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INTRODUCTION
The chicken talpid3 mutant has a complex phenotype, including

polydactylous limbs with many unpatterned digits, vascular

defects, hypoteleorism, abnormal dorsoventral patterning of the

neural tube, loss of endochondral bone formation and embryonic

lethality (Davey et al., 2007; Davey et al., 2006; Ede and Kelly,

1964a; Ede and Kelly, 1964b). Development of all the regions

affected in the talpid3 mutant embryo requires Hedgehog (Hh)

signalling and analysis of the developing mutant limb bud and

neural tube has shown that it is the response to Hh signalling that

is defective (Lewis et al., 1999). Expression of some downstream

Shh target genes in talpid3 mutant limb buds, head, neural tube

and somites is lost, whereas other genes are expressed more

widely, suggesting that there is failure both to activate gene

expression in response to Shh and to repress gene expression in

its absence (Buxton et al., 2004; Davey et al., 2006; Lewis et al.,

1999). These opposing effects can be understood in terms of the

bifunctionality of the Gli proteins, the transcriptional effectors of

vertebrate Hedgehog (Hh) signalling, which function as activators

(mainly Gli1, Gli2) or are processed to short forms (mainly Gli3)

that function as repressors (Aza-Blanc et al., 2000; Bai et al.,

2002; Marigo et al., 1996; Ruiz i Altaba, 1999). Indeed, direct

analysis of Gli3 proteins in talpid3 mutant tissues showed that

Gli3 processing is abnormal, although translocation to the nucleus

still occurs (Davey et al., 2006). We have identified KIAA0586

(Talpid3) as the gene affected in talpid3 mutant embryos (Davey

et al., 2006). KIAA0586 is ubiquitously expressed and encodes a

novel protein with no previously known function (Davey et al.,

2006).

The phenotype of talpid3 mutant chicken embryos, including

the inability to process Gli3, is strikingly similar to that of mouse

embryos with mutations in genes encoding centrosomal or

intraflagellar transport (IFT) proteins, such as Arl13b, OFD1,

Polaris, IFT172, Kif3a, Dnchc2 and Ftm (Caspary et al., 2007;

Ferrante et al., 2006; Haycraft et al., 2005; Huangfu et al., 2003;

May et al., 2005; Vierkotten et al., 2007). These mouse mutants

lack normal primary cilia, the site where cells receive Shh signals

and other cell-cell signals (Corbit et al., 2005; Eggenschwiler and

Anderson, 2007; Rohatgi et al., 2007). An increasing number of

human syndromes, collectively known as ciliopathies, which

affect cilia formation and function, also have phenotypic features

similar to talpid3 mutant chickens, such as polydactyly (Badano

et al., 2006; Bisgrove and Yost, 2006; Eley et al., 2005; Fliegauf

et al., 2007; Pazour and Rosenbaum, 2002; Tobin and Beales,

2007). Interestingly, KIAA0586 was identified in a human

centrosome proteome (Andersen et al., 2003). We have therefore

investigated whether the mechanism underlying abnormal Hh

signalling in the talpid3 mutant involves a failure of primary cilia

formation and whether the Talpid3 protein is enriched in the

ciliary apparatus.

MATERIALS AND METHODS
Embryos

Fertilised White Leghorn chicken eggs were obtained from H. Stewart

(Lincolnshire) and incubated at 37°C and staged according to Hamburger

and Hamilton (Hamburger and Hamilton, 1992). Talpid3 carriers were

maintained as described previously (Davey et al., 2006).
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Section immunohistochemistry

Embryos were fixed in 4% PFA for 2 hours at room temperature (RT) and

genotyped as described previously (Davey et al., 2006). Selected embryos

embedded in 10% sucrose, 7.5% gelatine were sectioned at 10 µm or 40 µm.

