
Cent rum
voor

Wiskunde
en

lnformatica. ·
Centre for Mathematics and Computer $cience

J. Hearing, P.R.H. Hendriks, P. Klint, J. Rekers

The syntax definition formalism SOF
-reference manual-

Computer Science/Department of Software Technology Report CS-R8926 June

1989

Centrum voor Wiskunde en lnformatica
Centr8 for Mathematics and Computer Science

J. Heering, P.R.H. Hendriks, P. Klint, J. Rekers

The syntax definition formalism SDF

-reference manual-

Computer Science I Department of Software Technology Report CS-R8926 June

• "'" . - " ~ -=---- -_ -

The Centre for Mathematics and Computer Science is a research institute of the Stichting

Mathematisch Centrum, which was founded on February 11 , 1946, as a nonprofit institution aim

ing at the promotion of mathematics, computer science. and their applications. It is sponsored by

the Dutch Government through the Netherlands Organization for the Advancement of Pure

Research (Z.W.0 .).

Copyright ; ~ Stichting Mathematisch Centrum, Amsterdam

The Syntax Definition Formalism SDF

-Reference Manual-

J. Heering

Department of Software Technology, Centre for Mathematics and Computer Science

P.O. Box4079, 1009 AB Amsterdam, The Netherlands

P.R.H. Hendriks

Department of Software Technology, Centre for Mathematics and Computer Science

P.O. Box4079, 1009 AB Amsterdam, The Netherlands

P. Klint

Department of Software Technology, Centre for Mathematics and Computer Science

P.O. Box 4079, 1009 AB Amsterdam, The Netherlands

and

Programming Research Group, University of Amsterdam

P.O. Box41882, 1009 DB Amsterdam, The Netherlands

J. Rekers

Department of Software Technology, Centre for Mathematics and Computer Science

P.O. Box4079, 1009 AB Amsterdam, The Netherlands

SDF is a formalism for the definition of syntax which is comparable to BNF in some respects,

but h_as a wider scope in that it also covers the definition of lexical and abstract syntax. Its

design and implementation are tailored towards the language designer who wants to develop

new languages as well as implement existing ones in a highly interactive manner. It emphasizes

comP,actness of syntax definitions by offering (a) a standard interface between lexical and

context-free syntax; (b) a standard correspondence between context-free and abstract syntax; (c)

pow~rful disambiguation and list constructs; and (d) an efficient incremental implementation

which accepts arbitrary context-free syntax definitions. SDF can be combined with a variety of

progr:amming and specification languages. In this way these obtain fully general user-definable

syntax.

1989 CR Categories: D.2.1 [Software Engineering]: Requirements/ Specifications- Lan

guag~s; D.3.1 [Programming Languagcsl: Ponnal Definitions and Theory-Syntax.

1985 Mathematics Subject Classification: 68N 15 [Software]: Programming Languages.

Key Words & Phrases: lexical syntax, context-free syntax, concrete syntax, abstract syntax,

ambi'guous grammar, grammar with priorities, user-definable syntax, syntax definition

formalism, scanner generation, parser generation, editor generation.

Note: Partial support received from the European Communities under ESPRIT project 348

(Generation of Interactive Programming Environments -GIPE).

Report CS-R8926

Centre·for Mathematics and Computer Science

P.O. Box 4079, 1009 AB Amsterdam, The Netherlands

TABLE OF CONTENTS

1. lntroduction 1

1.1 General design considerations ... 1

1.2. A first exainple 3

1.3. Organization of this manual ... 4

2. Preliminary definitions 5

2.1. Regular grammars 5

2.2. Context-free grammars ... 6

2.3. Signatures ... ?

2.4. Rationale for the definitions of context-free grammar and signature11

2.4.1. BNF grammars .. 11

2.4.2. Signatures .. 11

2.5. Overview of the SDF definition 12

3. Sorts ... 13

4. I..exical syntax13

4.1. Introduction .. 13

4.2. Lexical functions .. 14

4.3. Character classes15

4.4. Layout 16

4.5. Repetition:* and + 17

4.6. Literals. ... 17

4. 7. Disainbiguation of lexical syntax 18

4.8. Rationale for the definition oflexical syntax .. .18

5. Context-free syntax19

5 .1. Introduction .. 19

5.2. Context-free functions 19

5.3. Repetition:* and + ... 21

5.4. Chain and bracket functions 25

6. Priorities ... 29

6.1. Motivation .. 29

6.2. Priority and associativity 30

7. Variables in SDF definitions 35

7.1. Motivation 35

7 .2. Definition of variables. ... 36·

7.3. Substitution of variables 39

7 .4. Discussion 42

8. Summary of SDF 42

8.1. Deriving grammars, signature and parse-tree-to-abstract-tree mapping42

8.1.1. Derived regular grainmar .. 42·

8.1.2. Derived BNF grainmar 43

8.1.3. Derived signature .. 44

8.1.4. Mapping from parse trees to abstract syntax trees 44

8.2. Static constraints on SDF definitions .. .45

9 Attaching semantics to SDF definitions46

9.1. Attaching algebraic semantics to SDF ... 46

9.2. Binding SDF to a modular specification formalism49

10. Notes on the implementation of SDF 49

11. Discussion .. 51

11

11.1. Basic assumptions ... 51

11.2. Omissions ... 51

11.3. Limitations of lexical syntax .. 51

11.4. Related work ... 53

11.5. Future developments ... 54
Acknowledgements ... 54

Literature .. ;················54
Appendix 1: SDF in SDF .. : 57
Appendix 2: Berkeley Pascal in SDF .. 59

'

iii

- - - -- : ':" ~ =~ ·

·~ - =' - ~-- -=-

l. INI'RODUCilON

1.1 General design considerations
Since good notations may improve the readability of programs and other formal specifications

considerably, many programming and specification languages give the user some control over the

syntax that can be used. We refer the interested reader to Section 11.4 of this manual for a brief

survey of the development of user-definable syntax. Although an issue of general importance,

user-definable syntax becomes a sine qua non if a language is to be used for defining other lan

guages. A language definition expressed in such a meta-language might consist of the following

parts:
• a definition of the concrete (i.e., lexical and context-free) as well as abstract syntax of the

language to be defined;

• a definition of its static semantics; and

• a definition of its dynamic semantics.

In the GIPE project (Generation of Interactive Programming Environments - ESPRIT Project 348

[HKKL85]) we are constructing an environment for the interactive development and implementa

tion of languages and it is in this context that we designed SDF to handle the syntax part of lan

guage definitions.
Although the static and dynamic semantics parts of language definitions do not concern us in

this manual, coupling semantics to syntax does, and this is one of the points where abstract syn

tax comes in. From the viewpoint of concrete syntax it is natural to describe this coupling in terms

of string or text matching. A string pattern containing variables is matched to the program text. If

the matching succeeds at some point in the text, the corresponding string values of the variables

are transmitted to the semantic rule attached to the pattern. In practice, however, the use of string

matching gives rise to ambiguities that are difficult to control. We therefore decided that semantics

should be coupled to syntax by means of tree matching, which is much less susceptible to unin

tended ambiguities.

Now the question arises whether the parse tree or the abstract syntax tree of the program text

should be used. The parse tree is the derivation showing how the text in question can be derived

from the start symbol of the grammar. Its interior nodes are non-terminals of the grammar and its

leaves are the lexical tokens, such as keywords, operator symbols, identifiers, etc. , making up

the ofiginal text. The abstract syntax tree only contains the essential information describing the

text; its interior nodes are the constructors (also called operators) of the language and the direct

descendants of each node are its operands. The leaves of the abstract syntax tree are identifiers,

integ~r constants, etc. The main argument in favor of performing matching on the basis of ab

stract syntax trees rather than parse trees is that the latter may contain many "unnecessary" nodes

that ~an be omitted in the abstract syntax tree.

SDF supports patterns with variables by allowing the declaration of a (possibly infinite) number

of variables with user-defined names in the variables-section of a syntax definition. A text con

taining variables (a text pattern) corresponds to an abstract syntax tree with variables (a tree

pattern or an open term). The actual matching uses the abstract syntax tree pattern. Texts with

variables may also be viewed as being incomplete, the variables playing the role of gaps that have

yet to be filled in.

It should be emphasized that a coupling of semantics to syntax based on abstract syntax tree

matching does not preclude the use of concrete syntax in the semantics parts of a language defini

tion. In fact, we are very much in favor of doing this. The price to be paid is a discrepancy be

tween the text matching viewpoint, which is strongly suggested by the use of concrete syntax,

and the abstract syntax tree matching viewpoint, which is the one actually intended. To minimize

the gap separating both viewpoints, SDF implicitly defines a standard translation from context-

1

- · ": : ;' ~ -=

free to abstract syntax, i.e., the translation from context-free to abstract syntax is the same for all

SDF-definitions. This implies that SDF has less expressive power than, for instance, the syntax
definition formalism Metal [KLMM83]. The abstract and context-free syntax defined by a Metal

specification may differ from each other in important respects not reproducible in SDF. For ex

ample, the order of the arguments of the abstract and concrete forms of a function need not1be the
same in Metal. For the reason given above, we believe a uniform and predictable relationship

between abstract and context-free syntax to be a distinct advantage. If required, transformation of

abstract syntax trees to some "deeper" form has to be expressed in the programming or specifica
tion language in which SDF is embedded. In our case this is the algebraic specification formalism

ASF [BHK.89, Chapter l], in which we express the static and dynamic semantics of languages.
In the GIPE environment a syntax-directed editor is generated from the syntax part of a lan

guage definition [Log88, DK89a,b] and this is a second point where abstract syntax comes in.
Syntax-directed movements through the text can be performed much more efficiently on the basis
of the corresponding abstract syntax tree than on the basis of the parse tree. As explained above,
the latter generally contains many redundant nodes which give rise to void text movements that
may be quite irritating. On the other hand, text movements on the basis of abstract syntax cannot

become too unpredictable due to the fixed correspondence between abstract and context-free syn

tax enforced by SDF.
Although we do not discuss modular SDF-definitions in this manual, modularity has been an

important design issue from the outset. In particular, putting together SDF-definitions that were
developed independently from each other should be facilitated. Using SDF, the language designer
should be able to borrow parts of already existing language definitions without undue difficulty.
We therefore adopted the viewpoint that SDF would not only have to allow definition of all con
text-free languages (BNF also permits this), but that its implementation would have to support
this feature without reserve and impose no additional LR- or LL-like constraints. This is an ad

vantage in another respect as well which has nothing to do with modularization. If full context
free power is available, syntax definitions no longer have to be brought into an acceptable, but
often unnatural form that obeys the restrictions imposed by the implementation. This in turn

means that context-free and abstract syntax may bear a closer resemblance to each other, which is
exactly what SDF requires.

An important question remains, however: what about ambiguous syntax definitions? This is a
difficult problem, which is not solved by SDF but which has had implications for its design.

Usually, ambiguous definitions are eliminated by applying the LR- or LL-constraints we just

dismissed as too limiting for the language designer. In the general case supported by our imple

mentation, ambiguous definitions are handled correctly in the sense that all parses of an ambigu
ous sentence are returned, but freedom from ambiguities can no longer be guaranteed in advance

due to the fact that it is no longer decidable. Obviously, unexpected ambiguities may cause fatal

run-time errors. On the other hand, allowing syntactic ambiguities leaves room for semantic dis
ambiguation schemes, similar perhaps to some of the ones people use to disambiguate sentences
in natural language.

Whereas semantic disambiguation falls outside its scope, SDF attempts to alleviate the problem

of syntactic disambiguation by offering a powerful priority construct. This does not solve the
problem of unexpected syntactic ambiguities, of course. It only helps the language designer to

eliminate sources of ambiguity he is already aware of. Syntactic disambiguation proceeds In two
phases: (1) all parse trees containing internal priority conflicts are rejected, and (2) the remaining
parse trees (if any) are compared using a multiset ordering derived from the priority rules given in

the SDF-definition. Unlike the first phase (which handles ordinary arithmetical expressiops, for

instance), the second phase allows parses that are totally different to be compared with each other.

The power of the priority mechanism is such that unambiguous SDF-definitions can be given for

2

some i,hherently ambiguous context-free languages, i.e., languages that do not have an unam

biguous context-free grammar. This does not mean, however, that every desired disambiguation

can be obtained by adding appropriate priorities to a given ambiguous SDF-definition without

priorities.

The availability of a separate disambiguation construct means that disambiguation need not be

expressed in terms of the syntax rules themselves. As a result, parse trees will be much smaller

and closer to abstract syntax trees. In addition to the availability of full context-free syntax men

tioned before, this is an important reason why the fixed correspondence between context-free and

abstract syntax offered by SDF turns out to be satisfactory.

In addition to context-free and abstract syntax, lexical syntax can also be defined in SDF. Lexi

cal disambiguation cannot be controlled by means of the priority mechanism available at the con

text-free level, but is primarily based on giving precedence to the longest lexemes and to literals

occurring in the context-free syntax. Any remaining ambiguities are passed on to the context-free

level.

In summary, SDF allows the definition of concrete and abstract syntax in a single framework.

Its design and implementation are tailored towards the language designer who wants to develop

new languages as well as implement existing ones in a highly interactive manner. It emphasizes

compactness of syntax definitions by offering (a) a standard interface between lexical and context

free syntax; (b) a standard correspondence between context-free and abstract syntax; (c) powerful

disambiguation and list constructs; and (d) an efficient incremental implementation which accepts

arbitrary context-free syntax definitions. It can be combined with a variety of programming and

specification languages. In this way these obtain fully general user-definable syntax.

1.2. A first example

An SDF definition consists of five sections and has the following overall structure:

sorts
names of domains or non-terminals to be used in the other sections of the specification

lexical syntax
the rules of the lexical syntax

context-free syntax
the rules of the concrete and abstract syntax

priorities
definition of priority relations between rules of the context-free syntax

variables
naming schemes for variables

We introduce the most significant features of SDF by means of an example in which we define

the lexical, concrete and abstract syntax of a simple programming language (see Figure 1.1.).

In the sorts section, six names are declared. These names can be interpreted in two ways:

• as non-tenninals of a lexical or a context-free grammar, and

o as names of the domains used to construct abstract syntax trees.

We will use this dual interpretation of sorts to achieve an automatic mapping between sentences

and abstract syntax trees.

In the lexical syntax section, we define a space, a tabulation, and a newline character as

layout characters (line 3). In addition, the form of identifiers (line 4) and numeric constants (line

5) is d;efined.

In tlie context-free syntax section, the concrete and abstract syntax are defined:

• The concrete syntax is obtained by using the "non-terminal" interpretation of sorts and

reading the rules from "right to left" as ordinary grammar rules.

• The abstract syntax is obtained by using the "domain" interpretation of sorts and reading the

rules from left to right as definitions of (typed) constructor functions for abstract syntax

3

· =-. : :o ~ -: ~_- -

trees. The sort names appearing in function definitions define the types of the argum~nts as

well as of the result of these functions.

Some other features illustrated by the context-free syntax in Figure 1.1 are:

• Rules can define lists with or without separators (line 9).

• Rules may have a bracket attribute. Such rules are used only for grouping language con

structs, but do not contribute to the abstract syntax (lines 8 and 17).

• Rules may have various attributes defining their associativity properties (lines 13-16). We

allow the definition of associative and left-, right-, or non-associative operators.

In the priorities section, priority relations between rules in the context-free syntax are de

fined as well as the associativity of groups of different operators. As shown here, the operators *

and I have a higher priority than the operators + and-.

Finally, in the variables section, naming schemes for variables are given. These variables

can be used in two ways:

• as variables in semantics definitions added to the SDF definition,

• as "holes" in programs during syntax-directed editing.

1. sorts ID NAT PROGRAM STATEMENT SERIES EXP
2. lexical syntax
3. [\t\n\r] -> LAYOUT

4. [a-z] [a-z0-9] * -> ID
5 . [0-9]+ -> NAT
6. context-free syntax
7 . program SERIES - > PROGRAM

8. begin SERIES end - > SERIES {bracket }

9 . { STATEMENT ";" } * -> SERIES
10. ID ": = " EXP -> STATEMENT

11 . if EXP then SERIES else SERIES -> STATEMENT
12 . until EXP do SERIES -> STATEMENT

13. EXP "+" EXP -> EXP {left}
14. EXP " - " EXP -> EXP {non-assoc}

15. EXP "*" EXP -> EXP {left}

16. EXP " / " EXP -> EXP {non-assoc }
17. " (" EXP ") " -> EXP {bracket}

18. ID -> EXP
19. NAT -> EXP
20 . priorities
21. {left: EXP " *" EXP - > EXP , EXP "I" EXP -> EXP} >

{left: EXP "+" EXP -> EXP , EXP "-" EXP -> EXP}
22. variables
23 . Exp -> EXP
24. Series -> SERIES

Figure 1.1. A simple programming language.I

1.3. Organi7.ation of this manual

The chapters of this manual can be divided in three groups. Chapters 1 and 2 have an introductory

character: the main issues in the design of SDF are discussed and basic concepts and notations are

introduced.

1 In all examples, we will add line numbers to SDF definitions for ease of reference in the text. They are not a

part of the SDF definition proper.

4

The second group of chapters contains the actual description of SDF. Each of the Chapters 3, 4,

5, 6 and 7 is devoted to a detailed description of one of the five sections of an SDF definition.

Chapter 8 contains a summary of these definitions.
In the last group, miscellaneous subjects are addressed. In Chapter 9, we show how semantic

rules can be attached to SDF definitions. This leads to specification formalisms with considerable
syntactic freedom. In Chapter 10, the techniques required to implement SDF are sketched. A dis

cussiop. of the results obtained and a comparison with related work is given in Chapter 11.

Two appendices complete this manual: they present SDF definitions of SDF itself and of
(

Berkeley Pascal.

2. PRELIMINARY DEFINITIONS
In thi ~ Chapter we introduce the basic notions to be used in the definition of SDF: regular gram

mars (Section 2.1), context-free grammars (Section 2.2), and signatures (Section 2.3). In Section

2.4 follows a motivation for these definitions, and in Section 2.5 we give an overview of the SDF

definition and show how the basic notions are used in it.

2.1. Regular grammars
Regular expressions over a given alphabet I: have the usual meaning [ASU85]. With each regular

expression r, we associate a language L(r) of lexemes accepted by r:
(1) The empty string£ is a regular expression with associated language L(E) = 0.
(2) If ae I:, then 11

a
11 is a regular expression with associated language L(

11

a") = {a}.

(3) Suppose rand s are regular expressions with associated languages L(r) and L(s), then

(a) (r) I (s) is a regular expression with the associated language L(r) u L(s) of lexemes that

are either in L(r) or in L(s).

(b) (r) (s) is a regular expression with the associated language L(r) L(s) of lexemes con

sisting of a concatenation of two parts: the first part in L(r) and the second part in L(s).

(c) (r)* is a regular expression with the associated language L(r)* of lexemes consisting of

zero or more concatenations of lexemes in L(r).

(e) (r) is a regular expression with associated language L(r), i.e., parentheses may be placed

around a regular expression without changing its meaning.

