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Abstract—This paper synthetically presents the SYRROCA
(SYstem Radiography and ROot Cause Analysis) network au-
tomation framework at the state of the art, and details its
experimental platform sufficiently enough to understand its
technical demonstration. The framework aims to learn nomi-
nal operating conditions of a softwarized network service and
characterize anomalies in real-time, while offering a compact
system state representation called radiography. This representa-
tion can provide to operational teams with a real-time insight on
anomalies at physical and virtualized layers. The related technical
demonstration showcases how SYRROCA can detect real-time
anomalies of different nature on a containerized vIMS (virtual
IP Multimedia Subsystem) service managed by Kubernetes.

I. INTRODUCTION

Network automation is a research area targeting the design

of artificial intelligence algorithms to automate the configura-

tion of network equipment under changing network conditions.

Also called cognitive networks, such architectures aim at

introducing a self-management loop able to build an abstract

model of the network state evolution through data collected

by specific probes. This model is then meant to be used to

progressively learn the (sequence of) reconfiguration action(s)

needed to cope with the events that can affect the desirable

network behavior yielding to undesired state changes. The

policies developed by such a cognitive/automation loop aim

to adequately meet business and/or user requirements such as

maintaining a certain Quality of Service (QoS), fulfilling a

Service Level Agreement (SLA) [1]–[3].

Build a precise-enough model of the network state from the

sensed data is a paramount step in the cognitive/automation

loop. In the specific case of a softwarized infrastructure, it is

composed of a large number of hardware and software com-

ponents, characterizable by many heterogeneous features that

can be easily extracted thanks to recent expressive monitoring

tools (e.g., Prometheus). Those metrics may change in number

and behavior through time and can be correlated or not to each

other. The number of available and potentially valuable metrics

can be extremely huge so that determining ex-post which ones

are actually valuable, is not quite viable.

In this spatially complex, uncertain and varying envi-

ronment, network resilience cannot be perfectly modelled.

Therefore an unsupervised machine learning framework called

SYRROCA (SYstem Radiography and ROot Cause Analy-

sis) was proposed in [4] as a solution able to detect and

characterize real-time anomalies in softwarized infrastructures,

against a very high number of collected features. Anomalies

are detected using reconstruction mean squared error (MSE) of

a set of Deep AutoEncoders (DAE), each of which can detect

anomalies working on real-time collected metrics regarding

different type of resource. A smart representation, called radio-

graphy given its visual similarity with human radiographies,

is produced to infer the impact of the detected anomalies onto

the delivered network service. Similarly to known network

tomography techniques [5], such radiographies give a visual

view on the running and learned network behavior; however,

radiographies differ in the machine learning core behind them

and in that they bring insights on learned network internal

characteristics using information derived from end point data.

Furthermore, SYRROCA encompasses a novel root cause

analysis (RCA) technique able to spot those deviating features

first, and to characterize then the anomaly behaviour.

II. TECHNICAL DEMONSTRATION WORKFLOW

The demonstration showcases SYRROCA framework capa-

bilities to: (i) learn the nominal working condition of a virtual

network service using a set of unsupervised DAE; (ii) detect

and characterize deviations from learned nominal states when

anomalies are injected; (iii) generate real-time radiographies

representations to provide a complete insight on the infras-

tructure state regarding different layers - physical, virtual, and

service layers - and resource types - CPU, memory, storage,

and network ones; (iv) characterize detected anomalies using a

RCA technique able to pinpoint those features that originated

the deviation from the nominal behaviour.

As depicted in Figure 1, nominal working conditions are

emulated injecting a real-calls distribution across twenty days.
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Fig. 2: High-level SYRROCA Architecture

During this phase, metrics from physical and virtual layers

are collected to compose a dataset representing the nominal

state. Then, SYRROCA learns through DAEs a compact

representation of the dataset. In the last phase, anomalies are

injected into the platform. We demonstrate how SYRROCA

can detect and characterize the anomalies in real-time as long

as ease RCA. To demonstrate SYRROCA capabilities we

choose a virtualized IP Multimedia Subsystem (IMS) service

delivering simultaneous voice calls based on real call traces.

This vIMS is a containerized version managed by Kubernetes.

We use the opensource OpenIMSCore IMS [6] functions,

deployed as separated containers. The cluster is deployed over

two physical servers equipped with an Intel(R) Xeon(R) CPU

@2.10GHz with 384 GB of RAM, connected to the same

network through a 1 Gbps port physical switch. The vIMS

functions are deployed in a first server along with Kubernetes

core components, while the second server hosts the SIPP [7]

tool instances used to emulate calls among different users.

III. SYRROCA FRAMEWORK IN A NUTSHELL

The paper [4] describes the SYRROCA framework exten-

sively, covering the machine learning algorithmic approach as

well as the obtained results. The repository [8] contains the

dataset used for the learning phase and the calls distributions

to allow reproducibility, as well as demonstration videos.

Figure 2 depicts SYRROCA functional architecture we

synthetically describe in the following with an experimental

viewpoint.

