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Abstract. A significant part of contemporary applied mathematics is concerned
directly with communication, control and computation. In these fields many of the
central problems involve the synthesis of algorithms, or dynamical systems, as opposed
to the analysis of dynamical systems which predominates in mathematical physics.
Arithmetic and numerical algorithms, finite-state machines and electrical filters are
examples of the types of dynamical systems which are frequently needed to operate
on data, in continuous or discrete form, and to produce data on a compatible time scale.
In this paper we discuss the scope and success of some of the synthesis procedures
currently available to treat these problems.

1. Computation and control. Dynamical phenomena have attracted the attention
of mathematicians for centuries; indeed, several important branches of analysis have
developed out of studies in this direction. In mathematics the usual idea of a dynamical
system is that of a deterministic, autonomous physical system; the goal of a mathe-
matical investigation is to make qualitative and quantitative predictions about the
nature of future behavior [1, pp. 1-4]. In this tradition, tremendous emphasis has been
placed on problems of an astronomical origin. In particular, from 1773 (Laplace) to
1889 (Poincar6) the question of determining whether or not the solar system is stable
was intensively studied, whereas the question of what to do about it should it prove to be
unstable was, apparently, left to the theologians. In any case, the descriptive branch
of dynamics has a much longer history than the prescriptive one; though there is evidence
that the idea of designing and controlling a dynamical system has roots in antiquity
[2, pp. 5-10], the mathematical development of this field is mostly a product of the
20th century.

As contrasted with the Newtonian concept of dynamics, the view is held in numerous
areas of applied mathematics that a dynamical system is a kind of operator or algorithm
which accepts inputs and produces outputs; the goal of a mathematical theory is either
to define a dynamical system which corresponds to a given set of input-output pairs or,
in the event that the dynamical system is given, to construct an input which will steer
the system to a desired goal. This is typical in control theory and in abstract computa-
tional theory. On the control side one can trace this circle of ideas back to the English
scientists Heaviside and Rayleigh who, around 1885, discussed the response of physical
systems (electrical networks and acoustical resonators) to sinusoidal forcing functions
of an arbitrary frequency. Heaviside's goal was to extend Kirchoff's penetrating analysis
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of linear, resistive electrical networks to all linear time-invariant electrical networks
through the introduction of "capacitative operators" and "inductive operators." This
leads to the extension of Ohm's law itself and to the characterization of an electrical
network through its "impedance" (Heaviside's term [3]) or its "driving point reaction"
(Rayleigh's term [4]). As far as computation is concerned, according to Knuth [5, p. 607],
algorithms are "precise rules for transforming specified inputs into specified outputs in
a finite number of steps." This makes algorithms very much akin to dynamical systems
in the above sense of the words. In 1936 Turing [6] set out to formalize computation in
terms of a mechanical device which accepts input data and produces outputs. Subse-
quent developments led to the formalization of the idea of a finite automaton—perhaps
the most elementary dynamical input-output model in existance. If further justification
for our language is required recall that even elementary arithmetic with its system of
carrying and borrowing corresponds to our intuitive idea of a dynamic process.

Thus we regard both linear dynamical systems (filters) and automata as models for
algorithms. Both are dynamic and both accept inputs and produce outputs. The tech-
nological interest in each case stems from the fact that specific examples of these models
can be synthesized readily and the computations which these systems perform can be
very useful. Despite the apparent dissimilarities, even the synthesis procedures for these
systems proceed along similar lines. One first of all determines a state space, codes the
states and then builds the memoryless inter-connection. In both cases the design proceeds
smoothly in simple cases, but in the more complex cases combinatorial problems can be
severe and may even prevent the successful completion of phase two. We feel that certain
problems in numerical analysis are enough like problems arising in linear system theory
to justify a deeper investigation. In both fields the synthesis of algorithms is a major
problem. Convergence is the prime objective in many naive applications. Optimality
is an issue but of limited practical significance.

In this paper we want to discuss, in a general way, some synthesis questions related
to dynamical systems of the input-output, or if you like, algorithmic, type. At times it
will be necessary to assume that the reader has some familiarity with linear system
theory as it is discussed in the recent literature [7, 8].

2. Discovering interative schemes. Assume that one has a certain function or set
of functions to be evaluated. A number of procedures are known for finding recursive
schemes to carry out the computation. For example, if the function is a polynomial
and if it is to be evaluated in a single point X then one has Horner's rule,

x(k + 1) = Xx(k) + pk ; x(0) = 0,

which evaluates piSn + p2s"_1 + • • • + pn+i at X with just n additions and n multipli-
cations. This is a special case of a much more general idea which we will go into below.

