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The TAL Effector PthA4 Interacts with Nuclear Factors
Involved in RNA-Dependent Processes Including a HMG
Protein That Selectively Binds Poly(U) RNA
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Alexandre José Christino Quaresma¤, Bianca Alves Pauletti, Adriana Franco Paes Leme,

Celso Eduardo Benedetti*

Laboratório Nacional de Biociências (LNBio), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Campinas, SP, Brazil

Abstract

Plant pathogenic bacteria utilize an array of effector proteins to cause disease. Among them, transcriptional activator-like
(TAL) effectors are unusual in the sense that they modulate transcription in the host. Although target genes and DNA
specificity of TAL effectors have been elucidated, how TAL proteins control host transcription is poorly understood.
Previously, we showed that the Xanthomonas citri TAL effectors, PthAs 2 and 3, preferentially targeted a citrus protein
complex associated with transcription control and DNA repair. To extend our knowledge on the mode of action of PthAs,
we have identified new protein targets of the PthA4 variant, required to elicit canker on citrus. Here we show that all the
PthA4-interacting proteins are DNA and/or RNA-binding factors implicated in chromatin remodeling and repair, gene
regulation and mRNA stabilization/modification. The majority of these proteins, including a structural maintenance of
chromosomes protein (CsSMC), a translin-associated factor X (CsTRAX), a VirE2-interacting protein (CsVIP2), a high mobility
group (CsHMG) and two poly(A)-binding proteins (CsPABP1 and 2), interacted with each other, suggesting that they
assemble into a multiprotein complex. CsHMG was shown to bind DNA and to interact with the invariable leucine-rich
repeat region of PthAs. Surprisingly, both CsHMG and PthA4 interacted with PABP1 and 2 and showed selective binding to
poly(U) RNA, a property that is novel among HMGs and TAL effectors. Given that homologs of CsHMG, CsPABP1, CsPABP2,
CsSMC and CsTRAX in other organisms assemble into protein complexes to regulate mRNA stability and translation, we
suggest a novel role of TAL effectors in mRNA processing and translational control.
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Introduction

Plant pathogenic bacteria have developed sophisticated mecha-

nisms to suppress defenses and modulate transcription of host plants

to cause disease. Suchmechanisms usually involve the transfer of the

so-called bacterial type-III effectors to the interior of the plant cell

by the type-III secretion system [1]. The transcriptional activator-

like (TAL) effectors of the AvrBs3/PthA protein family are good

examples of bacterial proteins that are targeted to the nucleus of

plant cells to manipulate gene expression [2]. These proteins have

the ability to activate transcription in host and non host plants

through the recognition of specific promoter regions of target genes

[3–6]. The interaction of a TAL effector with its target DNA is

mediated by the repeat domain of the protein, which comprises a

variable region made of nearly identical tandem repeats of 34 amino

acids that define the DNA specificity [7–9].

In the interaction of citrus plants with Xanthomonas citri, the

causal agent of citrus canker, it has been shown that the TAL

effector protein PthA is not only required for canker elicitation but

sufficient to promote cell hypertrophy [10–14]. However, while

target genes and DNA specificity of TAL effectors have been

elucidated in great detail in the past few years [2,15], how TAL

effectors control transcription in the host is not yet clear.

To address this question, and considering that the activity of

TAL effectors as transcriptional activators would likely depend on

the action of host nuclear factors, we performed numerous two-

hybrid screenings of a sweet orange (Citrus sinensis) cDNA library

using different variants of PthAs as baits. Initial screenings using

PthAs 2 and 3 as baits revealed a number of interactions with

citrus proteins implicated in nuclear import, transcriptional

regulation and DNA repair mechanisms [16]. Among the isolated

proteins, a citrus protein complex comprising a cyclophilin

(CsCYP), a thioredoxin (CsTDX) and the CsUEV/UBC13

heterodimer, involved in K63-linked ubiquitination and DNA

repair, was characterized [16]. Surprisingly, while all PthA

variants strongly interacted with the sweet orange importin-a,
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required for their nuclear import, PthAs 1 and 4 interacted weakly

with the citrus protein complex compared to PthAs 2 and 3 [16].

This fact suggested that the PthA variants, although highly

homologous to each other, have preferential protein targets in

citrus cells.

In line with this idea, and to gain further insights into the mode

of action of PthA proteins as transcription factors, we performed

two-hybrid screening using PthA4 as bait, which is considered the

main PthA variant required for canker elicitation [12,14]. Here,

we describe new interacting partners of PthA4 and show that all of

them are homologous to nuclear factors involved in chromatin

remodeling and repair, transcriptional regulation and mRNA

stabilization/modification. Additionally, we show that the majority

of the PthA4 interactors recognize other PthA variants and

interact with each other, indicating the existence of an as yet

uncharacterized citrus multiprotein complex. In this work, we

characterize in more detail the features of one of the components

of this multiprotein complex, a high-mobility group protein

(CsHMG) that associates with all PthA variants and is homologous

to the Arabidopsis HMGB1 involved in cell growth [17].

Although HMG proteins are known to play important roles as

DNA-bending transcriptional factors by facilitating the recruit-

ment and assembly of nuclear proteins involved in chromatin

remodeling, transcriptional regulation and DNA repair [18–22],

they were recently shown to bind branched RNA molecules and to

possibly participate in mRNA processing [23]. We show here that,

in addition to binding to double strand DNA, CsHMG selectively

binds to poly(U) RNA, a property that is novel among HMG-box

proteins. Furthermore, we surprisingly found that PthA4 also

selectively binds to poly(U) RNA and that both CsHMG and

PthA4 interact with two poly(A)-binding proteins (PABP1 and 2),

which are connected to the citrus multiprotein complex via

interactions with a structural maintenance of chromosomes

protein (CsSMC) and a translin-associated factor X (CsTRAX).

Thus, the results shown here suggest that CsHMG and PthA4 may

play roles beyond that of an architectural DNA-bending factor

and transcriptional activator, respectively, including mRNA

stabilization and processing.

Materials and Methods

Yeast two-hybrid assays
Yeast two-hybrid screenings were performed using the PthA4

protein cloned into the pOBD vector as bait and a C. sinensis leaf

cDNA library cloned into the pOAD vector as prey [16]. The

initial screening was performed on synthetic complete medium

lacking tryptophan, leucine and histidine (SC -Trp -Leu -His).