We wi,11 extend this definition in the following ways:

• (r)+ is a regular expression with the associated language L(r)+ of lexemes consisting of one
or more concatenations oflexemes in L(r). Note that (r)+ = (r) (r)*.

o Parentheses may be omitted by using the following priorities for the operators (going from

high to low priority): * and +, concatenation, and I. In addition to this, the concatenation
and I-operator are left-associative.

o We will use string constants to abbreviate sequences of concatenations of single characters

of the alphabet, i.e.,
11

ai
11

"a2" ... "an" will be abbreviated to "ai a2 ... an".

• A lexical non-terminal of the form <N> is also a regular expression (see below).

A regular grammar is now defined as an ordered list of named regular expressions. To emphasize

the fact that they are similar to non-terminals in context-free grammars, we call names of regular

expressions lexical non-terminals. The occurrence of a lexical non-terminal in a regular expres

sion is to be interpreted as an abbreviation for the regular expression associated with it earlier in

the list. The general form of a regular grammar is thus:

<.Np = ri

<.N2> = r2

5

: - - -- ~ ---= ~ ; ;; : ;. ;

- - · ~ : ;' ~ ~-=-- ~ _ :: _ -.:_ =

where <Ni> may only occur in rj provided that i <j. The language associated with this regular

grammar is the union of the languages associated with each rj. We will use lexical non-terminals

to identify the lexical category of lexemes and call a (lexical non-terminal, lexeme)-pair a l(!xical

token.

2.2. Context-free grammars
We will use a variant of the well-known BNF notation to define the grammars corresponding to

SDF definitions. The terminals of a grammar are either literal strings, which appear in grapimar

rules between double quotes("), or lexical non-terminals. Lexemes are strings over a given char

acter alphabet and have to be defined by a separate regular grammar. Non-terminals of the gram

mar are written between angle brackets< and>. They may consist of arbitrary symbols except<

and>. We will use the convention that lexical non-terminals have the suffix -LEX.1 A grammar

rule consists of a non-terminal, the symbol : : =, and a list of zero or more rule-elements. An

empty list of rule-elements is denoted by the symbol E. A rule-element is either

• a terminal or non-terminal, or
• {<non-terminal> sep }®,where sep is an optional terminal and® is either* or+. This

denotes a list of zero or more (*) or one or more (+) repetitions of the non-terminal sepa

rated by sep. When sep is not present, the brackets may be omitted and the rule-element is

abbreviated to <non-terminal>®.

We will use the symbol I to abbreviate rules with the same right-hand side, i.e.

<N> : := Rhsl I Rhs2,

is equivalent to

<N> : := Rhsl

<N> : := Rhs2.

Each non-terminal in the grammar acts as a start symbol.

A parse tree for a combination of a given regular grammar and a given BNF grammar is an

ordered labeled tree. Leaves of the tree are either literals of the grammar or characters of lexemes.

Nodes are either labeled with a lexical non-terminal, a non-terminal, or a list. This is described in

more detail in the following definition.

An ordered labeled tree P is a parse tree for a given regular grammar and BNF grammar if

(I) the root of P is labeled with L, where Lis a lexical non-terminal, all its children are labeled

with characters from the lexical alphabet, and the characters together form a lexeme accepted

by the regular expression associated with L in the regular grammar, or

(2) the root of P is labeled with <non-terminal>, has children Ci, ... ,Cn (n;;::O) whose root is

labeled with X1, ... , Xn, the rule <non-terminal>::= X1 .. Xn is a rule of the grammar,

and all Ci 's are either parse trees or literals, or

(3) the root of P is labeled with {<non-terminal> sep}®, has children C1, ... ,Cn (n~O if

®=*, n;;::l if®=+) and either

(a) sep is empty and all n children are parse trees labeled with <non-terminal> or

(b) sep is not empty, n is either zero or odd, all odd-numbered children are parse trees

whose root is labeled with <non-terminal>, while all even-numbered children are equal to

the literal sep.

Consider, for instance, the following BNF grammar

<DECL> : : = "decl" { <ID> "," } + "·" <TYPE>
<TYPE> "integer"
<TYPE> ::="real"
<ID> : := <ID-LEX>

1 In Chapter 7 we will also use lexical non-terminals with the suffix -VAR; they denote the contributions of

variable declarations to the lexical grammar.

6

{<ID> <TYPE>

II
<ID> <ID> <ID>

I I I
<ID-LEX> <ID-LEX> <ID-LEX>

/\ I II'
de cl a b c x y z real

Figure 2.1. Parse tree for the sentence: decl ab, c , xyz

nd the regular grammar

<LETTER-LEX>
<ID-LEX>

"a" I . . . I "z"
<LETTER-LEX>+

real.

The literals of the BNF grrunmar are: "decl", ", ",":","integer", and "real". <ID-LEX>

s the only lexical token. The non-terminals are <DECL>, <ID> and <TYPE>. The parse tree for

he sentence de cl ab, c, xyz : real is shown in Figure 2.1. Note that the lexeme for each

ID- LEX> is represented by a sequence of characters. Any structure appearing in the rules defin

ng <ID-LEX> is lost in the parse tree.

In the sequel, we will add all literals occurring in the BNF grammar to the regular grammar and

ill identify an occurrence of the literal with an occurrence of the corresponding lexical non-ter

'nal (see Section 5.2) .

. 3. Signatures

he abstract syntax corresponding to an SDF definition will be described by a signature, which

efines a set of abstract syntax trees (also known as terms). It consists of three parts:

• Declarations of sorts defining the basic domains of trees. For each declared sorts (basic

sort), the sorts { s sep l * and { s sep l +, with sep an arbitrary identifier or empty, are

implicitly defined (list sorts)1• They denote lists of, respectively, zero or more and one or

more elements of sort s. The symbol sep is part of the list constructor and lists with ele

ments of the srune sort but different separators are distinct. Like before, we will use the ab

breviation® to denote either * or+.

• A strict (i.e., non-reflexive) partial order on sorts defining inclusion relations between sorts

(subsorts) . This partial order is obtained by taking the transitive closure of the subsort dec

larations in the signature. In addition to this, the following subsort relations hold auto

matically:

(a) { s sep l + < { s s ep J * for all basic sorts s;

(b) {S sepJ® < {S ' sepJ®forallbasicsortssands• with s<S '.

Note that the relations s < s+ ors < s * do not hold automatically!

• Declarations of functions defining nodes in the tree by giving for each function a name, the

number and sort of its children (arguments), and its result sort. The result sort of a function

must always be a basic sort. Only the argument sorts may be list sorts. Functions without

1 An occurrence of { s sep} * or { s sep} + thus implicitly declares sep as a (varyadic) constructor function for

ists with elements of sorts.

7

arguments are also called constants. The attribute assoc denotes an associative function an

may be attached to binary functions with identical argument and result sorts.
We will adopt the convention that names of sorts, functions and separators in signatures eithe

consist solely of alphanumeric characters and hyphens (e.g., a-sort-name) or, if not, are sur

rounded by double quotes (e.g., "/").
Signatures do not contain a separate section for the declaration of variables. Instead, variable

are implicitly defined and they are denoted by a sort, followed by a hyphen, followed by

(possibly quoted) identifier (e.g., NAT-x denotes a variable of sort NAT, and {ID ", "l +- I ds de
notes a variable of sort {ID ", "l +). Note that variables may range both over basic sorts as wel

as over list sorts.
Trees can be constructed by combining functions and variables in ways compatible with thei

definition, i.e., each child of each node in the tree should be of a sort that is identical to or smalle
than the one appearing in the declaration of the function corresponding to the node. There is on

exception to this general rule: lists may contain list variables of the same or a smaller list sort wi
the same separators.

An abstract syntax tree (or term) t for a given signature is defined inductively as follows:

(I) If t=c, where c is a constant of basic sorts, i.e., a function without arguments with resul
sorts, then t is a term of basic sorts.

(2) If t=v, where vis a variable of (basic or list) sorts, then t is a term of sorts.

(3) If t=f(ti. ... ,tn), where/ is a function with arguments of sorts si, ... ,sn, (n:2:1) and the basi
sort s as result sort, and ti,. .. ,tn, are terms of sort s'i. ... ,s'n with s'i ~Si, then t is a ter
of basic sorts.

(4) If t=s[sep:t1,. .. ,tn], where sis a basic sort, sep is a separator or empty, n:2:0, and ti is either
(a) a term of basic sort sl, with sl ~ s, or
(b) a variable of list sort {s{ sep}®, with s{ ~ s,

then
(i) t is a term of list sort { s sep }* if n=O or all ti are variables of sort {Si sep }* (si ~ s),

(ii) otherwise, t is a term of list sort {s sep }+.

Note that this definition does not always associate the smallest possible sort with each term.

Consider, for example, the following signature:

sort s ID TYPE DECL NAT EXP ARG-LIST
subsorts ID < EXP NAT < EXP {EXP ","}* < ARG-LIST
functions

a
b
integer
real

decl TYPE * {ID ";"}+
0
succ
"*"

"I"
call

NAT
EXP 4t EXP
EXP 4t EXP
ID 4t ARG-LIST

-> ID

-> ID
-> TYPE
-> TYPE
-> DECL
-> NAT
-> NAT
-> EXP
-> EXP
-> EXP

The basic sorts in this signature are ID, TYPE, DECL, NAT, EXP and ARG-LIST. The partial orde

on sorts is defined such that both ID and NAT are included in EXP and that {EXP ","}*is included

in ARG-LIST. Next, the functions a, b, integer, real, decl, o, succ, "*", "/",and

c all are defined with the type of their arguments and that of their result. Some examples of ab-

8

tract syntax trees over this signature are shown graphically in Figure 2.2. In prefix notation, the

ees in these figures can be written as

(a) o

(b) s u cc (0)

(c) " * 11 (s u cc (0) , " / 11 (O , b))

(d) d e cl (real, ID[11 ;": a ,b))

(e) decl (re al, ID ["; 11 :a,b,b,a, b ,a))

(0 c a ll (a ,EXP [",":])

(a') NAT-n

(b') succ (NAT-n)

(c') 11 * 11 (succ (NAT- n), "/"(0 ,ID-id))

(d') decl (TYPE-t , {ID ";"}+-x)

(e') decl (rea l ,

I D ["; 11 : a, {ID ";" } +-x , a , ID-id , a])

(f) call (a,

EXP [",": {EXP "," }*-e,

{ID ","} +- y])

he following variables appear in these examples:

Variable Sort

NAT-n NAT

ID-id ID

TYPE-t TYPE

{ID ";" } +-x {ID ";"}+

{ ID " , " }+-y { ID " '" }+

{EXP " ,11)+-e {EXP II '"} +

Observe that the list sort { ID ", "l + does not appear explicitly in the signature given in the ex

ample, but that the use of variables of this sort is permitted.

We also need the notion of selective substitution of variables in abstract syntax trees. A subset

of the occurrences of a variable may be replaced by a tree of a sort that is identical to or smaller

than the sort of the variable. Since a variable may occur more than once in an abstract tree, we as

sume that the occurrences that are to be affected by the substitution are explicitly marked.

List variables occurring as elements of lists are treated in a special way during substitution:

when replacing such variables by a list of elements, those elements are inserted directly as ele

ments of the original list, instead of producing a list with a nested structure.

For a given term t containing marked occurrences of a variable x of sorts, and a term t' of sort

s's; s, we define the selective substitution oft' for x in t (denoted by t [x:=t1) as follows:

(1) If t=c, then t[x :=t1=c.

(2) If t=x with x marked, then t[x:=t1=t'.

(3) If t=f(t1, ... ,tn) (n;::: 1), then t[x:=t1=f(t1[x: =t1, ... ,tn[x:=t1).

(4) If t=S[sep:t1 , ... ,tn] (n~ 0), define substitution by induction on the length of the list:

(i) If t=s[sep:] (the empty list), define t[x:=t1=s[sep:].

(ii) The result of the substitution for s[sep:t2, ... ,tn] is always a list of the form

s[sep:ui, ... ,um] (m;::: 0). Now distinguish two cases:

(a) The result of the substitution t1[x:=t1 is a list. In that case ti is a marked variable

of sort {s1 sep}® with s1$ s, and t1[x:=t1=s1[sep:e1, ... ,ek] (k~ 0) and define

t[x: = t1 =s[sep:e1 , .. . ,ek,U 1, ... ,um] .

(b) Otherwise, the result of the substitution ti[x:=t1 is a term of sorts' (s'<s) , define

t[x: = t1 =s[sep:t} [x: = t1,u1, .. . ,um].

(5) Otherwise, t[x:=t1=t.

9

_- - - ~ - ; - · " ;. ·

)\ de cl

/'\
succ "/"

I /\
real {ID ";"}+ succ

0

(a)

I
0

(b)

0 0 b

(c)

/\
a b

(d)

de cl

/'\)\/" succ TYPE-t {ID ";"}+-x

I /\
NAT- n NAT-n NAT-n 0 ID-id

(a') (b') (c') (d')

Figure 2.2(a-d). Examples of abstract syntax trees without (a-d) and with (a'-d') variables.

/decl"---
real {ID ";"}+

,41~

cal~

/ {EXP","}'

a b b a b a a

(e) (0

call

""
/decl"'

{EXP

/
real {ID ";"}+

~\""'~
"' "} *

\
a {ID ";"}+-x a ID-id a a {EXP ","}*-e {ID "," }*-y

(e') (r)

Figure 2.2(e-O. Examples of abstract syntax trees without (e,f) and with (e',f) variables.

The trees in Figure 2.2a-2.2e can be obtained from the corresponding trees in Figure 2.2a'-2.2e'

by the following variable substitutions (assuming that all occurrences of variables are marked):

(a) NAT-n := 0

(b) NAT-n := 0

(c) NAT-n := o, ID-id := b

(d) TYPE-t :=real, {ID ";"}+-x : =ID [";": a,b]

(e) {ID ";"}+-x :=ID[";": b, b], ID-id:= b

(f) {EXP ","}*-e : = EXP[",":], {ID ","}*-y ·=ID[",":].

10

2. . Rationale for the definitions of context-free grammar and signature

T e definitions of the notions introduced in the previous sections differ, in some respects, from

th usual ones. Here, we give the arguments for the particular choices we made.

2. .1. BNF grammars

All non-terminals act as start symbol. This is desirable from the perspective of syntax-di

rected editing, where the need arises to parse only parts of programs.

The terminal alphabet consists of literal strings as well as of lexical non-terminals.

Because our notion of BNF grammars directly support list constructs with separators, we

can define parse trees in such a way that all list elements are treated symmetrically. An

alternative approach would have been to use left- or right-recursive grammar rules, leading

to a correspondingly biased representation of lists. This asymmetrical representation would

then have to be translated to a symmetrical representation in the abstract syntax tree, in order

to avoid the asymmetry becoming visible during the syntax-directed editing of list elements.

2. .2. Signatures
For each basic sort, we implicitly define different list sorts for all possible separators

(constructor functions). In this way, lists with elements of equal type but different separa

tors can be distinguished.

Subsorts serve the purpose of eliminating chain rules of the form <N> : : = <M> in the BNF

grammar. These would otherwise give rise to many void text movements in the syntax-di

rected editor.

• There is an interaction between subsorts and lists. The relation { s sep} + < { s sep} *

holds automatically for all sorts and separators. The inclusion s < { s sep l + does not hold

automatically, however, since - from the perspective of syntax-directed editing - the dis

tinction between a single element and a list consisting of one element would disappear (see,

for instance, Figure 5.9 in Chapter 5).

• We allow the declaration of associative functions in the signature (by means of the attribute
' assoc). At the syntactic level, associative functions may cause ambiguities which we re-

solve by always choosing a left-associative parse from all possible (associatively equiva

lent) parses (see Section 6.2). Declaring a function in the signature to be associative allows

theireconstruction of all these variants using the associative law.

• Variables are not explicitly declared, but we use a general naming scheme for generating

infinitely many variables. We need this generality to describe the naming schemes for vari

ables in SDF variable declarations.

• The naming convention for sorts and functions is more general than normally found: we

allow names either consisting of alphanumeric characters and hyphens, or containing arbi

trary characters but surrounded by double quotes. This allows us great flexibility when

generating names for sorts and functions.

inally, some comments on substitution are in order:

• We have chosen to define substitution for selected occurrences of a variable and not for all

occurrences. Clearly, the latter can easily be defined by first marking all occurrences of a

variable and then applying our notion of selective substitution. On the other hand, selective

substitution is the fundamental operation used during syntax-directed editing.

• The sort of a term may become smaller after substitution. In particular, a list of sort { s

sep) * may become a list of sort { s sep} + after substitution.

• The sorts of the elements in a list may all become smaller than the original element sort of

that list as a result of substitution.

11

SDF Definition

sorts

lexical syntax

context-free syntax

riorities

ariables

Derived
regular grammar

nv
1----:--+------i ----i ~ BNF grammar

Derived
signature

abs

Figure 2.3. From sentence to abstract syntax tree(s).

2.5. Overview of the SDF definition

An SDF definition consists of five sections, defining

• sorts,

• lexical syntax,

• context-free syntax,

• priorities, and

12

Syntactic
analysis

• variables.

As a whole, the SDF definition has the purpose to define

• A set of sentences (strings).

• A set of abstract syntax trees.

• A relation between (parse trees of) sentences and abstract syntax trees.

To this end, we can derive the following information from an SDF definition:

• A derived regular grammar and a derived BNF grammar, defining a set of sentences.

• A derived signature, defining a set of abstract syntax trees.

• A mapping from parse trees over the derived BNF grammar to abstract syntax trees over the

derived signature. This is a fixed mapping that is part of the definition of SDF. Other map

pings can only be obtained by adding semantic rules to SDF definitions (see Chapter 9).

The relation between the different sections of an SDF definition and the information derived from

it is shown in Figure 2.3. This figure also shows the function a.bs that converts an input sentence

into (one or more) abstract syntax trees, together with the three auxiliary functions parse, sdect

and construct. We will return to this figure in the following chapters.

3. SORTS
Sorts are declared by listing their name in the sorts section of the SDF definition. Some con

straints are imposed on the use of sorts:

• The sort LAYOUT is predefined and may not be redeclared. It may only be used as result sort

of functions in the lexical syntax (see Sections 4.1and4.4).

• The sort CHAR is predefined and may not be redeclared either. It may only be used in decla-

rations of variables (see Chapter 7).

Each declared sorts becomes a non-terminal with the name <S> in the derived BNF grammar. If a

sort appears as result sort of a lexical function, it will also be added to the derived regular gram

mar. A declaration for the predefined sort CHAR as well as declarations for all sorts declared in the

SDF definition will be added to the derived signature. This is described by rules Rl, G 1, Sl and

S2 in Chapter 8.

4. LEXICAL SYNTAX

4.1. Introduction

Lexical syntax describes the low level structure of sentences (sequences of characters) in terms of

lexical tokens. A lexical token is a pair consisting of a sort name and a lexeme. The former is used

to distinguish classes of lexical tokens such as, e.g., identifiers and numbers. The latter is the

actual text of the token. The lexical syntax also defines which substrings of the sentence are lay

out symbols or comments and are to be skipped.

The definition of lexical syntax consists of a set of one or more function declarations, each con

sisting of a regular expression and a result sort. All function declarations with a given output sort

together define the lexical syntax of lexemes of that sort. The layout symbols are defined by

functions that have the predefined sort LAYOUT as result sort.

From a given SDF definition, one can derive a regular grammar. This derived regular grammar

is obtained as follows:

• Regular expressions are extracted from the lexical syntax (described in this chapter).