If U is a set then by U* we mean the monoid (semigroup with identity) whose
elements consist of strings of the elements of U and whose multiplication is concatenation.
We include the empty string which is the identity. We consider the problem of evaluating
functions defined on U* mapping into a set Y, and in particular we want to discuss what
happens if we give U and Y additional structure corresponding to various types of
practical computation.

2.1 Functions defined on finite sets. Suppose U is a finite set. If r maps U* into Y
then r defines an equivalence relation on U* according to which ul £ U* is equivalent
to u2 G U* if for each u3 £ U* we have r(utu?) = r(u2u3). We denote this equivalence
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by Ui = r u2 • Nerode [9] has shown that there exists an iterative scheme to evaluate r
which has a finite number of states if and only if U*/=, is a finite set. That is to say,
if there are only a finite number of equivalence classes in U* then there exists a finite
set X, functions a and c such that a:X X U —> X; c:X X U —> Y, and r is evaluated by

x(k + 1) = a[x(k), u(k)]; y(k) = c[x(k), u(k)]; x(0) = x0 .

The set X is called the set of states. Any two such iterative schemes for evaluating r which
are minimal in the sense that every state can be reached from the starting state for some
input string, and every two states can be distinguished knowing the input and output
data, have the same number of states and this number equals the number of elements
in U*/ = r ■

2.2 Functions defined on groups. Now suppose that U and F admit a group struc-
ture. Say U = (U, •) and F = (F, *). Let r'.U* —> F be a given function. When can
we evaluate r by an iterative method of the type

x(k + 1) = b[u(k)]- a[x(k)]-, y(k) = c[x(k)]; x(0) = x0 ,

where x takes on values in a group X = (X, •), a:X —> X; b:U —> X and c:X —> F are
all group homomorphisms? Since the solution of the above iteration is

2/(0) = c[x0]

2/(1) = c[5[w(0)]-a[xo]]

2/(2) = c[6[w(l)]-a[6[«(0)]]-a2[zo]]

y(ja) = c[b[u(p - 1 )]-a[b[u(jp - 2)]] a"[x0]]

it is clear that in order to be able to evaluate r using a method of this form it is necessary
that the value of r corresponding to the sequence «(0), u(l), • • • , u(p) be expressible
as T0[u(p — 1 )]*Ti[u(p — 2]* • • • *T„^[u(0)]*vv . If U is a finite group then in order
for X to be finite we require that the Nerode condition be satisfied. Assuming this to
be the case, then it is known [10] that there exists a realization of the given form if and
only if the sequence T„, , T2 • • • is ultimately periodic in that there exist p and q such
that Tk+V = Tk for k = q, q + 1, q + 2, • • ■ . Moreover, if there are two minimal iterative
schemes which compute the same input-output map, say

x(k + 1) = 6[m(&)]-o[x(fc)]; y(k) = c[x(k)],

z(k + 1) = g[u(k)]-j[z(k)]\ y{k) = h[z(k)],

then X and Z are homomorphic as groups [10] and there exists a one-to-one and onto
homomorphism p\X —> Z such that

p(«(p_1(-))) = /(•), p(6(-)) = £/(•), c(p-\-)) = h(-).

2.3 Functions defined on vector spaces. Perhaps the most intensively studied methods
are the linear ones including, for example, Horner's rule as a special case. In this context
we give U and F a vector space structure and consider

x(k + 1) = Ax(k) + Bu(k)\ y = Cx(k)

where x(k) £ u(k) £ (Rm; y(k) £ and A, B, and C are linear maps defined on the
appropriate spaces.
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This type of first-order iteration is appropriate for evaluating the product

CB 0 0
CAB CB 0

CA2B CAB CB

u( 0)

w(l)

«(2)

y( i)

2/(2)

2/(3)
(*)

It is well known [7] that given a block Toeplitz matrix it is possible to evaluate its
product with a vector, using a first-order linear recurrence with x n-dimensional, if
and only if the family of Hankel matrices

Hr =

CB CAB • ■ ■ CAT'lB

CAB CA2B ■ ■ ■ CA'B

CA'-'B CA'B ■■■ CA2r~lB_

r = 1, 2,

are each of rank n or less. Moreover, if there is one H, which is of rank n then no lower-
dimensional recursive scheme exists and any two recursive schemes of this form, and
this minimal order, are related in a simple way. That is, if

x(k + 1) = Ax(k) + Bu(lc); y(k) = Cx(k)

z(k + 1) = Fx(k) + Gu(k)] y(k) = Hz(k)

both compute the same function and if both are of minimal dimension, then there exists
a nonsingular constant matrix P such that

PAP'1 = F, PB = G, CP-1 = H.

