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Abstract

We study storage performance in over 450,000 disks

and 4,000 SSDs over 87 days for an overall total of 857

million (disk) and 7 million (SSD) drive hours. We find

that storage performance instability is not uncommon:

0.2% of the time, a disk is more than 2x slower than

its peer drives in the same RAID group (and 0.6% for

SSD). As a consequence, disk and SSD-based RAIDs ex-

perience at least one slow drive (i.e., storage tail) 1.5%

and 2.2% of the time. To understand the root causes, we

correlate slowdowns with other metrics (workload I/O

rate and size, drive event, age, and model). Overall,

we find that the primary cause of slowdowns are the in-

ternal characteristics and idiosyncrasies of modern disk

and SSD drives. We observe that storage tails can ad-

versely impact RAID performance, motivating the design

of tail-tolerant RAID. To the best of our knowledge, this

work is the most extensive documentation of storage per-

formance instability in the field.

1 Introduction

Storage, the home of Big Data, has grown enormously

over the past decade [21]. This year Seagate projects to

ship more than 240 exabytes of disk drives [20], SSD

market has doubled in recent years [32], and data stored

in the cloud has also multiplied almost exponentially ev-

ery year [10]. In a world of continuous collection and

analysis of Big Data, storage performance is critical for

many applications. Modern applications particularly de-

mand low and predictable response times, giving rise to

stringent performance SLOs such as “99.9% of all re-

quests must be answered within 300ms” [15, 48]. Per-

formance instability that produces milliseconds of delay

lead to violations of such SLOs, degrading user experi-

ence and impacting revenues negatively [11, 35, 44].

A growing body of literature studies the general prob-

lem of performance instability in large-scale systems,

specifically calling out the impact of stragglers on tail

latencies [7, 13, 14, 34, 45, 50, 52, 54, 56]. Strag-

glers often arise from contention for shared local re-

sources (e.g., CPU, memory) and global resources (e.g.,

network switches, back-end storage), background dae-

mons, scheduling, power limits and energy management,

and many others. These studies are mostly performed at

server, network, or remote (cloud) storage levels.

To date, we find no systematic, large-scale studies of

performance instability in storage devices such as disks

and SSDs. Yet, mounting anecdotal evidence of disk and

SSD performance instability in the field continue to ap-

pear in various forums (§2). Such ad-hoc information is

unable to answer quantitatively key questions about drive

performance instability, questions such as: How much

slowdown do drives exhibit? How often does slowdown

occur? How widespread is it? Does slowdown have tem-

poral behavior? How long can slowdown persist? What

are the potential root causes? What is the impact of tail

latencies from slow drives to the RAID layer? Answers

to these questions could inform a wealth of storage sys-

tems research and design.

To answer these questions, we have performed the

largest empirical analysis of storage performance insta-

bility. Collecting hourly performance logs from cus-

tomer deployments of 458,482 disks and 4,069 SSDs

spanning on average 87 day periods, we have amassed

a dataset that covers 857 million hours of disk and 7 mil-

lion hours of SSD field performance data.

Uniquely, our data includes drive-RAID relationships,

which allows us to compare the performance of each

drive (Di) to that of peer drives in the same RAID group

(i = 1..N ). The RAID and file system architecture in

our study (§3.1) expects that the performance of every

drive (specifically, hourly average latency Li) is similar

to peer drives in the same RAID group.

Our primary metric, drive slowdown ratio (Si), the

fraction of a drive’s latency (Li) over the median latency

of the RAID group (median(L1..N)), captures deviation

from the assumption of homogeneous drive performance.

Assuming that most workloads are balanced across all

the data drives, a normal drive should not be much slower

than the other drives. Therefore, we define “slow” (un-

stable) drive hour when Si ≥ 2 (and “stable” the other-

wise). Throughout the paper, we use 2x and occasionally

1.5x slowdown threshold to classify drives as slow.
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In the following segment, we briefly summarize the

findings from our large-scale analysis.

(i) Slowdown occurrences (§4.1.1): Disks and SSDs are

slow (Si ≥ 2) for 0.22% and 0.58% of drive hours in our

study. With a tighter Si ≥ 1.5 threshold, disks and SSDs

are slow for 0.69% and 1.27% of disk hours respectively.

Consequently, stable latencies at 99.9th percentile are

hard to achieve in today’s storage drives. Slowdowns

can also be extreme (i.e., long tails); we observe several

slowdown incidents as large as 2-4 orders of magnitude.

(ii) Tail hours and RAID degradation (§4.1.2): A slow

drive can often make an entire RAID perform poorly.

The observed instability causes RAIDs to suffer 1.5%

and 2.2% of RAID hours with at least one slow drive (i.e.,

“tail hours”). Using 1.5x slowdown threshold, the num-

bers are 4.6% and 4.8%. As a consequent, stable laten-

cies at 99th percentile (or 96th with 1.5x threshold) are

impossible to guarantee in current RAID deployments.

Workload performance (especially full-stripe balanced

workload) will suffer as a consequence of RAID tails.

In our dataset, we observe that RAID throughput can de-

grade during stable to tail hours (§4.4.1).

(iii) Slowdown temporal behavior and extent (§4.1.3,

§4.1.4): We find that slowdown often persists; 40% and

35% of slow disks and SSDs respectively remain unsta-

ble for more than one hour. Slowdown periods exhibit

temporal locality; 90% of disk and 85% of SSD slow-

downs occur on the same day of the previous occurrence.

Finally, slowdown is widespread in the drive population;

our study shows 26% of disks and 29% of SSDs have

experienced at least one slowdown occurrence.

(iv) Workload analysis (§4.2): Drive slowdowns are of-

ten blamed on unbalanced workloads (e.g., a drive is bus-

ier than others). Our findings refute this, showing that

more than 95% of slowdown periods cannot be attributed

to I/O size or rate imbalance.

(v) “The fault is (likely) in our drives”: We find that

older disks exhibit more slowdowns (§4.3.2) and MLC

flash drives exhibit more slowdowns than SLC drives

(§4.3.3). Overall, evidence suggests that most slow-

downs are caused by internal characteristics of modern

disk and SSD drives.

In summary, drive performance instability means the

homogeneous performance assumption of traditional

RAID is no longer accurate. Drive slowdowns can

appear at different times, persist, disappear, and recur

again. Their occurrence is “silent”—not accompanied

by observable drive events (§4.3.1). Most importantly,

workload imbalance is not a major root cause (§4.2).

