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Abstract—This paper presents a method to synthesize the noise
transfer function (NTF) for tunable bandpass delta-sigma modu-
lators, where the quantization noise stopband can be programmed
over the whole Nyquist range. Instead of relying on traditional
filter design theory, the proposed method allows to create NTFs
of arbitrary order by directly placing the zeros and poles on the
z-plane. The advantage is that the NTF can be re-calculated for
each center frequency by using simple closed form expressions,
thus avoiding the need of large lookup tables to store multiple pre-
computed coefficient sets. Extensive system-level simulations show
that our method yields equal performance as the Chebyshev-II
design method. As an example, the synthesis of a binary 12th-
order tunable bandpass delta-sigma modulator is demonstrated,
and its stability is proven for any choice of the center frequency.

I. INTRODUCTION

∆Σ modulation is an established and effective technique to
enhance the linearity of analog-to-digital and digital-to-analog
data converters [1]–[4]. Tunable bandpass ∆Σ modulators are
a special class of ∆Σ converters, where the center frequency of
the signal band f0 is programmable over a specific frequency
range (Fig. 1). Common applications of tunable bandpass ∆Σ
modulators include, for example, wireless receiver front-ends
[5]–[7] and direct digital synthesizers [8]. Due to the increas-
ing transmission bandwidth and flexibility needed in modern
wireless communication systems, the tunability requirements
on ∆Σ modulators are becoming increasingly challenging [9].

In discrete-time ∆Σ modulators, the most straightforward
method to achieve tunability is to pre-compute the modula-
tor’s noise transfer function (NTF) for each supported center
frequency, and to implement a loop filter where most or all
of the coefficients are programmable [5], [6]. Changing f0
is thus performed by re-programming the loop filter with
the coefficients of the corresponding NTF. However, in a
practical implementation, the pre-computed coefficients need
to be stored in a lookup table, making this method unfeasible
when the tunability range of f0 is large.

Another method consists of using the discrete-time
lowpass-to-bandpass transformation, given by

z−1 → z−1 cosω0 − z−1

1− z−1 cosω0
, (1)

to shift a prototype lowpass NTF to the normalized angular
frequency ω0 [7], [8]. However, (1) does not offer the flexibility
to control NTF parameters such as signal bandwidth and max-
imum gain, which is desirable in some modern applications.
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Fig. 1. General structure of a tunable bandpass ∆Σ modulator.

In our recent work [9], we proposed to use tunable
bandpass ∆Σ modulation in digitally-intensive transceivers, to
reduce the noise produced by the transmitter in the receive
band. Due to the severe flexibility demands posed by the
application, we showed that a highly tunable 4th-order NTF
can be conveniently designed by directly placing the zeros
and poles on the z-plane. Here, we generalize the method to
arbitrary order, and we derive simple formulas to calculate
the NTF coefficients starting from constraints on oversampling
ratio, order, and maximum gain. In modern integrated circuits
and system-on-chips, these formulas can be exploited by the
already available processing unit to quickly reconfigure the
∆Σ modulator on a case-by-case basis, thus avoiding the
need of large lookup tables to store multiple pre-computed
coefficient sets. We demonstrate the validity of our results
by simulating the signal-to-noise ratio (SNR) in a number of
∆Σ modulators synthesized with the proposed method, and
comparing the results to modulators using classical Chebyshev-
II NTFs. As an additional design example, a binary 12th-order
tunable bandpass ∆Σ modulator is synthesized, and shown to
be stable for any choice of f0 over the Nyquist range.

The remainder of this paper is organized as follows. Section
II describes the proposed NTF synthesis method from a mathe-
matical point of view. Section III evaluates the achievable per-
formance through system-level simulations, comparisons, and
a design example. Finally, Section IV summarizes the formulas
for NTF coefficient calculation, and draws the conclusions.