• All literals appearing in the context-free syntax are enumerated (Section 5.2).

• Regular expressions are extracted from variable declarations (Chapter 7).

• Regular expressions defining the complete alphabet are added when variables of sort CHAR

are declared (Chapter 7).

Lexical analysis based on this derived regular grammar will skip tokens of the sort LAYOUT, and

will present tokens of other sorts as input to the syntactic analysis phase. As a result, an input

13

sentence will be subdivided in a unique sequence of lexemes. However, more than one sort may
be associated with each lexeme. The situation is shown in Figure 2.3.

The organization of this chapter is as follows. In Section 4.2. elementary lexical functions are
described. Lexical function definitions may also contain character classes (Section 4.3) and repe
tition operators (Section 4.5). The definition of layout functions is described in Section 4.4. Lit
erals are discussed in Section 4.6. The disambiguation rules we use are given in Section 4.7. A
rationale for the way in which we define lexical syntax concludes this chapter (Section 4.8).

4.2. Lexical functions
The lexical syntax contains declarations of lexical functions defining the syntactic form of lex

emes. In their simplest form, lexical function declarations consist of one or more literal strings or
names of sorts, and their result sort.

The effects on the derived regular grammar, BNF grammar and signature are as follows. For
each sort L (with L#LAYOUT) that appears as result sort of a lexical function:

• Define the symbol <L-LEX> both as lexical non-terminal in the derived regular grammar
and as terminal symbol in the derived BNF grammar. (For the sort LAYOUT we only define
the lexical non-terminal <LAYOUT-LEX>).

• Add to the derived BNF grammar a rule of the form:
<L> : := <L-LEX>,

where <L-LEX> is the name associated with L in the derived regular grammar. I
• Add to the derived signature declarations of constants of sort CHAR for all characters 'in the

alphabet as well as declarations for lexical constructor functions of the form
l : CHAR+ -> L

where l is the name L written in lower case letters. This definition reflects the fact that lex
emes appear as strings of characters in the abstract syntax tree.

The regular expression associated with each symbol <L-LEX> consists of the or of all left-hand
sides of lexical function declarations for sort L. Sort names appearing in these left-hand sides are
replaced by the symbol defined in the previous step. Note that, since we want to extract a regular
grammar from the SDF definition, no cyclic dependency may exist between lexical function
declarations.

The above step leads to rules Rl, G2, G3, Sl, S4, and SS in Chapter 8.

1. sorts VOWEL
2. 1exica1 syntax
3. "a" -> VOWEL

4. "e" -> VOWEL

5. "i" -> VOWEL

6. "o" -> VOWEL

7. "u" -> VOWEL

8. "y" -> VOWEL

Figure 4.1. Vowels.

In Figure 4.1 one sort (VOWEL) and six lexical functions, are defined. All functions have result
sort VOWEL. The derived regular grammar of this example is:

1We will allow context-free functions with a lexical sort as output sort as well as variables over lexical sorts.

Therefore, three different entities may be associated with a sort: (a) <L-LEX> denotes all lexical functions with

result sort L; (b) <L-VAR> denotes all variables of sort L (see Chapter 7); (c) <L> denotes all entities with result

sort L (i.e., lexical and context-free functions, and variables).

14

<VOWEL-LEX> = "a" I "e" I "i" I "o" I "u" I "y"

Given this definition, the following three tokens will be associated with the input sentence "aio":'"

(<VOWEL-LEX>, "a") ,

(<VOWEL-LEX>, "i"),

(<VOWEL-LEX>, " o ") .

. 3. Character classes
numerations of characters occur frequently in lexical definitions. They can be abbreviated by

sing character classes enclosed by the symbols [and J • A character class contains a list of zero

r more characters (which stand for themselves) or character ranges such as, for instance, [0-9]

s an abbreviation for the characters o, 1, 2, 3, 4, 5, 6, 7, a, and 9. A character range of the form

1 - c 2 should satisfy the following restrictions:

• c 1 and c 2 are both lower case letters and c 1 precedes c 2 in the alphabet, or

• ci and c 2 are both upper case letters and ci precedes c2 in the alphabet, or

• ci and c 2 are both digits and the numeric value of c 1 is smaller than that of c 2 , or

• c 1 and c 2 are both escaped non-printable characters (see below) and the character code of c 1

is smaller than that of c 2 •

Character classes may also be complemented. This is denoted by the prefix operator - . A com

~l emented character class accepts all characters not listed in it.

I In the derived regular grammar, character classes are replaced by an or of all characters in the

!class. See rule R3 in Chapter 8.

1. sorts VOWEL
2. 1exica1 syntax
3. [aeiouy] -> VOWEL

Figure 4.2. Shorter version of vowels using a character class.

The definition of vowels in Figure 4.2 is equivalent to the one in Figure 4.1, but has been ab

breviated by using a character class.

1. sorts VOWEL DIGIT OTHER

2. 1exica1 syntax
3. [aeiouy] -> VOWEL

4. [0-9] -> DIGIT

5. - [aeiouy0-9] -> OTHER

Figure 4.3. Vowels, digits and other characters.

Given the lexical syntax in Figure 4.3, the input sentence "3 aios", will be subdivided in the

following sequence of tokens:

(<DIGIT-LEX>, "3")

(<OTHER-LEX>, " ")
(<VOWEL-LEX>, "a")

(<VOWEL-LEX>, "i")
(<VOWEL-LEX>, "o")

(<OTHER-LEX>, "s")

Note that the space character occurring between the characters 3 and a as well as the character s

at the end of the input string are classified as <OTHER-LEX>. The proper treatment of layout char

acters is discussed in Section 4.4.

15

,,.._ - ." ~.- . : ___ _

Several characters have a special meaning in SDF and may cause problems when they ar ~
needed as ordinary characters in the definition. The backslash character (\) is used as escap
character for the quoting of special characters. Thus the sequence \ c should be used wheneve
special character c is needed as ordinary character in the definition. In character classes, the fol
lowing characters have a special meaning:

[begin of character class
end of character class
character range

\ escape character.
In literal strings, the following characters have a special meaning:

double quote
\ escape character.

The literal strings containing one double quote or one backslash are thus written as "\"" anc
"\ \ ", respectively.

In addition to this escape convention, abbreviations exist for some frequently used layout char
acters as well as for arbitrary, non-printable, characters:

\n newline character
\ r carriage return
\ t horizontal tabulation
\ddd a non-printable character with three digit (octal) character code ddd.

These abbreviations can be used both in character classes and in literal strings.

4.4. Layout

Strings matched by lexical functions with the predefined sort LAYOUT as result sort will b~
skipped. When a string is matched by both a LAYOUT function and (one or more) functions wit
another result sort, the interpretation as layout symbol is ignored; all other interpretations ar1
passed to the syntax analysis phase (see Section 4. 7).

1. sorts LETTER
2. 1exica1 syntax
3. [a-z] -> LETTER
4. " " -> LAYOUT
5. "\n" -> LAYOUT

Figure 4.4. Letters and spaces.

The lexical syntax in Figure 4.4 defines the sort LETTER and defines three functions: one witt
output sort LETTER and two with the (predefined) sort LAYOUT. The derived regular grammar is:

<LETTER-LEX>
<LAYOUT-LEX>

= "a" I ... I "z"

= " " I "\n"

The input string x y z will, initially, be subdivided in the following five tokens:

(<LETTER-LEX>, "x"),
(<LAYOUT-LEX>, " "),
(<LETTER-LEX>, "y"),
(<LAYOUT-LEX>, " "),
(<LETTER-LEX>, "z").

Since all layout tokens will be skipped, only the tokens of sort LETTER will remain. ~n other
words, the result of lexical analysis will consist of the following three tokens:

16

(<LETTER-LEX>, "x"),
(<LETTER-LEX>, "y"),
(<LETTER-LEX>, "z") .

Note that lines (4) and (5) in this example can be replaced by the line: [\nJ -> LAYOUT.

4.5. Repetition: * and +
In many cases, lexical tokens can only be described by patterns that exhibit a certain repetition.

Two postfix operators are available for this purpose. The operators * and + denote, respectively,

zero or more and one or more repetitions of the sort, literal, or character class to which they are

attached.
In the derived regular grammar, repetitions are mapped on the corresponding repetition opera

tors in the regular grammar. See rule R4 in Chapter 8.

1 . sorts LETTER LETTER-OR-DIGIT ID
2. 1exica1 syntax
3. [a-z] ->LETTER
4. [a-z 0-9] -> LETTER-OR-DIGIT
5 . LETTER LETTER-OR-DIGIT* -> ID

6. " " -> LAYOUT

Figure 4.5. Identifiers.

Figure 4.5. illustrates the definition of identifiers by means of the *-operator. The derived reg

ular grammar for this example is:

<LETTER-LEX> = "a" I ... I "z"

<:C.ETTER-OR-DIGIT-LEX> = "a" I ... I "z" I "0" I . . . I "9"

<ID-LEX> = <LETTER-LEX> <LETTER-OR-DIGIT-LEX>*

<LAYOUT-LEX> = " "

The input string "r2d2 2de", will be subdivided in the following three lexical tokens (after

elimination of the single layout token occurring in it):

(<ID-LEX>, "r2d2"),

(<LETTER-OR-DIGIT-LEX>, "2"),

(<ID-LEX>, "de ").

This subdivision may seem arbitrary, but is justified in the discussion of lexical ambiguities in the

next section.

A more concise definition of identifiers is given in Figure 4.6. Here, the *-operator is applied

directly to a character class. Note that, due to the elimination of the sort LETTER-OR-DIGIT, the

above input string "r2d2 2de" is now erroneous.

1.
2 .
3 .
4.

sorts ID
1exica1 syntax

[a-z] [a-z0-9] *
" "

-> ID
-> LAYOUT

Figure 4.6. More concise definition of identifiers.

4.6. Literals

In Chapter 5 we will see that all literal symbols such as keywords and operator symbols that ap

pear iii the context-free syntax are added to the derived regular grammar. We reserve the symbol

<LITERAL-LEX> for this purpose in the derived regular grammar. It will contain all literal symbols

in the context-free grammar as alternatives. See rule R5 in Chapter 8.

17

_ = - _- ;:- '.:: ·-~ ;; · · ,.. .

.- ~ " - - = -- -

A context-free syntax containing the literals "if", "then", "< ", ") " and "," will, for instance,
lead to the following definition of <LITERAL-LEX>:

<LITERAL-LEX> = "if" I "then"

4.7. Disambiguation of lexical syntax

I " <" I "l " I
'

We first illustrate ambiguities at the lexical level by means of Figure 4.5. Consider all ten possible
interpretations of the input string xy:

1. (<LETTER-LEX>, "x"), (<LETTER-LEX>, "y")
2 . (<LETTER-LEX>, "x"), (<LETTER-OR-DIGIT-LEX>, "y")
3 . (<LETTER-LEX>, "x"), (<ID-LEX>, "y")
4. (<LETTER-OR-DIGIT-LEX>, "x") , (<LETTER-LEX>, "y")
5. (<LETTER-OR-DIGIT-LEX>, "x"), (<LETTER-OR-DIGIT-LEX>, "y")
6 . (<LETTER-OR-DIGIT-LEX>, "x"), (<ID-LEX>, "y")
7 . (<ID-LEX>, "x"), (<LETTER-LEX>, "y")
8 . (<ID-LEX>, "x"), (<LETTER-OR-DIGIT-LEX>, "y")
9. (<ID-LEX>, "x"), (<ID-LEX>, "y")
1 0 . (<ID-LEX>, "xy")

Ambiguities are taken as seriously as possible in SDF, but it is clear that some automatic dis
ambiguation method is needed to reduce the vast amount of lexical ambiguities. Three disam
biguation rules are used:

• Prefer Longest Match,
• Prefer non-Layout, and
• Prefer Literals.
The Prefer Longest Match rule rejects all interpretations of the input string that are included in a

longer interpretation. In other words, the longest possible match is preferred. In Figure 4.5, only
the interpretation (<ID-LEX>, "xy") remains after application of this rule. Note that this is the
only possible interpretation in Figure 4.6.

After application of the Prefer Longest Match Rule, there may still be more than one interpreta
tion of the lexical token left. The rules Prefer non-Layout and Prefer Literals serve the purpose of
reducing the number of possibilities still further.

The Prefer non-Layout rule eliminates all interpretations of the lexical token as layout symbol.
When, after applying this rule, no interpretation remains, the next lexical token is taken from the
input sentence.

The Prefer Literals rule applies to literals such as keywords and operator symbols that are intro
duced in the context-free syntax. Ambiguities may arise because some literal strings may be equal
to lexemes defined in the lexical syntax or variables defined in the variables section (see Section
7 .2). The Prefer Literals rule gives precedence to interpretations of the input string as literals.
This applies, for instance, to identifiers defined in the lexical syntax that are also keywords de
fined in the context-free syntax. The Prefer Literals rule thus favours a so-called reserved word
strategy for keywords. (In Section 11.3 it will be shown how this restriction can be circum
vented.)

After applying the above disambiguation rules, all remaining interpretations of the input string
are passed to the syntactic analysis phase.

4.8. Rationale for the definition of lexical syntax
There are three major reasons for making a distinction between lexical syntax and context-free

syntax. First, the handling of ambiguities is different. At the lexical level myriads of
(uninteresting or unintended) ambiguities exist. One needs fixed disambiguation rules to eliminate
them (see Section 4.7). All possible interpretations that remain after application of these rules are
returned by the lexical scanner. We even allow lexical ambiguities within the same sort. How
ever, since lexemes are represented as linear strings of characters, the distinction between these

18

a biguities will be lost. At the context-free level, the resolution of ambiguities has to be defined

i the sp~cification. For instance, by giving the priority and associativity of operators in the con

t xt-free syntax (see Chapter 6). In general, all disambiguation rules have disadvantages if one

c nsiders the problem of combining several modules containing SDF definitions (see Chapter 9).

Second, the value constructed after recognition is different. At the lexical level, tokens are con

s ructed' consisting of a name and a string. At the context-free syntax level, abstract syntax trees

a e constructed. This difference has consequences for the association of semantics with SDF

finitions (see Chapter 9).

Finally, implementation techniques (and associated implementation trade-offs) are different for

1 xical syntax and for context-free syntax (see Chapter 10).

The limitations of our current disambiguation rules are discussed in Section 11.3 .

• CONTEXT-FREE SYNTAX

.1. Introduction

ontext-free syntax describes the concrete and abstract syntactic structure of sentences in a lan

uage. The definition of context-free syntax in an SDF definition consists of declarations of con

t xtjreefunctions.

In Section 5.2, the simplest form of context-free functions is described. In Section 5.3 syntactic

r petition is discussed. Chain and bracket functions are described in Section 5.4. Both lead to the

limination of certain nodes from abstract syntax trees. A rationale for the definition of context

ee syntax concludes this chapter.

Note that context-free functions may be followed by a list of attributes. In this chapter we will

nly describe the bracket attribute (Section 5.4). All other attributes have to do with priorities and

e described in Chapter 6 .

. 2. Context-free functions

In their simplest form, context-free functions are declared by giving their syntax (a list con

' sting of zero or more literal symbols and/or names of sorts) and their result sort.

We define the meaning of context-free functions by specifying their contribution to the derived

gular grammar, derived BNF grammar, derived signature, and the mapping from parse trees to

bstract syntax trees.

The contributions to the derived regular grammar, derived BNF grammar and derived signature

e now described in more detail:

• For each literal symbol "lit" appearing in a function definition in the context-free syntax

do the following:

(a) add" lit" as alternative of the predefined lexical non-terminal <LITERAL-LEX> in the

derived regular grammar;

(b) add "1 it" as terminal to the derived BNF grammar.

The lexical token <LITERAL-LEX, "lit"> is identified with the BNF terminal "lit".

• For each function declaration in the context-free syntax do the following:

(a) add the grammar rules obtained by exchanging the left-hand and right-hand side of the

function declarations to the derived BNF grammar;

(b) add function declarations to the derived signaturel: for each function some new name

(see below) is generated and the sorts of its arguments and of its result are obtained from

the sort names appearing in the original function definition.

ee rules RS, G2, GS and 86 in Chapter 8.

1 Except chain and bracket functions as we will see in Section 5.4.

19

The new names mentioned in (b) may be chosen arbitrarily as long as the same context-free

function always gets the same abstract name and no two different context-free functions obtain the

same abstract name. SDF does not prescribe any particular naming scheme in this case. In this

manual we generate abstract function names by concatenating (some of) the literals in the original

SDF function definition according to the following rules:

(1) consecutive literals in the new name are separated by hyphens;

(2) if there occur no literals in the function declaration, the name empty is used;

(3) if the name generated by rules (1)-(2) contains characters that are not alpha-numerics or hy

phens, it is surrounded by double quotes;

(4) all names should be unique: a name generated by rules (1)-(3) can be postfixed with a hy

phen and an arbitrary numeric string to make it unique.

Finally, we define the contribution of the context-free syntax to the mapping from parse trees to

abstract syntax trees. In principle, there is a one-to-one correspondence between function defini

tions in the context-free syntax and both rules in the derived BNF grammar and function defini

tions in the derived signaturel. This makes it straightforward to define the mapping from parse

trees over the derived BNF grammar to abstract syntax trees over the derived signature. The

mapping is recursively defined by giving the transformation for a parse tree P to an abstract syn

tax tree:
• If the root of P is labeled with a non-terminal and has a single child C whose root is labeled

with lexical non-terminal <L- LEX>, with L -::!: LITERAL, the result of transforming P is an

abstract syntax tree whose root is labeled with the lexical constructor function for sort L (see

Section 4.2) and whose single child is the result of transforming C.

• Otherwise, the root of P is labeled with a non-terminal and P is transformed as follows:

(a) Recursively transform all children of the root of P that are labeled with a non-terminal.

This gives a list A of abstract syntax trees2.

(b) The root of P corresponds to some rule R in the derived BNF grammar and som ~ func

tion definition Fin the derived signature. P is now transformed into an abstract syntax tree

consisting of the function defined in F with the elements of A as children.

See rules Ml, M2 and MS in Chapter 8.

When the mapping from parse tree to abstract syntax tree is used to associate an abstract syntax

tree with a string, one should be aware of the fact that more than one parse tree may exist for a

given string, and that more than one abstract syntax tree may thus be associated with it. This

problem is discussed in Section 6.

1. sorts NAT COO RD CMND PROGRAM
2 . lexical syntax
3 . [0 - 9]+ -> NAT
4 . [\n] -> LAYOUT
5 . context-free syntax
6 . " (" NAT " " NAT ") " - > COO RD

'
7 . " l ine " " to " COO RD - > CMND
8 . "move " " to " CO ORD - > CMND
9 . CMND PROGRAM -> PROGRAM
10 . - > PROGRAM

Figure 5.1. Simple drawing language.

1 Exceptions to this general rule will be introduced in the description of lists (Section 5.3), and chain and bracket

functions (Section 5.4).
2Note that all children that are labeled with a terminal are eliminated and do not appear in the abstract syntax tree.