Replacing slow drives is not a popular solution (§4.4.2-

§4.4.3), mainly because slowdowns are often transient

and drive replacement is expensive in terms of hardware

and RAID rebuild costs.

(vi) The need for tail-tolerant RAID: All of the reasons

above point out that file and RAID systems are now faced

with more responsibilities. Not only must they handle

well-known faults such as latent sector errors and cor-

ruptions, now they must mask storage tail latencies as

well. Therefore, there is an opportunity to create “tail

tolerant” RAID that can mask storage tail latencies on-

line in deployment.

In the following sections, we present further motiva-

tion (§2), our methodology (§3), the main results (§4), an

opportunity assessment of tail-tolerant RAID (§5), dis-

cussion (§6), related work (§7) and conclusion (§8).

2 Motivational Anecdotes

Our work is highly motivated by the mounting anecdotes

of performance instability at the drive level. In the past

several years, we have collected facts and anecdotal ev-

idence of storage “limpware” [16, 26] from literature,

online forums supported by various storage companies,

and conversations with large-scale datacenter operators

as well as product teams. We found many reports of stor-

age performance problems due to various faults, com-

plexities and idiosyncrasies of modern storage devices,

as we briefly summarize below.

Disk: Magnetic disk drives can experience perfor-

mance faults from various root causes such as mechan-

ical wearout (e.g., weak head [1]), sector re-reads due

to media failures such as corruptions and sector er-

rors [2], overheat from broken cooling fans [3], gunk

spilling from actuator assembly and accumulating on

disk head [4], firmware bugs [41], RAID controller de-

fects [16, 47], and vibration from bad disk drive packag-

ing, missing screws, earthquakes, and constant “noise”

in data centers [17, 29]. All these problems can reduce

disk bandwidth by 10-80% and increase latency by sec-

onds. While the problems above can be considered as

performance “faults”, current generation of disks begin

to induce performance instability “by default” (e.g., with

adaptive zoning and Shingled-Magnetic Recording tech-

nologies [5, 18, 33]).

SSD: The pressure to increase flash density translates to

more internal SSD complexities that can induce perfor-

mance instability. For example, SSD garbage collection,

a well-known culprit, can increase latency by a factor

of 100 [13]. Programming MLC cells to different states

(e.g., 0 vs. 3) may require different numbers of itera-

tions due to different voltage thresholds [51]. The notion

of “fast” and “slow” pages exists within an SSD; pro-

gramming a slow page can be 5-8x slower compared to
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Figure 1: Stable and slow drives in a RAID group.

Disk SSD

RAID groups 38,029 572

Data drives per group 3-26 3-22

Data drives 458,482 4,069

Duration (days) 1-1470 1-94

Drive hours 857,183,442 7,481,055

Slow drive hours (§4.1.1) 1,885,804 43,016

Slow drive hours (%) 0.22 0.58

RAID hours 72,046,373 1,072,690

Tail hours (§4.1.2) 1,109,514 23,964

Tail hours (%) 1.54 2.23

Table 1: Dataset summary.

programming fast page [23]. As device wears out, break-

down of gate oxide will allow charge moves across gate

easily, resulting in faster programming (10-50%), but

also higher chance of corruption [22]. ECC correction,

read disturb, and read retry are also factors of instability

[19]. Finally, SSD firmware bugs can cause significant

performance faults (e.g., 300% bandwidth degradation in

a Samsung firmware problem [49]).

Although the facts and anecdotes above are crucial,

they do not provide empirical evidence that can guide

the design of future storage systems. The key questions

we raised in the introduction (slowdown magnitude, fre-

quency, scope, temporal behavior, root causes, impacts,

etc.) are still left unanswered. For this reason, we initi-

ated this large-scale study.

3 Methodology

In this section, we describe the RAID systems in our

study (§3.1), the dataset (§3.2), and the metrics we use

to investigate performance instability (§3.3). The overall

methodology is illustrated in Figure 1.

3.1 RAID Architecture

RAID group: Figure 1 provides a simple illustration of

a RAID group. We study disk- and SSD-based RAID

groups. In each group, disk or SSD devices are directly

attached to a proprietary RAID controller. All the disk

or SSD devices within a RAID group are homogeneous
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Figure 2: RAID width and dataset duration.

(same model, size, speed, etc.); deployment age can vary

but most of them are the same.

RAID and file system design: The RAID layer splits

each RAID request to per-drive I/Os. The size of a

per-drive I/O (a square block in Figure 1) can vary from

4 to 256 KB; the storage stack breaks large I/Os to

smaller I/Os with a maximum size of the processor cache

size. Above the RAID layer runs a proprietary file sys-

tem (not shown) that is highly tuned in a way that makes

most of the RAID I/O requests cover the full stripe; most

of the time the drives observe balanced workload.

RAID configuration: The RAID systems in our study

use small chunk sizes (e.g., 4 KB). More than 95% of the

RAID groups use a custom version of RAID-6 where the

parity blocks are not rotated; the parity blocks live in two

separate drives (P and Q drives as shown in Figure 1).

The other 4% use RAID-0 and 1% use RAID-4. We only

select RAID groups that have at least three data drives

(D1..DN where N ≥ 3 in Figure 1), mainly to allow us

measure the relative slowdown compared to the median

latency. Our dataset contains RAID groups with 3-26

data drives per group. Figure 2a shows the RAID width

distribution (only data drives); wide RAID (e.g., more

than 8 data drives) is popular.

3.2 About the Dataset

Scale of dataset: A summary of our dataset is shown in

Table 1. Our dataset contains 38,029 disk and 572 SSD

groups within deployment duration of 87 days on average

(Figure 2b). This gives us 72 and 1 million disk and SSD

RAID hours to analyze respectively. When broken down

to individual drives, our dataset contains 458,482 disks

and 4069 SSDs. In total, we analyze 857 million and 7

million disk and SSD drive hours respectively.

Data collection: The performance and event logs we an-

alyze come from production systems at customer sites.