Sections were stained as described previously (Das et al., 2006). Primary

antibodies were as follows: for visualisation of primary cilia, rabbit anti-γ-

tubulin 1:1000 (Sigma) and mouse anti-acetylated tubulin 1:1000 (Sigma);

for microtubules, mouse anti α-tubulin 1:1000 (Sigma); mouse anti-Islet1

1:10 (Developmental Studies Hybridoma Bank; DSHB), mouse anti-

NKX2.2 1:5 (DSHB), mouse anti-PAX6 1:2 (DSHB), mouse anti-PAX7

1:10 (DSHB); and for filamentous actin, Alexa Fluor 546 phalloidin 1:100

(Molecular Probes). Secondary antibodies were: Alexa-Fluor-488

conjugated anti-mouse 1:500 (Molecular Probes), Alexa-Fluor-546

conjugated anti-rabbit 1:500 (Molecular Probes) and Alexa-Fluor-610

conjugated anti-rabbit 1:1000 (Molecular Probes). Sections counterstained

with DAPI, viewed using Leica DMR compound microscope or Zeiss

LSM510 or Nikon eC1 laser scanning confocal microscope.

Electronmicroscopy

Stage HH24 chicken embryos treated as described previously (Davey et al.,

2007). For SEM, samples washed in 100% acetone for 10 minutes before

critical point drying, flushed five times to ensure excess acetone was

removed, dried, then placed on carbon mounts, coated with Au/Pd and

imaged using an ESEM at 15 kV, 10 mm WD in high vacuum mode. For

TEM sections cut between 70-100 nm and viewed with FEI Tecnai 12

transmission electron microscope.

Histology

Seven-day-old embryos fixed 4% PFA overnight, washed in PBS,

dehydrated into 100% xylene, then wax embedded overnight. Sections were

cut at 5 µm, dewaxed, stained with Hematoxylin and Eosin, and

photographed using Leica DMR compound microscope.

Neural tube electroporation

The lumen of the neural tube of stage HH10-14 talpid3 mutant flock

embryos was injected with 1 µg/µl of construct encoding either full-length

chicken Talpid3 (ggKIAA0586) or fragments of chicken Talpid3 in

pCAGGs, plus 0.1 µg/µl pCAGGS-RFP and 0.02% Fast Green, and

electroporated with square wave current of 25 mV applied five times for 15

mseconds (CUY21 electroporator, Protech International, TX, USA).

Embryos were incubated for a further 48 hours, which is when mutant

embryos can be identified, then fixed and sectioned.

Cell culture for examination of cilia formation, cilia rescue and

cytoskeletal organisation

Chick embryonic fibroblasts (CEFs) were generated from HH24 embryo

bodies by cutting the tissue into small pieces before trypsinising for 1-2

minutes. Trypsin was inhibited with serum, tissue disaggregated, cells spun

down and then resuspended in fresh DMEM/Ham’s F12 (Gibco) plus 10%

foetal calf serum (FCS). Cells were passaged twice before use. Primary cell

cultures were generated from HH24 limb buds, by trypsinisation for 1-2

minutes, tissue disaggregated, then cells spun down and resuspended in 20

µl of DMEM and seeded onto fibronectin (SIGMA) coated 13 mm

coverslips. Cells were left to adhere for 1 hour before flooding with

DMEM/Ham’s F12+10% FCS. HEK293T cells were maintained in

DMEM+10% FCS under normal cell culture conditions.

In test for rescue of primary cilia, CEFs were seeded onto coated 13 mm

coverslips at 1�106/ml and transfected with a construct encoding full-length

chicken Talpid3 in pCAGGS (ggKIAA0586) using Fugene6 (Roche) for 48

hours. When near confluence, cells were synchronised in serum-free

medium for 2 days, then fixed and stained.

