
 Open access Proceedings Article DOI:10.1109/ASPDAC.2012.6165056

The synthesis of linear Finite State Machine-based Stochastic Computational Elements
— Source link

Peng Li, Weikang Qian, Marc D. Riedel, Kia Bazargan ...+1 more authors

Institutions: University of Minnesota, Shanghai Jiao Tong University

Published on: 09 Mar 2012 - Asia and South Pacific Design Automation Conference

Topics: Stochastic computing, Finite-state machine, Combinational logic, Stochastic process and Exponentiation

Related papers:

 Stochastic Computing Systems

 Stochastic neural computation. I. Computational elements

 An Architecture for Fault-Tolerant Computation with Stochastic Logic

 Survey of Stochastic Computing

 Using stochastic computing to implement digital image processing algorithms

Share this paper:

View more about this paper here: https://typeset.io/papers/the-synthesis-of-linear-finite-state-machine-based-
1xpl8oynjb

https://typeset.io/
https://www.doi.org/10.1109/ASPDAC.2012.6165056
https://typeset.io/papers/the-synthesis-of-linear-finite-state-machine-based-1xpl8oynjb
https://typeset.io/authors/peng-li-9ttrk27ze9
https://typeset.io/authors/weikang-qian-sfcc3n76k3
https://typeset.io/authors/marc-d-riedel-2rjfahzdm2
https://typeset.io/authors/kia-bazargan-1at5o7ipy5
https://typeset.io/institutions/university-of-minnesota-2bv8nbl3
https://typeset.io/institutions/shanghai-jiao-tong-university-1zokxin6
https://typeset.io/conferences/asia-and-south-pacific-design-automation-conference-1rzyf0rm
https://typeset.io/topics/stochastic-computing-21agv3q6
https://typeset.io/topics/finite-state-machine-9vl6oeyj
https://typeset.io/topics/combinational-logic-1ean5m7n
https://typeset.io/topics/stochastic-process-ahq4y31a
https://typeset.io/topics/exponentiation-1n3k30cp
https://typeset.io/papers/stochastic-computing-systems-33t8ww8q1o
https://typeset.io/papers/stochastic-neural-computation-i-computational-elements-434b9iyc9z
https://typeset.io/papers/an-architecture-for-fault-tolerant-computation-with-4kqh7n25aa
https://typeset.io/papers/survey-of-stochastic-computing-10orkcfmr8
https://typeset.io/papers/using-stochastic-computing-to-implement-digital-image-1fdfv4wgh2
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/the-synthesis-of-linear-finite-state-machine-based-1xpl8oynjb
https://twitter.com/intent/tweet?text=The%20synthesis%20of%20linear%20Finite%20State%20Machine-based%20Stochastic%20Computational%20Elements&url=https://typeset.io/papers/the-synthesis-of-linear-finite-state-machine-based-1xpl8oynjb
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/the-synthesis-of-linear-finite-state-machine-based-1xpl8oynjb
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/the-synthesis-of-linear-finite-state-machine-based-1xpl8oynjb
https://typeset.io/papers/the-synthesis-of-linear-finite-state-machine-based-1xpl8oynjb

The Synthesis of Linear Finite State Machine-Based Stochastic

Computational Elements

Peng Li†, Weikang Qian‡, Marc D. Riedel†, Kia Bazargan†, and David J. Lilja†

†Department of Electrical and Computer Engineering, University of Minnesota, Twin Cities, USA

{lipeng, mriedel, kia, lilja}@umn.edu

‡University of Michigan-Shanghai Jiao Tong University Joint Institute, Shanghai, China

qianwk@sjtu.edu.cn

Abstract— The Stochastic Computational Element (SCE) uses

streams of random bits (stochastic bits streams) to perform com-

putation with conventional digital logic gates. It can guarantee re-

liable computation using unreliable devices. In stochastic comput-

ing, the linear Finite State Machine (FSM) can be used to imple-

ment some sophisticated functions, such as the exponentiation and

tanh functions, more efficiently than combinational logic. How-

ever, a general approach about how to synthesize a linear FSM-

based SCE for a target function has not been available. In this

paper, we will introduce three properties of the linear FSM used

in stochastic computing and demonstrate a general approach to

synthesize a linear FSM-based SCE for a target function. Experi-

mental results show that our approach produces circuits that are

much more tolerant of soft errors than deterministic implementa-

tions, while the area-delay product of the circuits are less than

that of deterministic implementations.