Isolated colonies were picked and subsequently grown for 5 days at

30uC on SC lacking Trp, Leu, His and adenine (SC -Trp -Leu -

His -Ade). pOAD plasmids recovered from positive clones were

sequenced and, when required, the full-length citrus cDNAs were

obtained by reverse-transcription PCR and subcloned downstream

of and in frame with the fusion proteins Gal4AD (pOAD),

Gal4BD (pOBD), GST (pGEX-4T1) and 6xHis (pET28). The

invariable leucine-rich repeat (LRR) domain of PthAs was

amplified by PCR and subcloned into the NdeI/NotI sites of

pOBD and into the SalI/NotI sites of pGEX4T-1.

Protein-protein interactions were further verified by yeast two-

hybrid assays using baits (pOBDs) and full-length preys (pOADs),

including controls (empty pOBD+pOAD-prey and pOBD-bai-

t+empty pOAD), as previously described [16]. The cells were

grown on SC -Trp -Leu -His in the presence or absence of adenine

and containing 0, 3 or 5 mM 3-aminotriazole (3AT) for 5 days at

30uC.

Protein purification and GST pulldown
The full-length 6xHis-tagged PthAs (1 to 4) and a derivative

carrying 5.5 repeat units plus the C- terminus (PthA5.5rep+CT)

were expressed in Escherichia coli BL21(DE3) cells and purified by

affinity chromatography, as described previously [16]. Prey

proteins and the PthA LRR were subcloned into pGEX4T1 and

expressed in BL21(DE3) cells upon IPTG induction for 3 h at

30uC. Cell pellets were suspended in PBS buffer containing 1 mM

DTT and lysozyme (1.0 mg/ml). After sonication and centrifuga-

tion, soluble fractions of GST fusions were immobilized on

glutathione resin and non-bound proteins were removed with four

PBS washes. Approximately 50 mg of the 6xHis-tagged proteins

were incubated with the resins containing GST and GST-fusions

for 2 h at 4uC. The beads were washed four times with PBS then

eluted with reduced glutathione buffer. Eluted fractions were

resolved on 10% and 13% SDS-PAGE gels. Proteins were

transferred onto nylon membranes, probed with the anti-PthA

(1:5000), anti-CsHMG (1:3000) or anti-GST (1:3000) sera and

developed with the ECL kit (GE Healthcare).

CsHMG purification and antibody production
The full-length CsHMG, its HMG-box domain only

(CsHMGDNDC) or the N- (CsHMGDN) and C- (CsHMGDC)

terminal truncated derivatives were expressed in BL21(DE3) cells

grown at 37uC in LB supplemented with kanamycin (50 mg/mL)

to an OD600 nm=0.6, followed by induction with 0.4 mM IPTG

for 3 h. Cells were harvested by centrifugation, suspended in

binding buffer (140 mM NaCl, 2.7 mM KCl, 10 mM Na2HPO4,

1.8 mM KH2PO4, pH 7.4) and incubated on ice with lysozyme

(1.0 mg/ml) and sonicated. Clarified supernatants were loaded on

a HiTrap chelating HP column (GE Healthcare). Eluted fractions

were concentrated, treated with DNaseI (10 mg/mL) and RNase A

(10 mg/mL) for 20 min at 4uC, and loaded on an ionic-exchange

HiTrap heparin column. Protein fractions were eluted with

phosphate buffer (20 mM phosphate, 50 mM NaCl, pH 6.6)

and analyzed by SDS-PAGE. Purified CsHMG (,1 mg) was used

to immunize rabbits for anti-serum production.

CsHMG detection in plant cell extracts
Six-month-old plants of sweet orange (C. sinensis) were obtained

from certified nurseries and kept in a growth room at 25–28uC

under 14 h/day fluorescent light. Etiolated epicotyls of sweet

orange ‘Hamlin’ were obtained according to de Oliveira et al.

[24]. Seeds of Arabidopsis thaliana Col-1 and T-DNA insertion line

SAIL261_B02, corresponding to the heterozygous mutant hmgb-1

[17], were purchased from ABRC and grown in soil in a growth

room at 18–22uC under a 16 h/day light regime. Plant materials

were frozen and ground in liquid nitrogen and the powder was

suspended in lysis buffer (20 mM Tris-HCl, 100 mM NaCl

pH 7.2) under slow agitation at 4uC. Cell debris and insoluble

materials were separated by centrifugation at 5000 rpm at 4uC and

the soluble fractions were analyzed by 13% SDS-PAGE gels and

transferred onto nylon-membranes for Western-blot detection.

Sweet orange leaves were ground in phosphate-buffered saline,

pH 7.4, containing 10 mM MgCl, 0,05% Triton X-100, 10 mM

EDTA and 0.1 mM PMSF. The suspension was cleared by

centrifugation and soluble proteins were incubated overnight at

4uC, under agitation, with the purified PthA2 and 4-GST fusions,

or GST alone, immobilized on glutathione resins. Resins were

washed four times with 20 resin volumes of extraction buffer at

4uC and bound proteins were resolved on 13% polyacrylamide

SDS gels and probed with the anti-CsHMG serum.