For localisation of tagged Talpid3, HEK293T cells were seeded onto 13

mm coverslips at 1�106/ml, then grown for 18-24 hours before transfection

with 1 µg ggKIAA0586::Myc or Flag::ggKIAA0586. For localisation

of GFP fusion construct, primary chicken cell cultures or HEK293T 
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Fig. 1. Primary cilia defect in talpid3 mutant
embryos. Immunostaining of sections of wild type
(A,C,E,G) and talpid3 mutant  (B,D,F,H) chicken embryos;
anti-γ tubulin (red) for centrosome; anti-acetylated tubulin
(green) for ciliary axoneme. (A) Wild-type neural tube,
primary cilia (arrows) protruding into lumen (*) from
centrosomes. (B,D) talpid3 mutant neural tube
(centrosomes are indicated with arrowheads), ciliary
axonemes absent, compare with A. (C) Wild-type
mesonephric duct; primary cilia (arrows) protruding from
centrosomes into lumen (*). (E) Wild-type limb bud;
primary cilia on mesenchyme cells (arrow). (F) talpid3

mutant limb bud; centrosomes are indicated with an
arrowhead on mesenchyme cells, cilia axonemes are
absent (compare with E). (G) Wild-type notochord;
primary cilia project from centrosomes (arrows). (H) talpid3

mutant notochord; centrosomes are indicated with
arrowheads, ciliary axonemes are absent, compare with
G. (I-L) SEM of dorsal surface of wing bud and luminal
surface of neural tube from HH24 embryos. (I) Wild-type
wing bud; black circles indicate primary cilia. (I�) A higher
magnification of primary cilium. (J) talpid3 mutant wing
bud; no primary cilia visible. (K) Wild-type neural tube;
black arrows indicate primary cilia emerging from pits on
apical surface of cells lining lumen. (L) talpid3 mutant
neural tube; no primary cilia visible, although there are
protrusions from apical surface of cells. (M,N) Sections of
the mesonephric kidney (Mn) at 7 days of development
stained with Haematoxylin and Eosin. (M) Wild-type
embryo. (N) talpid3 mutant embryo, note cysts (*). M,
mullerian duct; G, gonad. Scales bars: 5µm in A-F; 10µm
in G-L; 500 nm in I’; 500µm in M,N.
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cells were transfected with 0.5 µg/µl ggKIAA0586ex11/12::GFP or

hsKIAA0586ex11/12::GFP, respectively, in pCAGGS using Fugene6, then

observed after 5-7 hours for GFP expression, fixed in 4% PFA 10 minutes,

washed three times in PBS and stored for 24 hours at 4°C, then blocked in

5%FCS/PBS+0.5% Triton for 30 minutes.

Immunohistochemistry of cultured cells

Cells were washed in PBS, fixed in ice-cold methanol and acetone (50%)

for 10 minutes, and blocked in PBS/0.2% Tween20/10% goat serum for 30

minutes.

An antibody was raised against C-terminal peptide (DSDSSGADTF) of

chicken Talpid3 in rabbit. Serum from fifth bleed was used to detect

overexpressed HA::ggKIAA0586 by western blot analysis, producing band

of 200 kDa. Antibody was then affinity purified by coupling peptide to HiTrap

NHS-activated HP column (Amersham) and tested by immunofluorescence

in HEK293T cells transfected with HA::ggKIAA0586. All transfected cells

were recognised by both anti-Talpid3 and anti-HA antibodies. Purified Talpid3

antibody was diluted 1:2 for cell immunofluorescence staining.

Primary antibodies used were as follows: for visualisation of primary

cilia, rabbit anti-γ-tubulin 1:1000 (Sigma) and mouse anti-acetylated

tubulin 1:1000 (Sigma); for actin and focal adhesions, anti-actin 1:1000

(Sigma), Alexa-Fluor-488 phalloidin 1:1000 (Molecular probes), anti-

vinculin 1:1000 (Sigma); for tagged Talpid3 constructs, monoclonal

mouse anti-Myc 1:1000 (Sigma) and mouse anti-Flag antibody 1:1000

(Sigma); for centrosomes, rabbit anti-pericentrin 1:5000 (abcam); for

transfected cells, mouse anti-HA 1:2000 (Sigma); and for microtubules,

mouse anti-α-tubulin 1:1000 (Sigma). All antibodies were applied for 1

hour at room temperature, then removed with three 5-minute washes in

PBS/0.2% Tween20. Secondary antibodies were: Alexa-Fluor-488

conjugated anti-mouse 1:500 (Molecular Probes), Alexa-Fluor-546

conjugated anti-rabbit 1:500 (Molecular Probes) and Alexa-Fluor-610

conjugated anti-rabbit 1:1000 (Molecular Probes), and were incubated for

1 hour at room temperature. Samples were DAPI stained and mounted,

and viewed on Zeiss LSM510 confocal microscope.