When the deployed RAID systems “call home”, an auto-

support system collects hourly performance metrics such

as: average I/O latency, average latency per block, and

number of I/Os and blocks received every hour. All these

metrics are collected at the RAID layer. For each of
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Label Definition

Measured metrics:

N Number of data drives in a RAID group

Di Drive number within a RAID group; i = 1..N
Li Hourly average I/O latency observed at Di

Derived metrics:

Lmed Median latency; Lmed = Median of(L1..N )
Si Latency slowdown of Di compared to the median;

Si = Li/Lmed

T k The k-th largest slowdown (“k-th longest tail”);

T 1 = Max of (S1..N ),
T 2 = 2nd Max of (S1..N ), and so on

Stable A stable drive hour is when Si < 2

Slow A slow drive hour is when Si ≥ 2

Tail A tail hour implies a RAID hour with Ti ≥ 2

Table 2: Primary metrics. The table presents the metrics

used in our analysis. The distribution of N is shown in Figure

2a. Li, Si and T k are explained in Section 3.3.

these metrics, the system separates read and write met-

rics. In addition to performance information, the system

also records drive events such as response timeout, drive

not spinning, unplug/replug events.

3.3 Metrics

Below, we first describe the metrics that are measured

by the RAID systems and recorded in the auto-support

system. Then, we present the metrics that we derived

for measuring tail latencies (slowdowns). Some of the

important metrics are summarized in Table 2.

3.3.1 Measured Metrics

Data drives (N ): This symbol represents the number of

data drives in a RAID group. Our study only includes

data drives mainly because read operations only involve

data drives in our RAID-6 with non-rotating parity. Par-

ity drives can be studied as well, but we leave that for

future work. In terms of write operations, the RAID

small-write problem is negligible due to the file system

optimizations (§3.1).

Per-drive hourly average I/O latency (Li): Of all the

metrics available from the auto-support system, we at

the end only use the hourly average I/O latency (Li) ob-

served by every data drive (Di) in every RAID group

(i=1..N ), as illustrated in Figure 1. We initially ana-

lyzed “throughput” metrics as well, but because the sup-

port system does not record per-IO throughput average,

we cannot make an accurate throughput analysis based

on hourly average I/O sizes and latencies.

Other metrics: We also use other metrics such as per-

drive hourly average I/O rate (Ri) and size (Zi), time

of day, drive age, model, and events (replacements, un-

Stable Slow
toSlow

backToStable

slowPersistnormal

Figure 3: Conceptual drive slowdown model.

plug/replug, etc.), which we correlate with slowdown

metrics to analyze root causes and impacts.

3.3.2 Derived Metrics

Slowdown (Si): To measure tail latencies, RAID is a

perfect target because it allows us to measure the relative

slowdown of a drive compared to the other drives in the

same group. Therefore, as illustrated in Figure 1, for

every hour, we first measure the median group latency

Lmed from L1..N and then measure the hourly slowdown

of a drive (Si) by comparing its latency with the median

latency (Li/Lmed). The total number of Si is essentially

the “#drive hours” in Table 1. Our measurement of Si

is reasonably accurate because most of the workload is

balanced across the data drives and the average latencies

(Li) are based on per-drive I/Os whose size variance is

small (see §3.1).

Stable vs. slow drive hours: Assuming that most

workload is balanced across all the data drives, a “sta-

ble” drive should not be much slower than other drives.

Thus, we use a slowdown threshold of 2x to differenti-

ate slow drive hours (Si ≥ 2) and stable hours (Si < 2).

We believe 2x slowdown threshold is tolerant enough,

but conversations with several practitioners suggest that

a conservative 1.5x threshold will also be interesting.

Thus, in some of our findings, we show additional results

using 1.5x slowdown threshold.

Conceptually, drives appear to behave similar to a sim-

ple Markov model in Figure 3. In a given hour, a drive

can be stable or slow. In the next hour, the drive can stay

in the same or transition to the other condition.

Tails (T k): For every hourly S1..N , we derive the k-th

largest slowdown represented as T k. In this study, we

only record the three largest slowdowns (T 1, T 2 and T 3).

T 1 represents the “longest tail” in a given RAID hour, as

illustrated in Figure 1. The total number of T 1 is the

“#RAID hours” in Table 1. The differences among T k

values will provide hints to the potential benefits of tail-

tolerant RAID.

Tail hours: A “tail hour” implies a RAID hour that ob-

serves T 1≥2 (i.e., the RAID group observes at least one

slow drive in that hour). This metric is important for full-

stripe balanced workload where the performance will

follow the longest tail (i.e., the entire RAID slows down

at the rate of T 1).
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Figure 4: Slowdown (Si) and Tail (T k) distributions

(§4.1.1-§4.1.2). The figures show distributions of disk (top)

and SSD (bottom) hourly slowdowns (Si), including the three

longest tails (T 1−3) as defined in Table 2. The y-axis range

is different in each figure and the x-axis is in log2 scale. We

plot two gray vertical lines representing 1.5x and 2x slowdown

thresholds. Important slowdown-percentile intersections are

listed in Table 3.

From the above metrics, we can further measure other

metrics such as slowdown intervals, extents, and repe-

titions. Overall, we have performed an in-depth anal-

ysis of all the measured and derived metrics. In many

cases, due to space constraints, we aggregate some re-

sults whenever the sub-analysis does not show different

behaviors. For example, we merge read and write slow-

downs as I/O slowdown. In some graphs, we break down

the slowdowns (e.g., to 2-4x, 4-8x, 8-16x) if their char-

acterizations are different.

4 Results

We now present the results of our study in four sets

of analysis: slowdown and tail distributions and char-

acteristics (§4.1), correlations between slowdowns and

workload-related metrics (§4.2) and other available met-

rics (§4.3), and post-slowdown analysis (§4.4).

4.1 Slowdown Distributions and

Characteristics

In this section, we present slowdown and tail distribu-

tions and their basic characteristics such as temporal be-

haviors and the extent of the problem.

(a)

Y: 90th 95 99 99.9 99.99 99.999

Slowdown (Si) at Yth percentile

Disk 1.1x 1.2 1.4 2.7 9 30

SSD 1.1x 1.2 1.7 3.1 10 39

Greatest slowdown (T 1) at Yth percentile

Disk 1.3x 1.5 2.4 9 29 229

SSD 1.3x 1.5 2.5 20 37 65

(b)

X: 1.2x 1.5x 2x 4x

Percentile at Si=X

Disk 97.0th 99.3 99.78 99.96

SSD 95.9th 98.7 99.42 99.92

Percentile at T 1=X

Disk 83.3th 95.4 98.50 99.72

SSD 87.0th 95.2 97.77 99.67

Table 3: Slowdown and percentile intersections. The

table shows several detailed points in Figure 4. Table (a) de-

tails slowdown values at specific percentiles. Table (b) details

percentile values at specific slowdown ratios.