PthA Interaction with Nuclear Factors
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Mass spectrometry analysis
Young leaves of sweet orange were macerated in lysis buffer

(20 mM Tris-HCl pH7.4, 15 mM imidazole, 25 mM NaCl, 10%

glycerol, 0,05% Triton X-100, 0.1 mM PMSF) and cleared by

centrifugation. Purified 6xHis-tagged CsSMC and CsTRAX,

immobilized on a cobalt resin, were incubated with the citrus cell

lisates overnight at 4uC, under agitation. The resins were washed four

times with 20 resin volumes of lysis buffer at 4uC and bound proteins

were resolved on 10% polyacrylamide SDS gels. Silver-stained bands

were cut, reduced, alkylated and digested with trypsin. The resulting

peptide mixtures were reconstituted in 0.1% formic acid and

analyzed on an ETD enabled Orbitrap Velos mass spectrometer

(Thermo Fisher Scientific) connected to nanoflow liquid chromatog-

raphy (LC-MS/MS) by an EASY-nLC system (Proxeon Biosystem)

through a Proxeon nanoelectrospray ion source. Peptides were

separated on a 2–90% acetonitrile gradient in 0.1% formic acid using

a pre-column EASY-Column (2 cm6id 100 mm, 5 mm particle size)

and an analytical column EASY-Column (10 cm6id 75 mm, 3 mm

particle size) at a flow rate of 300 nl/min over 20 min. The

nanoelectrospray voltage was set to 1.7 kV and the source

temperature was 275uC. All instrument methods for the Orbitrap

Velos were set up in the data dependent acquisition mode. The full

scan MS spectra (m/z 300–2000) were acquired in the Orbitrap

analyzer after accumulation to a target value of 1e6. Resolution was

set to r=60,000 and the 20 most intense peptide ions with charge

states $2 were sequentially isolated to a target value of 5,000 and

fragmented in the linear ion trap by low-energy CID (normalized

collision energy of 35%). The signal threshold for triggering an MS/

MS event was set to 1000 counts. Dynamic exclusion was enabled

with an exclusion size list of 500, exclusion duration of 60 s, and

repeat count of 1. An activation q=0.25 and activation time of 10 ms

were used. Peak lists (mgf) were generated from the raw data files by

the software Mascot Distiller v.2.3.2.0, 2009 (Matrix Science Ldt.)

and searched against the citrus EST (.200.000 sequences) and citrus

genome (13.000 unigenes) databases using engine Mascot v.2.3.01

(Matrix Science Ltd.), with carbamidomethylation as fixed modifi-

cations, oxidation of methionine as variable modification, one trypsin

missed cleavage and a tolerance of 10 ppm for precursor ions and 1

Da for fragment ions. Only peptides with a minimum of five amino

acid residues which showed significant threshold (p,0.05) in Mascot-

based score were considered in the analysis.

Electrophoretic mobility shift assays (EMSA)
EMSA was performed using 40 pmoles of double-stranded

DNA from the citrus pr5 promoter or derived from the multiple-

cloning site of the pBluescript plasmid vector (Stratagene). Purified

full-length CsHMG (100 to 500 ng) was incubated on ice with the

DNA fragments in binding buffer (20 mM Tris-HCl, 100 mM

NaCl, 10% glycerol e 1 mM EDTA, pH 7.5) for 15 min.

Complexes were resolved on TBE-buffered non-denaturing 6%

polyacrylamide gels and visualized by ethidium bromide staining.

For the RNA-protein interactions, the oligoribonucleotides A-20,

C-20, G-20, U-20 or the 59-UUAUUAUUUAUUUAUUUAUU-

39 probe were labeled with 32P using 1 U of T4 PNK (Fermentas)

and 20 mCi of [c32P]-ATP. Labeled probes were purified and

incubated for 20 min with the full-length or truncated forms of

CsHMG or PthA4 (100 to 500 ng) in 20 mL reactions in binding

buffer containing 20 mM Tris-HCl, 100 mM NaCl, 10% glycerol

e 1 mM EDTA, pH7.5 (for CsHMG) or in 12 mM Tris-HCl,

60 mM KCl, 1 mM DTT, 2.5% glycerol, 5 mM MgCl2, 0.2 mM

EDTA and 0.05% NP-40, pH 7.5 (for PthA4). RNA-protein

complexes were resolved in non-denaturing 13% polyacrylamide

gels, for CsHMG-RNA complexes, or 6% polyacrylamide gels, for

PthA4-RNA complexes, and exposed to radiographic films for

visualization. For CsHMG, the binding mixes were also cross-

linked in a UV-crosslinker (Stratagene) for 5 min to form stable

RNA-protein complexes. The samples were loaded in a denatur-

ing 10% polyacrylamide gel and detected by autoradiography.

Results

Identification of DNA and RNA-binding proteins as PthA4
interactors
To extend our knowledge on the mode of action of PthA

proteins as eukaryotic transcriptional modulators, yeast two-hybrid

screenings of a sweet orange cDNA library [16] were performed

using the PthA4 variant as bait. The majority of the isolated prey

proteins could be classified into only three major functional

categories including chromatin remodeling and repair, transcrip-

tional regulation and RNA stabilization/modification. Table 1 lists

the PthA4-interacting proteins implicated in chromatin structure,

DNA repair and mRNA regulatory processes for which yeast two-

hybrid and GST pulldown assays were confirmed (see below).

The selected preys include a high-mobility group protein

(CsHMG), two poly(A)-binding proteins designated CsPABP1 and

CsPABP2, a poly(C)-binding protein with a KH domain (CsPCBP),

a translin-associated factor X (CsTRAX), a structural maintenance

of chromosomes domain-containing protein (CsSMC), a VirE2-

interacting protein (CsVIP2), an RNA-recognition motif (RRM)

protein (CsRRMP1) and a homolog of the OsHAP3A (CsHAP3)

Table 1. Citrus sinensis proteins identified as targets of PthA4 are homologous to nuclear factors involved in chromatin
remodeling and repair, transcription regulation and mRNA stabilization/modification.

Protein Accession Features Predicted biological function PthA interactor References

CsHMG JN600529 DNA binding; HMG-box domain chromatin remodeling; DNA repair; transcription control 1, 2, 3, 4 [17–22,34–39]

CsPABP1 JN556038 RNA binding; RRM mRNA stabilization/modification 2, 3, 4 [46–49]

CsPABP2 JN600528 RNA binding; RRMs mRNA stabilization/modification 2, 3, 4 [46–51]

CsPCBP JN600525 RNA binding; PCBP_KH domains mRNA processing/splicing; translational activation 2, 3 [45,61,62]

CsTRAX JN600526 Translin domain RNA-induced gene silencing; DNA repair/recombination 2, 3, 4 [40,41,43,44]

CsSMC JN600522 SMC/Mnd1 domain chromatin segregation; DNA repair/recombination 2, 3, 4 [25,42,44]

CsVIP2 JN600527 CCR4-NOT domain chromatin remodeling; DNA integration 4 [50,63]

CsRRMP1 JN600523 RNA binding; RRMs mRNA stabilization/modification 2, 3

CsHAP3 JN600524 DNA binding transcription regulation 2, 3 [64]

doi:10.1371/journal.pone.0032305.t001

PthA Interaction with Nuclear Factors
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transcriptional factor (Table 1). Interestingly, all the prey proteins

have either single or multiple RNA and/or DNA-binding motifs

and are predicted to be nuclear. With the exception of CsRRMP1,

all the identified preys have yeast, human or plant homologs with

three-dimensional structure and/or biological function known

(Table 1). Additional prey proteins involved in transcription

regulation, including an auxin-response factor (CsARF) and a

homolog of human MAF1 (CsMAF1), a negative regulator of RNA

polymerase III, were isolated but will be described elsewhere.