Microtubule re-growth assay

CEFs were seeded onto cover slips in DMEM/Ham’s F12 at 0.75�106/ml.

24 hours later treated with 25 µM nocodazol at 37°C for 1 hour. After

nocodazol removal, cells were incubated for 0, 10 or 60 minutes, then fixed

in 50% methanol/50% acetone for 10 minutes, and stained with mouse anti-

α-tubulin as above.

Cloning of the Nematostella vectensis Talpid3 homologue

Nvtalpid3, the cnidarian homologue of Talpid3, was cloned from

Nematostella vectensis by extending an EST sequence using ORF

predictions available for Nematostella genome and by RACE PCR. Primer

sequences are available upon request. Putative full-length clone 6058 bp

(Accession Number FJ428244) encoding conceptually translated 1708

amino acid protein, was validated by RT-PCR and sequencing.

Bioinformatics analyses of polypeptide sequences

EMBOSS sequence analysis system (Rice et al., 2000) was used to extract

amino acid sequences (SEQRET), to derive peptide statistics

(PEPSTATS), to create plots of sequence conservation based on multiple

sequence alignments (PLOTCON) and to produce helical wheel diagrams

(PEPWHEEL) to visualise distribution of polar and non-polar residues in

alpha helical regions. Multiple alignments of amino acid sequences were

made using MUSCLE (Edgar, 2004) and viewed using JALVIEW (Clamp

et al., 2004). PFAMSCAN (Finn et al., 2006) and PSCAN (Gattiker et al.,

2002) were used to scan amino acid sequences for sequence motifs.

PCOILS was used to predict coiled-coil regions (Gruber et al., 2006).

Secondary structure of primary protein sequences were predicted using

SABLE (Porollo et al., 2004; Wagner et al., 2005); results were displayed

using POLYVIEW (Porollo et al., 2004). DOMPRO (Yoo et al., 2008),

SCOOBY-DOMAIN (Pang et al., 2008) and DOMAINATION (George

and Heringa, 2002) were used to predict domain boundaries, globular

domains and protein domains from local gapped alignments generated

using PSI-BLAST, respectively. GLOBPLOT (Linding et al., 2003) was

used as described previously (Davey et al., 2006).

RESULTS
talpid3 mutant chicken embryos lack primary cilia
Sections of stage HH24 wild-type chicken neural tube (Fig. 1A) and

mesonephric duct (Fig. 1C) reveal well-developed ciliary axonemes

projecting into the lumen (asterisk) from centrosomes (red; γ-

tubulin). Cilia were also seen on limb bud mesenchyme cells (Fig.

1E); notochord cells (Fig. 1G); endothelial cells of both dorsal aorta

and cardinal vein; epithelial and mesenchymal cells of somites; gut

epithelia; neuroectoderm of the developing eye; endocardium; and

extra-embryonic mesoderm (data not shown). By contrast, in

sections of talpid3 mutant embryos, no ciliary axonemes could be

seen projecting into the lumen of the neural tube, although

centrosomes were clearly visible (Fig. 1B,D); nor could primary

cilia be seen on cells in the limb bud (Fig. 1F), notochord (Fig. 1H)

or any of the other tissues listed above (data not shown). Scanning

electron microscopy of wild-type embryos also showed that primary

cilia can readily be distinguished projecting from the centre of many

cells of the outer periderm layer of the limb bud ectoderm (Fig. 1I,

black circles; Fig.1I�) (41/111 cells examined) and in the neural tube,

projecting from pits in the apical surface of cells lining the lumen

(Fig. 1K, arrows). In talpid3 mutant embryos, no primary cilia could

be seen projecting from periderm cells (Fig. 1J) (132 cells

examined) nor neural tube cells (Fig. 1L).