20

Figure 5.1 describes a simple drawing language. A drawing program consists of a sequence of

zero or more commands. There are two commands: one for moving the pen to a position in the

plane, and one for drawing a line from the current position to a new position. A position is de

noted by a pair of numbers. The derived regular grammar of this SDF definition is:

(3] <NAT-LEX> (" 0" I ... I "9") +

[4] <LAYOUT-LEX> " " I "\n"
[6 , 7 , 8] <LITERAL-LEX> "(" I "," I ")" I "line" I " to " I "move "

The derived BNF grammar is:

[3] <NAT> <NAT-LEX>

[6] <COORD> : := " (" <NAT> " .. <NAT> ")"
'

[7] <CMND> : : = "line" " to " <COO RD>

[8] <CMND> . · = "move" "to" <COO RD>

[9] <PROGRAM> <CMND> <PROGRAM>

[10] <PROGRAM> : := E

The derived signature is:

sorts
[l] CHAR NAT COORD CMND PROGRAM

[3]

[6]

[7]
[8]

[9]
[10]

functions
a
b
. . . Declarations
nat CHAR+
"(-,-) .. NAT #
line COO RD
move COO RD
empty-1 CMND #
empty-2

-> CHAR
-> CHAR

of constants for all characters in the alphabet ...
-> NAT

NAT -> COORD
-> CMND
-> CMND

PROGRAM -> PROGRAM
-> PROGRAM

In this signature we have introduced new names for the functions in the signature using the name

generation rules given previously. Note that a certain freedom exists in the choice of names to be

generated. For instance, the names move, move-to and to can be generated for the function

corresponding to the move command. Lines 9 and 10 illustrate the use of the name empty for

functions without syntax. Also note the use of numeric postfixes to make the name of each func

tion unique.

Using the derived BNF grammar and the mapping from parse trees to abstract syntax trees de

fined above, the parse trees and corresponding abstract syntax trees for the drawing language

programs line to (15, 2) and line to (15,2) move to (3, 4) line to (5 , 6) are

shown in Figures 5.2 and 5.3.

In Figure 5.1 we have quoted al/ literals occurring in the definition of context-free functions. As

an abbreviation, these quotes may be omitted when the literal begins with a lower case letter and

consists only of letters and digits. To avoid confusion between unquoted literals and sorts, we

require that sort names begin with an upper case letter. Line 7, for instance, can be abbreviated to:

7 . line to COORD -> COORD .

We will always use this convention in all examples (also see Appendix A).

5.3. Repetition: *and+

The context-free syntax in Figure 5.1 explicitly defines a drawing program as a recursively de

fined sequence of commands. The resulting abstract syntax trees encode the list structure by

means of a fixed-arity list constructor (empty-1 in the example). There are several problems with

this approach:

21

·~ : . :;'. - - _ : _ _:

~<PROGRAM>""
empty-1

/\
line empty-2

I
<PROGRAM>

l-\
<NAT> nat nat

I
CHAR+

/\

I
CHAR+

I
I

<NATlLEX>

line to (1 5 2 1 5 2

(a) (b)

Figure 5.2. (a) Parse tree, and (b) corresponding abstract syntax tree.

<PROGRAM> empty-1

~

"' empty-1

"
<PROGRAM>

~

emr~
<CMND> <PROGRAM> line move line empt y-2

<PROGRAM>

I"" <CMND>

••• line to (3,4) line to (5 6) £ (15, 2) move to 1 5 2 3 4 5 6

(a) (b)

Figure 5.3. (a) Parse tree, and (b) corresponding abstract syntax tree.

• The SDF definition does not express the repetitive nature of the syntax in a clear way.

• The resulting abstract syntax trees are deeply nested and have a bias towards the left or the

right, depending on the form of the SDF definition.

When attempting to define lists with separators using this style, the poor readability of the result

ing definition becomes even more apparent. Therefore, SDF supports list constructs separately.

They can have the following two forms:

• Lists without separators of the form SORT* or SORT+ indicating respectively zero or more

and one or more repetitions of sort SORT.

• Lists with separators of the form {SORT sep J ®, where ® is either * or +, indicating re

spectively zero or more or one or more repetitions of sort SORT separated by the literal sep .

22

l
ists may only be used in the left-hand side of a function definition (and may thus not appear as

e result of a function).
In this manual, we will frequently write { SORT sep } ® to denote all of the above list constructs,

here ® is either * or + and sep may be the empty string. The case of lists without separators

Jrm be treated as the special case that sep is equal to the empty string.

f
The effect of list constructs on the derived grammar and signature is as follows. For each list

onstruct of the form {SORT s ep } ®that appears in a function declaration, define a non-terminal

ith the name <SORT-in-sep-list> and add the rule

~
<SORT- in-sep-l i st> : : = < SORT>.

ach , occ~rrence of a list c?nstru~t in the SDF definition is tran~lated into the corresponding list

onstruct m the grammar, i.e., a hst of the form {SORT sep } ® is translated to {<SORT-in- sep

ist> sep } ®.1
The definition of the derived signature is also affected. In all function definitions, occurrences

f list constructs of the form {SORT sep} ® are translated to corresponding lists of the element

ort in the signature, i.e. to { SORT sep} ®.

The mapping from parse trees to abstract syntax trees is extended as follows. Let P be a parse

ee whose root is labeled with {SORT sep} ®. There are two cases:

(a) s ep is empty: let Ci, ... ,Ck be the k children of the root of P; or

(b) sep is not empty, the root of P has 2k-1 children and let Ci, ... ,Ck be the odd-numbered

children (i.e., the children corresponding to list elements and not to separators).

The result of transforming P is an abstract syntax tree whose root is labeled with {SORT sep } ®

~ nd with the transformed versions of Ci, ... ,Ck as children. Nodes in the parse tree that are la

t eled with <SORT-in-sep-lis t > are removed and do not appear in the abstract syntax tree. The

j ffects of list constructs are summarized in rules G4, GS, S6, M3, M7 in Chapter 8.

sorts NAT COORD CMND PROGRAM
p 1exica1 syntax

f (0-9] + -> NAT

t:
[\n] -> SPACE

context-free syntax
"(" NAT " " NAT ") .. -> COO RD ,
line t o COO RD -> CMND

3 • mov e to COO RD - > CMND

~ . CMND* - > PROGRAM

Figure 5.4. Use of a list operation in definition of the drawing language.

The use of list constructs in the definition of the drawing language is shown in Figure 5.4.

Jines 9 and 10 of Figure 5.1 have been replaced by the single line 9. The derived regular gram-

ilnar is not affected by this modification. The derived BNF grammar becomes:

3] <NAT> :: = <NAT-LEX>

6) <COORD> · · = "(" <NAT> "," <NAT> ")"

7] <CMND> "lin e" "to " <COORD>

8) <CMND> " move" " to " <COORD>

10ne may wonder why we use this, seemingly too complex, translation scheme. A much simpler method would

e to map list constructs directly on the corresponding construct in the grammar, i.e., { SORT sep I® in a function

efinition is mapped on I SORT s e p } ® in the derived grammar. However, in Chapter 7 we will see that this simple

ethod cannot be extended to the case that the SDF definition contains definitions of variables.

23

· ~ : :' ~ - - = ~ --

[9] <PROGRAM> :: = <CMND-in--list>*
[9] <CMND-in--list> ::= <CMND>

The derived signature becomes:

sorts
[1] C'IAR NAT COORD CMND PROGRAM

funct i ons
a
b

-> CHAR
-> CHAR

. .. Decl a rations of const ants for al l characters i n t he alphabet . ..

[3] nat CHAR+ -> NAT
[6] "(-, -) " NAT # NAT - > COO RD
[7] line COO RD -> CMND
[8] move COO RD -> CMND
[9] empt y CMND* -> PROGRAM

Figure 5.5 shows the parse tree and corresponding abstract syntax for the same sentence as use

in Figure 5.3. Note, how the list construct is represented by a node with a variable number o

children.

<PROlRAM>

<CMND-in- - l ist>*

emr
CMND*

<CMND-i ~CMN D -inL li s t > <~- lis t >
I I I

<CMND> <CMND> <CMND> line move l ine

•• lin e to (15 , 2) move to (3, 4) line to (5 , 6) ••• 1 5 2 3 4 5 6

(a) (b)

Figure 5.5. (a) Parse tree and (b) abstract syntax tree containing a * operator.

In Figure 5.6 the use of a list constructor with a separator is illustrated. The example shows

simple form of variable declarations in a Pascal-like language. A declaration consists of the key

word decl , one or more identifiers separated by commas, followed by a colon and a type.

1. sorts ID DECL TYPE
2 . lexical syntax
3 . [a-z] + -> ID

4. " " -> LAYOUT
5. context -free syntax
6. decl { ID " '" } + "·" TYPE -> DECL
7 . integer -> TYPE
8. real -> TYPE

Figure 5.6. Declarations.

24

The derived regular grammar is:

[3] <ID-LEX>
[4] <LAYOUT-LEX>
[6 , 7 , 8 J <LITERAL-LEX>

The derived BNF grammar is:

("a"
.. "
"decl"

.. . I

" " '

[3] <ID> : : = <ID-LEX>

"z") +

" . " I "integer" I "real"

[6] <DECL> :: -= "dee!" {<ID-in-,-list> ",")+ " " " <TYPE>

[6] <ID-in-,-list>:: = <ID>
[7] <TYPE> : : = "integer"
[8 J <TYPE> "real"

The derived signature is:

[l]
sorts

CHAR ID DECL TYPE
f unctions

... Declarations of constants for all characters in the alphabet ...

[3]
[6 J
[7]
[8 J

id CHAR+ -> ID
dee! {ID ",")+ #TYPE
integer:
rea l

-> DECL
-> TYPE
-> TYPE

Figure 5. 7 shows the parse tree and corresponding abstract syntax tree for the sentence

dee! ab, c, xyz : real.

l\
~<ID-in-,-list> <TYPE> {ID ", ") + real

<ID-inf ,-li•t> <ID-in-[-list>

<ID> <ID>

<IDlLEX> <ID-lEX>

/\ I
dee! a b c x y z

id id id

I I I
C/A\+

CHAR+ CHAR+

I /I\
real a b c x y

(a) (b)

Figure 5.7. (a) Parse tree and (b) corresponding abstract syntax tree.

5.4. Chain and bracket functions

z

Abstract syntax trees form a concise way of representing the structure of sentences. Further ab

breviations are possible, however, by eliminating certain classes of nodes from the tree. SDF de

fines abbreviations for chain and bracket functions.

A chain function has a definition of one of the following forms:

la .

lb.

SMALL

{SMALL sep) ®

-> BI G

-> BIG

25

where SMALL and BIG are previously defined sorts and sep is a literal. A chainfunction on,ly es

tablishes an inclusion relation between two sorts. The above function declarations will lead to the

rules

[la] <BIG> · ·= <SMALL>

[lb] <BIG> {<SMALL-in-sep-list> sep}<8>

<SMALL-in-sep-list> ··=<SMALL>

in the derived BNF grammar and to the function declarations

[la] empty : SMALL -> BIG

[lb] empty : {SMALL sep}@ -> BIG

in the derived signature. According to the rules of abstract syntax tree formation given earlier, a
tree of sort {SMALL sep }<8> cannot occur directly at a position where a tree of sort BIG is required,

but will have to be embedded in an application of the function empty. Such nodes corresponding

to chain functions are undesirable for two reasons:
• When the abstract syntax tree is used by a syntax-directed editor, these nodes may be vis

ited during a walk through the tree. However, since no syntax is associated with chain
functions, no textual distinction can be made between a visit to the node itself or a visit to
either its parent or its child.

• When semantic rules are associated with abstract syntax trees, extra rules are needed for the
processing of chain functions, but in general the concrete form of such rules will be am
biguous.

In SDF, the nodes corresponding to chain functions are therefore eliminated from abstract syntax
trees in the following way:

o In the derived signature subsort declarations rather than ordinary function declarations are

generated for each chain function.
• In the mapping from parse tree to abstract syntax tree the result of transforming a parse tree

P whose root node corresponds to a chain function is defined as the result of transforming
the single child of the root of P. The resulting tree is correct due to the subsort declaration
generated in the previous step.

This leads to rules S3, S6 and M4 in Chapter 8.
In the sequel, it will be convenient to have a parent-child relationship in parse trees that disre

gards nodes corresponding to chain rules. Therefore, we will use "child" (i.e., child between
double quotes) to mean either an immediate child or a child that can be reached via one or more

chain rules.
A bracket function has a definition of the following form:

1 . " open" S "close" -> S

where "open" and "close" are arbitrary, non-empty, literals acting as opening and closing

brackets for the sort s. Typical examples are the parentheses " (" and ") " in arithmetic expres

sions and the delimiters "begin" and "end" in programs. Here again, application of the standard

definitions leads to the appearance of additional nodes in the abstract syntax tree corresponding to
bracket functions. In most cases, brackets are only introduced for grouping and disambiguation

(see Chapter 6), but have no further meaning. Therefore, SDF provides the facility for deciaring

that a certain function is used only for bracketing by attaching the attribute bracket to it. More
precisely, by declaring the above function as

1 . " open" S "close" -> s {bracket}

the following effect is achieved:

26

• In the derived signature no function declaration is generated for functions with the attribute

bracket.

In the mapping from parse tree to abstract syntax tree the result of transforming a parse tree

P whose root corresponds to a bracket function is defined as the result of transforming the

second child of the root of P, i.e., the only child labeled with a non-terminal. The resulting

tree is correct since the argument and result sorts of a bracket function are equal.

T is leads to rules 86 and MS in Chapter 8.

$ince brackets are necessary for overruling the priority and associativity of functions (see

Chapter 6), we require that suitable bracket functions are declared for the argument and result

st ts of
all functions occurring in priority declarations or group associativity declarations, and

all functions having one of the attributes 1eft, right, assoc or non-assoc.

I this way we guarantee that every abstract tree t over the derived signature has a corresponding

s ·ng representations such that a.bs{s) = {t} (cf. Figure 2.3).

F ure 5.8 illustrates the concepts of chain functions and bracket functions. A simple pro

g mming language is defined with identifiers and natural numbers as lexical sorts, and several

la guage constructs which can be combined into programs. The function in line 8 defines begin

e d brackets for lists of statements. The function in line 9 is a chain function from { STAT ";"} *

to SERIES. The functions in lines 13 and 14 are chain functions that convert identifiers and num

b rs to expressions. The derived regular grammar for Figure 5.8 is:

[] <ID-LEX> ("a" I . . . I "z") +

[] <NAT-LEX> ("0" I ... I "9") +

[] <LAYOUT-LEX> " " I "\t" I "\n"

[,8,9,1 0 ,11,l2]
<LITERAL-LEX> "program" I "begin" I "end" I ";" I ":=" I "if"

"then" I "else" I "fi" I "until" I "do" I "ad"

T e derived BNF grammar is:

[f J
[1]

[!] []

[]

[]

<ID> :: =<ID-LEX>

<NAT> ::=<NAT-LEX>

<PROGRAM> : : = "program" <SERIES>

<SERIES> :: = "begin" <SERIES> "end"

<SERIES> ··= { <STAT-in-;-list> ";" }*

<STAT-in-;-list>::= <STAT>

<STAT> ··=<ID>":=" <EXP> [0)

[11)

[12)
<STAT> ::="if" <EXP> "then" <SERIES> "else" <SERIES> "fi"

<STAT> ··="until" <EXP> "do" <SERIES> "od"

[3] <EXP> :: = <ID>
[4) <EXP> <NAT>

T e derived signature is:

sorts
CHAR ID NAT PROGRAM SERIES STAT EXP

subsorts
] {STAT ";"}* < SERIES

3) ID < EXP
4) NAT < EXP

functions
... Declarations of constants for

[]

[]

[I)
[0]

[ii)

[i2]

id CHAR+
nat CHAR+
program SERIES
": =" ID # EXP
if EXP # SERIES # SERIES

until EXP # SERIES

27

all characters
-> ID
-> NAT
-> PROGRAM
-> STAT
-> STAT
-> STAT

-_ ; : _.

in the alphabet ...

1.
2.
3.
4.
5.
6 .
7.

8 .
9 .
10.
11.
12.
13.
14.

1.
2 .
3 .

4.
5 .
6.
7.

8 .

- - ~ '=" : ;; ~ --=---

sorts ID NAT PROGRAM STAT SERIES EXP
1exica1 syntax

[a-z] + -> ID

[0-9]+ -> NAT
[\t \n] -> LAYOUT

context-free syntax
program SERIES -> PROGRAM

begin SERIES end -> SERIES {bracket}
{ STAT "." }* -> SERIES

'
ID ": = " EXP -> STAT
if EXP then SERIES else SERIES fi -> STAT
until EXP do SERIES od -> STAT
ID -> EXP
NAT -> EXP

Figure 5.8. A simple programming language.

program
begin

if x t hen
x · = 33

else ~
if

program

I
{STAT ";"} *_

": = "

~~ /\
begin

x : = 44

end id {STAT ";"}* {STAT ";"}* id id
fi;

I I I I I y : = x

end CHAR+ ": = " ": = " CHAR+ CHAR+

I /\ /\ I
x id nat id nat y

(a)

I I I I
CHAR+ CHAR+ CHAR+ CHAR+

I I\ I I\
x 3 3 x 4 4

(b)

Figure 5.9. (a) Program and (b) corresponding abstract syntax tree.

sorts E
1exica1

[0-9] +
[\ n]

syntax
- > E

-> LAYOUT
context - free syntax

E " + " E -> E
E " *" E -> E
"(" E ") " -> E {bracket }

Figure 6.1. Ambiguous definition of simple arithmetic expressions

28

I
x

-----<E>

/ <E>" \
<E> <E> <E>

I I I
<E-LEX> <E-LEX> <E-LEX>

I I I
CHAR+

I
CHAR+

I
CHAR+

I
1 + 2 * 3 1 2 3

(a) (b)

<E>~

I / ... " /+'-;··"
<E> <E> <E>

I I I
e e e

I I I
<E-LEX> <E-LEX> <E-LEX>

I I I
CHAR+

I
CHAR+

I
CHAR+

I
1 + 2 * 3 1 2 3

(c) (d)

Figure 6.2 (a,c) Parse trees and (b,d) corresponding abstract syntax trees for 1+2*3.

-------- <E>
"*"

/ <E>

I
<E> "+"

/ "
/ " <E> <E> <E>

l
e e

I I I I I
<E-LEX> <E-LEX> <E-LEX> CHAR+ CHAR+ CHAR+

I I I I I I
1 + 2 * 3 1 2 3

(a) (b)

Figure 6.3. (a) Parse tree and (b) abstract syntax tree for (1+2) *3.

6. PRIORITIES

6.1. Motivation

The derived BNF grammar of an SDF definition may be ambiguous. As a consequence, there

may be sentences in the language defined by the derived grammar which have more than one

parse tree (and thus more than one abstract syntax tree). Consider the SDF definition of arithmetic

expressions with addition and multiplication in Figure 6.1. An ambiguous sentence in this lan

guage is, for instance, 1+2*3, with parses < 1 +2) * 3 and 1 + (2 * 3) . The associated trees are shown

29

- , ,.. _ - . ,, ~. - .: __ --

in Figure 6.2. The ambiguity in this example is clearly caused by the lack of a definition of the
priority (and, in other sentences, associativity) of the operators+ and * . The parse tree in Figure
6.2(a) should be rejected when, as usual, * has a higher priority than +. In Figure 6.3 the trees
for the sentence (1+2 > * 3 are shown. It is instructive to compare the (identical) abstract syntax
trees in Figures 6.2(b) and in 6.3(b). The former has to be rejected because the corresponding
parse tree contains a priority conflict between + and *, whereas the latter is acceptable. This
shows that parse trees rather than abstract syntax trees should be used for disambiguation .

