The System Architect's Workbench

D. E. Thomas, E. M. Dirkes, R. A. Walker,
J. V. Rajan, J. A. Nestor*, R. L. Blackburn

Electrical and Computer Engineering Department
Carnegie Mellon University
Pittsburgh, PA 15213

Abstract

This paper presents an overview of The System
Architect's Workbench, a behavioral synthesis system
under development at Carnegie Mellon University. This
system converts an abstract behavioral description of a
piece of hardware into a set of register-transfer
components and a control sequence table. Two synthesis
methodologies are supported: one is tuned specifically to
design microprocessors, and the other supports a more
general design style. Results are presented here for both
approaches.

Introduction

Recently, considerable research effort has been
directed toward the synthesis of register transfer level
designs from abstract behavioral descriptions
[McFarland86, Pangrle86, Parker86, Paulin86]. Each of
these efforts has defined a behavioral representation that
describes only the function of a system to be built, much in
the same way that a software program describes only a
function. Synthesis research at this level has then focused
on the specification of the control schedule and data path
to implement the behavior. In these synthesis steps,
operations in the behavior are assigned to control steps,
registers are assigned to hold values, functional units are
assigned to perform operations, and data path
interconnection is generated to connect the registers and
functional units. This paper presents results from the
System Architect's Workbench [Walker87] research
project (Figure 1), which is an example of such a synthesis
system.

There is a wide range of applications for synthesis
tools at this level, ranging from producing designs that are
specific to an application to those that are more general
purpose. In both of these areas there are a number of
sub-classifications of designs, for instance, pipelined
designs, interfaces, and signal processing designs. A
successful synthesis system should be able to produce
designs in all of these sub-areas, or design styles
[Thomas81] as we shall call them.

This paper discusses two approaches to synthesis,
and presents results from the two approaches. One
approach suggests that the knowledge used in the

synthesis of each of these design styles should be an
integral part of the synthesis program. Thus, a style-
specific synthesis program includes information about
tradeoffs, and about specific techniques taken in the
synthesis of a system of that style. This approach mimics
the situation where designers become experts in the
design of, say, microprocessors, but not also in a different
style such as digital signal processing. One aspect of the
System Architect's Workbench, the SUGAR program,
follows the style-specific approach.

A second approach suggests that general synthesis
algorithms can be used to produce results in a range of
design styles. The general synthesis tool, based on this
approach, is tunable on a per-design basis so that it can
appropriately synthesize different design styles. Instead of
directly encoding knowledge about the design style into
the synthesis algorithms, a table driven or knowledge
database approach is used where the values in the tables
or database, along with information derived from analysis
of the design, are used to guide the decision making. One
path through the System Architect's Workbench follows
the general approach; it consists of the behavioral
transformations, the CSTEP program, and the
APARTY/EMUCS/Busser programs.

The style-specific approach is interesting because it
typically leads to fast synthesis programs that give good
results for particular design styles. However, designs are
not always stylistically homogeneous. For instance, all
microprocessors must have an interface, but the design
knowledge used in designing the interface and that used in
designing the data path are quite different. The general
approach to synthesis should be better able to synthesize
a wide range of design styles, even though such
approaches generally run more slowly. A long term
research question is whether results from the general
approach can overtake the results of the style-specific
approach.

Although this paper does not give conclusive results
indicating the appropriate model for synthesis systems, it
does provide interesting comparisons based on running
examples through design programs in the System
Architect's Workbench that exhibit each approach.

*now with the Electrical and Computer Engineering
Department, lllinois Institute of Technology, Chicago, IL 60616.

presented at The 25th Design Automation Conference

APARTY Architectural
Partitioning

Interface
Constraints
ISPS -
Behavioral o Behavioral
Description ¥\ Transformations