As reported previously, some of the citrus proteins that were

identified as targets of PthAs 2 and 3 also interacted with other

PthA variants [16]. Thus, the identified PthA4 preys were tested

for interactions with the four PthA variants in yeast two-hybrid

assays. As shown in Fig. 1A, the majority of the preys interacted

not only with PthA4, confirming the primary two-hybrid

screening, but with PthAs 2 and 3, preferentially. Notably,

CsVIP2 interacted specifically with PthA4, whereas CsPCBP,

CsRRMP1 and CsHAP3 interacted with PthAs 2 and 3 under

more stringent conditions (no adenine). By contrast, CsHMG was

the only prey capable of interacting with all the PthA variants in

the absence of adenine (Fig. 1A).

To confirm the interactions observed in yeast, GST pulldown

assays were performed using one or more of the PthA variants as

representative baits (Fig. 1B). For instance, CsHMG was tested

Figure 1. Protein-protein interactions between PthAs and citrus nuclear proteins. (A) Citrus preys fused to yeast GAL4-AD (GAL4AD-prey)
or control plasmid (GAL4AD) were moved into yeast cells carrying one of the four PthA variants fused to GAL4-BD domain as shown in the diagram (1
to 4, respectively). Yeast double-transformants were grown on SC -Trp -Leu -His -Ade in the presence of 5 mM of 3AT. None of prey fusions
transactivated the reporter genes when co-transformed with empty bait vector (5). The PthA baits also did not transactivate the reporter genes when
co-transformed with the empty prey vector in the same growth conditions (GAL4AD). (B) Western blot detection of eluted fractions from GST
pulldown assays using the purified 6xHis-PthAs 1–4 as prey and immobilized GST or GST-fusion proteins as baits. Arrows indicate bands
corresponding to the expected size for the GST-fusion proteins CsHMG (,45 kDa), CsTRAX (,55 kDa), CsSMC (,45 kDa), CsRRPMP1 (,50 kDa),
CsRRMP2 (,46 kDa), CsPABP1 (,53 kDa) and CsVIP2 (,85 kDa) detected by the GST anti-serum. PthA proteins (,116–122 kDa) were detected using
the anti-PthA serum. Recombinant PthAs 3 and 4 were added as references in the first lanes of the gels shown in the middle and right panels,
respectively.
doi:10.1371/journal.pone.0032305.g001
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against all PthAs since it showed no preference for any of the PthA

variants. PthA4 was used to probe the interactions with CsPABP1

and CsVIP2, whereas CsTRAX, CsSMC, CsRRMP1 and CsHAP3

were tested against PthA3, since they interacted more strongly with

this bait in the two-hybrid assays (Fig. 1A). As shown in Fig. 1B, all

prey-bait interactions were confirmed by GST pulldown assays,

indicating that the citrus proteins identified as PthA4-interactors are

indeed novel PthA targets. The citrus proteins CsPCBP and

CsPABP2 were expressed in the insoluble fraction in E. coli cells and

thus could not be tested in the GST pulldown assays.

Evidence for protein-protein associations among the
PthA interactors
Considering that the newly-identified PthA interactors are

functionally related (Table 1), we tested whether they would

interact with each other. As shown in Fig. 2A, a substantial

number of protein-protein associations were detected relating for

instance CsTRAX with CsSMC, CsPABP1, CsRRMP1 and

CsVIP2. In addition CsTRAX self-interacted in yeast two-hybrid

assays (Fig. 2A). Accordingly, CsSMC used as bait also interacted

with CsTRAX, CsPABP1, CsPABP2 and CsVIP2, and it self-

interacted (Fig. 2B), corroborating literature data [25]. CsVIP2

and CsPABP2 interacted with each other in reciprocal yeast two-

hybrid assays and they also self-interacted (Fig. 2C). Moreover,

CsVIP2 associated with CsPCBP, whereas CsHMG showed weak

interactions with PABP1 and PABP2 (Fig. 2D).

These results pointed to a network of interactions among the

PthA4 targets and suggested the existence of a citrus multiprotein

complex where CsSMC would possibly function as a hub protein

(Fig. 2E). To further investigate this, and considering that CsSMC

and CsTRAX were the two proteins displaying higher number of

protein-protein interactions, cell extracts of citrus leaves were

incubated with the 6xHis-tagged CsSMC or CsTRAX immobilized

in cobalt beads. Bound proteins separated by gel electrophoresis

were identified by mass spectrometry (Figure 2F). Consistent with

the two-hybrid data, we detected peptides corresponding to

Figure 2. Protein-protein interactions among the PthA4 interactors detected by yeast two-hybrid and mass spectrometry. Yeast cells
double-transformed with the indicated prey-bait constructs were grown in SC -Trp -Leu -His -Ade in the presence of 5 mM 3AT. (A) Positive
interactions observed between CsTRAX and CsSMC, CsPABP1, CsTRAX, CsRRMP1 and CsVIP2. (B) Protein-protein interactions observed between
CsSMC and CsPABP2, CsSMC, CsPABP1, CsVIP2 and CsTRAX, but not between CsSMC and CsKH. (C) Interactions of CsVIP2 with CsKH, reciprocal
interactions between CsPABP2 and CsVIP2, and self interactions of CsVIP2 and CsPABP2. (D) Weak interactions between CsHMG and the poly(A)-
binding proteins CsPABP2 and CsPABP1. (E) A diagram illustrating the network of interactions observed among the citrus PthA targets. (F) Silver-
stained SDS polyacrylamide gels of citrus proteins trapped in cobalt beads carrying the recombinant 6xHis-tagged CsSMC or CsTRAX as baits (bands 9
and 10, respectively). Protein bands excised from the gels, indicated by the numbers, were identified by mass spectrometry (see Table 2 for details).
The molecular markers (MM) are shown on the left.
doi:10.1371/journal.pone.0032305.g002
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Table 2. Citrus sinensis proteins identified as binding partners of CsSMC and CsTRAX by mass spectrometry.