4.1.1 Slowdown (Si) Distribution

We first take all Si values and plot their distribution as

shown by the thick (blue) line in Figure 4 (steeper lines

imply more stability). Table 3 details some of the slow-

down and percentile intersections.

Finding #1: Storage performance instability is not un-

common. Figure 4 and Table 3b show that there exists

0.22% and 0.58% of drive hours (99.8th and 99.4th per-

centiles) where some disks and SSDs exhibit at least 2x

slowdown (Si ≥ 2). With a more conservative 1.5x slow-

down threshold, the percentiles are 99.3th and 98.7th for

disk and SSD respectively. These observations imply

that user demands of stable latencies at 99.9th percentile

[15, 46, 54] (or 99th with 1.5x threshold) are not met by

current storage devices.

Disk and SSD slowdowns can be high in few cases.

Table 3a shows that at four and five nines, slowdowns

reach ≥9x and ≥30x respectively. In some of the worst

cases, 3- and 4-digit disk slowdowns occurred in 2461

and 124 hours respectively, and 3-digit SSD slowdowns

in 10 hours.

4.1.2 Tail (T k) Distribution

We next plot the distributions of the three longest tails

(T 1−3) in Figure 4. Table 3 details several T 1 values at

specific percentiles.

Finding #2: Storage tails appear at a significant rate.

The T 1 line in Figure 4 shows that there are 1.54% and

2.23% “tail hours” (i.e., RAID hours with at least one

slow drive). With a conservative 1.5x threshold, the per-

centiles are 95.4th and 95.2th for disk and SSD respec-

tively. These numbers are alarming for full-stripe work-

load because the whole RAID will appear to be slow if

one drive is slow. For such workload, stable latencies at
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Figure 5: Temporal behavior (§4.1.3). The figures show

(a) the CDF of slowdown intervals (#hours until a slow drive

becomes stable) and (b) the CDF of slowdown inter-arrival

rates (#hours between two slowdown occurrences).

99th percentile (or 96th with 1.5x threshold) cannot be

guaranteed by current RAID deployments.

The differences between the three longest tails shed

light on possible performance improvement from tail-

tolerant RAID. If we reconstruct the late data from the

slowest drive by reading from a parity drive, we can cut

the longest tail. This is under an assumption that drive

slowdowns are independent and thus reading from the

parity drive can be faster. If two parity blocks are avail-

able (e.g., in RAID-6), then tail-tolerant RAID can read

two parity blocks to cut the last two tails.

Finding #3: Tail-tolerant RAID has a significant po-

tential to increase performance stability. The T 1 and T 2

values at x=2 in Figure 4a suggests the opportunity to

reduce disk tail hours from 1.5% to 0.6% if the longest

tail can be cut, and furthermore to 0.3% (T 3) if the two

longest tails can be cut. Similarly, Figure 4b shows that

SSD tail hours can be reduced from 2.2% to 1.4%, and

furthermore to 0.8% with tail-tolerant RAID.

The T 1 line in Figure 4b shows several vertical steps

(e.g., about 0.6% of T 1 values are exactly 2.0). To un-

derstand this, we analyze Si values that are exactly 1.5x,

2.0x, and 3.0x. We find that they account for 0.4% of

the entire SSD hours and their corresponding hourly and

median latencies (Li and Lmed) are exactly multiples of

250 µs. We are currently investigating this further with

the product groups to understand why some of the de-

ployed SSDs behave that way.

4.1.3 Temporal Behavior

To study slowdown temporal behaviors, we first measure

the slowdown interval (how many consecutive hours a

slowdown persists). Figure 5a plots the distribution of

slowdown intervals.

Finding #4: Slowdown can persist over several hours.

Figure 5a shows that 40% of slow disks do not go back

to stable within the next hour (and 35% for SSD). Fur-

thermore, slowdown can also persist for a long time. For

example, 13% and 3% of slow disks and SSDs stay slow

for 8 hours or more respectively.
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Figure 6: Slowdown extent (§4.1.4). Figure (a) shows

the fraction of all drives that have experienced at least one oc-

currence of X-time slowdown ratio as plotted on the x-axis; the

y-axis is in log10 scale. Figure (b) shows the fraction of slow

drives that has exhibited at least X slowdown occurrences.

Next, we measure the inter-arrival period of slow-

down occurrences from the perspective of each slow

drive. Figure 5b shows the fraction of slowdown occur-

rences that arrive within X hours of the preceding slow-

down; the arrival rates are binned by hour.

Finding #5: Slowdown has a high temporal local-

ity. Figure 5b shows that 90% and 85% of disk and

SSD slowdown occurrences from the same drive happen

within the same day of the previous occurrence respec-

tively. The two findings above suggest that history-based

tail mitigation strategies can be a fitting solution; a slow-

down occurrence should be leveraged as a good indicator

for the possibility of near-future slowdowns.

4.1.4 Slowdown Extent

We now characterize the slowdown extent (i.e., fraction

of drives that have experienced slowdowns) in two ways.

First, Figure 6a plots the fraction of all drives that have

exhibited at least one occurrence of at least X-time slow-

down ratio as plotted on the x-axis.

Finding #6: A large extent of drive population has ex-

perienced slowdowns at different rates. Figure 6a depicts

that 26% and 29% of disk and SSD drives have exhibited

≥2x slowdowns at least one time in their lifetimes re-

spectively. The fraction is also relatively significant for

large slowdowns. For example, 1.6% and 2.5% of disk

and SSD populations have experienced≥16x slowdowns

at least one time.

Next, we take only the population of slow drives (26%

and 29% of the disk and SSD population) and plot the

fraction of slow drives that has exhibited at least X slow-

down occurrences, as shown in Figure 6b.