CSTEP Control
Step Scheduling

EMUCS Data Path
Synthesis

Busser
Bus Chooser

Register Transfer
Components
&

Control Step
Schedule
(described in SCS) I~
SEESAW
Graphical

SUGAR Scheduling
and Data Path Synthesis,

L The Value Trace Internal Representation

Display

CORAL

Linker

Figure 1
The System Architect's Workbench

Workbench Overview

Before beginning either of the synthesis paths in the
Workbench, a behavioral description of the system to be
designed is written in the ISPS language, and translated
to a directed acyclic graph called the Value Trace [Snow
78], or VT, as shown in Figure 2. This Value Trace is
then used as the internal behavioral representation for the
Workbench. Procedures and labeled blocks in ISPS are
mapped onto subgraphs called vtbodies, operators are
mapped onto nodes, and carriers are mapped onto arcs.
SELECT operators are used to perform IF / THEN and
DECODEing operations; a SELECT has a set of
branches, each containing a set of operators, and only
one branch is active at a time. Figure 2 shows an
example of an ISPS DECODE operation that is mapped
onto a SELECT operator with two branches. If the value
of IR is 9, the first branch is executed, and if the value is
41, the second branch is executed.

Figure 1 illustrates the design programs in the System
Architect's Workbench. The general and style-specific
approaches to synthesis are shown horizontally, operating
on the VT representation and generating the register-
transfer and control schedule information, represented in
the SCS language [Vasantharajan82]. The CORAL
program [Blackburn88] maintains the correlations
between the initial ISPS description, the VT, and the
synthesized design representation, providing a correlated
basis for user interrogation, verification, and other
applications. The SEESAW program [Blackburn88] is
used to display the various representations graphically
and to highlight the relationships between them.

The top rows of Figure 1 show the general approach
to design. First, behavioral and structural transformations
[Snow78, Walker87] are applied to the VT. Typically, this
step transforms the VT from one that reflects a software
engineered ISPS description into one more appropriate
for implementation. Next, the CSTEP control step
scheduling program [Nestor87] assigns operators in the

The System Architect's Workbench

Page 2

VT to control steps using maximum and minimum timing
constraints that may be specified between operations in
the ISPS description. The EMUCS data path synthesis
program [Hitchcock83, Nestor87] is used to complete the
register-transfer level design. The Busser program
chooses the busses to interconnect the datapath
elements. Top-down information provided by the
architectural partitioning program APARTY on how to
partition the operations in the VT into separate logical
groups is taken into account by CSTEP, EMUCS, and
Busser. This part of the system has been used to design
interface hardware, small microprocessors, and real-time
controller hardware.

run {main} := BEGN
repeat BEG N
IR = M PC] NEXT
PC = PC + 1 NEXT
DECODE IR => BEG N
9\ORA : = BEG N

END,
41\AND : = BEG N
A = A AND M PC] NEXT
PC=PC+ 1
END
END
END
END

Figure 2
Translation from ISPS to the Value Trace

The lower row of Figure 1 shows the design-style-
specific approach to design. The SUGAR program
combines transformation, control step scheduling, and
data path synthesis into a single program. Unlike the
general synthesis approach, SUGAR is aimed at the
synthesis of microprocessors, and specifies the control
schedule based on the data path resources needed, rather
than assigning the control schedule before data path
allocation.

D.E. Thomas, et. al.

The rest of this paper is organized around the
approaches taken by the behavioral transformations,
APARTY, CSTEP, EMUCS, Busser and SUGAR, and the
current results being obtained that highlight the capabilities
of each system. Results for a common design example,
the MCS6502, provide a means for comparing the style-
specific and general synthesis approaches. A digital filter
design is also shown as a result of the general approach.

The Transformations

Before control steps are scheduled and the data path
allocated, behavioral and structural transformations can be
applied. This set of transformations allows the designer to
explore system-level design alternatives by interactively
transforming the VT. The result can then be analyzed in
terms of the control step schedule.

Some transformations serve primarily to eliminate
biases in the designer's coding style. For example, a
highly modular, easily readable description can be
transformed to expand vtbodies inline and thus remove
unnecessary subroutine calls (each of which might require
a microsubroutine jump). Likewise, nested SELECTSs can
be combined, and operations can be moved into and out
of SELECT branches, often achieving a better packing of
operations into control steps. These transformations
operate at about the same level as those in Flamel
[Trickey87], although that system is more concerned with
basic-block transformations and graph height reduction.