I. INTRODUCTION

Future integrated circuits are expected to be more sensi-

tive to noise and variations [1]. Stochastic computing, which

uses conventional digital logic to perform computing based

on stochastic bit streams, has been known in the literature for

many years [2]. It can gracefully tolerate very large numbers of

errors at lower cost than conventional over-design techniques

while maintaining equivalent performance.

In stochastic computing, computation in the deterministic

Boolean domain is transformed into probabilistic computation

in the real domain. Such computation is based on a stochas-

tic representation of data. Gaines [2] proposed two types of

stochastic representation: a unipolar coding format and a bipo-

lar coding format. These two coding formats are the same

in essence, and can coexist in a single system. In the unipo-

lar coding format, a real number x in the unit interval (i.e.,

0 ≤ x ≤ 1) corresponds to a sequence of random bits, each of

which has probability x of being one and probability 1 − x of

being zero. If a stochastic bit stream of length N has k ones,

then the real value represented by the bit stream is k
N . In the

bipolar coding format, the range of a real number x is extended

to −1 ≤ x ≤ 1. The probability that each bit in the stream is

one is P (X = 1) = (x + 1)/2. Thus, a real number x = −1
is represented by a stream of all zeros and a real number x = 0
is represented by a stream of bits that have probability 0.5 of

being one. If a stochastic bit stream of length N has k ones,

then the real value represented by the bit stream is 2 k
N − 1.

With stochastic representation, some basic arithmetic opera-

tions can be very simply implemented by combinational logic.

For example, as shown in Fig. 1(a), with the unipolar coding

format, multiplication can be implemented with an AND gate.

Assuming that the two input stochastic bit streams A and B are

independent, the number represented by the output stochastic

bit stream C is c = a · b. So the AND gate multiplies the two

values represented by the stochastic bit streams.

We can also implement scaled addition with a multiplexer,

as shown in Fig. 1(b) 1. With the assumption that the three

input stochastic bit streams A, B, and S are independent, the

number represented by the output stochastic bit stream C is

c = s ·a+(1−s) ·b. Thus, with the unipolar coding format, the

computation performed by a multiplexer is the scaled addition

of the two input values a and b, with a scaling factor of s for a
and 1− s for b.

AND

A

B

1,1,0,1,0,1,1,1

1,1,0,0,1,0,1,0

1,1,0,0,0,0,1,0

b: 4/8

C

a: 6/8
c: 3/8

(a) Multiplication with the unipolar coding.

Here the inputs are 6/8 and 4/8. The output

is 6/8× 4/8 = 3/8, as expected.

B

A

MUX

1

0

C

S

a: 1/8

0,1,0,0,0,0,0,0

1,0,1,1,0,1,1,0

0,0,1,0,0,0,0,1

1,0,0,1,0,1,1,0

c: 4/8

b: 5/8

s: 2/8

(b) Scaled addition with the unipolar coding.

Here the inputs are 1/8, 5/8, and 2/8. The out-

put is 2/8× 1/8 + (1− 2/8)× 5/8 = 4/8, as

expected.

Fig. 1. Stochastic implementation of arithmetic operations.

1It is not feasible to add two probability values directly; this could result in

a value greater than one, which cannot be represented as a probability value.

978-1-4673-0772-7/12/$31.00 ©2012 IEEE

9A-1

757

The main issue of the combinational logic-based SCEs is that

they cannot be efficiently used to implement sophisticated com-

putations, such as the exponentiation and tanh functions [3].