Finding #7: Few slow drives experience a large num-

ber of slowdown repetitions. Figure 6b shows that that

around 6% and 5% of slow disks and SSDs exhibit at

least 100 slowdown occurrences respectively. The ma-

jority of slow drives only incur few slowdown repeti-

tions. For example, 62% and 70% of slow disks and

SSDs exhibit only less than 5 slowdown occurrences re-
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Figure 7: CDF of size and rate imbalance (§4.2). Fig-

ure (a) plots the rate imbalance distribution (RIi) within the

population of slow drive hours (Si ≥ 2). A rate imbalance of X

implies that the slow drive serves X times more I/Os, as plotted

in the x-axis. Reversely, Figure (b) plots the slowdown distribu-

tion (Si) within the population of rate-imbalanced drive hours

(RIi ≥ 2). Figures (c) and (d) correlate slowdown and size

imbalance in the same way as Figures (a) and (b).

spectively. We emphasize that frequency of slowdown

occurrences above are only within the time duration of

87 days on average (§3.2).

4.2 Workload Analysis

The previous section presents the basic characteristics

of drive slowdowns. We now explore the possible root

causes, starting with workload analysis. Drive slow-

downs are often attributed to unbalanced workload (e.g.,

a drive is busier than other drives). We had a hypothesis

that such is not the case in our study due to the storage

stack optimization (§3.2). To explore our hypothesis, we

correlate slowdown with two workload-related metrics:

size and rate imbalance.

4.2.1 Slowdown vs. Rate Imbalance

We first measure the hourly I/O count for every drive

(Ri), the median (Rmed), and the rate imbalance (RIi =
Ri/Rmed); this method is similar to the way we measure

Si in Table 2. If workload is to blame for slowdowns,

then we should observe a high correlation between slow-

down (Si) and rate imbalance (Ri). That is, slowdowns

happen in conjunction with rate imbalance, for example,

Si ≥ 2 happens during Ri ≥ 2.

Figure 7a shows the rate imbalance distribution (RIi)
only within the population of slow drive hours. A rate im-

balance of X (on the x-axis) implies that the slow drive

serves X times more I/Os. The figure reveals that only

5% of slow drive hours happen when the drive receives

2x more I/Os than the peer drives. 95% of the slow-

downs happen in the absence of rate imbalance (the rate-

imbalance distribution is mostly aligned at x=1).

To strengthen our conjecture that rate imbalance is not

a factor, we perform a reverse analysis. To recap, Figure

7a essentially shows how often slowdowns are caused by

rate imbalance. We now ask the reverse: how often does

rate imbalance cause slowdowns? The answer is shown

in Figure 7b; it shows the slowdown distribution (Si)

only within the population of “overly” rate-imbalanced

drive hours (RIi ≥ 2). Interestingly, rate imbalance has

negligible effect on slowdowns; only 1% and 5% of rate-

imbalanced disk and SSD hours experience slowdowns.

From these two analyses, we conclude that rate imbal-

ance is not a major root cause of slowdown.

4.2.2 Slowdown vs. Size Imbalance

Next, we correlate slowdown with size imbalance. Sim-

ilar to the method above, we measure the hourly aver-

age I/O size for every drive (Zi), the median (Zmed),

and the size imbalance (ZIi = Zi/Zmed). Figure 7c

plots the size imbalance distribution (ZIi) only within

the population of slow drive hours. A size imbalance

of X implies that the slow drive serves X times larger

I/O size. The size-imbalance distribution is very much

aligned at x=1. Only 2.5% and 1.1% of slow disks and

SSDs receive 2x larger I/O size than the peer drives in

their group. Reversely, Figure 7d shows that only 0.1%

and 0.2% of size-imbalanced disk and SSD hours expe-

rience more than 2x slowdowns.

Finding #8: Slowdowns are independent of I/O rate

and size imbalance. As elaborated above, the large ma-

jority of slowdown occurrences (more than 95%) cannot

be attributed to workload (I/O size or rate) imbalance.

4.3 Other Correlations

As workload imbalance is not a major root cause of

slowdowns, we now attempt to find other possible root

causes by correlating slowdowns with other metrics such

as drive events, age, model and time of day.

4.3.1 Drive Event

Slowdown is often considered as a “silent” fault that

needs to be monitored continuously. Thus, we ask: are

there any explicit events surfacing near slowdown occur-

rences? To answer this, we collect drive events from our

auto-support system.

Finding #9: Slowdown is a “silent” performance

fault. A large majority of slowdowns are not accom-

panied with any explicit drive events. Out of the mil-

lions slow drive hours, we only observe hundreds of
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Figure 8: Drive age (§4.3.2). The figures plot the slow-

down distribution across different (a) disk and (b) SSD ages.

Each line represents a specific age by year. Each figure legend

is sorted from the left-most to right-most lines.

drive events. However, when specific drive events hap-

pen (specifically, “disk is not spinning” and “disk is not

responding”), 90% of the cases lead to slowdown occur-

rences. We rarely see storage timeouts (e.g., SCSI time-

out) because timeout values are typically set coarsely

(e.g., 60 seconds). Since typical latency ranges from tens

of microseconds to few milliseconds, a slowdown must

be five orders of magnitude to hit a timeout. Thus, to de-

tect tail latencies, storage performance should be moni-

tored continuously.

4.3.2 Drive Age

Next, we analyze if drive age matters to performance

stability. We break the the slowdown distribution (Si)

by different ages (i.e., how long the drive has been de-

ployed) as shown in Figure 8.

For disks, the bold lines in Figure 8a clearly show that

older disks experience more slowdowns. Interestingly,

the population of older disks is small in our dataset and

yet we can easily observe slowdown prevalence within

this small population (the population of 6-10 year-old

disks ranges from 0.02-3% while 1-5 year-old disks

ranges from 8-33%). In the worst case, the 8th year, the

95th percentile already reaches 2.3x slowdown. The 9th

year (0.11% of the population) seems to be an outlier.

Performance instability from disk aging due to mechani-

cal wear-out is a possibility (§2).

For SSD, we do not observe a clear pattern. Although

Figure 8b seemingly shows that young SSDs experience

more slowdowns than older drives, it is hard to make

such as a conclusion because of the small old-SSD popu-

lation (3-4 year-old SSDs only make up 16% of the pop-

ulation while the 1-2 year-old is 83%).

Finding #10: Older disks tend to exhibit more slow-

downs. For SSDs, no high degree of correlation can be

made between slowdown and drive age.

4.3.3 Drive Model

We now correlate slowdown with drive model. Not all of

our customers upload the model of the drives they use.
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Figure 9: SSD models (§4.3.3). The figure plots the slow-

down distribution across different SSD models and vendors.

Only 70% and 86% of customer disks and SSDs have

model information. Thus, our analysis in this section is

based on partial population.