In human ciliopathies and mouse mutants that lack primary cilia,

a range of defects can occur in addition to those associated with

abnormal Hh signalling, including polycystic kidneys (Bisgrove and

Yost, 2006; Lehman et al., 2008). Mutant embryos from our current

talpid3 flock occasionally survive for up to 10 days, thus allowing

examination of organs later in development. Histology of embryonic
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Fig. 2. Rescue of primary cilia. (A,B) Rescue of primary cilia in talpid3

mutant neural tube after electroporation with construct encoding full-
length chicken Talpid3. (A) Section of electroporated side of neural tube
expressing RFP, showing rescue of primary cilia, indicated with arrows,
projecting into lumen (*) and stained with acetylated tubulin (green).
(A’) Higher magnification of outlined area in A; rescued primary cilia are
indicated with arrows. (B) Section of non-electroporated side of neural
tube, no primary cilia present. (C-E) Rescue of primary cilium formation
in talpid3 mutant CEFs. (C) Wild-type CEF with primary cilium axoneme
stained with acetylated tubulin, (green; arrow) protruding from
centrosome stained with γ-tubulin (red). (D) talpid3 mutant CEF no
primary cilia; acetylated tubulin staining (green) almost entirely overlaps
with centrosome staining (red, arrow). (E) talpid3 mutant CEF
transfected with a construct encoding full-length chicken Talpid3 shows
rescue of primary cilium, arrow indicates axoneme protruding from
centrosome. Scale bars: 8µm in A,B; 4µm in A’; 3µm in C-E. D
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day 7 talpid3 mutant mesonephros (the functional embryonic kidney

in chickens) revealed multiple large cysts (Fig. 1N, asterisks;

compare with wild-type kidney, Fig. 1M). This is comparable with

the pathology of the developing metanephric kidney seen in mice

with abnormal ciliogenesis (Lehman et al., 2008).

To confirm that lack of primary cilia on talpid3 mutant cells is a

consequence of a mutation in the Talpid3 gene (KIAA0586), we

carried out rescue experiments in ovo by electroporating the neural

tube of talpid3 mutant embryos with a construct encoding full-length

chicken Talpid3 (ggKIAA0586). We have previously shown that

electroporation of this construct restored wild-type dorsoventral

patterning in the neural tube of mutant embryos (Davey et al., 2006).

This construct also rescued primary cilia (Fig. 2A,A�,B).

Furthermore, when mutant chicken embryonic fibroblasts in culture

were transfected with the same expression construct, primary cilia

were rescued (Fig. 2E) (n=5/5 transfected cells observed, compare

with Fig. 2D) and axoneme formation was comparable with that in

wild-type chicken fibroblasts (Fig. 2C).

Ultrastructural analysis of ciliogenesis and actin
organisation in talpid3 mutant cells
Stages in formation of a primary cilium have been deduced from

detailed analysis of fibroblasts and smooth muscle cells in chicken and

mammalian tissues using transmission electronmicroscopy (Sorokin,

1962; Sorokin, 1968). We therefore examined the ultrastructure of

talpid3 mutant cells to gain insights into why ciliogenesis fails.

In wild-type chicken neural tube, most cells had primary cilia

projecting into the lumen (Fig. 3A,B). Each cilium emerged from

a pit in the apical cell surface, and the axoneme was enclosed in a

sheath of ciliary membrane and contained microtubules extending

along its length (Fig. 3A,B). The basal body can be recognised by

its appendages (structures including satellites and rootlets

associated with the mature basal body) (Fig. 3A,B) (Sorokin,

1968). In some sections, the sister centriole located below the

basal body could also be seen (Fig. 3B). By contrast, in cells of

talpid3 mutant neural tube, no primary cilia projected from apical

cell surfaces into the lumen (Fig. 3C-E) (3/3 mutant embryos

examined). Basal bodies (Fig. 3C-E), however, were readily

identified by the presence of associated appendages (Fig. 3C-E),

and these, together with their sister centrioles(s), were seen in the

apical region of the cells. In some cases, a few short microtubules

were present distally on the basal body (Fig. 3C) but, in most

cases, no trace of axoneme development was observed. Neither

were any ciliary vesicles associated with the basal bodies (Fig.