Gaines described the use of an ADaptive DIgital Element (AD-

DIE) for generation of arbitrary functions in 1967 [2]. The AD-

DIE is based on a saturating counter, that is, a counter which

will not increment beyond its maximum state value or decre-

ment below its minimum state value. In the ADDIE, however,

the state of the counter is controlled in a closed loop fash-

ion. The problem is that ADDIE requires that the output of

the counter is converted into a stochastic pulse stream in order

to implement the closed loop feedback [2]. This will make the

system inefficient and require substantial amounts of hardware.

S0 SN-G SN-1

X

X

_

X

_
X

X

X

_

X

X

_S1

X

X

_
X

_

X

Y=0

X

X

_ SN-G-1

Y=1

X

X

_ SN-G-2

(a) State transition diagram.

(b) Approximation result.

Fig. 2. The FSM-based stochastic exponential function.

S0 SN/2-1 SN-1

X

X

_

X

_
X

X

_

X

X

_

X

X

_

XX

X

_
X

_

XX

X

_ SN/2S1 SN-2

Y=0 Y=1

(a) State transition diagram.

(b) Approximation result.

Fig. 3. The FSM-based stochastic tanh function.

In 2001, Brown and Card [3] presented two FSM-based

SCEs. The first one is called a stochastic exponentiation

function, we show the state transition diagram in Fig. 2(a).

This configuration approximates an exponentiation function

stochastically as follow,

y ≈

{

e−2Gx, 0 ≤ x ≤ 1,

1, −1 ≤ x < 0,
(1)

where x is the bipolar coding of the input bit stream X and y

is the unipolar coding of the output bit stream Y . The approxi-

mation result based on N = 16, G = 2 is shown in Fig. 2(b).

The second one is called a stochastic tanh function. We show

the state transition diagram in Fig. 3(a). This configuration

approximates a tanh function stochastically as follow,

y ≈
e

N

2 x − e−
N

2 x

e
N

2 x + e−
N

2 x
, (2)

where x is the bipolar coding of the input bit stream X and

y is also the bipolar coding of the output bit stream Y . The

approximation result based on N = 8 is shown in Fig. 3(b).

S0 S1 SN-2 SN-1

X

X

_

X

_
X

X

_

X

X

_

X

X

_

X

Fig. 4. A generic linear state transition diagram.

We notice that both of these two FSM-based SCEs use vari-

ations of the linear state transition pattern shown in Fig. 4. The

linear FSM is similar to Gaines’ ADDIE, which can be also

viewed as being based on a saturating counter. The difference

is that the linear FSM did not use closed loop, which makes

this new FSM more efficient. Based on the aforementioned

two examples, it can be seen that the linear FSM can be used

to implement sophisticated computations which are difficult to

implement with combinational logic. However, the stochastic

exponentiation and tanh functions are developed based on an

empirical approach. A general approach about how to synthe-

size a target function based on the linear FSM is still unknown.

To take advantage of the linear FSM in stochastic comput-

ing, it is necessary to find a general approach to synthesize a

target function based on it. In this paper, we will introduce the

basic properties of the linear FSM used in stochastic comput-

ing and demonstrate a general approach to synthesize the linear

FSM-based SCEs. The remainder of this paper is organized

as follows. Section II introduces the properties of the linear

FSM. Section III proposes the general approach to synthesize

the linear FSM-based SCEs. Section IV presents experimental

results on both the cost and the error-tolerance of the stochastic

and deterministic implementations of different target functions.

Conclusions are drawn in Section V.

II. PROPERTIES OF THE LINEAR FSM USED IN

STOCHASTIC COMPUTING

The basic form of the state machine shown in Fig. 4 is a set

of states S0 → SN−1 arranged in a linear form (e.g. like a sat-

urating counter) [3]. It has totally N = 2K states, where K is a

positive integer. X is the input of this state machine. The out-

put Y (not shown in Fig. 4) of this state machine is determined

only by the current state. Assume the input X is a stochastic

bit stream, and it is a Bernoulli sequence. The system will be

ergodic and will have one single stable hyperstate [2]. We de-

fine the probability that each bit in the input stream X is one

to be PX , the probability that each bit in the corresponding

9A-1

758

output stream Y is one to be PY , and the probability that the

current state is Si(0 ≤ i ≤ N − 1) under the input probabil-

ity PX to be Pi(PX). The individual state probability Pi(PX) in

the hyperstate must sum to unity. Additionally, in the steady

state, the probability of transitioning from state Si−1 to state

Si must equal the probability of transitioning from state Si to

state Si−1. Thus,

Pi(PX) · (1− PX) = Pi−1(PX) · PX , (3)