We begin by correlating SSD model and slowdown.

The SSD literature highlights the pressure to increase

density, which leads to internal idiosyncrasies that can

induce performance instability. Thus, it is interesting to

know the impact of different flash cell levels to SSD per-

formance stability.

Finding #11: SLC slightly outperforms MLC drives in

terms of performance stability. As shown in Figure 9,

at 1.5x slowdown threshold, MLC drives only reaches

98.2th percentile while SLC reaches 99.5th percentile.

However, at 2x slowdown threshold, the distribution is

only separated by 0.1%. As MLC exhibits less perfor-

mance stability than SLC, future comparisons with TLC

drives will be interesting.

Our dataset contains about 60:40 ratio of SLC vs.

MLC drives. All the SLC drives come from one vendor,

but the MLC drives come from two vendors with 90:10

population ratio. This allows us to compare vendors.

Finding #12: SSD vendors seem to matter. As shown

by the two thin lines in Figure 9, one of the vendors (the

10% MLC population) has much less stability compared

to the other one. This is interesting because the insta-

bility is clearly observable even within a small popula-

tion. At 1.5x threshold, this vendor’s MLC drives already

reach 94.3thpercentile (out of the scope of Figure 9).

For disks, we use different model parameters such as

storage capacity, RPM, and SAN interfaces (SATA, SAS,

or Fibre Channel). However, we do not see any strong

correlation.

4.3.4 Time of Day

We also perform an analysis based on time of day to iden-

tify if night-time background jobs such as disk scrubbing

cause slowdowns. We find that slowdowns are uniformly

distributed throughout the day and night.
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Figure 10: RAID I/O degradation (§4.4.1). The figures

contrast the distributions of RIO degradation between stable-

to-stable and stable-to-tail transitions.

4.4 Post-Slowdown Analysis

We now perform a post-mortem analysis: what hap-

pens after slowdown occurrences? We analyze this from

two angles: RAID performance degradation and un-

plug/replug events.

4.4.1 RAID Performance Degradation

A slow drive has the potential to degrade the performance

of the entire RAID, especially for full-stripe workload

common in the studied RAID systems (§3.1), it is reason-

able to make the following hypothesis: during the hour

when a drive slows down, the RAID aggregate through-

put will drop as the workload’s intensity will be throttled

by the slow drive. Currently, we do not have access to

throughput metrics at the file system or application lev-

els, and even if we do, connecting metrics from different

levels will not be trivial. We leave cross-level analysis

as future work, but meanwhile, given this constraint, we

perform the following analysis to explore our hypothesis.

We derive a new metric, RIO (hourly RAID I/O count),

which is the aggregate number of I/Os per hour from all

the data drives in every RAID hour. Then, we derive

RIO degradation (RAID throughput degradation) as the

ratio RIOlastHour to RIOcurrentHour. If the degradation

is larger than one, it means the RAID group serves less

I/Os than the previous hour.

Next, we distinguish stable-to-stable and stable-to-tail

transitions. Stable RAID hour means all the drives are

stable (Si < 2). Tail RAID hour implies at least one of

the drives is slow. In stable-to-stable transitions, RIO

degradation can naturally happen as workload “cools

down”. Thus, we first plot the distribution of stable-to-

stable RIO degradation, shown by the solid blue line in

Figure 10. We then select only the stable-to-tail transi-

tions and plot the RIO degradation distribution, shown

by the dashed red line in Figure 10.

Finding #13: A slow drive can significantly degrade

the performance of the entire RAID. Figure 10 depicts

a big gap of RAID I/O degradation between stable-to-

stable and stable-to-tail transitions. In SSD-based RAID,

the degradation impact is quite severe. Figure 10b for
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Figure 11: Unplug/replug events (§4.4.2-§4.4.3). The

figures show the relationships between slowdown occurrences

and unplug/replug events. The top and bottom figures show the

distribution of “wait-hour” and “recur-hour” respectively.

example shows that only 12% of stable-to-stable transi-

tions observe ≥2x RIO degradation (likely from work-

load cooling down). However, in stable-to-slow transi-

tions, there is 23% more chance (the vertical gap at x=2)

that RIO degrades by more than 2x. In disk-based RAID,

RIO degradation is also felt with 7% more chance. This

finding shows the real possibilities of workload through-

put being degraded and stable drives being under-utilized

during tail hours, which again motivates the need for tail-

tolerant RAID.

We note that RAID degradation is felt more if user re-

quests are casually dependent; RIO degradation only af-

fects I/Os that are waiting for the completion of previous

I/Os. Furthermore, since our dataset is based on hourly

average latencies, there is no sufficient information that

shows every I/O is delayed at the same slowdown rate.

We believe these are the reasons why we do not see a

complete collapse of RIO degradation.

4.4.2 Unplug Events

When a drive slows down, the administrator might un-

plug the drive (e.g., for offline diagnosis) and later replug

the drive. Unplug/replug is a manual administrator’s pro-

cess, but such events are logged in our auto-support sys-

tem. To analyze unplug patterns, we define wait-hour

as the number of hours between a slowdown occurrence

and a subsequent unplug event; if a slowdown persists

in consecutive hours, we only take the first slow hour.

Figures 11a-b show the wait-hour distribution within the

population of slow disks and SSDs respectively.

Finding #14: Unplug events are common. Figures

11a-b show that within a day, around 4% and 8% of slow
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(≥2x) disks and SSDs are unplugged respectively. For

“mild” slowdowns (1.5-2x), the numbers are 3% and 6%.

Figure 11a also shows a pattern where disks with more

severe slowdowns are unplugged at higher rates; this pat-

tern does not show up in SSD.

4.4.3 Replug Events

We first would like to note that unplug is not the same

as drive replacement; a replacement implies an unplug

without replug. With this, we raise two questions: What

is the replug rate? Do replugged drives exhibit fur-

ther slowdowns? To analyze the latter, we define recur-

hour as the number of hours between a replug event

and the next slowdown occurrence. Figures 11c-d show

the recur-hour distribution within the population of slow

disks and SSDs respectively.