Other transformations serve to explore system-level
design alternatives [Walker87], creating processes and
pipestages, and structurally partitioning the design
(perhaps in response to physical constraints). For
example, the behavior can be partitioned into two
concurrent processes, or it can be pipelined into two or
more pipestages. This same behavior can also be
structurally partitioned to split the design across two or
more chips. These alternatives are shown in Figure 3.

R
——
Two processes Three pipestages Two chips

Figure 3
Alternatives in Transformation and Partitioning

An Example — The 6502

The following example shows the results of applying
the transformations to a description of the MCS6502. Our
initial ISPS description of the 6502 is highly modular; it
contains many vtbodies and many CALLs, and three levels
of instruction decoding. Since each CALL and each level
of decoding requires a microsubroutine jump, 16 cycles

The System Architect's Workbench

Page 3

are required to execute an ORA (OR accumulator)
immediate instruction.

By recursively expanding all vtbodies inline, one large
vtbody can be produced. Various SELECT
transformations can then be used to reduce the original
description's three levels of instruction decoding to one
level of decoding; this produces the following unpipelined
control step schedule. This listing shows a simulation
trace of the ORA (OR Accumulator) immediate instruction;
blank lines separate control steps produced by CSTEP:

v46. x1 IR = M PC
v46. x2 PC=PC+ 1
v46. x3 SELECT (IR)
v46. x30 PC=PC+ 1
v46. x31 GET1 = M PC
v46. x32 A=AORCET1
v46. x33 x33. pl: SETNZ = A<7:7>
v46. x34 P<7: 7> = x33. pl: SETNZ
v46. x35 x35.p1 = AEQ 0
v46. x36 P<1:1> = x35.p1
| MVED = PC
EADD1 = PC
SETNZ = A
v46. x1629 RESTART @46: RUN

This example will be discussed further in later sections of
this paper, and will be referred to as the 6502 common
design example.

Using the system-level transformations mentioned
earlier, this design can also be pipelined, resulting in a
CSTEP control schedule with the same control step
division as the commercial MCS6502. Since EMUCS can
not yet synthesize pipelined designs, no data path is
available. Note that, unlike the unpiplined design, this
design separates the instruction fetch and decoding into
two different control steps. In the instruction trace shown
below, the two stages are separated by a dashed line, and
are assumed to be pipelined:

v46. x1 IR = M PC

v46. x2 PC=PC+ 1

v46. x3 SEND { CALLv47}

v46. x4 RECV { LEAVEv47}

v46. x5 RESTART @46: RUN
v47.x1 RECV { CALLv47}

v47.x2 PC=PC+ 1

v47.x3 GET1 = M PC]

Vv47. x4 SELECT (IR)

v47.x30 A=AORCGET1

v47. x31 x31. pl: SETNZ = A<7:7>
v47.x32 P<7: 7> = x31. pl: SETNZ
v47.x33 x33.p1 = AEQ 0

v47. x34 P<1:1> = x33.pl
v47.x35 SEND { LEAVEv47}
v47.x36 RESTART @47: EXECUTE

Like the commercial MCS6502, this design is
partitioned to require 3 cycles to execute the ORA
immediate instruction, and to initiate a new instruction
every 2 cycles. Beginning with this same "generic"
behavioral description, other variations on the 6502, with a
different choice of pipestages, or with a different control
schedule, can also be explored.

Future work may address the problem of applying
some of these transformations automatically. Since the
unpipelined common design example can be
characterized as a single-vtbody, single-level-of-decoding
design, this should be relatively straightforward.

D.E. Thomas, et. al.

Pipelining, however, may remain interactive to allow the
designer to explore many alternatives, rather than
automatically attempting to choose a single "best" design.

Another Example — The Berkeley Risc-1

Another example that was transformed was the
Berkeley Risc-1. This example was particularly interesting
because the ISPS description was written outside our
research group. Although it was necessary to rewrite a
small portion of the description to eliminate multiple exits
from procedures, to eliminate non-local exits from
procedures, and to allow 32-bit memory accesses, the
resulting design was transformed in much the same
manner as the 6502. These transformations produced a
3-stage pipeline, and like the "blue" design for the original
Berkeley Risc-1 [Fitzpatrick81], the control schedule for
this design would execute an Add instruction in 3 cycles.
Again, other variations on this design could be explored.