Protein bands Binding partners of CsSMC/CsTRAX Accession number Peptide sequences identified by mass spectrometry m/z Charge

CsSMC

1,4,6–10,12 CsSMC 110848831 LRAEIANSEK 565.8135 +2

KGYAENYEHGQVMEK 594.9451 +3

QELTGQAQMMSQDLVR 925.9453 +2

1 Argonaute 1 (AGO1) 188428433 SLYTAGPLPFLSK 697.3930 +2

GGVGMGSGGRGGHSGGPTR 828.8859 +2

2,3 HSP70 110877680 VEIIANDQGNR 614.8190 +2

NQVAMNPSNTIFDAK 825.4041 +2

IINEPTAAAIAYGLDKK 894.5037 +2

PABP2 homolog 94441024 VAEAMEVLR 509.2771 +2

GMPDVSMPGVGGMLPIPYGDMAAMPLR 936.7758 +3

55396367 NMQDFPFDMGAGGMLPVPVDMGAGIPR 962.0988 +3

5 Translation elongation factor 1a 56584680 GFVASNSKDDPAR 682.3378 +2

YYCTVIDAPGHR 726.3433 +2

VETGVLKPGMVVTFGPSGLTTEVK 816.1167 +3

CsMAF1 110836827 EWSETYGGSSLLETLYK 981.9786 +2

CsTRAX 188246976 MDTMLQSVLK 583.3041 +2

LHQLSGTALQSIAK 489.6172 +3

PABP2 homolog 63075332 NLSESTTEEDLQK 747.3532 +2

GSGFVAFSTPEEASRALLEMNGK 1207.5867 +2

11 Translation initiation factor 5a 21651392 DGFAEGK 362.1706 +2

VVEVSTSK 424.7421 +2

DDLRLPTDENLLSQIK 624.0058 +3

13 Histone H4 188254614 TLYGFGG 714.3515 +1

TVTAMDVVYALK 663.8570 +2

CsCYP homolog 46214048 VVVADSGELP 493.2626 +2

RNA-binding protein 188444131 SNGGSGGERGGR 545.7521 +2

CsTRAX

1,9–11 CsTRAX 188291689 LHQLSGTALQSIAK 733.9211 +2

AEADLVAVKDQYISR 839.4460 +2

DAFANYAGYLNELNEK 916.4340 +2

2 Argonaute 1 (AGO1) 55289153 QADAPQEALQVLDIVLR 940.0219 +2

SGNILPGTVVDSK 643.8547 +2

55288894 GQESENSQEAFR 691.3056 +2

3 HSP70 38053102 NALENYAYNMR 679.8090 +2

ATAGDTHLGGEDFDNR 838.3737 +2

NAVVTVPAYFNDSQR 840.9252 +2

4 TPR-containing protein 218827114 RIPLDFLQGEK 658.3755 +2

MLQADQVSLAEK 666.8473 +2

SLAQQYTWSSAVK 734.8757 +2

5 Ribosomal protein 188380114 YPLTTDSPMKNIDDK 877.4249 +2

6 Nucleosome protein 188306400 LQNLAGQHSDVLEK 776.4106 +2

7 Translation elongation factor 1a 56584680 MDATTPK 382.1881 +2

GFVASNSKDDPAR 682.3345 +2

YYCTVIDAPGHR 726.3430 +2

8 Protein kinase 56534189 GALSPSTAVNFALDIAR 851.9663 +2

GMAYLHNEPNVIIHR 588.6417 +3

12 CsMAF1 110836827 INDFLDHLNLGER 778.4004 +2

EWSETYGGSSLLETLYK 981.9799 +2

LPECEIYSYNPDSDSDPFLEK 1259.5583 +2
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CsTRAX and a PABP 91% identical to CsPABP2 in the CsSMC

sample (Table 2). Similarly, we identified CsSMC in the CsTRAX

sample, but most interestingly, we found CsMAF1 and additional

proteins implicated in transcriptional and translational control, such

as transcription factor BTF3, Argonaute protein AGO1, translation

initiation factor 5a and translation elongation factor 1-alpha, as

binding partners of CsSMC and CsTRAX (Table 2). Moreover, a

peptide corresponding to a citrus cyclophilin that is 81% identical to

CsCYP, identified previously as an interactor of PthAs [16], was

detected in the CsSMC sample (Table 2). Intriguingly, one of the

citrus proteins identified by mass spectrometry associated with

CsTRAX is a homolog of Bs3, a flavin monooxygenase that is

induced by AvrBs3 and confers resistance against Xanthomonas

vesicatoria strains carrying AvrBs3 [4].

Taken together, these results strongly indicate that the citrus

proteins identified as PthA4 interactors assemble into single or

multiple protein complexes.

CsHMG is a group B HMG homologous to AtHMGB1
Among the PthA4-interacting proteins identified (Table 1),

CsHMG was the only one to interact with all the PthA variants

(Fig. 1), suggesting that it is another generic target of PthAs, as the

citrus importin-a [16]. In addition, CsHMG is unique in the sense

that it is implicated in a variety of biological processes associated

with chromatin remodeling, DNA repair and general transcrip-

tional control [18–22]. Hence, CsHMG was selected for further

characterization.