There are at least two general methods to remove ambiguities from a context-free grammar. The
first method is to introduce new non-terminals encoding the priority and associativity of the oper
ator symbols in the grammar. The new non-terminals prevent certain derivations that were possi
ble in the original grammar and made it ambiguous. This method has the disadvantage that the
definition of priorities and associativities is implicit and that additional measures are necessary to
prevent the new non-terminals from affecting the abstract syntax. The second method is to add
explicit definitions of priority and associativity to the grammar. This latter method is adopted in
SDF.

6.2. Priority and ~iativity

SDF provides three mechanisms for the definition of priority and associativity of functions in the
context-free syntax (and thus of rules in the derived BNF grammar):

• relative priorities of functions,
• associativity of functions, and
• associativity of groups of functions.
The relative priority of functions is established by declarations of the form

f>g

where f and g are complete function declarations. Notice that we do not assign absolute priority
levels to functions, but establish only their priority relative to other ones. By taking the transitive
closure of the priority declarations given in the SDF definition, a strict, i.e., non-reflexive, partial
order on the set of context-free functions should be obtainable.

Functions with a higher priority bind more strongly and the corresponding nodes in the parse
tree should thus appear at lower levels in the tree than nodes corresponding to functions with
lower priorities. Chain and bracket functions may not appear in priority declarations. Priorities are
declared in a separate section in the context-free syntax. Lists of function declarations serve as
abbreviation, i.e.,/> {g, h} is an abbreviation for f > g, f >h.

Associativity attributes can be attached to binary functions of the form s op s - > s , where op

is a literal or empty. Without associativity attributes, nested occurrences of such functions imme
diately lead to ambiguities, as is shown by the sentence

S- string op S-string op S-string,

where s-string is a sentence of sort s . The particular associativity associated with op determines
the intended parse of such sentences. When a node corresponding to a function/has a first or last
"child" (i.e. , disregarding any intermediate chain function nodes) corresponding to a function g,

we call these occurrences off and g related. Associativity attributes define how to accept or reject
parse trees containing related occurrences of a single function. The following associativity at
tributes can be attached to a functionf

1 e ft related occurrences off associate from left to right;
right related occurrences of/associate from right to left;
as so c related occurrences off associate from left to right;
non - ass o c related occurrences off are not allowed.

30

rom a syntactic point of view there is no difference between left and assoc. However, the

ttribute assoc in the SDF definition is translated into an assoc attribute in the derived signa

ure (see rule S6 in Chapter 8). Therefore, assoc also has semantic consequences.

Group associativity attributes define how to accept or reject parse trees containing related occur

ences of different functions with the same priority. Group associativity is defined by prefixing a

ist of function declarations in a priority declaration with one of the following attributes:

1 e ft related occurrences off and g associate from left to right;

right related occurrences off and g associate from right to left;

non - a s s o c related occurrences off and g are not allowed,

here f and g are different functions appearing in the list.

j The simplest application of priority and associativity declarations is elimination of parse trees

that contain one of the following conflicts:

• a parent has a "child" with a lower priority than the parent itself;

• a parent has a first or last "child" that is in conflict with the associativity of parent and

"child".

Three examples will illustrate this use of priority and associativity. One way of making the ex

ample in Figure 6.1 unambiguous is shown in Figure 6.4. The choices made in this definition are:

•
•
•

1.
2 .

3 .

4 .
5 .
6 .

7 .
8 .

9 .
10 .

1.

2 .
3 .
4.

5 .
6 .
7.
8 .

9 .
1 0 .
11.

12 .

13 .

* has a higher priority than +. The only interpretation of 1+2 *3 thus becomes 1+ (2*3) .

+ is left-associative. The only interpretation of 1+2+3 is thus < 1+2 l +3 .

* is also left-associative .

sorts E
lexical

[0-9) +

[\n]

syntax
-> E

context-free
E " + " E

E " * " E
" (,. . E ") "

priorities

- > LAYOUT

syntax
-> E {left }
-> E {left}
-> E {bracket)

E "*" E -> E > E " + " E - > E

Figure 6.4. Unambiguous version of example in Figure 6.1.

sorts E
lexical syntax

[0 - 9)+ - > E

[\ n] - > LAYOUT

context-free
E "+" E
E " - " E

E " * " E

E " / " E

E " " " E

"(" E ")"

priorities

syntax
- > E {left}
- > E {non-assoc}
-> E {left}
- > E {non- assoc}
- > E {right }
-> E {bracket}

E " " " E -> E > {non- assoc: E " *" E -> E, E " / " E -> E} >
{left: E " +" E -> E, E "-" E - > E }

Figure 6.5. More elaborate arithmetic expressions.

31

----- -

A more elaborate version of arithmetic expressions is given in Figure 6.5. The operators in

these expressions have the following properties:

• " has the highest priority and associates from right to left.

• * and I are next in the priority ordering, * is left-associative, I is non-associative, and *

and I form a non-associative group.

• +and - have the lowest priority,+ is left-associative, - is non-associative, and+ and - form
a left-associative group.

This leads to the following association of parses with sentences:
Sentence Parse

l "2"3 l" (2"3)

1"2 *3 (l "2) *3

1*2*2 (1*2)*3

1/ 2/3 none

1*2 / 3 none

1-2-3 none

1+2+3 (1+2)+3

1-2+3 (1-2)+3

1+2-3 (1+2)-3

The solution of the classical dangling else problem is shown in Figure 6.6. The priority decla

ration selects the parses in which else-parts are associated with the nearest possible preceding

if-part. The sentence if x then if y then stat else stat will thus be parsed as if x

then begin if y then stat else stat end.

1. sorts ID STAT
2 . lexical syntax
3 . [a-z]+
4. [\n]

5. context-free syntax
6. if ID then STAT
7. if ID then STAT else
8. stat
9 . begin STAT end
10 . priorities

-> ID

-> LAYOUT

-> STAT
STAT -> STAT

-> STAT
-> STAT {bracket}

11. if ID then STAT else STAT - > STAT > if ID then STAT -> STAT

Figure 6.6. Solution to the dangling else problem.

The examples in Figures 6.1, 6.4, 6.5 and 6.6 illustrate how the definition of priority and asso

ciativity can be used to reject certain parse trees of a sentence. There are, however, SDF defini

tions for which this form of disambiguation is not sufficient since they generate sentences that

have more than one conflict-free parse tree. How can in such cases the set of remaining parse

trees be reduced still further? Our solution is to extend the priority ordering >on functions to a

priority ordering >>on parse trees and to reject a parse tree if there is another parse tree with a

higher priority. The relation P1 >> P2 holds between two parse trees P1 and P2 if

• P l is not equal to P2, and

o if, for any/, P1 contains more nodes corresponding to /than P2, then P2 contains more

nodes corresponding to some function g with g </than P1.

(This also covers the cases that there are no nodes corresponding to fin P2 or no nodes

corresponding tog in P1).

The ordering >> is a variant of the so-called multiset ordering [DM79,JL82].

32

All parse trees:

Select parse trees without conflicts

Select "largest" parse trees

Selected parse trees:

Figure 6.7. Selection of parse trees for a given sentence.

The parse trees for a given sentence are thus selected in two phases. First, the parse trees con

taining conflicts are removed. Next, all parse trees are removed that are smaller than another re

mainmg parse tree. Note that whereas the first phase may invalidate a sentence by blocking all its

parse trees, the second phase always selects at least one parse tree, so a sentence that passes the

first selection phase also passes the second one. The total selection process is illustrated in Figure

6.7.
We illustrate this approach with the example in Figure 6.8 in which arithmetic expressions with

the operators + and * are defined over natural and real numbers. In this example, the sorts N and

R stand for, respectively, the natural and real numbers. On both sorts, the operators + and * are

defined. Finally, there is a chain function embedding N in R. Ambiguities may arise in this exam

ple since one can sometimes choose between using an operator defined on N together with a con

version from N to R, or using the operator defined on R directly. Therefore, priorities are defined

such that

• * on N has a higher priority than * on R;

• + on N has a higher priority than + on R;

• * always has a higher priority than + irrespective of the sort involved (as usual).

33

1.

2.
3 .
4.
5 .
6 .
7.

8 .

9.
1 0 .
11.

1 2 .

13 .
14.

~ = ':" : . s ~ --=- - -

sorts D N R
lexical

[0-9] +
D

syntax
-> D
-> N

D "." D -> R
[\n] -> LAYOUT

context-free syntax
N "+" N -> N {left}
N " *" N -> N {left}
N

R "+" R

R " * " R

priorities

-> R
-> R {left}
-> R {left}

N " *" N -> N > R "*" R -> R > N "+" N -> N > R "+" R -> R

Figure 6.8. Arithmetic expressions for natural and real numbers.

<R>~

<R>

I
<R> <R> <R> <N>

<R>

I
<N>

I
I " <N> <N>

I I
<R>

I
I

<N>

I
I

<N>

I
I

<N>

I
<R>

I
<R-LEX> <N-LEX> <N-LEX> <R-LEX> <N-LEX> <N-LEX> <R-LEX> <N-LEX> <N-LEX>

If\
1. 5 +

I
2

(a)

*
I If\ I I If\ I I
3 1.5 + 2 * 3 1.5 + 2 * 3

(b) (c)

Figure 6.9. The three parse trees of 1 . 5 + 2 * 3.

These priorities select parses with the ordinary priority of + and * and a preference for fu11;ctions
on N. Figure 6.9 shows the three possible parse trees for the sentence 1. 5+2* 3. The priorities

from the example are now applied as follows. Tree (a) contains a conflict since a node corre

sponding to *on R has as child a node corresponding to+ on R. Trees (b) and (c) are conflict
free. Comparing these two trees, one sees that (c) >> (b) holds. The only function that occurs
more often in (c) than in (b) is* on N: it occurs once in (c) but not in (b).This is compensated for

by the fact that* on R (which has a lower priority) appears once in (b) but not in (c).Hence, tree
(c) is the (only) parse tree associated with the sentence 1 . 5+2*3.

As a final example, we show in Figure 6.10 how the interaction between general context-free

functions and special case functions can be described by means of priorities. The example origi

nates from [AW75] and concerns expressions describing subscripts and superscripts in the type
setting language EQN. The crucial point is that, for typesetting reasons, we want to treat a sub

script followed by a superscript in a special way. Therefore, the special case "E s ub E sup E" is

introduced in line 5, which should have priority over a combination of the functions defining sub

and s up in lines 3 and 4.

34

I

sorts E
context-free

E s ub E
E s up E
E sub E s up E

syntax
- > E {left}
-> E {left}
-> E

' " {" E "}" -> E {bracket}
a -> E

I priorities
E s ub E s up E -> E > {left: E sub E -> E, E sup E -> E}

Figure 6.10. Expressions for subscripts and superscripts.

/ E>)>\ ;(<E\
/JT""-

<E> <E> <E>

I I I
a s ub a s up a

<E> <E> <E>

I I I
a sub a sup a

<E> <E> <E>

I I I
a sub a sup a

(a) (b) (c)

Figure 6.11. The three parse trees of a sub a sup a.

Figure 6.11 shows the three parse trees of the sentence a sub a sup a. The parse tree in
J.11 (a) has to be rejected since it contains a conflict (caused by left group associativity). From the

wo remaining trees, the one in 6.1 l(c) is selected since it is larger (in the multiset ordering) than

he one in 6.1 l(b).

'i/. VARIABLES IN SDF DEFINITIONS

· .1. Motivation
he lexical and context-free syntax sections in an SDF definition completely define which input

entences are legal and how they should be mapped onto (one or more) abstract syntax trees.

hese input sentences are constant and completely fixed; there is no systematic way to extend or
modify them. There are, however, cases in which the need arises for incomplete or parameterized

input sentences. Two important cases are:
• If one associates semantic rules with SDF functions (see Chapter 9), it is necessary to use

variables in these rules. For instance, when defining the rules for multiplication on natural

numbers, one needs rules of the form x * (y+ 1) = x *y +x, where x and y are variables over

the sort of natural numbers.

• During syntax-directed editing, the program text under construction is most likely to be in

complete. The text contains "holes" that still have to be filled in with strings of a certain

type. It is desirable to be able to determine the syntactic correctness of such incomplete pro

grams.
To handle such cases, SDF allows the definition of variables.

35

~ · ~ - - " ~ -=---

7.2. Definition of variables
Variables are declared in the fifth (and last) section of an SDF definition. The variables sectior

consists of a list of declarations of variables together with their sort. Each declaration defines •

naming scheme for variables and may thus declare an unlimited number of variables. A namin!

scheme is an arbitrary regular expression like the ones allowed in a lexical function declaration

except that we do not allow sorts in it. The sort of a variable is a basic sort that may be containec

in a list construct with or without separators.

We first describe the overall effect of variables on the derived BNF grammar, derived signature

and mapping from parse trees to abstract syntax trees. Next, we discuss the treatment of variable•

of the predefined sort CHAR.

Variables lead to additional rules in the derived regular grammar and the derived BNF grammar

For each variable declaration of the form

naming-scheme -> SORT,

the rule

<SORT-VAR> = naming-scheme

is added to the derived regular grammar. Note that SORT may be either a basic sort or a list sort

Now there are two cases:

(a) If the declaration has the form naming- s c heme -> SORT with SORT a basic sort, add th(

rule

<SORT> : : = <SORT-VAR>

to the derived BNF grammar;

(b) If the declaration has the form naming-scheme - > {SORT sep} ®, the rule

1.

2 .

3 .
4 .

5 .
6 .
7 .

8 .
9 .
10 .
11 .
1 2 .

13.

<SORT- i n-sep- list> : : = <{SORT sep)@- VAR>

is added to the derived BNF grammar. In principle, lists declared as {SORT sep J ® ma)

contain variables of type SORT, {SORT sep J *, or {SORT sep J + as elements . A subth

point arises when a list declared as {SORT sep J + contains only variables of type { so R~

sep l *·In that case, the list may become empty after substitution, and this is clearly incor

rect in view of the type of the original list. Therefore, we impose the restriction that a vari

able of type {SORT s ep l * may only occur in a list of type {SORT sep J + if that list contaim

at least one other element of type SORT or {SORT sep J +. This restriction is not encoded ir

the derived BNF grammar, but it forms an additional constraint on it.

sorts ID DECL TYPE
lexical syntax

[a-z]+ -> ID

" " - > LAYOUT
context-free synta x

de cl { ID " '" } + "." TYPE -> DECL
integer - > TYPE
real -> TYPE

variables
I d -> ID

Type -> TYPE
IdsO -> {ID " ' " } *
Ids l - > {ID n In }+

Figure 7.1. Declarations extended with variables.

36

<TYPE>

<ID-in-,-list> <ID-in-,-list><ID-in-,-list>

I I
<ID> <ID>

I I
<ID-LEX> <ID-VAR> <{ID ","}+-var> <TYPE-VAR>

I I I I
decl Id c Idsl Type

Figure 7.2. (a) Parse tree for decl Id, c, Idsl Type

de cl

/\
{ID ", "} + TYPE-Type

I
id

I
CHAR+

ID-Id 1 {ID ","}+-Idsl

Figure 7.2. (b) Abstract syntax tree for decl Id, c, Idsl : Type.

In the mapping from parse trees to abstract syntax trees, variables are mapped on corresponding

variables in the derived signature. A variable declaration of the form

naming-scheme -> SORT,

will lead to variables named SORT-namel, SORT-name2, etc., where namel and name2 are strings

matched by the regular expression naming-scheme. This leads to rules R6, G6, and M6 in

Chapter 8.

Recall that such variables are implicitly defined by a signature (see Section 2.3). Also recall

from Section 4.7 that the Prefer Literals rule gives precedence to the literals of the context-free

syntax over variables. In this sense, variables behave just like other lexical items.

In Figure 7.1 we have added variables to the declaration language introduced earlier in Figure

5.6. The derived regular grammar is:

[3] <ID-LEX> ("a" I . . . I "z") +

[4] <LAYOUT-LEX> " "
[6, 7, 8] <LITERAL-LEX> "decl"

[1 0] <ID-VAR> "Id"
" " '

37

"." I "integer" I "real"

[11]

[12]
[13]

<TYPE-VAR>
<(ID ","}*-VAR>
<(ID ","}+-VAR>

The derived BNF grammar is:

[3 , 10] <ID>

"Type"
"IdsO"
"Idsl"

·· = <ID-LEX> I <ID-VAR>
[6] <DECL> :: = "decl" (<ID-in-,-list> "," }+ ":" <TYPE>
[6, 12 , 13]

<ID-in- ,-list>
[7 , 8 , 11] <TYPE>

<ID> I <{ID ","} *-VAR> I <{ID "," }+-VAR>
: := "integer" I "real" I <TYPE-VAR>

The derived signature is:

sorts
[l] CHAR ID DECL TYPE

[3]

[6]
[7]
[8]

functions
... Declarations of constants for all
id CHAR+ - > ID
decl {ID ", "} + # TYPE -> DECL
integer:
real

-> TYPE
-> TYPE

characters in t he alphabe t ...

Figure 7.2 shows the parse tree and the corresponding abstract syntax tree for the sentence decl
Id, c , Idsl : Type, which contains occurrences of the variables Id, Idsl and Type. Note
that variables, unlike lexical items, do not have any further structure in the abstract syntax tree.

1. sorts ID DECL TYPE
2 . lexical syntax
3 . [a-z] + -> ID
4 . " " -> LAYOUT
5 . context-free syntax
6 . decl { ID "' "} + " . " TYPE -> DECL
7 . integer -> TYPE
8 . real -> TYPE
9 . variables
10 . Id - > ID
11. Type -> TYPE
12 . IdsO -> {ID n In}*

13. Idsl - > (ID " , "} +
14 . Char - > CHAR
15 . Chars -> CHAR+

Figure 7.3. Declarations further extended with variables of sort CHAR

Now we turn our attention to the special case of variables of the predefined sort CHAR. Apart
from the standard treatment of variables given above, some additional steps are necessary:

• Add to the derived regular grammar the symbol <CHAR-LEX> and associate with it a regular
expression that enumerates all characters in the alphabet.

• Add to the derived BNF grammar the non-terminal <CHAR> as well as the rules
<CHAR> :: = <CHAR-LEX>,and
<CHAR- i n--list> : := <CHAR>.

• For each lexical sort SORT add a rule of the form
<SORT> :: = "s ort""(" <CHAR- in--li s t >+ ") ",

which defines a concrete representation for the lexical constructor function associated with
SORT.

This leads to rules R2 and G7 in Chapter 8.