3C,D) (55/58 basal bodies observed, two embryos examined)

although in three cases, a vesicle was observed nearby (Fig.

3E,E�). Therefore in talpid3 mutant embryos, migration of the

centrioles to the apical region of neural tube cells and maturation

of the mother centriole into a basal body appeared unaffected, but

docking, which involves fusion between the ciliary vesicle

associated with the basal body and the apical cell membrane

(Dawe et al., 2007; Sorokin, 1968), and subsequent axoneme
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Fig. 3. Ciliogenesis and actin organisation in wild type and talpid3 mutant cells. (A-E)TEM sections through neuroepithelium of stage HH24
chicken embryos. (A,B)Wild-type embryo; primary axonemes project from pits in apical cell surfaces into lumen (*); basal bodies (black arrow) with
satellites (arrowhead); s, sister centrioles. (C-E’) talpid3 mutant neuroepithelium. No primary cilia project from cell surface into lumen. In C, a few short
microtubules are seen at distal end of basal body (bracket). In E, vesicle (v) present near basal body; (E’) Higher magnification of basal body in E showing
vesicle near but not fused with basal body (bracket indicates gap). In C,D, the basal body is not orientated towards the apical surface. 
(F-H) Section showing one side of neural tube from stage HH24 embryos stained with phalloidin (red) and α-tubulin (green). (F)Wild-type embryo; an
even continuous band of phalloidin staining is present at apex of cells abutting lumen (*). (G) talpid3 mutant embryo; uneven phalloidin staining is
present. (H) talpid3 mutant embryo electroporated with a construct encoding full-length chicken Talpid3; rescue of phalloidin staining can be seen,
compare with F. (I-N)Actin cytoskeleton of wild-type and talpid3 mutant cells from limb buds in primary culture. Compare I with J (actin staining), and K
with L (phalloidin staining). Arrows in J,L indicate actin-containing filopodia. Fewer focal adhesions expressing Vinculin (arrows in M) in talpid3 mutant
cells (N) compared with wild-type cells (M) 24 hours after seeding. Scale bars: 589 nm in A-D; 721.5 nm in E; 294 nm in E’; 11µm in F-H; 5µm in I-N. D
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formation did not occur. The TEM images of talpid3 mutant cells

also showed that basal bodies were frequently misorientated and

did not lie perpendicular to the apical cell surface as in normal

cells (Fig. 3C,D; see Fig. S1 in the supplementary material) [9/18

(50%) basal bodies misorientated in one talpid3 mutant embryo;

26/40 (65%) basal bodies misorientated in another].

It has been suggested that the actin cytoskeleton in the apical region

of epithelial cells orientates the basal body, allowing microtubules to

polymerise into the ciliary axoneme (Park et al., 2006), and that apical

actin enrichment is required for ciliogenesis (Pan et al., 2007).

Confocal microscopy of transverse sections of wild-type chicken

neural tube showed an even continuous band of F-actin, stained with

phalloidin at the apex of cells (Fig. 3F), whereas in the talpid3 mutant,

even though there was strong staining at the cell apex, it was punctate

and not continuous (Fig. 3G). Electroporation of ggKIAA0586, which

rescued primary cilium formation (see Fig. 2A), also restored the

continuous band of phallodin staining at the apex of talpid3 neural tube

cells on the electroporated side (Fig. 3H). Abnormalities in

microfilament organisation were also seen in cultured mutant cells.

talpid3 mutant limb cells had stronger actin staining at the ruffled

membrane and fewer stress fibres than did wild-type limb cells

(compare Fig. 3I,K with Fig. 3J,L). In addition, there were many fine

filopodia containing actin around the circumference of the mutant

cells, which were not seen in wild-type cells (compare Fig. 3I,K with

Fig. 3J,L), a feature previously observed in scanning electron

microscopical studies on talpid3 mutant limb bud cells in vivo (Ede et

al., 1974). Discrete vinculin-positive focal adhesions were also less

well defined in talpid3 mutant limb cells than in wild-type cells

(compare Fig. 3M with Fig. 3N).