CsHMG is a 165 amino acid protein with a central alpha-helical

HMG-box domain that is flanked by a K-rich N-terminal and a

DE-rich C-terminal domain (Fig. 3A). Multiple sequence align-

ments and phylogenetic analysis place CsHMG into the group B of

the plant HMG protein family (Fig. 3B). CsHMG is 78% identical

to Arabidopsis AtHMGB1, a chromatin-associated protein that

influences cell growth [17]. Thus, to confirm the identity of

CsHMG to AtHMGB1, protein extracts of sweet orange leaves

and epicotyls were compared to that of seedlings of A. thaliana wild

type and hmgb-1 heterozygous mutant [17] using an anti-CsHMG

serum raised against the recombinant CsHMG. As shown in

Fig. 3C, the anti-CsHMG serum detected a unique band of

approximately 18 kDa in citrus epicotyls and leaves. A band of

approximately 20 kDa, which corresponds to the molecular weight

of AtHMGB1, was also detected in seedlings of the wild type and

hmgb-1 mutant of Arabidopsis. As expected, in the heterozygous

hmgb-1 mutant, the band is less pronounced confirming the

identity of CsHMG to AtHMGB1 (Fig. 3C).

PthA binds to CsHMG in vivo through its invariable LRR
region
To confirm the interactions between PthAs and CsHMG in vivo,

PthAs 2 and 4 fused to GST were immobilized in glutathione

resins and allowed to interact with proteins from citrus cell

extracts. As shown in Fig. 4A, both PthAs 2 and 4, but not GST

bound to CsHMG, confirming that CsHMG is an interacting

partner of PthAs.

Protein bands Binding partners of CsSMC/CsTRAX Accession number Peptide sequences identified by mass spectrometry m/z Charge

13 BTF3 factor 188439148 MNVEKLMNMAGALR 805.3939 +2

14 CsSMC 110848831 LTADLQQVPALK 648.8824 +2

QELTGQAQMMSQDLVR 917.9503 +2

15 BS3-like protein 188271719 MKEQAAGVEAIIVGAGTSGLATAACLSLQSIPYVILER 1302.0349 +3

Protein bands are numbered and they correspond to those depicted in Fig. 2F.
doi:10.1371/journal.pone.0032305.t002

Table 2. Cont.

Figure 3. CsHMG shows identity to plant HMGBs of group B. (A)
Schematic representation of the CsHMG primary structure showing its
central HMG-box domain flanked by the basic K-rich N-terminal and the
acidic DE-rich C-terminal. (B) Phylogenetic analysis of plant HMGB
proteins showing that CsHMG belongs to group B HMGBs. (C) Western-
blot detection of the recombinant 6xHis-CsHMG (,22 kDa) made in
bacteria compared to bands detected in citrus cell extracts with the
expected molecular size for the endogenous CsHMG (,16 kDa). The
anti-CsHMG serum also cross-reacted with a band of similar size in the
cell extracts of A. thaliana wild-type and heterozygous hmg-b1 mutant.
This band, which has the expected molecular weight for AtHMGB1
(,18 kDa), is less pronounced in the heterozygous hmgb-1 mutant,
thus indicating that CsHMG is structurally related to AtHMGB1.
doi:10.1371/journal.pone.0032305.g003
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Figure 4. PthA binds to CsHMG in vivo through its invariable LRR region. (A) PthA2-GST, PthA4-GST or GST alone bound to glutathione
resins were incubated with a citrus cell lisate. Bound proteins were separated by gel electrophoresis and CsHMG was detected by the anti-CsHMG
serum in the PthA samples only. (B) Western blot of GST-pulldown assay of immobilized GST or GST-CsHMG as baits and purified 6xHis-
PthA5.5rep+CT2 as prey. The eluted 6xHis-PthA5.5rep+CT2 (,63 kDa) was detected by the anti-PthA serum only when GST-CsHMG was used as bait.
The purified 6xHis-PthA5.5rep+CT2 was added in the first lane of the gel as reference. (C) Western blot analysis of eluted fractions of GST-pulldown
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The observation that CsHMG was the only prey to interact with

the four PthA variants (Fig. 1) led us to map the PthA region

required for such interactions. As the C-terminal domain of PthAs

is the least variable region among the PthA variants, and that this

region includes a leucine-rich repeat (LRR) that is invariable

among all PthAs [16], we tested whether the C-terminal would

account for the interaction with CsHMG. GST pulldown assays

were performed with PthA2 constructs carrying the entire C-

terminal domain or the LRR alone. Both the entire C-terminal

domain and the LRR alone interacted with CsHMG, indicating

that the invariable LRR is sufficient for the interaction (Fig. 4B

and C). This result was confirmed by a two hybrid assay which

shows that the LRR interacts with CsHMG in yeast (Fig. 4D).

CsHMG binds DNA and poly(U) RNA
HMGBs are highly abundant chromosomal proteins known to

bind DNA in a non-specific manner [26,27]. Thus, we examined

the ability of the recombinant CsHMG to bind DNA in gel-shift

assays by testing its interaction with two unrelated double-strand

DNA probes, one derived from the citrus pr5 promoter [28] and

another derived from a bacterial cloning vector. As shown in

Fig. 5A, CsHMG bound to the two DNA probes, indicating that

the citrus protein does not display DNA sequence specificity, a

general feature of HMGs. Although this result is in line with the

literature data and with our observation that CsHMG made in E.

coli co-purifies with bacterial DNA (not shown), we also noticed

that the removal all traces of nucleic acids from our recombinant

CsHMG preparations required an RNase treatment, which

indicated that CsHMG had affinity for RNA as well. To test this

hypothesis, we performed gel-shift assays to probe the binding of

CsHMG to single-strand RNAs. Surprisingly, we found that

CsHMG not only binds to single-strand RNA in vitro but it shows

specificity to poly(U) RNAs (Fig. 5B, upper panel). The specific

binding of CsHMG to poly(U) RNA was further confirmed by an

UV-crosslinking gel-shift assay (Fig. 5B, bottom panel).

Next, to test whether CsHMG would preferentially bind to

poly(U) RNA or DNA, we performed a competition gel-shift assay

using a double strand DNA as competitor. The results shown in

Fig. 5C suggest that CsHMG binds to the poly(U) RNA

preferentially.

CsHMG selectively binds to poly(U) RNA through its
HMG-box domain
To test whether CsHMG is capable of binding to non-

contiguous U-rich sequences, an AU-rich probe was used in the

gel-shift assays. As shown on Fig. 6A, no shifted bands were

detected when an AU-rich RNA was used as a probe at different

concentrations. Moreover, the AU-rich probe could not compete

with the poly(U) probe in a competition gel-shift assay (Fig. 6B),

indicating that the RNA-binding activity of CsHMG is specific

towards contiguous U-rich sequences.