N−1
∑

i=0

Pi(PX) = 1, (4)

PY =
N−1
∑

i=0

si · Pi(PX). (5)

where si only has two values, 0 or 1 (this denotes the configu-

ration of the states that control the output, for example, setting

si = 1 denotes Y = 1 if the current state is S1).

Based on (3) and (4), Pi(PX) can be computed as follows,

Pi(PX) =
(PX

1−PX

)i

N−1
∑

j=0

(PX

1−PX

)j
. (6)

Based on (6), we obtain three properties for the linear FSM

shown in Fig. 4.

Property 1 Pi(PX) and PN−1−i(PX) are symmetric about

PX = 0.5. In other words, Pi(PX) = PN−1−i(1−PX). �

Property 2 If N is large enough, for example N ≥ 8,

• PY will be mainly determined by the configuration of the

states from S0 to SN/2−1 when PX ∈ [0, 0.5);

• PY will be mainly determined by the configuration of the

states from SN/2 to SN−1 when PX ∈ (0.5, 1].

In other words, we can rewrite (5) as follows,

PY

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

≈

N/2−1
∑

i=0

si · Pi(PX), 0 ≤ PX < 0.5,

=
N−1
∑

i=0

si
N , PX = 0.5,

≈
N−1
∑

i=N/2

si · Pi(PX), 0.5 < PX ≤ 1. �

(7)

Property 3 For the configuration

PY =
N−1
∑

i=0

si · Pi(PX),

• if we set si = sN−1−i, PY will be symmetric about the

line PX = 0.5;

• if we set si = 1 − sN−1−i, PY will be symmetric about

the point (PX , PY) = (0.5, 0.5).

In other words,

• if si = sN−1−i, PY (PX) = PY (1− PX);

• if si = 1− sN−1−i, PY (PX) = 1− PY (1− PX). �

The three properties can be proved based on (6). Addition-

ally, the two linear FSM-based SCEs introduced by Brown and

Card [3] can be proved based on these three properties. Due to

space limitations, we omit the proofs here.

III. A GENERAL APPROACH TO SYNTHESIZE THE LINEAR

FSM-BASED SCES

In this section, we will introduce a general approach to syn-

thesize a target function based on the linear FSM.

A. Circuit Implementation of the Linear FSM

Before we introduce the synthesis approach, we first present

another linear state transition diagram shown in Fig. 5. This

transition diagram has the same state transition pattern as the

one shown in Fig. 4. However, the parameters si assigned to

each state in Fig. 5 are different from the one defined in (5). In

(5), we only consider two deterministic values for si, i.e., 0 and

1. Here in Fig. 5, si stands for a stochastic bit stream, in which

we define the probability that each bit is one to be Psi . Thus,

we rewrite (5) as follows,

PY =
N−1
∑

i=0

Psi · Pi(PX). (8)

S0 S1 SN-2 SN-1

X

X

_

X

_
X

X

_

X

X

_

X

X

_

X

s0 s1 sN-2 sN-1

Fig. 5. A linear state transition diagram with input parameters assigned to

each state.

The un-optimized circuit implementation of this generalized

state transition diagram is shown in Fig. 6.

• The Combinational Logic block and the D-Flip-Flops are

used to implement the state transitions shown in Fig. 5.

• The K to N Decoder is used to decode the current state

from the outputs of the D-Flip-Flops. Note that at each

clock cycle, only one state will be valid, i.e., only one of

the outputs of the Decoder will be ’1’ at each clock cycle,

and all the others will be ’0’.