Finding #15: Replug rate is high and slowdowns still

recur after replug events. In our dataset, customers re-

plug 89% and 100% of disks and SSDs that they un-

plugged respectively (not shown in figures). Figures

11c-d answer the second question, showing that 18%

and 35% of replugged disks and SSDs exhibit another

slowdown within a day. This finding points out that

administrators are reluctant to completely replace slow

drives, likely because slowdowns are transient (not all

slowdowns appear in consecutive hours) and thus can-

not be reproduced in offline diagnosis and furthermore

the cost of drive replacement can be unnecessarily ex-

pensive. Yet, as slowdown can recur, there is a need for

online tail mitigation approaches.

In terms of unplug-replug duration, 54% of unplugged

disks are replugged within 2 hours and 90% within 10

hours. For SSD, 61% are replugged within 2 hours and

97% within 10 hours.

4.5 Summary

It is now evident that storage performance instability at

the drive level is not uncommon. One of our major find-

ings is the little correlation between performance insta-

bility and workload imbalance. One major analysis chal-

lenge is the “silent” nature of slowdowns; they are not

accompanied by explicit drive events, and therefore, pin-

pointing the root cause of each slowdown occurrence is

still an open problem. However, in terms of the over-

all findings, our conversations with product teams and

vendors [4] confirm that many instances of drive perfor-

mance faults are caused by drive anomalies; there are

strong connections between our findings and some of the

anecdotal evidence we gathered (§2). As RAID deploy-

ments can suffer from storage tails, we next discuss the

concept of tail-tolerant RAID.

5 Tail-Tolerant RAID

With drive performance instability, RAID performance

is in jeopardy. When a request is striped across many

drives, the request cannot finish until all the individual

I/Os complete (Figure 1); the request latency will follow

the tail latency. As request throughput degrades, stable

drives become under-utilized. Tail-tolerant RAID is one

solution to the problem and it brings two advantages.

First, slow drives are masked. This is a simple goal

but crucial for several reasons: stringent SLOs require

stability at high percentiles (e.g., 99% or even 99.9%

[15, 45, 48, 52]); slow drives, if not masked, can cre-

ate cascades of performance failures to applications [16];

and drive slowdowns can falsely signal applications to

back off, especially in systems that treat slowdowns as

hints of overload [24].

Second, tail-tolerant RAID is a cheaper solution than

drive replacements, especially in the context of transient

slowdowns (§4.1.3) and high replug rates by administra-

tors (§4.4.3). Unnecessary replacements might be unde-

sirable due to the hardware cost and the expensive RAID

re-building process as as drive capacity increases.

Given these advantages, we performed an opportu-

nity assessment of tail-tolerant strategies at the RAID

level. We emphasize that the main focus of this paper

is the large-scale analysis of storage tails; the initial ex-

ploration of tail-tolerant RAID in this section is only to

assess the benefits of such an approach.

5.1 Tail-Tolerant Strategies

We explore three tail-tolerant strategies: reactive, proac-

tive, and adaptive. They are analogous to popular ap-

proaches in parallel distributed computing such as spec-

ulative execution [14] and hedging/cloning [6, 13]. To

mimic our RAID systems (§3.2), we currently focus on

tail tolerance for RAID-6 with non-rotating parity (Fig-

ure 1 and §3.1). We name our prototype ToleRAID, for

simplicity of reference.

Currently, we only focus on full-stripe read workload

where ToleRAID can cut “read tails” in the following

ways. In normal reads, the two parity drives are unused

(if no errors), and thus can be leveraged to mask up to

two slow data drives. For example, if one data drive is

slow, ToleRAID can issue an extra read to one parity

drive and rebuild the “late” data.

Reactive: A simple strategy is reactive. If a drive

(or two) has not returned the data for ST x (slowdown

threshold) longer than the median latency, reactive will

perform an extra read (or two) to the parity drive(s). Re-

active strategy should be enabled by default in order to

cut extremely long tails. It is also good for mostly stable

environment where slowdowns are rare. A small ST will

create more extra reads and a large ST will respond late
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to tails. We set ST = 2 in our evaluation, which means

we still need to wait for roughly an additional 1x median

latency to complete the I/O (a total slowdown of 3x in

our case). While reactive strategies work well in clus-

ter computing (e.g., speculative execution for medium-

long jobs), they can react too late for small I/O latencies

(e.g., hundreds of microseconds). Therefore, we explore

proactive and adaptive approaches.

Proactive: This approach performs extra reads to the

parity drives concurrently with the original I/Os. The

number of extra reads can be one (P drive) or two (P

and Q); we name them PROACTIVE1 and PROACTIVE2

respectively. Proactive works well to cut short tails (near

the slowdown threshold); as discussed above, reactive

depends on ST and can be a little bit too late. The down-

side of proactive strategy is the extra read traffic.

Adaptive: This approach is a middle point between the

two strategies above. Adaptive by default runs the re-

active approach. When the reactive policy is triggered

repeatedly for SR times (slowdown repeats) on the same

drive, then ToleRAID becomes proactive until the slow-

down of the offending drive is less than ST . If two

drives are persistently slow, then ToleRAID runs PROAC-

TIVE2. Adaptive is appropriate for instability that comes

from persistent and periodic interferences such as back-

ground SSD GC, SMR log cleaning, or I/O contention

from multi-tenancy.

5.2 Evaluation

Our user-level ToleRAID prototype stripes each RAID

request into 4-KB chunks (§3.2), merge consecutive per-

drive chunks, and submit them as direct I/Os. We in-

sert a delay-injection layer that emulates I/O slowdowns.

Our prototype takes two inputs: block-level trace and

slowdown distribution. Below, we show ToleRAID re-

sults from running a block trace from Hadoop Word-

count benchmark, which contains mostly big reads. We

perform the experiments on 8-drive RAID running IBM

500GB SATA-600 7.2K disk drives.

We use two slowdown distributions: (1) Rare distribu-

tion, which is uniformly sampled from our disk dataset

(Figure 4a). Here, tails (T 1) are rare (1.5%) but long tails

exist (Table 3). (2) Periodic distribution, based on our

study of Amazon EC2 ephemeral SSDs (not shown due

to space constraints). In this study, we rent SSD nodes

and found a case where one of the locally-attached SSDs

periodically exhibited 5x read slowdowns that lasted for

3-6 minutes and repeated every 2-3 hours (2.3% instabil-

ity period on average).