Control Step Scheduling

In the general synthesis path, after the design has
been transformed, a control step schedule must be
generated to sequence the design for EMUCS. The goal
of this control step scheduling is to create an assignment
of operations to control steps; each control step will
correspond to a control state in the synthesized design,
and will execute in one clock period. To obtain a correct
design, this assignment must satisfy both the data flow
and control flow dependencies in the VT.

The CSTEP Scheduling Algorithm

In general, the control step scheduling problem is very
similar to microcode compaction [Davidson81]; early
approaches have used heuristics taken directly from
microcode compaction research such as first-come, first-
served (FCFS) scheduling and list scheduling. In FCFS
scheduling, operations are scheduled iteratively into
successive control steps as allowed by data dependencies
and their initial order. In list scheduling, operations are
scheduled iteratively as allowed by data dependencies.
The order in which operations are placed into a control
step is determined by a heuristic priority function that is
applied to all operations that have not yet been placed into
a control step.

More recent approaches to scheduling have
recognized the need to minimize resources and satisfy
performance constraints expressed as maximum time
constraints. Girczyc and Knight [Girczyc84] use "urgency
scheduling”, an approach similar to list scheduling that
uses a priority function called an "urgency factor" that is
related to whether delaying the placement of an operation
will violate maximum time constraints. MAHA [Parker86]
determines a critical path of operations based on
maximum time constraints and schedules operations on
the critical path first, scheduling operations off the critical
path in a way that attempts to minimize hardware. HAL
[Paulin87] uses force directed scheduling to balance
hardware utilization between the allowed control steps.

The control step scheduler CSTEP uses a modified
form of list scheduling to schedule not only data and
control operations, but interface operations as well
[Nestor87]. While most other schedulers considered only
maximum time constraints, CSTEP considers both

The System Architect's Workbench

Page 4

minimum and maximum time constraints. In addition,
operations between time-constrained operations are
scheduled independently, yielding greater flexibility in
scheduling.

CSTEP schedules operations into control steps one
basic block at a time. Basic blocks are scheduled in
execution order using a depth-first traversal of the control
flow graph. This ensures that control flow dependencies
are satisfied. Data flow dependencies are guaranteed by
only considering for placement those operators whose
inputs are produced earlier in the schedule. For each
basic block, operators are considered for placement in the
"current" control step using a priority function that reflects
whether placing the operator in the current step will violate
a minimum time constraint, and whether placing an
operator in a later step will violate a maximum time
constraint. Hardware limits may be specified to limit the
number of a type of operator scheduled in any one control
step.

CSTEP Results

CSTEP is reasonably efficient; scheduling the 6502
common design example requires 12.34 CPU seconds on
a DEC VAXstation Il. The number of iterations of the
algorithm in a basic block containing n operations grows in
the worst case with complexity O(n). The number of calls
to the priority function grows in the worst case with

complexity O(n2), but this can be improved by re-
evaluating the priority of an operation only when conditions
have changed from its previous evaluation.

Table 1 lists a set of instructions and execution times
for the 6502; all times are measured in control steps. The
CSTEP results assume an edge-triggered clocking
scheme, the commercial design assumes a 2-phase clock,
and the SUGAR results assume a 4-phase clock. The
second column shows the instruction execution times from
the CSTEP control schedule for the unpipelined 6502
common design example. The third and fourth columns of
the table show instruction execution times for two directly
comparable pipelined designs — the 6502 2-stage pipeline
example, and the commercial MCS6502; the figures for
these two columns assume that the instruction was
prefetched at the same time as the previous instruction
was executed. In the third column, when two times are
given, the second is for indexing across a page boundary.
The common design example and the pipelined designs
are not directly comparable, since the common design
example is unpipelined, and combines the instruction fetch
and decoding into a single control step (which the other
designs do not). However, the unpipelined results are still
acceptable, and often within one cycle of the pipelined
designs. The results shown in the fifth column will be
discussed later in the section on SUGAR.