• The AND gate is used to perform Psi · Pi(PX) in (8), and

the OR gate performs the summation in (8) because all of

its inputs are independent of each other.

Note that all the three properties introduced in Section II will

still hold if we consider si as the stochastic bit stream. Addi-

tionally, if si equals ’0’ or ’1’, the K to N Decoder, the AND

gates, and the OR gate can be substantially simplified.

9A-1

759

Combinational

Logic

Q

Q
SET

CLR

D

Q

Q
SET

CLR

D

Q

Q
SET

CLR

D

...

K to N

Decoder

(N=2
K
)

X

...
D0

D1

DK-1

S0

S1

...

SN-1

s0 s1

...

...

sN-1

...

Y

Fig. 6. The circuit implementation of the linear FSM-based stochastic computational elements.

B. The General Synthesis Approach

Now, we will introduce the general approach to synthesize

the linear FSM-based SCEs. Assume the target function is

T (PX), and PX ∈ [0, 1] and T (PX) ∈ [0, 1]. Our goal is

to find a set of coefficients Ps0 , Ps1 , ..., PsN−1
(0 ≤ Psi ≤ 1)

in (8) to minimize the objective function

∫ 1

0

(T (PX)−
N−1
∑

i=0

Psi · Pi(PX))
2
· dPX , (9)

where Pi(PX) is the linear FSM basis functions introduced in

(6). By expanding (9), an equivalent objective function can be

obtained:

T (b) =
1

2
b
T
Hb+ c

T
b, (10)

where

b = [Ps0 , Ps1 , ..., PsN−1
]T ,

c =

⎡

⎢

⎣

−
∫ 1

0
T (PX)P0(PX)dPX

...

−
∫ 1

0
T (PX)PN−1(PX)dPX

⎤

⎥

,

H =

⎡

⎢

⎢

⎣

∫ 1
0
P0(PX)P0(PX)dPX ···

∫ 1
0
P0(PX)PN−1(PX)dPX

∫ 1
0
P1(PX)P0(PX)dPX ···

∫ 1
0
P1(PX)PN−1(PX)dPX

...
. . .

...∫ 1
0
PN−1(PX)P0(PX)dPX ···

∫ 1
0
PN−1(PX)PN−1(PX)dPX

⎤

⎥

⎥

.

This optimization problem, in fact, is a typical constrained

quadratic programming problem. Its solution can be obtained

using standard techniques [4]. Once we obtain the coefficients

Psi , we can implement the target function with the circuit

shown in Fig. 6.

Example 1. Here we use the same example presented by Qian

et al. [4] (See Example 1 in [4]). The target function is a poly-

nomial with a degree of three,

T (PX) =
1

4
+

9

8
PX −

15

8
P 2
X +

5

4
P 3
X .

Based on the aforementioned synthesis approach, we find that

a 4-state linear FSM can be used to synthesize this function

with an approximation error less than 10−3. The corresponding

parameters are shown in Table I. �

TABLE I

PARAMETERS ASSIGNED FOR EACH STATE FOR THE TARGET FUNCTION IN

Example 1.

States S0 S1 S2 S3

Parameters 0.274 1 0 0.726

Example 2. Synthesize the stochastic exponentiation function

proposed by Brown and Card [3] based on G = 2.

To synthesize this function, we first need to rewrite the orig-

inal target function (1) in terms of PX . Since G = 2, we have

T (PX) =

{

1, 0 ≤ PX ≤ 0.5,

e−4(2PX−1), 0.5 ≤ PX ≤ 1.

Based on the proposed synthesis approach, we find that a 16-

state linear FSM can be used to synthesize this function with

an approximation error less than 10−3. The corresponding pa-

rameters are shown in Table II. It can be seen that the results

are the same as the ones proposed by Brown and Card [3]. �

TABLE II

PARAMETERS ASSIGNED FOR EACH STATE FOR THE TARGET FUNCTION IN

Example 2.