38

The effect of adding variables over the predefined sort CHAR is shown in Figure 7.3. The only

ifference with the previous example is the addition of the variables Char and chars.

he derived regular grammar now becomes:

3] <ID-LEX> ("a" I ... I "z") +

4] <LAYOUT-LEX> " "
6, 7, 8] <LITERAL-LEX> "de cl"
10] <ID-VAR> "Id"
11] <TYPE-VAR> "Type"
12] <{ID ","}*-VAR> "IdsO"
13] <{ID ","}+-VAR> "Idsl"

" " '
" . " I "integer" I "real"

14,15] <CHAR-LEX>
~ 14] <CHAR-VAR>

"a" I ... I "z" I "O" I ... I "9" I ...
"Char"

t l5] <CHAR+-VAR>

t he derived BNF grammar is:
I
[3,1 0,14,15]

I <ID>

6] <DECL>
6,12,13]

<ID-in-,-list>
7,8,11]

<TYPE>
14,15]

<CHAR>
14,15]

<CHAR-in--list>

he derived signature is:

sorts

: :=

: : =

: :=

[l] OHAR ID DECL TYPE
functions

"Chars"

<ID-LEX> I <ID-VAR> I
"id" "(" <CHAR-in--list>+ ")"
"decl" <ID-in-,-list> "," }+":"<TYPE>

<ID> I <{ID ","}+-VAR> I <{ID ","}*-VAR>

"integer" I "real" I <TYPE-VAR>

<CHAR-LEX> I <CHAR-VAR>

<CHAR> I <CHAR+-VAR> I <CHAR*-VAR>

I ... Declarations of constants for all characters in the alphabet ...

[3] id CHAR+ -> ID

[6]
(7]
[8]

de cl
integer:
real

{ID ","}+ #TYPE -> DECL
-> TYPE
-> TYPE

Figure 7.4 shows the parse tree and corresponding abstract syntax tree for the sentence

dec l ab, id(Char y Chars) : Type.

V.3. Substitution of variables

Is it possible to define a notion of string substitution for variables in concrete sentences that is

directly related to variable substitution in the corresponding abstract syntax trees as defined in
I

Section 2.3? Given a string s containing a marked occurrence of a variable x of sort A and a string

'of sort A'~ A, we want to define s[x:=s1 as the syntactically correct string in which the

arked occurrence of x has been replaced by s' in such a way that

abs(s[x:=s1) = a&s(s)[A-x:=abs(s')]

where abs(s) is the set of abstract syntax trees of s (cf. Figure 2.3), A-x is the variable of sort A

hat corresponds toxin the derived signature, and the :=-operator in the right-hand side is the

ubstitution operator on abstract syntax trees defined in Section 2.3. For the above requirement to

e meaningful we assume that s, s' and s[x:=s1 have only a single abstract syntax tree.

39

· ~ :: :: ~ --=- - - ·

~{ <ID -in-,-list~

<ID- in- ,-list> <ID-in-,-list>

de c l

I
<I D>

<ID-LEX>

' \ , id (

<ID>

<CHAR- inLlist>+

/ ~
<CHAR-in--list> <CHAR-in--list><CHAR-in--list>

I I
<CHAR> <CHAR>

<CHARlVAR> <CHARlLEX> <CHAR+-VAR>

I I I
Char y Chars

<TYPE- VAR

I
Type

Figure 7.4. (a) Parse tree for decl ab, id (Char y Chars) Type

{ ID ","}+ TYPE-Type

/ " id

I ir
CHAR+ CHAR+

/\ /I~
a b CHAR-Char y CHAR+-Cha rs

Figure 7.4. (b) Abstract syntax tree for decl ab , i d (Char y Chars) : Type

Even if all three abstract syntax trees involved are unique, the :=-operator on strings cannot be
as simple as that on abstract syntax trees for two reasons:

• To ensure that i;i&s distributes over :=, as we require, it will sometimes be necessary to en
closes' in brackets before the actual string substitution is performed.

• If x is a list variable occurring in a list with non-empty separators and s' is the empty string,
substitution of s' for x may require removal of one of the list separators adjacent to x.

40

• It will sometimes be necessary to insert a layout symbol before and after the substituted

string to avoid differences in the lexical interpretation of the string before and after

substitution.
We nqw discuss the first two points in more detail and assume that the third point can always be

resolved. We call a string substitution s[x:=s1 improper if the abstract syntax tree obtained after

tree substitution is not equal to the tree obtained after performing the string substitution and

reparsing the resulting string, or, in other words, if

abs(s[x:=s1) :t; abs(s)[A-x:=abs(s')].

We first define prot(s'), the protected version of s' in the substitution s[x:=sl There are two

cases:
• If the substitution s[x:=s1 is improper, define prot(s) as the string open s' close, where

" open" A' "c lose " -> A'is an arbitrary bracket function for the sort A'. Such a func

tion always exists (cf. Section 5.4).

• Otherwise, prot(s') = s'.

Next, we define s[x:=s1 as the string obtained by replacing a substring z of s by prot(s}, where

z is defined as follows:

• If x is a variable of sort {SORT sep} *, with sep not empty, that appears as element of a

list, and t' is the empty list distinguish three cases:

{a) if x is the only element of the list, z is the marked occurrence of x;

(b) otherwise, if x is the last element of the list, z is the marked occurrence of x together

with the separator sep preceding it and the layout in between (if any);

(c) otherwise, z is the marked occurrence of x together with the separator sep following it

and the layout in between (if any).

• In all other cases, z is the marked occurrence of x.

We give some examples. Continuing the example giving in Figure 7.1, let

s = decl Idsl, c, Id : Type, with corresponding abstract syntax tree t,

x = Idsl, and

s ' = a, b, with corresponding tree t'.

The value of the string substitution s[Idsl:=s1 is decl a, b, c, Id Type with corre-

sponding abstract syntax tree t[{ID ", "l +-Idsl:=tl

As a second example, let

s = decl IdsO, c, Id : Type, with corresponding tree t,

x = IdsO, and

s ' = £, with corresponding tree t'.

The value of the string substitution s[IdsO:=s1 is decl c, Id : Type with corresponding

abstract syntax tree t[{ID ", "l *-IdsO:=t1. Note the elimination of the separator"," following

Ids O.

Next, consider the arithmetic expressions defined in Figure 6.1. We add a declaration

11 . variables

12. Exp - > E

for the variable Exp to it First look at

s = Exp + 4, with corresponding tree t,

x = Exp, and

s' = 2 * 3, with corresponding tree t'.

The value of s[Exp:=s1 is 2 * 3 + 4 with abstract syntax tree t[E-Exp:=t1. Next, look at

s = Exp * 4, with corresponding tree t,

x = Exp, and

41

- · ~ ~ :' ~ - _: __

s' = 2 + 3, with corresponding tree t'.

In this case, brackets have to be inserted since the function at the root of s' (i.e. "+") has a lower

priority than the function at the parent node of Exp (i.e. "*").Therefore, the value of s[Exp:=s1

becomes (2 + 3) * 4. Clearly, 2 + 3 * 4 would be an incorrect value for s[Exp:=s1, since

t[E-Exp:=t1 is not an abstract syntax tree for it.

A final example will illustrate the effect of the second phase (i.e., application of the multi~et or

dering) of the selection of parse trees based on the priority declarations. Consider the example

given in Figure 6.10, after adding the declaration

1 0 . variables
11 . Exp-> E

for the variable Exp to it. Now look at

s = a sub Exp, with corresponding tree t,

x = Exp, and

s' = a sup a, with corresponding tree t'.

To block the higher priority but improper parse using the E sub E sup -> E function, brackets

have to be inserted and the value of s[Exp:=s1 becomes a sub ! a sup a} with abstract syntax

tree t[E-Exp:=tl

7.4. Discussion

Three problems have not yet been solved very satisfactorily in the above definition of variables.

First, ambiguities may occur between the regular expressions defining variables and other regular

expressions defined in the lexical syntax. Currently, these ambiguities are not resolved automati

cally. Probably, some general disambiguation rule should be introduced (e.g. "Prefer non-Vari

ables"), but we need more experience with SDF before we can formulate it.

Second, a naive implementation of substitution would have to reparse the string after substitu

tion to determine whether this substitution was proper or not. We expect that sufficient conditions

can be found to determine this and that an implementation based on these conditions can correctly,

and efficiently, implement substitution. Such an implementation will, of course, not insert a

minimal number of brackets.

Finally, some comments are in order regarding our uniform treatment of variables and "holes"

(also known as "meta-variables"). Clearly, SDF variables allow a general description of holes,

without fixing a particular syntax for them. However, the implementation of a syntax-directed

editor is considerably simplified when certain assumptions about the syntax of holes can be made.

Therefore, we take the point of view that the syntax-directed editor may automatically extend a

given SDF definition with standard declarations for variables for each sort. In our current

implementation (Generic Syntax-directed Editor, see Chapter 10), for each declared sort s , a

variable declaration of the form "<S>" -> s is generated. These variables are only used by the

editor and may not be used otherwise.

8. SUMMARY OF SDF

8.1. Deriving grammars, signature and parse-tree-to-abstract-tree mapping

We can now give the final version of the definitions of derived regular grammar, derived BNF

grammar, derived signature, and mapping from parse trees to abstract syntax trees.

8.1.1. Derived regular grammar

The derived regular grammar is obtained as follows:

Rl For each sort L (including the predefined sort LAYOUT) that appears as the result sort of a

lexical function, introduce the lexical non-terminal <L-LEX> and associate a regular expres

sion with it consisting of the or of all left-hand sides (translated using rules R3, and R4) of

42

L
R.4
Rs
I
R6

lexical function declarations for sort L. Replace sort names appearing in these left-hand

sides by the corresponding lexical non-terminals defined before.

If the variables section contains declarations for variables of the predefined sort CHAR, in

troduce the (reserved) lexical non-terminal <CHAR-LEX> and associate a regular expression

with it that enumerates all characters in the alphabet.

(Negated) character classes are replaced by an or of all characters in the class.

Repetitions are mapped onto the corresponding repetition operators in the regular grammar.

Each literal symbol occurring in a function definition in the context-free syntax is added as

alternative to the (reserved) lexical non-terminal <LITERAL-LEX>.

For each variable declaration of the form

naming-scheme - > SORT

where naming-scheme is a regular expression, and SORT may be either a simple sort or a

list sort, add a regular expression of the form

<SORT- VAR> = naming-scheme

to the derived regular grammar.

8.1.2. Derived BNF grammar

~
the following definition we will frequently say that a non-terminal or rule is "added to the de

ved grammar". In those cases we always mean that the non-terminal or rule is added unless it is

!ready defined in the derived grammar. The derived BNF grammar is obtained as follows:

Gl Introduce a non-terminal <S> for each sorts.
I

G2 The terminals are both the literal symbols appearing in context-free function declarations as
well as the lexical non-terminals of the derived regular grammar, except <LAYOUT- LEX> and

<LITERAL-LEX>.

G3 For each sort L that appears as the result sort of a lexical function add a rule of the form:

<L> : : = <L-LEX>,

where <L-LEX> is a lexical non-terminal introduced as terminal in G2.
G4 For eaeh list construct of the form {SORT s ep} ® appearing in a context-free function

declaration or a variable declaration, introduce a non-terminal <SORT-in-sep-list> and

add a rule of the form:

<SORT-in-sep-list> :: = <SORT>.

GS For each context-free function declaration add rules obtained by exchanging the left-hand

side and the right-hand side of the function declaration. Translate each occurrence of a sort
in_to the corresponding non-terminal as introduced in Gl, and translate each occurrence of a

list construct in the function declaration into the corresponding list construct in the gram

mar, i.e., a list of the form {SORT sep)® is translated to {<SORT-in-sep-lis t > s ep) ®,

where <SORT-in-sep-list> is the non-terminal introduced in G4.
_.6 For each variable declaration distinguish two cases:

(a) If the declaration has the form naming-scheme -> SORT, with SORT a basic sort, add
the rule

<SORT> : : = <SORT-VAR>,

where < SORT-VAR> is a lexical non-terminal of the derived regular grammar (R6).

(b) If the declaration has the form naming-scheme - > {SORT s ep)®, add the rule:
<SORT-in-sep- list> : : = < {SORT sep}®- VAR>

where < { SORT sep l ®-VAR> is a lexical non-terminal of the derived regular grammar (R6).

7 If the variables section contains declarations using the predefined sort CHAR do the follow
ing:

(a) Add the rules

<CHAR> :: = <CHAR-LEX>,and

43

"-! ·"'- - " ~ -=--- ~ · - :: -

<CHAR-in--list> :: = <CHAR>,

where <CHAR-LEX> is a lexical non-terminal introduced as terminal symbol by G2.
(b) For each sort S ORT * LAYOUT that appears as the result sort of a lexical function, add a

rule of the form
<S ORT> : : = "sor t" "(" < CHAR-in- -list>+ ") ".

This rule defines the concrete representation for the lexical constructor function associated

with S ORT (see SS below).

8.1.3. Derived signature
The derived signature has the form:

S 1 A declaration for the predefined sort CHAR.

S2 Declarations for all sorts declared in the SDF definition.
S3 Subsort declarations for all chain functions in the context-free syntax.
S4 Declarations of constants of sort CHAR for all characters in the alphabet.

SS Declarations for lexical constructor functions of the form

1 : CHAR+ -> L

for each sort L that appears as result sort of a lexical function, where 1 is the name •L writ

ten in lower case letters.

S6 Function declarations for each function declared in the context-free syntax except chain

functions and functions with the bracket attribute: for each such function some unique

new name is generated (in a manner not prescribed by SDF) and the types of its arguments

and of its result are obtained from the sort names appearing in the original function defini

tion. List constructs of the form { SORT s ep} ® are translated to corresponding lists in the

signature, i.e. , to {S ORT sep} ®. If the attribute assoc is attached to the original function

declaration, it is inherited by the function declaration in the derived signature.

Recall that variables are implicitly defined by a signature (Section 2.3), therefore there is no ex

plicit translation from the variables section of an SDF definition to its derived signature (also see

M6 in Section 8.1.4).

8.1.4. Mapping from parse trees to abstract syntax trees
The mapping from parse trees to abstract syntax trees is defined as follows. Let P be a parse tree:
Ml If the root of P is labeled with a non-terminal and has a single child C whose root is labeled

with lexical non-terminal < L - L EX>, with L '* LI TERAL, the result of transforming P is an
abstract syntax tree whose root is labeled with the lexical constructor function for sort L and
whose single child is the result of transforming C (by using rule M2).

M2 If the root of P is labeled with lexical token <L-LEX>, with L '* L ITERAL, its children form a

list C of characters. Such a P is transformed into an abstract syntax tree whose root is

labeled with CHAR+ and with the characters in the list C as children.

M3 If the root of P is labeled with {SORT s ep} ®, there are two cases:

(a) s ep is empty: let Ci, ... ,Ck be the k children of the root of P; or

(b) sep is not empty, the root of P has 2k-1 children and let C1,C3, ... ,C2k- l be the odd

numbered children (i.e. the children corresponding to list elements and not to separators).

Let A be the list of abstract syntax trees obtained by recursively transforming the trees Ci.

The result of transforming P is a tree whose root is labeled with {SORT sep J ® and that has

the elements of A as children.

M4 If the root of P is labeled with a non-terminal and corresponds to a chain function, the result

of transforming P is the transformation of the single child of its root.

44

~ If the root of P is labeled with a non-terminal and corresponds to a function with the

bracket attribute, the result of transforming P is the transformation of the second child of

its root, i.e., the only child labeled with a non-terminal.

M6 If the root of P is labeled with lexical token <L-VAR>, it must have a list consisting of

charactersC1, ... ,Ck as its single child. Such a P is transformed into the corresponding

variable L-c1 .. . ck in the derived signature.

M7 If the root of P is labeled with <SORT-in-sep-list>, the result of transforming P is the

transformation of its single child.

M8 Otherwise, the root of P is labeled with a non-terminal and P is transformed as follows:

(a) All children of the root of P that are labeled with a non-terminal are transformed recur

sively. This gives a (possibly empty) list A of abstract syntax trees.

(b) The root of P together with its children correspond to the application of some rule R in

the derived BNF grammar and some function F in the derived signature. P is now trans

formed into an abstract syntax tree whose root is labeled with F and with the elements of A

as children.

8.2. Static constraints on SDF definitions

All constraints on SDF definitions are now listed for ease of reference (some of them were al

ready mentioned in the preceding Chapters 3, 4, 5 and 6).

Sorts

• Multiple declarations of sorts are forbidden.

• The names LAYOUT and CHAR are predefined and cannot be used in a sort declaration.

• The sort LAYOUT may only occur as result sort of a lexical function.

• The sort CHAR may only be used as result sort of variable declarations.

• All sort names used in lexical or context-free functions, or variable declarations should be

declared.

• Each sort should occur as result sort of at least one (lexical or context-free) function decla

ration.
Lexical syntax

• Multiple declarations of lexical functions are forbidden.

• All sorts used in lexical function declarations should be declared.

• Each sort occurring in the left-hand side of a lexical function declaration should occur as re

sult sort in at least one other lexical function declaration.

• No cyclic dependency may exist between lexical function declarations.

• Each result sort (except LAYOUT) should occur in the left-hand side of at least one (lexical or

context-free) function declaration.

• Character classes should satisfy the restrictions given in Section 4.3.

Context-free syntax

• Multiple declarations of context-free functions are forbidden (even if they have different at

tributes).
0 All sorts used in context-free function declarations should be declared.

• Each sort occurring in the left-hand side of a context-free function declaration should occur

as result sort in at least one other (lexical or context-free) function declaration.

• No cyclic dependency may exist between chain functions.

• The attribute bracket is only allowed for functions of the form "open" s "close" - >

s (see Section 5.4).

• The associativity attributes left, right, assoc, and non-assoc are only allowed for

binary functions of the forms "op" s -> s (see Section 6.2).

45

. ~ -: =' ~ -=- · · _-_ -

• A suitable bracket function should be declared for the argument and result sorts of all
context-free functions that either have an associativity attribute or occur in priority or group
associativity declarations.

Priorities

• All functions occurring in a priority declaration should be declared in the context-free syn
tax.

• The group associativity attributes 1eft, right, and non-assoc are only allowed_ for
binary functions of the forms "op" s -> s (see Section 6.2).

• Chain and bracket functions are not allowed in priority declarations.
• No cyclic dependency may exist between context-free functions due to priority declarations.

Variables

• All result sorts (except CHAR) occurring in variable declarations should be declared.
• All result sorts (except CHAR) occurring in variable declarations should occur as result sort

in the context-free syntax.

9 A TT ACHING SEMANTICS TO SDF DEFINITIONS
Having completed the definition of SDF itself, we have now at our disposal a powerful method

for transforming concrete strings into (sets of) abstract terms. This is sufficient to generate a syn
tax-directed editor from a given SDF definition, and, as explained in the introduction, it can also
be used to couple semantics to it by means of abstract syntax tree matchingl.

In Section 9.1. we will show SDF can be combined with algebraic semantics. In Section 9.2.
we introduce modularity constructs. In both cases, ASF [BHK.89, Chapter 1] will be used as se
mantic specification formalism.

9.1. Attaching algebraic semantics to SDF
In its simplest form, a module in the algebraic specification formalism ASF consists of a signa
ture, declaring sorts and functions, and a set of conditional equations over this signature. The
functions d~clared in such a module have a fixed syntax. We will now combine ASF with SDF
(obtaining ASF+SDF) in the following manner:

• Replace the signature in the ASF module by an SDF definition (this defines a derived sig
nature as well as concrete notation for all functions in the signature);

• Replace equations written in abstract form by equations written in concrete form (see be
low).

