we have W (L) =
X∗ZX∗. If w = uv for some w ∈ Z and u, v ∈ X∗, then uv = 0 in Syn(L) and
so, by hypothesis, u = 0 or v = 0. Therefore either u ∈ W (L) or v ∈ W (L) and
thus, by minimality of w with respect to the infix order, either u = 1 or v = 1.
Hence Z ⊆ X . Setting Y = X \ Z we have Y 6= ∅ since W (L) 6= X+. Moreover,
α(L) = Y . If for some w ∈ X∗ we have Y ∗wY ∗ ∩ L = ∅, then w ∈ W (L) and so
w /∈ Y ∗, proving that L is dense in Y ∗.

Sufficiency. Let α(L) = Y and assume uv = 0 in Syn(L). Then uv ∈W (L) and
since L is dense in Y ∗, it follows that uv /∈ Y ∗. Hence either u or v has a letter in
X \ Y . Therefore either u ∈W (L) or v ∈W (L), that is, either u = 0 or v = 0.

We can now prove the promised consequence of Theorem 6.1.

Corollary 6.3. Let C be a prefix code over a nonempty alphabet X such that C+

is a PC+-class. Then W (C+) = Wr(C
+) 6= ∅ if and only if α(C) 6= X and C is a

maximal prefix code over Y = α(C).

Proof. Necessity. By Theorem 6.1, Syn(C+)has an isolated zero and so by Lemma
6.2, C+ is dense in Y ∗ and Y 6= X . Let w ∈ Y ∗ and suppose wY ∗ ∩C+ = ∅. Then
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wX∗ ∩ C+ = ∅, whence w ∈ Wr(C
+). Since Wr(C

+) = W (C+), it follows that
X∗wX∗ ∩C+ = ∅ and so Y ∗wY ∗ ∩C+ = ∅, contradicting the density of C+ in Y ∗.
Therefore C+ is right dense in Y ∗ and so C is a maximal prefix code over Y by
[Be, Chapter I, Proposition 2.5].

Sufficiency. Assume C is a maximal prefix code over Y . Since Y 6= X , we
have W (C+) 6= ∅. Let w /∈ W (C+). Then X∗wX∗ ∩ C+ 6= ∅ and so w ∈ Y ∗.
Hence wY ∗ ∩ C+ 6= ∅ since C is a maximal prefix code over Y [Be, Chapter I,
Proposition 2.5]. Therefore wX∗ ∩ C+ 6= ∅, proving that Wr(C

+) ⊆ W (C+). But
W (C+) ⊆Wr(C

+), whence W (C+) = Wr(C
+) 6= ∅.
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