States S0 S1 S2 S3 S4 S5 S6 S7

Parameters 1 1 1 1 1 1 1 1

States S8 S9 S10 S11 S12 S13 S14 S15

Parameters 1 1 1 1 1 1 0 0

Example 3. Synthesize the stochastic tanh function proposed

by Brown and Card [3] based on N = 8.

To synthesize this function, we first need to rewrite the orig-

inal target function (1) in terms of PX . Since N = 8, we have

T (PX) =
e8(2PX−1)

e8(2PX−1) + 1
.

Based on our proposed synthesis approach, we find that a 8-

state linear FSM can be used to synthesize this function with

an approximation error less than 10−3. The corresponding pa-

rameters are shown in Table III. It can be seen that the results

are the same as the ones proposed by Brown and Card [3]. �

9A-1

760

TABLE III

PARAMETERS ASSIGNED FOR EACH STATE FOR THE TARGET FUNCTION IN

Example 3.

States S0 S1 S2 S3 S4 S5 S6 S7

Parameters 0 0 0 0 1 1 1 1

IV. EXPERIMENTAL RESULTS

In our experiments, we first compare the hardware cost of

deterministic digital implementations to that of stochastic im-

plementations for the three examples we introduced in the last

section. Then we compare the performance of these two im-

plementations of the corresponding target functions on noisy

input data. Finally, we compare our FSM-based synthesis ap-

proach to the Bernstein polynomial-based synthesis approach

introduced by Qian et al. [4].

A. Hardware Comparison

In a deterministic implementation of polynomial arithmetic,

a polynomial T (PX) =
∑n

i=0 aiP
i
X can be factorized as

T (PX) = a0+PX(a1+PX(a2+ · · ·+PX(an−1+PXan))).
With such a factorization, we can evaluate the polynomial in n
iterations. In each iteration, a single addition and a single mul-

tiplication are needed. Hence, for such an iterative calculation,

the hardware consists of an adder and a multiplier.

We build the M -bit multiplier based on the logic design of

the ISCAS’85 circuit C6288, given in the benchmark as 16

bits [5]. The C6288 is built with carry-save adders. It con-

sists of 240 full- and half-adder cells arranged in a 15×16 ma-

trix. Each full adder is realized by 9 NOR gates. Incorporat-

ing the M -bit multiplier and optimizing it, the circuit requires

10M2− 4M − 9 gates; these are inverters, fanin-2 AND gates,

fanin-2 OR gates, and fanin-2 NOR gates. The critical path of

the circuit passes through 12M − 11 logic gates [4].

We build the stochastic implementation computing the target

function based on the circuit structure shown in Fig. 6 (note that

if the parameter si is set to 0 or 1, the circuit will be substan-

tially simplified). Table IV shows the area (A) and delay (D)
of each stochastic implementation of the three target functions

presented in the last section. Each circuit is composed of the

seven basic types of logic gates: inverters, fanin-2 AND gates,

fanin-2 NAND gates, fanin-2 OR gates, fanin-2 NOR gates,

fanin-2 XOR gates, and fanin-2 XNOR gates. The D flip-flop

is implement with 6 fanin-2 NAND gates. When characteriz-

ing the area and delay, we assume that the operation of each

fanin-2 logic gate requires unit area and unit delay.

TABLE IV

THE AREA AND DELAY OF THE STOCHASTIC IMPLEMENTATIONS OF THE

THREE TARGET FUNCTIONS PRESENTED IN SECTION III.

Target Function area (A) delay (D)

Example 1 28 4

Example 2 75 4

Example 3 35 3

As stated in Section I, the result of the stochastic computa-

tion is obtained as the fractional weight of the 1’s in the output

bit stream. Hence, the resolution of the computation by a bit

stream of N bits is 1/N . Thus, in order to get the same reso-

lution as the deterministic implementation, we need N = 2M .

Therefore, we need 2M cycles to get the result.