The minimum dimension of a realization of the map (*) is called its McMillan degree.
Considering, for a moment, the case where u and y are scalars, there are two canonical

realizations available over any field (not necessarily algebraically closed). The first
corresponds to the choice

A =

r o i o o
0 0 1 ••• 0 b =

— Po ~Pl —Pi ■ ■ ■ —Pn-1

and second corresponds to the choice

0 1 0 0

, 0 0 1 0A =

— Po —Pi —Pa ' ' ' — P-iJ

C — Iffn-l ) Qn-2 , ' * ' ) ?o]

b = c = [1, 0, ••• 0]



SYNTHESIS OF DYNAMICAL SYSTEMS 45

The relationship between the two is most conveniently expressed in terms of a generating
function relationship

g„-1z""' + g„-Bz" 2 + • • • + go _ i -1 i ; -2 .
n i n— 1 » I — tO2 I h* I

2 + p„_i 0 + • • ■ + pn

2.4 Functions defined on modules. To indicate further the scope of these methods
we consider an example where the iteration takes place in a module. Starting with a
one-dimensional diffusion equation with constant coefficients and periodic boundary
conditions, say

- a = u(t, z); z(i, 0) - *«, *), ^ ,

a standard discretization with respect to time and space gives

x(k + 1) = Ax(k) + u(Jc)

where A is a circulant matrix. Let Rp[z] denote the ring of polynomials of degree less
than p with real coefficients, where all computations are done modulo z" — 1. As is
well known, the set of p by p circulant matrices form a ring which is isomorphic to Itp[z].
If ^[2] is the n-dimensional module over #,,[2] then we can study

x(fc + 1) = Ax(k) + Bu(k)-, y(k) = Cx(k)

where u, x and y take on values in (R"[z], <P^[z] and (R°[e] and A, B, and C are all module
homomorphisms. See Kalman, Falb, and Arbib [7] for a general discussion. This example
comes from [11] where the above isomorphism is used to good advantage.

3. The optimization of algorithms. The procedures of the previous section can be
used to minimize the memory associated with a given computation. Recently, however,
there has been a great deal of work devoted to the development of algorithms which
minimize other criteria such as the number of multiplications necessary to compute
a given function. The problem of evaluating a polynomial at one or more points and
the problem of multiplying two polynomials together are examples of problems which
have been looked at from this point of view. There has also been some investigation of
optimal iteration, as we will discuss later.

3.1 Arithmetic optimality. A number of frequently occurring computations, including
the two just mentioned, center around evaluating the product of a Toeplitz matrix and
vector. That is, to evaluate p(s) = ptsn + p2s"_1 + • • • p„*i at X using Horner's rule
one must compute the product

r»
P2

1 0 0

X2

X" X"-1 X""2

P3

LPn-1.

V ■
Xpi + p2

X2P!+XP2+ p3

pM
To compute the product of pis" + P2Sn + • • • p„+1 and <hsm + q2sm~ + ■ ■ • qm+1 one
must compute
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Pi o 0 0 qt pYq 1

T>2 Pi o 0 q2 Piq2 + Mi

Pn+1 P„ P„-l ' • • Pn-m

0 Pn + 1 Pn ' ' ' Pn—m— 1

.0 0 0 • • • pn+1 J|_g„

From the results of the previous section one sees that there are several general
statements which can be made giving upper bounds on the number of operations needed
to evaluate certain collections of functions.

Case 1 (abstract Horner's rule—-I): Let U and Y be sets, let X = (X, •) be a
semigroup and let a:X —> X be a semigroup homomorphism. Given any b'.U —> X
and c:X —> Y, the collection of functions

2/(1) = c(6(w0)
2/(2) = c(6(u2) •«(&(«,)))

2/(3) = c(b(u3)-a(b(u2))-a2(b(u,)))

y(p) = c(6(Mp)-a(6(itp_1)) a" '(6(ki)))

can be evaluated with p evaluations of a, 6 and c and p X-multiplications using the rule

x(fc + 1) = b(u(k))-a(x(k)); y(k) = c(x(k)).

This specializes to Horner's rule by letting & and c be trivial, letting X = (72, +)
and letting a:R —» R be given by a(x) = \x. Recall that through the recent efforts of
Ostrowki, Motzkin, Pan, Garsia, etc., we now know that Horner's rule is optimal with
respect to both the number of multiplications and additions required to evaluate a
polynomial at a single point X (see Knuth [5] for references).