D.E. Thomas, et. al.

Table 1
6502 Instruction Execution Times

Instruction Unpipelined Comparable Pipelines Unpipelined
and
Addressing 6502 Commercial 6502 SUGAR
Mode Common MCS6502 2-Stage 6502

Design Pipeline Example

Example Example

(CSTEP) (CSTEP)
ORA, Immediate 3 2 2 4
ORA, Zero Page 4 3 3 4
ORA, Zero Page, X 4 4 3 5
ORA, Absolute 5 4 4 5
ORA, Absolute, X 5 4/5 4 7
ORA, Absolute, Y 5 4/5 4 7
ORA, (Indirect, X) 7 6 5 7
ORA, (Indirect), Y 7 5/6 5 8

Architectural Partitioning

In the general synthesis path of the Workbench, after
behavioral transforms have been applied, the architectural
partitioner APARTY can be run, and the partitioning results
can be used to guide the data path synthesis tools:
CSTEP, EMUCS, and Busser.

Architectural partitioning is the division of the
functionality of an architecture between physical units. It is
generally done to meet area and performance restrictions,
but must also consider the interconnection of the physical
units. There are several types of partitioning, including
instruction set partitioning and intra-chip partitioning.
Instruction set partitioning divides the architecture so that
each partition implements some subset of the total
instructions. This has the advantage that control only has
to be passed from one partition to another between
instruction executions, and it has the potential for process
level concurrency between the partitions. An example of
this is a machine with a separate floating point unit. Intra-
chip partitioning generally allows for operator level
parallelism between the partitions. This type of partitioning
may enhance performance, and may make the machine
easier to design and layout. APARTY is an automatic
architectural partitioner that has the flexibility to produce
both of these styles of partitions.

Partitioning results can be used to provide preliminary
hardware information for CSTEP to use in making the
control step schedule. CSTEP assumes that operators
that are in separate partitions will not share hardware, so
the partitioning information provides a lower bound on the
amount of hardware to be used in creating the control step
schedule.

Both the control step schedule and the partitioning
information are used as inputs to EMUCS. EMUCS is a
general algorithmic data path synthesis tool. It chooses
when and how to bind operators and data carriers by
attempting to minimize an overall cost for the design. The
cost for each element is dependent on the amount of
hardware needed and the interconnect costs; these costs
are table driven. Partitioning information can be used by
EMUCS to improve the design because partitions provide
global insight into the design. The partitioning information
suggests that operators in different partitions should be
bound to different hardware, thus suggesting a high-level
structure for the design and limiting the design space that
EMUCS must search.

The System Architect's Workbench

Page 5

Busser accepts a complete data path description as
input and attempts to improve the design by choosing
appropriate busses. Busser uses a clique partitioning
algorithm [Tseng84] to group module inputs together into
busses so that there are no conflicts and the overall
number of busses is minimized. Busses are chosen
separately for each partition, and additional busses are
chosen to interface the partitions.

The Architectural Partitioning Algorithm

The architectural partitioner APARTY is based on a
standard clustering algorithm that operates by grouping
objects together hierarchically according to some measure
of closeness. This technique has been used in the past
for design synthesis. McFarland [McFarland83] used
clustering to partition a behavioral description, and used
the partitioning information to guide the design of the data
path. Rajan [Rajan85] and Kowalski's DAA [Kowalski84]
both used clustering to obtain a preliminary indication of
appropriate functional units. They used a single cluster
stage that considered three criteria: data similarities,
similarity of operators, and potential for operator level
parallelism. McFarland's BUD [McFarland86] expanded
this clustering to apply to all levels of partitioning, and
used the clustering information to provide bottom-up
design information. APARTY achieves additional flexibility
over a basic clustering algorithm by allowing multiple
clustering stages. The stages are applied consecutively,
and each stage uses the results from the previous stage.
Thus, the first stage clusters individual data flow operators
into operator groups, and the next stage clusters those
operator groups into groups to be used by the next stage.
Each stage may have different closeness criteria that are
used to determine how the operators are to be grouped.
Four stages have been defined: control flow clustering,
data flow clustering, inter-vtbody clustering, and common
vtbody clustering.