Figure 12 shows the pros and cons of the four policies

using the two different distributions. In all cases, PROAC-

TIVE1 and PROACTIVE2 always incur roughly 16.7% and

33.3% extra reads. In Figure 12a, REACTIVE can cut
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Figure 12: ToleRAID evaluation. The figures show

the pros and cons of various ToleRAID strategies based on two

slowdown distributions: (a) Rare and (b) Periodic. The figures

plot the T
1 distribution (i.e., the RAID slowdown). T

1 is es-

sentially based on the longest tail latency among the necessary

blocks that each policy needs to wait for.

long tails and ensure RAID only slows down by at most

3x, while only introducing 0.5% I/O overhead. PROAC-

TIVE2, compared to PROACTIVE1, gives slight benefits

(e.g., 1.8x vs. 2.3x at 99th percentile). Note also that

PROACTIVE1 does not use REACTIVE, and thus PROAC-

TIVE1 loses to REACTIVE within the 0.1% chance where

two disks are slow at the same time. ADAPTIVE does

not show more benefits in non-persistent scenarios. Fig-

ure 12b shows that in periodic distribution with persistent

slowdowns, ADAPTIVE works best; it cuts long tails but

only incurs 2.3% I/O overhead.

Overall, ToleRAID shows potential benefits. In sepa-

rate experiments, we have also measured Linux Software

RAID degradation in the presence of storage tails (with

dmsetup delay utilities). We are integrating ToleRAID

to Linux Software RAID and extending it to cover more

policies and scenarios (partial reads, writes, etc.).

6 Discussions

We hope our work will spur a set of interesting future

research directions for the larger storage community to

address. We discuss this in the context of performance-

log analysis and tail mitigations.

Enhanced data collection: The first limitation of our

dataset is the hourly aggregation, preventing us from

performing micro analysis. Monitoring and capturing

fine-grained data points will incur high computation and

storage overhead. However, during problematic peri-

ods, future monitoring systems should capture detailed

data. Our ToleRAID evaluation hints that realistic slow-

down distributions are a crucial element in benchmark-

ing tail-tolerant policies. More distribution benchmarks

are needed to shape the tail-tolerant RAID research area.

The second limitation is the absence of other metrics that

can be linked to slowdowns (e.g., heat and vibration lev-

els). Similarly, future monitoring systems can include

such metrics.



274 14th USENIX Conference on File and Storage Technologies (FAST ’16) USENIX Association

Our current SSD dataset is two orders of magnitude

smaller than the disk dataset. As SSD becomes the

front-end storage in datacenters, larger and longer stud-

ies of SSD performance instability is needed. Similarly,

denser SMR disk drives will replace old generation disks

[5, 18]. Performance studies of SSD-based and SMR-

based RAID will be valuable, especially for understand-

ing the ramifications of internal SSD garbage-collection

and SMR cleaning to the overall RAID performance.

Further analyses: Correlating slowdowns to latent sec-

tor errors, corruptions, drive failures (e.g., from SMART

logs), and application performance would be interesting

future work. One challenge we had was that not all ven-

dors consistently use SMART and report drive errors. In

this paper, we use median values to measure tail laten-

cies and slowdowns similar to other work [13, 34, 52].

We do so because using median values will not hide the

severity of long tails. Using median is exaggerating if

(N-1)/2 of the drives have significantly higher latencies

than the rest; however, we did not observe such cases.

Finally, we mainly use 2x slowdown threshold, and oc-

casionally show results from a more conservative 1.5x

threshold. Further analyses based on average latency val-

ues and different threshold levels are possible.

Tail mitigations: We believe the design space of tail-

tolerant RAID is vast considering different forms of

RAID (RAID-5/6/10, etc.), different types of erasure

coding [38], various slowdown distributions in the field,

and diverse user SLA expectations. In our initial assess-

ment, ToleRAID uses a black-box approach, but there

are other opportunities to cut tails “at the source” with

transparent interactions between devices and the RAID

layer. In special cases such as materials trapped between

disk head and platter (which will be more prevalent in

“slim” drives with low heights), the file system or RAID

layer can inject random I/Os to “sweep” the dust off. In

summary, each root cause can be mitigated with specific

strategies. The process of identifying all possible root

causes of performance instability should be continued for

future mitigation designs.

7 Related Work

Large-scale storage studies at the same scale as ours were

conducted for analysis of whole-disk failures [37, 40],

latent sector errors [8, 36], and sector corruptions [9].

Many of these studies were started based on anecdotal

evidence of storage faults. Today, as these studies had

provided real empirical evidence, it is a common expec-

tation that storage devices exhibit such faults. Likewise,

our study will provide the same significance of contribu-

tion, but in the context of performance faults.

Krevat et al. [33] demonstrate that disks are like

“snowflakes” (same model can have 5-14% throughput

variance); they only analyze throughput metrics on 70

drives with simple microbenchmarks. To the best of our

knowledge, our work is the first to conduct a large-scale

performance instability analysis at the drive level.

Storage performance variability is typically addressed

in the context of storage QoS (e.g., mClock [25], PARDA

[24], Pisces [42]) and more recently in cloud storage ser-

vices (e.g., C3 [45], CosTLO [52]). Other recent work

reduces performance variability at the file system (e.g.,

Chopper [30]), I/O scheduler (e.g., split-level schedul-

ing [55]), and SSD layers (e.g., Purity [12], Flash on

Rails [43]). Different than ours, these sets of work do

not specifically target drive-level tail latencies.

Finally, as mentioned before, reactive, proactive and

adaptive tail-tolerant strategies are lessons learned from

the distributed cluster computing (e.g., MapReduce [14],

dolly [6], Mantri [7], KMN [50]) and distributed storage

systems (e.g., Windows Azure Storage [31], RobuSTore

[53]). The applications of these high-level strategies in

the context of RAID will significantly differ.

8 Conclusion

We have “transformed” anecdotes of storage perfor-

mance instability into large-scale empirical evidence.

Our analysis so far is solely based on last generation

drives (few years in deployment). With trends in disk and

SSD technology (e.g., SMR disks, TLC flash devices),

the worst might be yet to come; performance instability

can be more prevalent in the future, and our findings are

perhaps just the beginning. File and RAID systems are

now faced with more responsibilities. Not only must they

handle known storage faults such as latent sector errors

and corruptions [9, 27, 28, 39], but also now they must

mask drive tail latencies as well. Lessons can be learned

from the distributed computing community where a large

body of work has been born since the issue of tail laten-

cies became a spotlight a decade ago [14]. Similarly, we

hope “the tail at store” will spur exciting new research

directions within the storage community.
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