II. NTF DESIGN METHOD

The feedback loop in Fig. 1 is physically realizable only
if there is at least one delay between the input and the output
of the loop filter. It can be demonstrated that this requirement



translates into the important NTF realizability condition

H(z) =
N(z)

D(z)
=

1 +

P
∑

i=1

biz
−i

1 +
P
∑

i=1

aiz
−i

, (2)

where H(z) = N(z)/D(z) is the NTF in the z-domain, P the
modulator order, and {bi, ai} the set of NTF coefficients [1].

The frequency response of H(z) is given by evaluating
the transfer function on the unit circle z = ejω , where
ω ∈ [−π, π) is the angular frequency normalized to the
system sampling rate. Hence, H(z) will provide the maximum
possible attenuation at frequency ωi if H(ejωi) = 0 holds. The
simplest transfer function that satisfies this constraint is

Cωi
(z) = 1− ejωiz−1, (3)

which is a 1st-order polynomial in z−1 with complex coeffi-
cients. In order to have real coefficients only, we need to add
a second zero at the mirror frequency −ωi. This leads to

Ni(z) = Cωi
(z) · C−ωi

(z) = 1− (2 cosωi)z
−1 + z−2, (4)

which is the basic numerator factor of a digital single-notch
filter. The position of the zero ωi can be programmed over the
whole Nyquist range by adjusting the coefficient of z−1. It is
clear that Ni(z) fulfills the realizability condition given by (2).

In ∆Σ modulator design, especially with single-bit quan-
tizer, we are not only interested in the stopband attenuation of
H(z), but also its maximum gain over all frequencies, given
by the infinity-norm

||H||∞ = max
ω

|H(ejω)|. (5)

Indeed, it has been shown that the stability of a binary
modulator can be largely improved by lowering ||H||∞. The
most used empirical rule is known as Lee criterion, which
states that a binary ∆Σ modulator is likely to be stable if
||H||∞ < 1.5 [1]. However, by studying the magnitude of (4)
on the unit circle, it is easy to prove that the peak is always
between 2 and 4, depending on ωi.

In order to reduce the maximum gain, we introduce factors
similar to (3) to the denominator of the transfer function, to
shift the poles away from z = 0. Because the poles must lie
inside the unit circle (for stability), we modify (3) into

Cr,ϕi
(z) = 1− rejϕiz−1, (6)

where ϕi is the pole angle, and r ∈ [0, 1) its distance from
the origin. By placing a couple of complex-conjugate poles,
we get the basic real-coefficient denominator factor

Dr,i(z) = Cr,ϕi
(z) ·Cr,−ϕi

(z) = 1− (2r cosϕi)z
−1+ r2z−2.

(7)

For NTF design, the zero frequency ωi must be located
within the stopband, for maximum quantization noise attenua-
tion. However, an obvious question concerns how to choose the
pole angle ϕi. In this work, we assume ϕi = ωi, since it greatly
simplifies the procedure to calculate the NTF coefficients. The
validity of this choice will be proven through system-level
simulations in Section III.
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Fig. 2. Single-notch digital filter. (a) Geometric interpretation of frequency
response computation, from zero/pole placement in the z-plane. (b) Frequency
response for fi = 0.12 (ωi = 2πfi) and different values of r.

Combining (4) and (7) yields the transfer function of a
digital single-notch filter with parametrizable gain, given by

Rr,i(z) =
Ni(z)

Dr,i(z)
=

1− (2 cosωi)z
−1 + z−2

1− (2r cosωi)z−1 + r2z−2
. (8)

Note that this expression also fulfills (2).