A. Traffic injection and metrics collection

We emulate nominal working conditions with several SIP

(Session Initiation Protocol) clients that get first registered to

the vIMS core and then start a call. SIPp traffic generation

tool is used to generate traffic towards the IMS to simulate

calls between simulated users. Both RTP (Real-time Transport

Protocol) data traffic and SIP signaling traffic are transported

over UDP. We generated a real call traffic leveraging on real

call logs extracted from a given LAC (Location Area Code)

from Orange 3G network: we injected two weeks (March 16-

29, 2020) of calls traffic following the real call distribution

onto the vIMS containerized platform under test; we set the

average call duration to 3 min according to [9]. Moreover, the

vIMS containerized platform is tailored to correctly process

this traffic load. Some examples of traffic calls distributions are

shown in Fig. 1, characterized by two peaks, the first centered

around 12:00 a.m and the second centered around 19:00

p.m. Degraded working conditions are simulated injecting

anomalies such as packet loss, CPU overload and abnormal

call distributions. For both the nominal and the degraded

scenarios, we collect metrics from the physical and the virtual

layers regarding the different types of resources used, i.e. CPU,

memory, disk and network. We use Prometheus Node Exporter

to collect metrics from the physical servers, and CAdvisor to

collect metrics from the virtual Kubernetes managed layer.

B. Learning the nominal conditions

During the learning phase, we use Deep AutoEncoders

(DAE) to learn a compact and abstract representation of the

simulated reference scenario. Indeed, DAEs can learn to map

the input metrics to a compact representation (i.e. latent space).

This is achieved optimizing its synaptic weights to minimize

the reconstruction Mean Square error (MSE) when the nominal

dataset is fed as input [10]. Subsequentely, when a general

dataset is fed into the trained DAE, if any of the input

metrics significantly deviates from the learned latent space

representation, the DAE produces an higher MSE compared to

the training MSE. A divide-and-conquer approach is used to

group features according to the four resource type cited in the

previous section. Each sub-dataset is feed to a dedicated DAE,

each of them build up by Long Short Term Neural Network

(LSTM NN) sharing the same architecture. Per-group dataset

split makes AEs architecture design easier, reduces training

time and streamlines learning. We choose LSTM NN as they

are optimized to learn long term sequence correlations and to

model complex multivariate sequences [11].

C. Real-time anomaly characterization through radiographies

SYRROCA characterizes anomalies with a deep learning

unsupervised approach used to produce the compact radiogra-

phy representation. The idea behind a radiography is threefold:

i) to group information from all metrics in a given layer

(hundreds of metrics per layer) in a compact manner; (ii) to

represent the impact of deviation of those metrics on the layer

above (e.g. the impact of physical layer on virtual layer and

the impact of virtual layer on service layer); (iii) to track the

impact of the anomalies on the system over time.

A radiography is obtained combining the MSE with a

service metric to obtain a 2D density plot made with Kernel

Density Estimation (KDE). In statistics, the KDE is used to

estimate the probability density function of bi-variate random

variables. Here we use the same technique to estimate density

of the bi-variate functions f(MSE,< service metric >)
through which it is possible to locate the most frequent groups

of f samples, that is the most frequent couples (MSE,<

service metric >) occurred during the considered time-

window. A color scale mapping density from high to low

with colors from dark to light colors, is then used to visualize

the computed KDE, obtaining the so-called radiography. For



(a) Radiography evolution over time for CPU-related metrics group

(b) Radiography evolution over time for memory-related metrics group

(c) Radiography evolution over time for disk-related metrics group

Fig. 3: Radiography evolution across time

simplicity, we consider as service metric the number of failed

calls, whatever is the reason causing the call failure. Therefore,

it is possible to build four radiographies respectively for CPU,

memory, network and disk groups. It is worth noticing that

the bottom left region of the radiography corresponds to the

nominal region. Whereas the further and higher density regions

are located at the bottom left corner, the more significant the

anomaly is. Imaging a radiography showing a dark zone for

memory group corresponding to several failed call, while the

remaining radiographies show dark zones corresponding to a

negligible value of failed call, it is fairly intuitive to identify

the root cause to be somehow linked to an anomaly impacting

the memory. Figure 3 represents three sets of radiographies,

each of them composed of three radiographies computed at

three subsequent time-steps, from left to right, when we

impose 50% of the INVITE’s ACK packet to be lost. The

evolution in the impact of the degradation on the failed calls

at each resource group is very different. We can see that the

memory-related group radiography evolves towards an high

density region corresponding to a degraded state located at the

right bottom region, as long as a medium density region on the

top right. However, this degradation is not as clearly visible

on CPU-related group and nearly absent in the network related

group. Indeed, the packet loss is not directly affecting network

related metrics as there is no anomalous traffic, whereas lost

packet generate an overhead on CPU and memory due to failed

calls management.

D. Conclusion and future work

In this paper we briefly showcase how SYRROCA frame-

work can be used to ease real-time analysis of virtualized

network anomalies by radiographies and a novel RCA ap-

proach. As future work, we are enhancing the framework to

provide recommendations on orchestration actions to mitigate

the detected anomalies, hence to get back to the nominal

region. The orchestration actions are meant to depend on the

set of features/metrics that characterize the anomaly through

the proposed RCA approach. Furthermore we are investigating

how Variational AEs could help generalizing the latent space

model extracted by the AEs.
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