The standard configuration of the stages begins with
control clustering, which, for an instruction set architecture,
may group the operators into instructions. Data flow
clustering operates on these instructions, grouping them
so that instructions that use common data carriers (e.g.
floating point instruction making common use of floating
point registers) are grouped together. Inter-vtbody
clustering is run next to cluster instruction groups with their
auxiliary vtbodies. For example, a vtbody that describes
the floating point addition would be grouped with the group
of floating point instructions. Finally, common vtbody
clustering clusters instruction groups that use common
auxiliary vtbodies. Thus, for an instruction set
architecture, the standard configuration will produce an
instruction set partition. To produce a different style of
partition, the standard configuration can be modified by
rearranging the order of the stages or by using only some
of the stages.

Partitioning Results

APARTY has been used to partition several
architectures into different styles of partitions. The IBM
System/370 has been partitioned into an instruction set
partition. APARTY has partitioned a DSP machine into
address and data parts. Likewise, the 6502 common
design was partitioned into address and data parts. A
digital filter [Paulin87] was also partitioned, and the results
were used to guide the later synthesis stages.

D.E. Thomas, et. al.

The digital filter that was partitioned has 34 add and
multiply operators. Using the data clustering stage, the
filter was partitioned into 2 parts, each containing both add
and multiply operators. This implies that CSTEP can
assume a minimum of 2 adders and 2 multipliers in
making the control step schedule. Other assumptions in
creating the schedule were that an add operation takes 1
cycle while a multiply requires 2 cycles. By limiting the
hardware to its minimum for the partitions and allowing an
operator to be scheduled only when hardware is available
in its partition, CSTEP produces a 19 control step
schedule for the filter. The shortest possible schedule for
the 2 adder — 2 multiplier limit is at least one control step
better than CSTEP finds, but this is a limitation of
CSTEP's lookahead abilities rather than a limitation
imposed by the partitions.

The resultant schedule was passed on to EMUCS,
which produced a partitioned data path. This result was
passed on to Busser which produced the final data path
shown in Figure 4. In the figure, circles represent
functional units, shaded rectangles are busses, unshaded
rectangles are registers, trapezoids are muxes, and "C"
represents a constant. The figure shows that each
partition has 1 adder, 1 multiplier, and 3 busses which are
input and output busses for the adder. A seventh bus
connects the two partitions.

-

 I—

Figure 4
APARTY / EMUCS / Busser Filter Data Path

The information provided by the partitioner causes
EMUCS to produce a design with 14% fewer muxes than it
produces for the same design without making use of
partitioning information. This improvement in the design
can be attributed to the partitioner's ability to extract a high
level view of the structure of the design, while EMUCS
make design decisions based on an evaluation of a small
window of the design. Thus the general path is a top-
down approach to design, with the behavioral
transformations allowing the designer to explore system
level alternatives, the partitioner providing high level
structural information, and the other tools filling in the
specifics of the design.

The System Architect's Workbench

Page 6

SUGAR

SUGAR, the other synthesis path in the Workbench,
is a style-specific approach to the automatic synthesis of
microprocessors. In contrast to many design tools which
apply the same general methods no matter what the
design style, the approach used by SUGAR is based on
the view that synthesis is a knowledge intensive problem
requiring a large number of techniques specially tailored to
individual design styles.

SUGAR uses a combination of algorithms and rules to
encode knowledge about microprocessors. The
knowledge about subsystems frequently found in
commercial microprocessors is used to synthesize
hardware for the behavior. For example, SUGAR
recognizes subsystems such as instruction decode unit,
condition code logic, branch logic, etc. SUGAR also has
knowledge about what kind of bussing structures are
frequently found in commercial microprocessors. This
knowledge is used to design the global interconnections
top-down.