The reason why r controls the maximum gain of (8) can
be intuitively understood by means of geometric interpretation
[10]. Fig. 2(a) illustrates the zeros and poles of Rr,i(z) in the
z-plane. When evaluating the magnitude at z = ejω , each zero
(pole) brings a contribution to the numerator (denominator)
equal to the distance between z and the zero (pole) itself.
Therefore, we see that ω = ±ωi will yield a magnitude
of 0, since at least one of the zero vectors is null. On the
other hand, as z moves away from the stopband, the distance
from each zero and that from the corresponding pole become
“similar”, meaning that their ratio will be close to 1. The more
r approaches 1, the more effective this zero/pole compensation
will be. When r = 0, the poles coincide with the origin, thus
their contribution to the denominator is always 1.

Fig. 2(b) verifies this geometric interpretation by plot-
ting the frequency response of (8) for different values of
r. Although the maximum gain is effectively reduced as r
approaches 1, an increasing sharpness of the notch is also
observed. The net effect is a degradation of the average
stopband attenuation. Thus, r can be used to trade-off the SNR
performance of the NTF with its maximum gain.

By studying the magnitude of (8) on the unit circle, it
can be seen that the peak occurs always at z = −1 when
cosωi > 0, and at z = 1 when cosωi < 0, independently
from r. Therefore, we can write

||Rr,i||∞ = 2
1 + |αi|

1 + 2r|αi|+ r2
, (9)

where αi = cosωi. By inverting (9), we can derive the ex-
pression that relates r to a specified maximum gain constraint,
which turns out to be

r =

√

α2
i + 2

1 + |αi|
||Rr,i||∞

− 1− |αi|. (10)

Furthermore, studying (9) as a function of αi ∈ [−1, 1] reveals
that ||Rr,i||∞ is minimum for αi = 0 and maximum for αi =
±1. Hence, evaluating (10) for |αi| = 1 yields

r =
2

√

||Rr,i||∞
− 1, (11)
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Fig. 3. Double-notch digital filter. (a) Zeros and poles in the z-plane. (b)
Frequency response for f1 = 0.11, f2 = 0.13, and different values of r.

which is the minimum value of r that satisfies the maximum
gain constraint for any ωi ∈ [0, π].

The single-notch filter analyzed so far can be used as the
basic building block for the NTF. In a bandpass ∆Σ modulator
of order P = 2M , the overall NTF is defined as

H(z) =

M
∏

i=1

Rr,i(z) =

M
∏

i=1

1− (2 cosωi)z
−1 + z−2

1− (2r cosωi)z−1 + r2z−2
,

(12)
where the zero frequencies are {ω1, ω2, . . . , ωM}. Note that
the above expression always fulfills (2). Having the same r
for all M factors in (12) greatly simplifies the design method,
and will be proven in Section III to be a valid design choice.
Fig. 3 shows the zero-pole plot and frequency response of a
NTF with M = 2. The trade-off between SNR and maximum
gain described earlier can be still observed. Since all poles
appear to be located on a circle of radius r, this parameter
will be referred to as the pole radius in the following.

For a NTF of order greater than 2, an obvious question
concerns the optimal zero location, that minimizes the total
quantization noise power over the signal band. Under some
reasonable assumptions, it was shown in [9] that, for the case
M = 2, the optimal zero locations are given by

ω1,2 = ω0 ±
ωS

2
√
3
, (13)

where ω0 and ωS are the center and width of the signal band
respectively. An equivalent result for lowpass modulators is
reported in [1]. Therefore, we can reuse the remaining results
from [1] for M > 2, to obtain the optimal zero locations for
higher orders. Table I lists the numeric values up to M = 6.