Subcellular localisation of Talpid3 protein
To verify that the Talpid3 protein is present in the centrosome [as

suggested by Andersen et al. (Andersen et al., 2003)], we raised an

antibody against the C terminus of chicken Talpid3 and used this in

double immunofluorescence staining with γ-tubulin as a centrosomal

marker in serum-starved wild-type and talpid3 mutant chicken

embryonic fibroblasts to determine the subcellular localisation of

Talpid3. The talpid3 mutation results in a premature stop codon and,

even if a truncated protein was produced, this antibody would not

recognise it. In wild-type fibroblasts, Talpid3 antibody staining

colocalised with γ-tubulin (Fig. 4A-C), and was enriched in both

centrioles (Fig. 4D-F), whereas, in talpid3 mutant fibroblasts, Talpid3

antibody staining could not be detected in the centrosome (Fig. 4G-I).

Cytoskeletal organisation and dynamics
The detection of Talpid3 protein in the centrosome is consistent with

a role in primary cilia formation but the centrosome also directs

microtubule organisation, including the mitotic spindle. We therefore

examined localisation of Myc- or Flag- tagged Talpid3 during the cell

cycle in HEK293T cells. Tagged Talpid3 protein (stained with

antibodies against either Myc or Flag) co-localised with Pericentrin (a

centrosomal marker) during interphase (Fig. 4J-L) and metaphase

(Fig. 4M-O). More diffuse staining of tagged Talpid3 protein was also

seen throughout the cytoplasm during anaphase (Fig. 4P-R) and

telophase (Fig. 4S-U). Despite the presence of Talpid3 at the

centrosome in early phases of the cell cycle, no spindle defects were

observed in talpid3 mutant cells (data not shown). In addition, there

were no obvious differences in microtubule organisation between

chicken embryonic fibroblasts from wild-type and talpid3 mutant

embryos (compare Fig. 5A,B with Fig. 5C,D), although there was a

delay in microtubule re-growth after nocodazol treatment (compare

Fig. 5E,F,I,J,M,N with Fig. 5G,H,K,L,O,P).
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Fig. 4. Localisation of Talpid3 protein to centrosome. (A-I) Co-
immunofluorescence staining in serum-starved CEFs; anti γ-tubulin
(green) marks the centrosome; anti-Talpid3 is in red; merged images are
shown in the right-hand column. (A-C) Localisation of Talpid3 to
centrosome. (D-F) Higher power image of centrosome shown in A-C,
Talpid3 is localised to both centrioles. (G-I) Talpid3 is not detected at
centrosome in talpid3 mutant cells. (J-U) Co-immunofluorescence staining
in HEK293T cells. Pericentrin (red) marks the centrosomes (first column)
(J,M,P,S); Myc (K,N) or Flag (Q,T) tagged Talpid3 protein (green) is shown
in the second column; merged images are shown in third column
(L,O,R,U). DNA is stained with DAPI (blue). Scale bars: 5µm in A-C,G-I;
0.13µm in D-F; 3µm in J-U. Arrows indicate centrosomes. D
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Bioinformatics and structure/function analysis of
the Talpid3 protein
In order to identify functional domains in the Talpid3 protein, we

extended our previous bioinformatics analysis (Davey et al., 2006)