We can also capture Horner's rule as a special case of a vector space recursion.
Case 2 (abstract Horner's rule—-II): Let w(0), w(l), u(2), • • • and p0 , Pi , p2 ,

be two sets of real numbers. The product

Po 0 0

Pi Po 0

p2 Pi Po

Pv Pv-1 Pv-2

0

0

0

PoJ

w(0)

w(l)

u( 2)

w(p).

2/(0)

2/(1)

2/(2)

jj(p).

can be evaluated in 2 bp — 82 + S multiplications and 2bp — b2 + 5 additions, where b is
the McMillan degree (see Sec. 2.3) of the sequence {p,-}, by using the first of the recur-
sions given at the end of Sec. 2.3.

Through the use of nonrecursive techniques one can multiply a finite Toeplitz matrix
of size p by p by a vector in 6p — 1 multiplications (see corollary 15 of Fiduccia [12]
and use the imbedding of a finite Toeplitz matrix into a circulant matrix of twice the size).
The recursive scheme is better if the McMillan degree is low. However, there is room
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for improvement in the recursive scheme if one uses more memory, as the following
example shows.

To illustrate, consider the question of evaluating the first n terms in the product
of a Toeplitz matrix and a vector:

a 0

b a

0 b

0 0

0 0

0 0
a 0

b a

Mj

u2

U3

U4

Vx

Vj_

2/3

y4

The obvious iterative scheme to evaluate this requires 2n — 1 multiplications to
compute the first n terms, which is no better than naive multiplication. However, if this
computation is "blocked" as indicated, then an appropriate iterative scheme is

xt(k + 1)

x2(k + 1)

_x3(k + 1).

0 0 0

0 0 0

0 1 0

Xi (k)

x2(k)

_x3(k)_

+

1 0

0 1

.0 0

Ui(k)

u2(k)_

2/i (k)

Jh(k).

a 0 b

b a 0.

Xi(k)

x2(k)

-X*(k)_

This requires four multiplications per step but if we want to reduce these we can observe
that the transformation

1 0 0
-1 1 0

-1 0 1

Xi

x2

-X3.

Zi

z2

L23J

gives for CP -1

a 0 b

b a 0_

1 0 0

1 1 0

.1 o 1_
Thus we can construct a realization which requires only three multiplications per step

a + b 0 b

a + b a 0_

Zi(k + 1)

Zi(k + 1)

_z3(k + 1)_

0 0 0

0 0 0
.1 1 0

yi(k)

Jh(k).

Zi(k)

z2(k)

_.z3(k)_

a + b 0 b

a + b a 0.

+

1 0
-1 1

-1 0_

Zi(k)

z2(k)

-Z3(k).

Mi(fc)

u2(k).
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Even further reduction is possible by working with bigger blocks.
3.2 Optimal root-finding. We also mention that there is a growing body of literature

which assesses the performance of comparable methods for root-finding. If r is the root
of j(x) = 0 then the performance measure of an algorithm whose zth approximation is xt
might be a function of the power p where p is the largest number such that

limsup \xi+i — r\/\xi — r\v < .
t'-»oo

Ostrowski [13] showed, for example, that for the secant method

Xk+l = ~[/(xj - KxL)]1^ + Xk
the power p is the larger root of p2 — p — 1 = 0, which is about 1.62. Moreover, subse-
quently the secant method has been shown to be optimal with respect to a large class
of algorithms which use the same data. For a survey of this literature see the paper
by Traub [14].

4. Two examples. Two instances in which the kind of analysis being proposed here
has been carried a little further along are the areas of numerical integration and iterative
root-finding. We will briefly discuss some results.

4.1 Numerical integration. The wide variety of methods available for the numerical
integration of the initial value problem

x(t) = f[x(t)]; z(0) = x (1)
are usually introduced by describing their implementation. Butcher [15] has proposed
a scheme which gives a degree of unification to many diverse methods. An alternative
was developed by Evans in his thesis [16-17].

In Evans' work one associates with each linear numerical integration method and
each step size h an infinite lower triangular matrix W. If w, ,■ are the entries in this matrix
then the approximating values to the solution of (1) are obtained by solving the system

g( 0)
<7(1)

g( 2)
+

w n 0 0

w2l w22 0

^31 1032 ^33

flym
MD]
M 2)]

2/(0)

2/(1)

2/(2) (*)

for y(k). In all interesting cases the approximate value of x(hk) is y(kp) where v is a
positive integer. No significance is attached to the points which are not multiples of p.
These are, for example, the intermediate points which appear in a Runge-Kutta method
and which are ultimately discarded. Think of 1/p as the "rate" of the method, since
p is the number of evaluations of / required to go one step forward. The vector g depends
on the initial data.