Deriving a relation between the pole radius and ||H||∞
cannot be solved exactly for arbitrary M . However, an approx-
imate solution can be easily found. First, we note that ||H||∞
still occurs in z = ±1, depending on whether the signal band
is on the left or right side of π/2. Second, we observe that
all zero frequencies ωi are very close to ω0, especially for
large oversampling ratios. In other words, the approximation
αi ≈ α0 = cosω0 holds when evaluating the ||Rr,i||∞ factors.
The above considerations lead to

||H||∞ =

M
∏

i=1

||Rr,i||∞ ≈
(

||Rr,0||∞
)M

, (14)

where

||Rr,0||∞ = 2
1 + |α0|

1 + 2r|α0|+ r2
. (15)

The pole radius is now found by inverting (14)–(15), yielding

r ≈
√

α2
0 + 2

1 + |α0|
M
√

||H||∞
− 1− |α0|. (16)

Finally, in analogy with (11), the minimum r that satisfies the
constraint on ||H||∞ for any ω0 ∈ [0, π] is

r ≈ 2
2M
√

||H||∞
− 1. (17)

For all practical purposes, the small error resulting from the
approximations in (16) and (17) can be safely neglected.

III. PERFORMANCE EVALUATION

In order to evaluate fairly the performance of the proposed
NTF synthesis method, we decided to compare it against the
traditional Chebyshev-II filter design method, which has been
widely used for NTF prototyping in ∆Σ modulators [2]–[4].
The comparison procedure works as follows.

1) We pick some values for NTF order, oversampling
ratio (OSR), center frequency, and maximum gain.

2) The Chebyshev-II transfer function Hc(z) that meets
all chosen constraints is calculated, and properly
scaled as to fulfill (2).

3) A second transfer function Hp(z) is synthesized with
the proposed method (using the expressions derived
in Section II), starting from the same constraints.

4) The SNR vs. input amplitude curves are simulated,
for two binary ∆Σ modulators implementing the
NTFs calculated above. The simulations are per-
formed with sinusoidal input signals.

5) Hp(z) is re-synthesized with slightly different val-
ues of ||Hp||∞, and the SNR simulations performed
again, until the two ∆Σ modulators yield very similar
SNR profiles.

Fig. 4 and 5 show the comparison results, for four different
sets of design constraints. It can be seen that, in order to
achieve the same SNR performance, ||Hp||∞ typically needs
to be increased by 1 ∼ 1.5 dB compared to ||Hc||∞. Never-
theless, in practice this does not impair stability, as revealed
by the simulated SNR vs. input amplitude curves.

The proposed NTF synthesis method can be used to design
tunable bandpass ∆Σ modulators of very high order. For
example, Fig. 6 demonstrates a binary 12th-order modulator.
In this case, the same pole radius (calculated through (17))
was used for all center frequency settings. As the simulation
results prove, the designed modulator is stable and operates
correctly over the whole Nyquist range.

IV. CONCLUSION

In this paper, a flexible method to synthesize the NTF for
tunable bandpass ∆Σ modulators is described. The method
allows to create NTFs of arbitrary order, by directly placing
the zeros and poles of the transfer function on the z-plane.
Simple closed form expressions are used to calculate the
NTF coefficients starting from constraints on OSR, order, and
maximum gain. In modern applications with high flexibility de-
mands, these formulas can be exploited to reconfigure the ∆Σ
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Fig. 4. Frequency response comparison between the Chebyshev-II design
method and the proposed method. Each Chebyshev NTF Hc(z) has been
designed to fulfill some predefined constraints on order, OSR, f0, and
||Hc||∞. The corresponding Hp(z) have been designed with the proposed
method starting from the same constraints, but ||Hp||∞ has been adjusted to
achieve the same simulated SNR performance (shown in Fig. 5).
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Fig. 5. Simulated SNR vs. input amplitude curves, for binary ∆Σ modulators
using sinusoidal input signals and the NTFs of Fig. 4.

modulator on a case-by-case basis, thus avoiding the need of
large lookup tables to store multiple pre-computed coefficient
sets. System-level simulations show that the proposed NTF
synthesis method yields equal performance as the Chebyshev-
II design method, in terms of SNR of the ∆Σ modulator
with sinusoidal inputs. A design example is also demonstrated,
where a binary 12th-order tunable bandpass ∆Σ modulator is
shown to operate correctly over the whole Nyquist range.

Table I gathers the NTF equations derived in the text.
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