The result is a formalism with completely user-definable syntax.
In its simplest form, an ASF equation is described by the grammar rule

<equation> ::=<tag> <term>"=" <term>

where <tag> is a label identifying the equation and <term> defines all well-formed terms (in pre
fix form). The two terms appearing in an equation should be of the same sort. An example of an
ASF equation is:

[Bl] or(true, false) = true.

Now, the key idea is to replace the (abstract) terms in the above definition of equations by their
concrete counterpart as defined by an SDF definition. For each specification SPEC, this can be
achieved by using the following, parameterized, grammar rule <equation > [SPECJ for equations:

<equation>[SPEC] :: = <tag> <S 1> " =" <S1>

... I
<tag> <Sn> "= " <Sn>

1 Lists, subsorts and associative functions should be taken care of by the matching process.

46

I
~ -
[2 •

~ :

~ :
9 .

sorts BOOL

lexical syntax
[\n] -> LAYOUT

context-free syntax
true -> BOOL
fal se - > BOOL

BOOL "/\" BOOL -> BOOL {assoc}

BOOL "v" BOOL - > BOOL {assoc}

" ~ " BOOL -> BOOL
10 . "(" BOOL ")" -> BOOL {bracket}
11 . priorities

SDF definition

12 . " ~ " BOOL -> BOOL > BOOL "A" BOOL - > BOOL > BOOL "v" BOOL -> BOOL

13 . variables
14. B (0-9) * -> BOOL

I
equations Semantic rules Q.5.

I
~ 6 . true A t rue = true

Q. 7 . true A false = false
I

false ~8 . false A true =

0..9 . false A false = false

~o . B v true = true

1. B v false = B

b. Bl v B2 = B2 v Bl

Q3. ~ true = false
!2 4. ~ false = true

Figure 9.1. Boo leans: a specification of the Boolean data type.

11. sorts ID PAIR TABLE

.2 • lexical syntax

SDF definition

3 . [a-z] + -> ID

4 . " " -> LAYOUT
5 . context-free syntax
6 . "(" ID "." ID ") " -> PAIR
7 . empty-table -> TABLE
8 . PAIR "0" TABLE - > TABLE
9 . l o okup ID in TABLE -> ID

1 0 . variables
11. Id "1 " * -> ID

12 . T -> TABLE

13 . equations Semantic rules
14 . l ookup Id in (Id : Id') 0 T = Id'

Id 'i: Id'
15.

lookup Id in (Id ' : Id'') 0 T =lookup Id in T

Figure 9.2. Tables: specification of a table data type.

where s 1 , ... ,s 0 are the sorts declared in the (SDF part of the) specification SPEC, and

(S 1>, ... ,<S0 > are the non-terminals corresponding to these sorts in the derived BNP-grammar
Each concrete equation

47

-- · ~ ~ ~ ~ --=------ -

[l] u = v

with u and v strings, can now be transformed into the abstract equation

[l'] a&s(u) = abs(v)

provided that

o u and v are both syntactically correct strings;
• both u and v are unambiguous (alternatively, one could impose the weaker condition that

the sets of abstract syntax trees for u and v both contain only a single tree of the same sort).
This same mapping can be carried out for conditional equations in the specification. The gram

mar to be used for parsing each equation of the specification SPEC thus consists of:
• an instance of the parameterized rule <equation> [SPECJ given above;
• the derived grammar for the SDF part of SPEC.

The example in Figure 9.1 will illustrate this method. The derived regular grammar is:

[3] <LAYOUT-LEX>
[5 , 6 , 7 , 8 ,9,1 0]

<LITERAL-LEX>

[14] <BOOL-VAR>

The derived BNF grammar is:

[5 , 6 , 7 ,8,9,10]

<BOOL>

The derived signature is:

[l] sorts BOOL
functions

[5] true :

[6] false:

" " I "\n"

"true " I "false"

"B" ("0" "l"

I "A" I "v" I "~" I "(" I ")"
"2" I "3" I "4" I "5" I "6" I

"7" I "8" I "9")*

"true" I "false" I <BOOL> "A" <BOOL>

<BOOL> "v" <BOOL> I "~" <BOOL>
"(" <BOOL> ")" I <BOOL-VAR>

-> BOOL
-> BOOL

[7] "/\" BOOL # BOOL -> BOOL

[8] "v" BOOL # BOOL -> BOOL
[9] " ~ " BOOL -> BOOL

Finally, the instantiation of <equation> [Boole ans J for the example in Figure 9.1. is:

<equation>[Booleans] ::=<tag> <BOOL> "=" <BOOL>

Given these ingredients it should now be obvious how equations in concrete form are mapped
to equations in abstract form. Equations 17 and 20, for instance, will be mapped to

[17] "A"(true, false) false

[20] "v"(BOOL-B, true) = true

We conclude this section with three more examples. Figure 9.2 shows a definition of a table
data type. It illustrates the use of a conditional equation in line 15. Figure 9.3 shows a definition
of identifiers on which a length function is defined. Here we use character variables in combina
tion with the (implicitly generated) lexical function id. Figure 9.4. shows a definition of natural
numbers based on their decimal representation. It illustrates, among other things, the use of list
variables.

48

1. sorts ID NAT SDF definition

2 . lexical syntax

3. [a-z] [a-z 0-9) * -> ID

4. [\n] -> LAYOUT

5 . context-free syntax

6. 0 -> NAT

7 . succ " (" NAT ") " -> NAT

8 . length " (" ID ")" - > NAT

9 . variables
1 0 . Cha r -> CHAR

11. Chars - > CHAR+

12 . equations
13 . length(id(Char))

14 . l engt h(id(Chars Char))
succ(O)
succ(length(i d(Chars)))

Semantic rules

Figure 9.3. Ident if i e r s: specification of identifiers with a length function.

9.2. Binding SDF to a modular specification formalism

Once we have explained how ASF and SDF can be combined at the level of a single module, it is

relatively straightforward to cover the modularization constructs of ASF as well. The operations

to be considered are:

• export/hiding of sorts and functions;

• import of a module in another module;

• renaming of sorts and functions of a module;

o actualization of parameterized modules.

In ASF, the meaning of these operations is defined by means of a normalization procedure, i.e. a

textual expansion procedure that eliminates all modular structure from a specification and yields a

single, unstructured, specification consisting of a signature and equations. By and large, the same

method can be applied to the combination of ASF and SDF. Examples of ASF+SDF specifica

tions can be found in [Hen89, vdM88, HK89b].

10. NOTES ON THE IMPLEMENTATION OF SDF

A prototype implementation of SDF has been completed. It is written in LeLisp and uses ISO

(Incremental Scanner Generator [HKR87b]) to generate lexical scanners from the lexical syntax

of the SDF definition, and IPG (Incremental Parser Generator [HKR88]) to generate parsers from

the context-free syntax of the SDF definition. Both generators are lazy as well as incremental

(i.e., only those parts of the scanner and parser are generated that are actually needed, and modi

fications to the lexical and context-free syntax are propagated to the already generated scanner and

parser, thus avoiding their complete regeneration). The underlying principles have been described

in [HKR87a].

Another distinctive feature of ISO and IPG is that they allow ambiguities. ISO may produce

more than one interpretation for a lexeme; IPG can handle arbitrary context-free grammars and

may thus produce more than one abstract syntax tree for a given input string.

The current SDF implementation has been incorporated in a Generic Syntax-directed Editor

(GSE) [Log88, DK89a,b]. A single SDF definition is thus all that is needed to generate a syntax

directed editor.

49

- -----

•": = = ~ - - = :~ - ::

1.

2.
3 .

sorts DIGIT NAT NAT-LIST

lexical syntax

SDF definition

[0- 9]
4. DIGIT+
5 . context-free syntax
6 . NAT " +" NAT
7. NAT " *" NAT
8 . {NAT "I " } *
9. move DIGIT in NAT-LI ST
1 0 .
11.
12.
13 .
14.
15.
16.
17 .

priorities
NAT " * " NAT

variables
n [0- 9] *
nats [0- 9]*
c [0- 9]*
x [0 -9] *
y [0-9]*

- > NAT > NAT

-> DIGIT
- > NAT

-> NAT {left }
-> NAT {left}
- > NAT- LIST
-> NAT-LIST

" +" NAT -> NAT

-> NAT
-> {NAT "'" } *
- > CHAR
-> CHAR*
- > CHAR+

18.

19 .
2 0 .
21.

22 .

23 .
2 4.
25 .
26 .
27 .
2 8 .

equations Semantic rules

29 .

30 .

31.

32 .
33.
34 .
35 .
3 6 .
37 .
38 .
39 .
40 .
41.

42 .

move 0 in nats nats
move 1 in nl ,nats nats

move 2 in nl ,n2 , nats nats

move 3 in n l ,n2 , n3 , nats nats

move 4 in nl , n2 , n3 ,n4,nats nats
move 5 in nl,n2,n3,n4,n5,nats nats

move 6 in nl , n2 , n3 ,n4, n5 ,n6,nats nats
move 7 in nl,n2 , n3 , n4 , n5 ,n6,n7 , nats nats
move 8 in nl , n2 , n3 ,n4, n5 ,n6, n7 , n8 , nats nats

move 9 in nl,n2 ,n3 ,n4 ,n5 , n6 , n7 , n8,n9 ,nats nats

nat(O y) = nat (y)

move digit(cl) in O, l , 2 ,3,4,5,6,7, 8 ,9, 10 , ll ,l2, 13 , 1 4, 15 , 16 ,17 , 18

move digit(c2) in natsl = n, nats2

n
n
n
n
n
n
n
n
n
n

nat(cl) + nat(c2) = n

nat(cl) + nat(c2) = nat (x c)
nat(O xl) + nat(O x2) + n at (O x) = nat(y)

nat(xl cl) + nat(x2 c2) = nat(y c)

* 0 0

* 1 = n
* 2 n + n

* 3 n + n * 2

* 4 n + n * 3
* 5 = n + n * 4

* 6 = n + n * 5

* 7 = n + n * 6

* 8 = n + n * 7
* 9 n + n * 8

nat(y l) * nat(y2) = nat (y)

nat(yl) * nat(y2 c) = nat(y 0) + nat(yl) * nat(c)

Figure 9.4. Naturals: specification of decimal natural numbers.

50

natsl

As far as the implementation of ASF+SDF is concerned, we are currently in the research phase.

ome major problems have to be addressed:

• How should the composition of grammars (resulting from the composition of ASF+SDF

modules) be implemented? [Kli89] and [Rek89] describe our first results in this area.

• A similar composition problem exists at the semantic level: how are compiled versions of

the equations in different modules to be combined?

11. DISCUSSION

ii.1. Basic assumptions
We briefly recall some of the main assumptions and choices underlying the design of SDF:

• The implementation of SDF does not impose restrictions on the class of acceptable gram

mars. This has several major advantages: it is never necessary to rewrite a given grammar to

fit a particular subclass of the context-free grammars and the composition of grammars is

always possible. It also means that context-free and abstract syntax bear a close resem

blance to each other. As a consequence, there is little need for explicit abstract syntax tree

construction rules (see next point). The other side of the picture is that grammars may be

come ambiguous.

• There is a fixed mapping between parse trees and abstract syntax trees. The advantages of

this choice are twofold: the writer of the specification does not have to give a separate defi

nition of the tree construction process and the user of the specification sees trees that corre

spond to grammar rules in a completely predictable way. Clearly, a degree of freedom has

been lost here. Associating "non-standard" trees with a grammar rule can only be achieved,

in our case, by computing them by means of semantic rules.

• Lexical entities are represented as strings of characters and not as trees. While the latter rep

resentation is attractive from a theoretical point of view, we opted for the former for reasons

of efficiency in the SDF implementation.

p.2. Omissions

ome of the features not included in SDF are:

• There is no way of expressing prettyprinting formats for functions. The main reason for

this omission is that adding this information would make SDF function definitions harder to

read. The editors generated from SDF-definitions by the GSE editor generator mentioned in

the previous Chapter do not use prettyprinting but maintain both the original text represen

tation as well as the corresponding abstract syntax tree.

• There is no notion of optional constructs in context-free functions.

• There is no alternative operator.

• Repetitions (in lexical syntax as well as in the context-free syntax) cannot be restricted to a

fixed number of repetitions. This has to be expressed by means of semantic rules.

1.3. Limitations of lexical synt~

r-s explained in Section 4.7, SDF uses the Prefer Longest Match rule for eliminating ambiguities

· n the lexical syntax and the Prefer Literals rule for eliminating ambiguities between lexical and

f ontext-free syntax. Both rules impose some limitations on the expressive power of the lexical

yntax.

The Prefer Longest Match rule rejects all lexemes that are included in a longer one. After apply

· ng it there may still be more than one lexical token, but all of them will correspond to the same

1
cmaximal) lexeme. Unfortunately, this may lead to rejection of the intended lexical interpretation

of a sentence. Some examples of this phenomenon are:

• A Pascal range expression like "3 .. s" will be split in the lexemes "3." (a real constant with

empty fraction part) and". s", whereas the intended interpretation is "3", " .. " (the range

51

operator), and "5". A similar problem exists for the lexical analysis of the Fortran expres

sion "3. NE. 5".

• In some languages, such as Fortran and Algol68, layout is completely ignored and key

words may even occur as prefix of, for instance, identifiers. In such cases, only the com

plete identifier (and not the embedded keyword) will be recognized.
One way of solving these problems is to add new operators (such as the look ahead operator of

LEX) that allow an explicit treatment of such exceptional cases. A potentially more interesting ap

proach is to generalize our current model for lexical analysis even further and to allow ambiguous
lexical interpretations corresponding to overlapping lexemes of different length. The (general

context-free) parser can then select the correct sequence of lexical tokens.

The Prefer Literals rule (Section 5.2) gives precedence to literals in the context-free syntax over

other lexical tokens. As a consequence, the sentence if : = while + t hen will not be accepted
as a legal statement in the example in Figure 11.1, since the tokens if, while, and then are only

recognized as literals, and not also as identifiers. One, not very satisfactory, way to circumvent

this limitation is shown in Figure 11.2: all keywords have been added explicitly as alternatives of

sort ID to the context-free syntax. This definition has the disadvantage that identifiers (defined by

a function in the lexical syntax) and keywords (defined by constants in the context-free syntax)

are represented differently in the abstract syntax. This difference will manifest itself when string

matching is attempted on an identifier that happens to be equal to a literal. Alternatives for solving

this problem are:
• Forbid constants in the context-free syntax.
• Add exceptions to the definition of the derived signature and of the mapping from parse

trees to abstract syntax trees in such a way that constants defined in the context-free syntax

and lexical functions are represented in a uniform way.

• Add a mechanism to (de)activate the Prefer Literals rule.

Further research is needed to determine the best approach to this problem.
Another, general, limitation of the definition of lexical syntax in SDF, is that no "actions" (i.e.,

updating of counters, consulting symbol tables, etc.) can be performed when a token is being

recognized. As a result, several aspects of lexical syntax are difficult to express in SDF:
• Nesting of comments (as, for instance, in C);
• The use of indentation for indicating block structure (as, for instance, in ABC and OC

CAM).

Apart from a default solution in the form of attaching extra semantic rules to the SDF definition,

we do npt yet see a really elegant solution to this class of problems.

1. sorts ID EXP STAT
2. 1exica1 syntax
3. [a-z]+ -> ID
4. [\n] -> LAYOUT
5. context-free syntax
6. if EXP then STAT -> STAT
7. while EXP do STAT -> STAT
8. ID ": =" EXP -> STAT
9 . EXP "+" EXP -> EXP
10. ID -> EXP

Figure 11.1. A simple language.

52

i 1. sorts ID EXP STAT

2. lexical syntax
3. [a-z) + -> ID

4. [\n] -> LAYOUT

5 . context-free syntax
6 . if -> ID

7. then -> ID

8 . while -> ID

9 . do -> ID

10 . if EXP then STAT -> STAT

11. while EXP do STAT -> STAT

12. ID ": = " EXP -> STAT

1 3 . EXP "+" EXP - > EXP

14. ID -> EXP

Figure 11.2. Language from Figure 11.1 with overlapping keywords and identifiers.

11.4. Related work

There have been many attempts to introduce user-definable syntax in programming languages.

These ideas have led to user-definable syntax for operators in Algol68, Prolog, Snobol4 and

other programming languages, and to various styles of macro-definitions (PL/I, Lisp). Around

1970, there was much interest in so-called extensible languages [Iro70, Sta75, Weg70]. The aim

of this line of research was to define a small base language in combination with a syntax defini

tion formalism. New language constructs could then be added to the base language by defining

their syntax and by describing their semantics in terms of the base language. For various reasons,

however, the overall goal of full syntactic and semantic language extensibility has never been

completely achieved. Although it does not have a syntactic extension mechanism, Smalltalk-80

may be viewed as the most successful extensible language in existence. (Smalltalk-72 - a prede

cessor of Smalltalk-80- did support syntactic extensibility: each class had to parse the messages

send to it explicitly. This feature has been replaced by a more limited scheme of keyword param

eters in Smalltalk-80. This new scheme result in more readable programs and allows a more effi

cient implementation.)

A successful method for defining the syntax of language constructs is by means of syntax-di

rected translations [lro61, ASU85] . Lex/Yacc and Metal (to be discussed below) fall into this cat

egory. The Lithe system [San82] combines syntax-directed translations with classes. Apart from

the fact that its lexical syntax is fixed, Lithe has user-definable LR(l)-syntax. O'Donnell's nota

tional specifications [Odo85] constitute an alternative to syntax-directed translations. Most closely

related to our work are the user-definable distfix operators in OBJ [FGJM85] and As

spegique/Cigale [Voi86].

The following features can be used to characterize syntax definition formalisms:

(a) The class of acceptable grammars.

(b) The integration between the description of lexical and of context-free syntax.

(c) The class of context-free syntax/abstract syntax pairs that can be described.

(d) The integration between the description of context-free syntax and of abstract syntax.

(e) The treatment of variables.

We will restrict ourselves to some representative examples, namely Lex [LS79], Yacc [Joh79] ,

Metal (the specification language of the Mentor system [KLMM83]), SSL (the specification lan

guage of the Synthesizer Generator [Rep84, RT89]), and the specification language of the PSG

system [BS86]. In [HK89a] we have already compared SDF with Lex, Yacc and Metal by

studying several examples in each of these formalisms.

53

The syntax definitions for Lex/Yac<?, Metal, and SSL are restricted to LALR(l) grammars, those

for PSG to LL(l) grammars, while SDF definitions allow arbitrary context-free grammars.

In Lex/Yacc explicit token names are used for the communication between lexical and context

free syntax. A similar method is used in Metal, SSL and PSG. In SDF, there is a better integra

tion between lexical and context-free syntax. Token names are, for instance, generated automati

cally.

Lex/Yacc allow the greatest freedom in the creation of abstract syntax trees (i.e., arbitrary C data

structures). In Metal, abstract syntax is described by means of a signature-like notation. With

each rule in the context-free grammar, a tree construction rule is associated which defines the ab

stract syntax tree to be constructed for strings accepted by this grammar rule. This allows the

construction of arbitrary trees provided that they conform to the given signature. In SSL, the

construction of abstract syntax trees is described by a separate attribute grammar. In this respect,

SSL has the same expressive power as Metal. In PSG, abstract syntax is defined by a collection

of class and constructor rules resembling signatures, while concrete syntax is defined by a string

to-tree transformation grammar that defines the abstract syntax tree to be associated with each

string. In particular, the name of a constructor of the abstract syntax is associated with each con

text-free grammar rule (this limits the set of trees that can be constructed for each grammar rule) .