If we are discussing a linear multistep method then IF is a lower triangular Toeplitz
matrix and p is one. The method is explicit if and only if W is strictly lower triangular.
The Runge-Kutta and midpoint rules, as well as linear multistep methods, give rise
to W matrices which are periodic in the sense that wi+Jt,i+r> — wi:i . Necessary and
sufficient conditions for consistency, stability, and convergence, in the sense that these
terms are used in numerical analysis, can be found in terms of the matrix W. This is
also done in Evans' thesis.
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Since the lower triangular matrix W is generally full, the actual implementation of
the algorithm requires one to solve the equation (*) by a recursive scheme. This means
finding a blocking for W, say W = (IF"), and then finding A (fc), B(k), and C(/c) such that

TF" = C(i)A(i) ■ • • i > j.
Having this decomposition we can implement the algorithm as

x(k + 1) = A(k)x(k) + B(k)J(y(k)), y{k + 1) = C(k)x(k) + Dj(y(k)).
System theory gives a procedure for finding the lowest-dimensional vector x to do this
job. Moreover, one has procedures for finding all the realizations (triples A, B, C) which
will work. Examples can be found in [16] and [17].

4.2 Root-finding. Picard [18] proposed a very general method for finding the solution
of ](x) = x. This method is very close in spirit to feedback control theory in the following
sense. Picard suggested that if one makes a guess x0 and if j(x0) ^ x0 then a better guess
is to let Xx equal f(x0). Repeating the process gives xk¥1 = j(xk). This is a feedback
scheme in that the adjustment in xk to get xk + l is dependent on the error in the fcth
approximation xk+l — xk = f(xk) — xk . The availability of an easy sufficient condition
for convergence, ||/(a;) — /(?/)11 < k \\x — y\\ where ||-|| indicates a suitable norm and
k < 1, makes this a very useful theoretical tool. However the speed of convergence is
another matter, and in this respect Picard's method is far from ideal.

Adopting the point of view of the control engineer one might try to speed up the
convergence rate by replacing Picard's algorithm by a higher-order one. That is, we
design a dynamical system which will seek the null point more rapidly without becoming
unstable. A possible generalization is to write

p(E)x(k) = j[q(E)x(k)]

where p and q are polynomials and E is the shift operator Enx(k) = x(n + k). Suppose
/ is continuously differentiable and that j(xa) = x, . For this general method consistency
demands that p(l) = g(l). This, plus the local stability condition asking that p(E) +
f{x>)l(E) has all its zeros in the open disk {z: \z\ < 1}, insures that there exists e > 0
such that if we initialize the algorithms with

\x( — n) — x,\ + \x(—n + 1) — x.\ + • ■ • |a;(— 1) — x,\ + lz(0) — x,\ < t,

then the algorithm will converge.
What about convergence for arbitrary initializations? Thanks to some recent develop-

ments this question can also be answered at the expense of introducing additional
machinery. Let T be defined by

T = {z | z = q(e,e)/p(e'6)] 0 < 6 < 2ir\.

This is the image of the unit circle in the complex plane under the mapping defined by
9 = l/V- It is possible to show that (i) if the local stability condition is satisfied; (ii) if
|j(x) — x,\ < \x — x,\ and if T C {z: |z| < 1} then the convergence is global. There are
many types of proofs and many extensions of this result. Some indication of the scope
of the literature can be gained from the recent book of Willems [19]. Examples treating
what these refinements yield in the way of improved convergence are given in the thesis
of Gorille [20].

5. Closing remarks. Because of the occasion, I will conclude with a few nontechnical
remarks.
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The growth of any field depends on its ability to attract bright young people into
the fold. Labels are useful only insofar as they help characterize the activity to those
who are outside the field. The label "applied mathematics" is not always an asset.
For example, in section 1 of [21] Edward Nelson defends his intent to discuss Brownian
Motion as a physical concept as follows:

The only legitimate justification is a mathematical one. Now 'applied mathematics' con-
tributes nothing to mathematics. On the other hand, the sciences and technology do make
vital contributions to mathematics. The ideas in analysis which had their origin in physics are
so numerous and so central that analysis would be unrecognizable without them.

As far as the second sentence is concerned, the point is a good one. However there is a
play on words here. One should not judge applied mathematicians by their contribution to
mathematics any more than one judges historians by their contribution to history. Much
creative effort goes into interpretation. To try to use mathematical ideas on problems which
at first sight seem too complex or obscurely stated to fit any pattern is, for many people,
an exciting challenge and it is this which I feel to be the essence of applied mathematics.
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