As a measure of hardware cost, we compute the area-delay

product. The area-delay product of the deterministic imple-

mentation computing a polynomial of degree n is (10M2 −

4M − 9)(12M − 11)n, where n accounts for the n iterations

in the implementation. The area-delay product of the stochas-

tic implementation is A ·D · 2M , where A and D are the area

and delay of the stochastic implementation for the correspond-

ing target function. Table IV lists the area and delay of the

stochastic implementations of the target functions of the three

examples.

In Table V, we compare the area-delay product for the deter-

ministic implementation and the stochastic implementation for

M = 7, 8, 9, 10, 11 for each of the three target functions. Note

that by using a Maclaurin polynomial approximation for the de-

terministic implementations, we need a polynomial of degree 6

to approximate the tanh function in Example 2, and a polyno-

mial of degree 5 to approximate the exponentiation function in

Example 3 [4]. The last column of Table V shows the ratio

of the area-delay product of the stochastic implementation to

that of the deterministic implementation. We can see that the

area-delay product of the stochastic implementation is less than

that of the deterministic implementation and when M ≤ 10,

the area-delay product of the stochastic implementation is less

than half that of the deterministic implementation.

TABLE V

THE AREA-DELAY PRODUCT COMPARISON OF THE DETERMINISTIC

IMPLEMENTATION AND THE STOCHASTIC IMPLEMENTATION OF THE

THREE TARGET FUNCTIONS WITH DIFFERENT RESOLUTION 2−M .

area-delay product stoch. prod.

Target Function M
deter. impl. stoch. impl. deter. prod.

7 99207 14336 0.145

8 152745 28672 0.188

Example 1 9 222615 57344 0.258

10 310977 114688 0.369

11 419991 229376 0.546

7 198414 38400 0.194

8 305490 76800 0.251

Example 2 9 445230 153600 0.345

10 621954 307200 0.494

11 839982 614400 0.731

7 165345 13440 0.081

8 254575 26880 0.106

Example 3 9 371025 53760 0.145

10 518295 107520 0.207

11 699985 215040 0.307

B. Comparison of Circuit Performance on Noisy Input Data

We compare the performance of deterministic vs. stochas-

tic computation on polynomial evaluations when the input data

are corrupted with noise. Suppose that the input data of a deter-

ministic implementation are M = 10 bits. In order to have the

same resolution, the bit stream of a stochastic implementation

contains 2M = 1024 bits. We choose the error ratio ε of the

input data to be 0, 0.001, 0.002, 0.005, 0.01, 0.02, 0.05, and

0.1, as measured by the fraction of random bit flips that occur.

We evaluated each of the three target functions on 10 points:

0.1, 0.2, 0.3, · · · , 0.9, 1. For each error ratio ε, each target func-

9A-1

761

tion, and each evaluation point, we simulated both the stochas-

tic and the deterministic implementations 1000 times. We av-

eraged the relative errors over all simulations. Finally, for each

error ratio ε, we averaged the relative errors over all evaluation

points. Table VI shows the average relative error of the stochas-

tic implementations and the deterministic implementations vs.

different error ratios ε. We average the relative errors of the

three target functions, and plot the results in Fig. 7 to give a

clear comparison.

TABLE VI

RELATIVE ERROR FOR THE STOCHASTIC IMPLEMENTATION AND THE

DETERMINISTIC IMPLEMENTATION OF THE THREE TARGET FUNCTIONS

VS. THE ERROR RATIO ε IN THE INPUT DATA.

Example 1 Example 2 Example 3

rel. error of rel. error of rel. error of

Error stoch. deter. stoch. deter. stoch. deter.

ratio impl. impl. impl. impl. impl. impl.

ε (%) (%) (%) (%) (%) (%)

0 2.09 0.00 2.31 0.00 2.17 0.00

0.001 2.09 0.44 2.30 0.35 2.23 0.52

0.002 2.03 0.71 2.32 0.79 2.21 1.23

0.005 2.03 2.40 2.33 2.11 2.23 2.42

0.01 1.96 4.48 2.30 3.47 2.26 5.36

0.02 1.96 8.49 2.30 7.43 2.35 9.36

0.05 2.55 15.64 2.46 14.50 2.69 19.68

0.1 4.93 27.97 2.97 25.36 3.83 34.95

When ε = 0, meaning that no noise is injected into the input

data, the deterministic implementation computes without any

error. However, due to the inherent variance of the stochastic

bit streams, the stochastic implementation produces a small rel-

ative error [6]. With increasing errors on the input data stream,

the relative error of the deterministic implementation blows up

dramatically as ε increases. Even for small values, the stochas-

tic implementation performs much better.