To map the CsHMG region responsible for the RNA

interaction, three truncated forms of CsHMG, CsHMGDN (no

N-terminal), CsHMGDC (no C-terminal) and CsHMGDNDC
(only the HMG-box) were employed in gel-shift assays (Fig. 6C).

All truncations were capable of binding the poly(U) probe

(Fig. 6D), indicating that the HMG-box domain alone is sufficient

for the RNA-binding activity of CsHMG and to confer the

assay of immobilized GST or GST-PthALRR as baits and purified 6xHis-CsHMG as prey. The eluted 6xHis-CsHMG (,22 kDa) was detected only when
GST-PthALRR was used as bait. (D) Yeast two-hybrid assay showing the interaction between CsHMG and the PthA LRR domain. Yeast double-
tranformants, including controls (GAL4AD+GAL4BD-PthALRR and GAL4BD+GAL4AD-CsHMG), were grown in SC -Trp -Leu -His -Ade in the presence of
5 mM 3AT.
doi:10.1371/journal.pone.0032305.g004

Figure 5. CsHMG shows DNA and RNA-binding activities in
vitro. (A) EMSA using the recombinant 6xHis-CsHMG protein (5 mg) and
DNA probes (200 ng) derived from the citrus pr5 promoter and the
multiple-cloning site of the pBluescript vector. The DNA-protein
complexes and free probes detected by ethidium bromide staining
are indicated by the arrows and asterisks, respectively. (B) Upper panel,
EMSA using 32P-labelled single strand RNA probes at a final
concentration of 12.5 nM and increased amounts of purified CsHMG
(0.1 and 0.5 mg). Shifted bands corresponding to CsHMG:RNA complex-
es observed with the poly(U) RNA and the free probes are indicated by
the arrow and asterisk, respectively. Bottom panel, SDS-PAGE of UV-
crosslink EMSA showing the selective binding of CsHMG to the poly(U)
RNA probe (arrow). (C) EMSA using the 32P-labelled poly(U) RNA as
probe at a final concentration of 12.5 nM, 100 ng of CsHMG and
increasing amounts of the double strand DNA (multiple-cloning site of
the pBluescript vector) as competitor. Shifted bands corresponding to
CsHMG:RNA complexes and the free probe are indicated by the arrow
and asterisk, respectively.
doi:10.1371/journal.pone.0032305.g005
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specificity to poly(U) RNA. In fact, CsHMGDNDC retained its

selective binding to poly(U) even when the poly(AU) probe was

used as a competitor in the gel-shift assay (Fig. 6E).

PthA4 forms higher molecular weight complexes with
poly(U) RNA in the presence of CsHMG
Considering that (i) CsHMG selectively binds to poly(U) RNA,

(ii) CsHMG and PthA4 interact with two poly(A)-binding proteins,

(iii)- most of the PthA4 interactors have RNA recognition motifs

and are implicated in mRNA stabilization and processing, (iv)

recombinant PthAs made in E. coli co-purifies with RNA, and (v)

the DNA-binding domain of PthAs is predicted to fold like a

pentatricopeptide repeat (PPR) [28], a protein domain that

recognizes U-rich sequences and plays roles in mRNA stabilization

and editing [29–31], we tested whether PthA4 would interact with

RNA molecules. Surprisingly, we found that PthA4 and its internal

repetitive DNA-binding domain were capable of selectively

binding to poly(U) RNA in gel shift assays (Fig. 7A). Furthermore,

in the presence of CsHMG, PthA4 formed higher molecular

weight complexes with poly(U) RNA (Fig. 7B), suggesting

formation of a ternary complex.

Discussion

Despite the abundant genetic data showing that bacterial TAL

effectors function as transcriptional activators in host cells, little is

known about the molecular mechanism through which they act.

Previously, we identified CsCYP, CsTDX and CsUEV/CsUBC13

heterodimer as targets of PthAs. These proteins, which are

associated with the basal transcription machinery, interact with

each other and affect DNA repair [16]. Here, we present evidence

suggesting that PthAs target a novel nuclear multiprotein complex

whose components are implicated in chromatin remodeling and

repair, transcription regulation, mRNA stabilization/modification

and translational control (Tables 1 and 2).

A component of this protein complex, CsHMG, shows selective

binding to poly(U) RNA. Although homologs of CsHMG in animals

participate in a variety of biological processes associated with sex

determination, DNA repair and cancer [20,21,32,33], the roles

played by CsHMG homologs in plants are less clear [34,35]. Plant

HMGBs similar to CsHMG have been suggested to promote the

assembly of nucleoprotein complex involved in transcriptional

control [19]. In maize, HMGB1 interacts with transcription factors

of the bZip and Dof families and promotes Dof DNA binding

through its acidic C-terminal domain [19,36]. In mammals,

HMGB1 interacts with the N-terminus of the TATA-binding

protein (TBP) to form a stable ternary complex with TBP and the

TATA element to repress transcription [37,38]. Interestingly, the

basal transcriptional factor TFIIA was shown to bind TBP and

displace HMGB1 from the inhibitory HMGB1/TBP/TATA

complex, allowing transcription initiation [39]. Thus, it is possible

that PthAs could play a similar role as TFIIA. This idea is in line

with the observation that PthAs bind to sites at or close to predicted

TATA-box elements of citrus promoters (unpublished results).