Since microprocessor synthesis is a complex
problem, SUGAR divides it into several smaller
subproblems called phases. Each phase does a well-
defined activity. The phases communicate with each other
through a tree representation, rather than operating
directly on the VT. Interactions between phases are
reduced by delaying decisions until they can be made in
an informed way. The phases do the following: (1)
transform behavior to remove behavioral description
inefficiencies, (2) restructure the control flow to allow fast
decoding of instructions, (3) do classical compiler type flow
analysis, (4) select an efficient bus structure, (5) allocate
symbolic registers, (6) select micromachine code to
implement the behavior, (7) schedule the code by
assigning control steps to the register transfers, (8)
improve the design by applying cost/speed tradeoffs, and
(8) assign physical registers to the symbolic registers.

SUGAR Results

The fifth column in Table 1 shows some instruction
execution times for the 6502. The unpipelined SUGAR
design is slower than the common design example
because that example combines the instruction fetch and
decoding into one control step, whereas SUGAR and the
other designs do not. The SUGAR design is also slower
than the commercial design, due to its lack of an
instruction prefetch, and due to a reduced number of data
paths. Subject to these limitations, SUGAR produces
control sequences that appear to be comparable to
sequences produced manually.

Figure 5 shows the 6502 data path produced by
SUGAR. This design was produced in approximately 2
hours of CPU time on a DEC VAXstation II.

D.E. Thomas, et. al.

EABL
EABH

CONTROL
o1 :
CCPLA 2
I - l
H <—

TMPH <+
> AOL
AUL
PCL
ALU
A TMP

Figure 5
SUGAR 6502 Data Path

Conclusions

This paper has given an overview of the System
Architect's Workbench, and has described two approaches
to design in that system. One approach, using general
design algorithms appropriate for designs of many styles,
was demonstrated on various instruction set processors
(the MCS6502 and the Berkeley Risc-1) and on an
application specific design (the digital filter), and produced
results comparable to commercial designs. The other
approach, tuned to microprocessor design, was
demonstrated on the MCS6502 and gives good results for
that specific design style.

The 6502 common design example has not been
synthesized by EMUCS because it would take in excess of
30 CPU hours on a DEC VAXstation Il. However, results
from the other stages of the general design path are
available for this design. The behavioral transformations
allow different high level design alternatives to be
explored, producing the 6502 common design example, as
well as a 2-stage 6502, both from a single "generic"
starting description. The CSTEP control schedule for the
unpipelined common design example can not be directly
compared to that of the pipelined commercial design, but
appears to be an acceptable schedule.

The digital filter was partitioned by APARTY, which
does a good job of partitioning to reduce the overall
interconnect. The results were then passed on to CSTEP
and the data path synthesis programs to complete the
synthesis path. A reasonable data path was produced in
less than 4 minutes of CPU time, illustrating the broad
applicability of the general approach to synthesis.

Compared to the general approach, the style-specific
approach appears to produce faster synthesis programs.
In contrast to EMUCS, SUGAR completed the design in 2
CPU hours. This difference in processing time is due to
SUGAR's extensive knowledge of the microprocessor
design style. For the ORA instruction, SUGAR produces
control sequences comparable to those produced
manually. Preliminary results for the Motorola MC68000
are equally promising.

The System Architect's Workbench

Page 7

Acknowledgements

This research was funded by the SRC under contract
86-01-068, by a grant from the IBM Corporation, and by
the CMU CAD Industrial Affiliates. We would also like to
thank R. Cloutier, D. Geiger, P. Koenig, D. Springer, R.
Zimmermann, O. Amidi, K. Vissers and M. Doreau for their
contributions.

References

[Blackburn 88]R.L. Blackburn, D.E. Thomas, P.M. Koenig. CORAL II:
Linking Behavior and Structure in an IC Design System. In Proc. of the
25th DAC. ACM/IEEE, Anaheim, CA, June, 1988.

[Davidson 81] S. Davidson, D. Landskov, B.D. Shiriver and P.W. Mallett.
Some Experiments in Local Microcode Compaction for Horizontal
Machines. IEEE Trans. on Computers C-30(7):460-477, July, 1981.