In SDF, there is a fixed correspondence between rules in the context-free syntax and rules in the

abstract syntax. It is therefore impossible to associate an arbitrary tree with strings accepted by a

given syntax rule.

Metal, SSL and PSG have built-in notations for variables (also called meta-variables,

placeholders, or holes). SDF has no such standard convention but allows the definition of naming

schemes for variables.

11.5. Future developments

The following problems remain to be solved:

• The treatment of ambiguities needs further research: (a) it is desirable to have a sufficient

but not .overly restrictive condition on SDF definitions that guarantees that they define a

non-ambiguous language; (b) the use of type information to resolve ambiguities should be

studied.

• Generalization of the model for lexical analysis as discussed in Section 11.3.

• Implementation techniques will have to be developed for ASF+SDF.

• The combination of SDF with other formalisms such as TYPOL [Des84, Kah87], Prolog,

and first-order logic should be studied. Some of the problems involved are: (a) signature

and term translations (necessary to map the derived signature of SDF definitions and terms

over it on signatures and terms as they exist in the target specification formalism); (b) mod

elling of relations (SDF only provides definitions of functions).

ACKNOWLEDGEMENTS

Hans van Dijk suggested to retain only parse trees without priority conflicts rather than, for in

stance, parse trees with a minimal number of conflicts. Freek Wiedijk commented on an earlier

version of this manual. The SDF definition of Pascal in Appendix B was written by Karin Vos.

LITERATURE

[AJU75]

[ASU85]

A.V. Aho, S.C. Johnson & J.D. Ullman,"Deterministic parsing of ambiguous

grammars'', Communications of the ACM, Vol. 18, No.8, 1975, pp.441-452.

A.V. Aho, R. Sethi & J.D. Ullman, Compilers: Principles, Techniques and Tools,

Addison-Wesley, 1985.

54

[BHK89]

I
[BS86]

K89a]

K89b]

es84]

FGJM85]

[HK89a]

I
i[HK89b]

[HKKL85]

[HKR87a]

[HKR87b]

[HKR88]

[Hen89]

[Iro61]

[Iro70]

J.A. Bergstra, J. Heering & P. Klint (eds.), Algebraic Specification, ACM Press

in co-operation with Addison-Wesley, 1989.

R. Bahlke & G. Snelting, "The PSG system: from formal language definitions to

interactive programming environments", Transactions on Programming La.nguages

and Systems, Vol. 8, Number 4, 1986, pp. 547-576.

M.H.H. van Dijk & J.W.C. Koom, "Implementation of a generic syntax-directed

editor", Fourth Annual Report ESPRIT Project GIPE, 1989.

M.H.H. van Dijk & J.W.C. Koom, "GSE User's manual", User's Manual of the

Centaur System, Version 0.9, 1989.

N. Dershowitz & Z. Manna, "Proving termination with multiset orderings", Com

munications of the ACM, Vol. 22, Number 8, 1979, pp. 465-476.

T. Despeyroux, "Executable specification of semantics'', in Semantics of Data

Types, G. Kahn, D.B. MacQueen & G. Plotkin (eds.), Lecture Notes in Computer

Science, Vol. 173, Springer-Verlag, 1984, pp. 215-233.

K. Futatsugi, J. A. Goguen, J.-P. Jouannaud, and J. Meseguer, "Principles of

OBJ2", in Conference Record of the Twelfth Annual ACM Symposium on Princi

ples of Programming Languages, ACM, 1985, pp. 52-66.

J.Heering & P. Klint, "The syntax definition formalism SDF", in [BHK89,

Chapter 6]. Also in ESPRIT '86: Results and Achievements, North-Holland,

1987, pp. 619-630.
J. Heering & P. Klint, "PICO revisited", in [BHK89, Chapter 9]. Also in ESPRIT

'88: Putting the Technology to Use, North-Holland, 1988, pp. 365-379.

J. Heering, G. Kahn, P. Klint & B. Lang, "Generation of interactive programming

environments", in ESPRIT '85: Status Report of Continuing Work, Part I, North

Holland, 1986, pp. 467-477.

J. Heering, P. Klint & J. Rekers, "Principles of lazy and incremental program

generation", Report CS-R8749, Centre for Mathematics and Computer Science,

Amsterdam, 1987.

J. Heering, P. Klint & J. Rekers, "Incremental generation of lexical scanners",

Report CS-R8761, Centre for Mathematics and Computer Science, Amsterdam,

1987.
J. Heering, P. Klint & J. Rekers, "Incremental generation of parsers", CS-R8822,

Centre for Mathematics and Computer Science, Amsterdam, 1988.

P.R.H. Hendriks, "Type-checking Mini-ML", in [BHK89, Chapter 7]. Abbrevi

ated version in Proceedings of CSN87: Computing Science in the Netherlands,

SION, 1987, pp. 21 -38.

E.T. Irons, "A syntax-directed compiler for Algol 60", Communications of the

ACM, Vol. 4, No. 1, 1961, pp. 51-55.

E.T. Irons, "Experience with an extensible language'', Communications of the

ACM, Vol. 13, No. 1, 1970, pp. 31-40.

[JGHMK86] W.N. Joy, S.L. Graham, Ch.B. Haley, M.K. McKusick & P.B. Kessler,

"Berkeley Pascal User's Manual- Version 3.1, April 1986", 4.3 Berkeley Soft

ware Distribution, Computer Systems Research Group, University of California,

i[JL82]

L oh79]

Berkeley, 1986.

J.-P. Jouannaud & P. Lescanne, "On multiset orderings", Information Processing

Letters, Vol. 15, No. 2, 1982, pp. 57-63.

S.C. Johnson, "Y ACC- yet another compiler-compiler'', in UNIX Programmer's

Manual, Vol. 2B, Bell Laboratories, 1979.

55

.- '.:= ; __

[KLMM83] G. Kahn, B. Lang, B. Melese & E. Morcos, "METAL: a formalism to specify

formalisms", Science of Computer Programming, Vol. 3, 1983, pp. 151-188.

[Kah87] G. Kahn, "Natural semantics", in Fourth Annual Symposium on Theoretical As

pects of Computer Science, ed. F.J. Brandenburg, G. Vidal-Naquet, and M.

Wirsing, Lecture Notes in Computer Science, Vol. 247, Springer-Verlag, 1987,

pp. 22-39.

[Kli89] P. Klint, "Scanner generation for modular regular grammars", in Liber Amicorum,

J.W. de Bakker, 25 jaar Semantiek, Centre for Mathematics and Computer Sci

ence, Amsterdam, 1989, pp. 291-305.

[LS79] M.E. Lesk & E. Schmidt, "LEX - A lexical analyzer generator'', in UNIX Pro

grammer's Manual, Vol. 2B, Bell Laboratories, 1979.

[Log88] M. Logger, "An integrated text and syntax-directed editor", Report CS-R8820,

Centre for Mathematics and Computer Science, Amsterdam, 1988.

[vdM88] E.A. van der Meulen, "Algebraic specification of a compiler for a language with

pointers", Report CS-R8848, Centre for Mathematics and Computer Science, Am

sterdam, 1988.

[0Do85] M. J. O'Donnell, Equational Logic as a Programming Language, MIT Press,

1985.

[RT89] T. Reps & T. Teitelbaum, The Synthesizer Generator: a System for Constructing

Language-based Editors, Springer-Verlag, 1989.

[Rek89] J. Rekers, "Modular parser generation", Report, Centre for Mathematics and

Computer Science, Amsterdam, to appear, 1989.

[Rep84] T. Reps, Generating Language-Based Environments, MIT Press, Cambridge,

Mass., 1984.

[San82] D. Sandberg, "Lithe: A language combining a flexible syntax and classes'', in

Conference Record of the Ninth Annual ACM Symposium on Principles of Pro

gramming Languages, ACM, 1982, pp. 142-145.

[Sta75] T. A. Standish, "Extensibility in programming language design", SJGPLAN No

tices, Vol. 10, No. 7, 1975, pp. 18-21.

[Voi86] F. Voisin, "Cigale: a tool for interactive grammar construction and expression

parsing", Science of Computer Programming, Vol 7. , 1986, pp. 61-86.

[Weg70] B. Wegbreit, Studies in Extensible Programming Languages, Dissertation, Har

vard, 1970, Reprinted by Garland Publishing, 1980.

56

APPENDIX 1: SDF IN SDF

sorts
Id Iterator
EscChar C-Char CharRange CharClass L-Char Literal

SDFDefinition Module Section
LexicalFunction BasicLexElem LexElem
CfFunction CfElem Attributes Attribute

Prio rChain FunctionList GroupAttribute PriorFun

Variable VarSort
lexical syntax

[A-Z]

[A-Z] [A-Za-z0-9\-_] * [A-Za-z0-9]

[+*]
" \\ " - []

" \\ " [01] [0-7] [0-7]

- [\000-\037\-\[\]\\]

EscChar
C-Char
C-Char "-" C-Char
"[" CharRange* "]"
- [\000-\037"\ \]

EscChar
"\"" L-Char* "\""
[a-z]

[a-z] [A-Za-z0-9\-_] * [A-Za-z0-9]

[\t\n\r]

" %%" -[\n] * "\n"
" %" -[\n%] + " %"

context-free syntax
Section*
"module" Id SDFDef inition

"sorts " Id+

"lexical" "syntax" LexicalFunction+

LexElem+ "->" Id
LexElem+ "->" "LAYOUT"

Id
Literal
CharClass
" - " CharClass
BasicLexElem Iterator
BasicLexElem

"context-free" "syntax" CfFunction+

CfElem* "->" Id Attributes
Id
Literal
Id Iterator
"{" Id Literal ")" Iterator

% empty %
Attribute
"{" {Attribute ","}+ "}"

"bracket"
"assoc"
"non-assoc"
"left"

57

->
->
->
->
->
->
->
->
->
->
->
->
->
->
->

->
->
->

->
->

->

->
->
->
->
->
->
->
->
->

->
->
->
->
->
->
->
->
->
->
->
->
->

Id
Id
Iterator
EscChar
EscChar
C-Char
C-Char
CharRange
Char Range
CharClass
L-Char
L-Char
Literal
Literal
Literal

LAYOUT
LAYOUT
LAYOUT

SDFDefinition
Module

Section

Section
LexicalFunction
LexicalFunction
BasicLexElem
BasicLexElem
BasicLexElem
BasicLexElem
LexElem
LexElem

Section
CfFunction
CfElem
CfElem
CfElem
CfElem
Attributes
Attributes
Attributes
Attribute
Attribute
Attribute
Attribute

•": :: =" ~ -= ·_ ::

"right"

"priorities" PriorChain
{FunctionList ">"}+

{FunctionList "<" }+

PriorFun
"{" {PriorFun ","} +
"{" GroupAttribute
CfElem* "->" Id
"left"
"right"
"non-assoc"

"}"

"."

"variables" Variable+

LexElem+ "->" VarSort
Id
Id Iterator

{PriorFun

"{" Id Literal "}" Iterator

" CHAR"
"CHAR" Iterator

-> Attribute

-> Section
-> PriorChain
-> PriorChain
-> FunctionList
- > FunctionList

"' "} + "}" -> FunctionList
-> PriorFun
-> GroupAttribute
-> GroupAttribute
-> GroupAttribute

-> Section
-> Variable
-> VarSort
- > VarSort
-> VarSort
-> VarSort
-> VarSort

58

PENDIX 2: BERKELEY PASCAL IN SDF

sorts

StarComChar Id StringElem

CharString Base Unsignedint Signedint

UnsignedRea l Number OctalConst

Program ProgHeading Block Deel LabelDecl

ConstDecl TypeDecl VarDecl ProcDecl FuncDecl LabelList

ProcHeading FuncHeading Pars Par

Const Type SimpleType FileType Nonf ileType

StructType Field FieldList VariantPart Variant

Var QualifiedVar Statement Assignment

CaseListElem Expr SetElem ActualPar

lexical syntax

[\t\n\r]

"{" -[}] * "}"
- [*]

"*" - [)]
"(*" StarComChar "*)"

"#include" -[\n] * "\n"

[a-zA-Z] [a-zA-Z0-9] *

" oct "
"hex"

- [I \n]
n I I n

"'" StringElem+

"#" StringElem+

[0-7] + [bB]

[0-9]+

Unsignedint

" 1 "

"#"

[+\-] Unsignedint

Unsignedint "." Unsignedint

Unsignedint "." Unsignedint [eE] Signedint

Unsignedint [eE] Signedint

Unsignedint

UnsignedReal

OctalConst

context-free syntax

ProgHeading Deel* Block

Deel*
" "

program Id"(" {Id","}+")"

begin {Statement ";"}+ end

label {Unsignedint ","}+

canst {ConstDecl

Id "=" Const

CharString

Id
Number

"+" Number

";"} + "." I

"." I

59

-> LAYOUT

-> LAYOUT

-> StarComChar

-> StarComChar

-> LAYOUT

-> LAYOUT

-> Id

-> Base

-> Base

-> StringElem

-> StringElem

-> CharString

-> CharString

-> OctalConst

-> Unsignedint

-> Signedint

-> Signedint

-> UnsignedReal

-> UnsignedReal

-> UnsignedReal

-> Number

-> Number

-> Number

-> Program

-> Program

-> ProgHeading

-> Block

-> Deel

-> Deel

-> ConstDecl

-> Const

-> Const

-> Const

-> Const

"-" Number

type {TypeDecl
Id "=" Type
SimpleType

""" Id
FileType
StructType

";"} +

packed StructType

Id
" (" { Id ", " } + ") "
Const" .. " Const
file of NonfileType
SimpleType
" " " Id
StructType
packed StructType

. - _ - . "-. - .: _-_ - ~ -

" . " ,

array"[" {SimpleType ","}+"]"of Type
set of SimpleType
record FieldList end
{Field ";"}+ VariantPart
{ Id ", " } + " : " Type
% empty %
case Id of {Variant ";"} +
case Id ":" Id of {Variant ";"}+
% empty %
{Const ","}+ " . " "(" FieldList ")"

.% empty %

var {VarDecl ";"}+
{Id ","} + " . " Type

ProcDecl

" . "
'

procedure Id Pars ";"
ProcHeading Deel* Block
ProcHeading forward ";"
ProcHeading external Id
ProcHeading external ";"

FuncDecl

"." ,

"." ,

function Id Pars ":" Type ";"
FuncHeading Deel* Block ";"
FuncHeading forward ";"
FuncHeading external Id ";"
FuncHeading external ";"

"(" {Par";"}+")"
% empty %
{ Id ", " } + " : " Id
var {Id","}+":" Id
procedure Id Pars
function Id Pars "·" Id

Id
QualifiedVar
Id " [" { Expr ", " } + "] "
QualifiedVar "[" {Expr ","}+ "]"
Id "." Id
Qualif iedVar " " Id

Id """

60

-> Const

-> Deel
-> TypeDecl
-> Type
-> Type
-> Type
-> Type
-> Type

-> SimpleType
-> SimpleType
-> SimpleType
-> FileType
-> NonfileType
-> NonfileType
-> NonfileType
-> NonfileType

-> StructType
-> StructType
-> StructType
-> FieldList
-> Field
-> Field
-> VariantPart
-> VariantPart
-> VariantPart
-> Variant
-> Variant

-> Deel
-> VarDecl

-> Deel
-> ProcHeading
-> ProcDecl
-> ProcDecl
-> ProcDecl
-> ProcDecl

-> Deel
-> FuncHeading
-> FuncDecl
-> FuncDecl
-> FuncDecl
- > FuncDecl

-> Pars
-> Pars
-> Par
-> Par
-> Par
-> Par

-> Var
-> Var
-> Qualif iedVar
-> Qualif iedVar
-> QualifiedVar
-> QualifiedVar
-> QualifiedVar

QualifiedVar """

Var ":=" Expr

Assignment
begin {Statement ";"}+end

if Expr then Statement

if Expr then Statement else Statement

while Expr do Statement

repeat {Statement ";"}+until Expr

for Assignment to Expr do Statement

for Assignment downto Expr do Statement

case Expr of {CaseListElem ";")+ end

with {Var ","}+do Statement

Id
Id"(" {ActualPar ",")+ ")"

Unsignedint Statement

goto Unsignedint

% empty %

{Const ","}+
% empty %

Number
nil
CharString

Var

"." Statement

Id"(" {ActualPar ",")+ ")"

not Expr

"-" Expr
"+" Expr

"-" Expr
"[" {SetElem ","}* "]"
Expr "+" Expr

Expr "-" Expr

Expr "I" Expr
Expr or Expr

Expr "*" Expr

Expr "&" Expr

Expr "/" Expr
Expr div Expr

Expr mod Expr

Expr and Expr

Expr "=" Expr

Expr ">" Expr
Expr "<" Expr

Expr "<>" Expr

Expr "<=" Expr

Expr ">=" Expr
Expr in Expr

" (" Expr ") "

Expr
Expr " " Expr

Expr
Expr "." Expr
Expr "." Expr U • II

Expr Base

Expr "." Expr Base

Expr

61

-> Qualif iedVar

-> Assignment

-> Statement

-> Statement

-> Statement

-> Statement

-> Statement

-> Statement
-> Statement

-> Statement

-> Statement

-> Statement

-> Statement

-> Statement

-> Statement

-> Statement

-> Statement

-> CaseListElem

-> CaseListElem

-> Expr

-> Expr

-> Expr

-> Expr

-> Expr
-> Expr

-> Expr
-> Expr
-> Expr
-> Expr
-> Expr {left}

-> Expr {left}

-> Expr {left}

-> Expr {left}

-> Expr {left)

-> Expr {left}

-> Expr {left}

-> Expr {left}

-> Expr {left}

-> Expr {left}

-> Expr {non-assoc}

-> Expr {non-assoc}

-> Expr {non-assoc}

-> Expr {non-assoc}

-> Expr {non-assoc}

-> Expr {non-assoc}

-> Expr {non-assoc}

-> Expr {bracket}

-> SetElem

-> SetElem

-> ActualPar

-> ActualPar
-> ActualPar

-> ActualPar

-> ActualPar

' "'--"-.-.: __ -

priorities
{ not Expr -> Expr,

"+" Expr -> Expr,
" -"
"-"

Expr -> Expr,
Expr -> Expr }

>
{ left:

>

Expr "*" Expr -> Expr, Expr "&" Expr -> Expr, Expr "/" Expr -> Expr,

Expr div Expr -> Expr, Expr mod Expr -> Expr ,

Expr and Expr -> Expr }

{ left:

>

Expr "+" Expr -> Expr, Expr " - " Expr -> Expr, Expr " I " Expr -> Expr,

Expr or Expr -> Expr }

{ non-assoc:
Expr " =" Expr -> Expr, Expr ">" Expr -> Expr, Expr "<" Expr -> Expr,

Expr "<=" Expr -> Expr, Expr ">=" Expr -> Expr,

Expr "<>" Expr -> Expr, Expr in Expr -> Expr }

priorities
if Expr then St atement else St a t ement -> Statement >

if Expr then Statement -> Statement

Notes:
• This definition of Pascal conforms to [JGHMK.86].

• The lexical definition of the range operator" .. " is incorrect (see Section 11.3).

62