Figure 6. CsHMG selectively binds to poly(U) RNAs through its HMG-box domain. (A) EMSA showing that CsHMG (0.5 and 1.0 mg) does not
bind to the AU-rich RNA probe (59- UUAUUAUUUAUUUAUUUAUU-39). (B) Competition EMSA showing that the AU-rich RNA probe at 1, 10 and 30
times molar excess does not compete with the poly(U) probe for the binding to CsHMG, as opposed to the cold poly(U) probe. (C) Schematic
representation of the truncated versions of CsHMG used in the experiments depicted in D and E. (D) All CsHMG truncations were capable of binding
to the poly(U) RNA probe. (E) Competition EMSA showing that the AU-rich RNA probe at 1, 10 and 30 times molar excess does not compete with the
poly(U) probe for the binding to the HMG-box (CsHMGDNDC), as opposed to the cold poly(U) probe, indicating that the HMG-box of CsHMG is
sufficient to confer the poly(U) RNA-binding specificity.
doi:10.1371/journal.pone.0032305.g006
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The fact that CsHMG specifically binds to poly(U) RNA

indicates however that it may play other roles beyond that of an

architectural DNA-binding factor. Surprisingly, mammalian

HMGB1 was shown to bind branched rRNAs and inhibit RNA

cleavage by a ribozyme, which implicates HMGBs in RNA

processing [23]. In this respect, it is worth noting that human

TRAX, which is 37% identical do CsTRAX, is a component of

the RNA-induced silencing complex (RISC) which displays

endoribonuclease activity [40,41]. In yeast, TRAX binds to

C1D, a SMC-interacting protein that is essential for the repair of

double-strand DNA breaks [42–44]. Additionally, the human

homolog of CsPCBP was shown to bind conserved UC-rich motifs

within the 39-untranslated region of an mRNA [45]. Hence, the

putative citrus multiprotein complex identified here is thought to

play roles in DNA repair and RNA stabilization and/or processing

mechanisms.

Several lines of evidence support this idea. Firstly, some of the

protein-protein interactions identified by two-hybrid, relating for

instance CsSMC with CsTRAX and CsPABP2, were confirmed

by mass spectrometry analysis (Table 2). CsPABP1 and CsPABP2

are, respectively, homologous to human PABPN and PABPC,

which function as mRNA stabilizing and translation initiation

factors [46,47]. Notably, translation initiation and elongation

factors, as well as a homolog of tobacco AGO1 [48], were

identified as binding partners of CsSMC and CsTRAX (Table 2).

Furthermore, human PABPN binds to PABPC in the presence of

RNA and to RRM proteins similar to CsRRMP1 in a protein

complex involved in mRNA turnover [49,50]. Most importantly

however, mammalian PABPC was recently shown to be recruited

by RISC and to associate with CAF1/CCR4-NOT deadenylases

in a multiprotein complex that regulates gene silencing through a

miRNA-mediated mRNA deadenylation [51,52]. Thus, consider-

ing that TRAX is a component of RISC [40,41], AGO1 was

found associated with CsSMC and CsTRAX (Table 2), and

CsVIP2 is a CCR4-NOT domain protein, we propose a model

(Fig. 8) in which many the PthA4 interactors identified here are

components of a multiprotein complex similar to the mammalian

miRISC involved in miRNA-mediated deadenylation [51]. In this

model, CsHMG and CsPCBP would bind to UC-rich sequences in

the 39 end of the mRNA [45], whereas PABP1 and PABP2 would

attach to the adjacent poly(A) tail creating a scaffold for the

assembly of CsSMC, CsTRAX, CsVIP2, CsRRMP1 and AGO1

(Fig. 8). The fact that PthA4 selectively binds poly(U) RNA,

apparently forming a ternary complex with CsHMG, is also

interesting. Even though not compatible with the TAL code [7,8], it

is worth noting that the DNA-binding domain of PthA, and related

TAL effectors, shows a superhelical structure though to be similar to

that of PPR domains [28,53,54] involved in the recognition of U-

rich sequences in 59 and 39mRNA termini [29–31].

Although it remains to be demonstrated, if the citrus protein

complex is the equivalent of the mammalian miRISC involved in

gene silencing [51], it is possible that by targeting such a complex,

PthAs might inhibit mRNA deadenylation and decay, thus

increasing mRNA stability for the pioneer round of translation.

In line with this idea, it is interesting to note that importin-a, a

strong PthA interactor [16], have additional roles besides the

nucleocytoplasmic transport. Importin-a, together with importin-

b, were shown to interact with the cap-binding complex (CBC),

Figure 8. Schematic model of the citrus multiprotein complex
comprising the PthA4-interacting partners. Protein-protein and
protein-RNA contacts involving the PthA4 interactors based on the
yeast two-hybrid, GST-pulldown and gel-shift assays described here,
and literature data. The citrus multiprotein complex is reminiscent of
that of mammalian miRISC involved in miRNA-mediated deadenylation
[51]. Importin-a, which interacts with all PthA variants [16] is also a
component of the cap-binding complex (CBC) which inhibits mRNA
deadenylation when in the presence of a poly(A)-specific ribonucleases
[55–58]. It is suggested that by interacting with such proteins and with
poly(U) RNA (not necessarily simultaneously), PthA proteins may
displace some of the components of this complex thought to promote
deadenylation and mRNA decay and thus increase mRNA stabilization
and translation initiation. U-rich sequences found in both 59 and 39 ends
of mRNAs could represent binding sites of CsHMG and PthA4.
doi:10.1371/journal.pone.0032305.g008

Figure 7. PthA4 and its repetitive domain bind to poly(U) RNA.
(A) EMSA using 32P-labelled single strand RNA probes at a final
concentration of 12.5 nM and 100 ng of the purified full-length (FL)
PthA4 or its internal repetitive domain (RD). Shifted bands correspond-
ing to the RNA:protein complexes and the free probes are indicated by
the arrow and asterisks, respectively. (B) EMSA using the 32P-labelled
single strand poly(U) probe and the recombinant full length PthA4 and
CsHMG. PthA4 forms higher molecular weight bands in the presence of
CsHMG (arrows). The CsHMG-poly(U) complex is not resolved from the
free probe (*) in the 6% polyacrylamide gel.
doi:10.1371/journal.pone.0032305.g007
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affect splicing, 39-end formation and to inhibit mRNA dead-

enylation [55–58].

Finally, the identification of CsSMC as a hub in the PthA4

interactome is in agreement with recent data showing that

independently evolved effectors converge onto hubs as common

targets [59]. Surprisingly, most of these hubs associate with

proteins controlling RNA binding/translation, DNA binding/

chromatin remodeling/transcription and ubiquitination [59].

Although the Arabidopsis homolog of CsSMC was not identified

as a target of Pseudomonas and Hyaloperonospora effectors, CsSMC is

related to SKIP-interacting protein 30, a rice hub [60].

Taken together, our data suggest that PthA proteins target a

novel citrus multiprotein complex involved in mRNA stabilization

and processing associated with translational control.
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