[Fitzpatrick 81] D.T. Fitzpatrick, J.K. Foderaro, M.G.H. Katevenis, H.A.
Landman, D.A. Patterson, J.B. Peek, Z. Peshkess, C.H. Sequin, R.W.
Sherburne, K.S. Van Dyke. A RISCy Approach to VLSI. VLSI Design
:14-20, Fourth Quarter, 1981.

[Girczyc 84] E.F. Girczyc and J.P. Knight. An Ada to Standard Cell
Hardware Compiler Based on Graph Grammars and Scheduling. In
Proc. of ICCD-84, pp. 726-731. |IEEE, Port Chester, NY, Oct., 1984.

[Hitchcock 83] C.Y. Hitchcock Il and D.E. Thomas. A Method of Automatic
Data Path Synthesis. In Proc. of the 20th DAC, pp. 484-489.
ACM/IEEE, Miami, FL, June, 1983.

[Kowalski 84] T.J. Kowalski. The VLSI Design Automation Assistant: A
Knowledge-Based Expert System. PhD thesis, ECE Dept., Carnegie-
Mellon University, April, 1984. SRC Report CMUCAD-84-29.

[McFarland 83] M.C. McFarland, S.J. Computer-Aided Partitioning of
Behavioral Hardware Descriptions. In Proc. of the 20th DAC, pp. 472-
478. ACM/IEEE, Miami, FL, June, 1983.

[McFarland 86] M.C. McFarland, S.J. Using Bottom-Up Design
Techniques in the Synthesis of Digital Hardware from Abstract
Behavioral Descriptions. In Proc. of the 23rd DAC, pp. 474-480.
ACMI/IEEE, Las Vegas, NV, June, 1986.

[Nestor 87] J.A. Nestor. Specification and Synthesis of Digital Systems
with Interfaces. PhD thesis, ECE Dept., Carnegie-Mellon University,
April, 1987. SRC Report CMUCAD-87-10.

[Pangrle87] B.M. Pangrle and D.D. Gajski. Design Tools for Intelligent
Silicon Compilation. Transactions on CAD CAD-6(6):1098-1112,
November, 1987.

[Parker 86] A.C. Parker, J. Pizarro, and M. Mlinar. MAHA: A Program
for Datapath Synthesis. In Proc. of the 23rd DAC, pp. 461-466.
ACMI/IEEE, Las Vegas, NV, June, 1986.

[Paulin 87] P.G. Paulin and J.P. Knight. Force-Directed Scheduling in
Automatic Data Path Synthesis. In Proc. of the 24th DAC, pp. 195-202.
ACM/IEEE, Miami, FL, June, 1987.

[Rajan 85] J.V. Rajan and D.E. Thomas. Synthesis by Delayed Binding
of Decisions. In Proc. of the 22nd DAC, pp. 367-373. ACM/IEEE, Las
Vegas, NV, June, 1985.

[Snow 78] E.A. Snow. Automation of Module Set Independent
Register-Transfer Level Design. PhD thesis, EE Dept., Carnegie-
Mellon University, April, 1978.

[Thomas 81] D.E. Thomas and D.P. Siewiorek. Measuring Design
Performance to Verify Design Automation Systems. |EEE Trans. on
Computers C-30, January, 1981.

[Trickey 87] H. Trickey. Flamel: A High-Level Hardware Compiler.
Transactions on CAD CAD-6(2):259-269, March, 1987.

[Tseng 83] C.J. Tseng and D.P. Siewiorek. Facet: A Procedure for the
Automated Synthesis of Digital Systems. In Proc. of the 20th DAC, pp.
490-496. ACM/IEEE, Miami, FL, June, 1983.

[Vasantharajan 82] J. Vasantharajan. Design and Implementation of a VT-
Based Multi-Level Representation. Master's thesis, EE Dept.,
Carrnegie-Mellon University, February, 1982.

[Walker 87] R.A. Walker and D.E. Thomas. Design Representation and
Transformation in The System Architect's Workbench. In Proc. of
ICCAD-87, pp. 166-169. IEEE, Santa Clara, CA, November, 1987.

D.E. Thomas, et. al.