0%

5%

10%

15%

20%

25%

30%

0 0.001 0.002 0.005 0.01 0.02 0.05 0.1

re
la

ti
v

e
 e

v
a

lu
a

ti
o

n
 e

rr
o

r

error ratio of input data ()

stoc. impl. conv. impl.

Fig. 7. A plot of the average relative error for the stochastic implementations

and the deterministic implementations of the three target functions vs. the

error ratio ε in the input data.

C. Comparison with Bernstein Polynomial-based Approach

Qian et al. introduced a Bernstein polynomial-based ap-

proach to synthesize a target function in stochastic comput-

ing [4]. Both the Bernstein polynomial-based approach and

the FSM-based approach can be used to synthesize SCEs with

comparable fault-tolerance performance. Table VII list the area

and delay of the stochastic implementations of the three tar-

get functions by using the Bernstein polynomial-based synthe-

sis approach. The last column of Table VII shows the ratio

of the area-delay product of the stochastic implementation of

the FSM-based approach to that of the Bernstein polynomial-

based approach. It can be seen that the area-delay product of

the FSM-based synthesis approach is less than that of the Bern-

stein polynomial-based synthesis approach. This is mainly be-

cause the Bernstein polynomial-based synthesis approach uses

combinational logic, such as adders and multiplexers, to syn-

thesize SCEs.

TABLE VII

THE AREA AND DELAY OF THE STOCHASTIC IMPLEMENTATIONS OF THE

THREE TARGET FUNCTIONS BY USING THE BERNSTEIN

POLYNOMIAL-BASED SYNTHESIS APPROACH.

Target Function area (A) delay (D) FSM. / Bern.

Example 1 22 10 0.509

Example 2 58 20 0.259

Example 3 49 20 0.107

V. CONCLUSIONS

This paper proposed a general approach to synthesize the

linear FSM-based SCEs. The area-delay product is less than

that of deterministic implementations with adders and multi-

pliers. Additionally, the circuits are much more error-tolerant.

The precision of the results is dependent only on the statistics

of the bit-streams that flow through the datapaths, and so the

computation can tolerate errors gracefully.

VI. ACKNOWLEDGMENT

This work is supported by the US National Science Founda-

tion (NSF) CAREER Award No. 0845650. The authors would

like to thank the reviewers for their helpful feedback.

REFERENCES

[1] A. Kahng, S. Kang, R. Kumar, and J. Sartori, “Slack redis-

tribution for graceful degradation under voltage overscal-

ing,” in 15th Asia and South Pacific Design Automation

Conference, ASP-DAC’10, pp. 825–831, 2010.

[2] B. R. Gaines, “Stochastic computing systems,” Advances

in Information System Science, Plenum, vol. 2, no. 2,

pp. 37–172, 1969.

[3] B. D. Brown and H. C. Card, “Stochastic neural compu-

tation I: Computational elements,” IEEE Transactions on

Computers, vol. 50, pp. 891–905, September 2001.

[4] W. Qian and M. Riedel, “The synthesis of robust polyno-

mial arithmetic with stochastic logic,” in 45th ACM/IEEE

Design Automation Conference, DAC’08, pp. 648–653,

2008.

[5] “ISCAS’85 C6288 16×16 multiplier,” in

http://www.eecs.umich.edu/∼jhayes/iscas/c6288.html.

[6] W. Qian, X. Li, M. Riedel, K. Bazargan, and D. Lilja, “An

architecture for fault-tolerant computation with stochastic

logic,” IEEE Transactions on Computers, vol. 60, pp. 93–

105, January 2010.

9A-1

762