using orthologous cDNA sequences of Nematostella vectensis and

a predicted homolog in the genome sequence of Strongylocentrotus

purpuratus (Putnam et al., 2007; Sodergren et al., 2006). Alignment

of vertebrate Nematostella vectensis and Strongylocentrotus

purpuratus Talpid3 sequences revealed a distinct highly conserved

region between amino acids 498-585 (Fig. 6A,B; see Figs S2,S3 in

the supplementary material), which lies downstream of the Talpid3

mutation, which would truncate the protein at amino acid 366. This

conserved region is predicted to contain a single coiled-coil domain

between amino acids 498-529 (Fig. 6A,B; see Figs S2-S5 in the

supplementary material) and is encoded by exons 11 and 12 (Fig.

6A).

We tested the function of this highly conserved region of the

Talpid3 protein using complementation experiments in talpid3

mutant neural tube, as before, and monitored both cilia formation

and neural tube dorsoventral patterning. In talpid3 mutant embryos,

the neural tube is dorsalised and expression of ventral markers such

as Nkx2.2 and Islet1 is lost, whereas expression of dorsal markers

such as Pax6 and Pax7 is expanded. We have shown previously that

these patterns of expression could be normalised by electroporation

of constructs encoding full-length chicken Talpid3 (Davey et al.,

2006). Analysis of the neural tube from talpid3 mutant embryos

electroporated with a series of constructs encoding different

fragments of Talpid3 showed that the entire conserved region is

essential for rescue (Fig. 7A-H). Thus, constructs containing the

entire conserved region (construct D) rescued primary cilia

formation (Fig. 7Q,R) and neural tube patterning (construct C, Fig.

7I-L), inducing expression of Nkx2.2 and Islet1 (Fig. 7I,J; compare

RFP electroporated side with non-electroporated side) and

restricting Pax6 and Pax7 expression dorsally (Fig. 7K,L).

Electroporation of a construct encoding just the conserved region

(Fig. 7H), however, was not able to rescue neural tube patterning.

Neither primary cilia formation nor neural tube pattern was rescued

by constructs encoding C-terminal fragments lacking the coiled-coil

domain (construct E, Fig. 7E), the adjacent highly conserved region,

amino acids 529-585 (construct F, Fig. 7F) or the entire conserved

region (constructs B and G, Fig. 7B,G). Fig. 7M-P shows a talpid3

mutant neural tube electroporated with construct E. Despite

substantial RFP expression, indicating successful transfection,

expression patterns of Nkx2.2, Islet1, Pax6 and Pax7 were

unchanged. Thus, the conserved region is required but not sufficient

to rescue dorsoventral patterning of the neural tube. It should be

noted that none of the constructs (A-H) altered neural tube

patterning in wild-type embryos and therefore do not show any

dominant-negative effects, including construct B, which encodes the

fragment of Talpid3 protein predicted to be expressed in the mutant.

To determine the function of the conserved region in centrosomal

localisation, we transfected a construct encoding this region 

alone from the human protein (KIAA0586) fused to GFP

(hsKIAA0586ex11/12::GFP) into HEK293T cells. GFP expression

was seen in the centrosome (Fig. 7T) (3/3 transfected cells observed)

co-localising with γ-tubulin (Fig. 7S,U). Likewise, when a construct

encoding the chicken Talpid3 conserved region fused to GFP

(ggKIAA0586ex11/12::GFP) was transfected into chicken primary

culture cells, co-localisation was also seen with γ-tubulin at the

centrosome (data not shown). These data indicate that the conserved

region is sufficient to target Talpid3 protein to the centrosome.

DISCUSSION
Here, we show that the talpid3 chicken mutant lacks primary cilia

and demonstrate using rescue experiments that this is a direct result

of loss of Talpid3 function. Lack of primary cilia in talpid3 chicken

mutants provides an explanation for the Hh signalling defects,

inability to process Gli3 (Davey et al., 2006) and similarities with

mouse mutants that lack cilia and were originally highlighted as

being defective in Hh signalling (Haycraft et al., 2005; Huangfu and

Anderson, 2005; Huangfu et al., 2003).

Primary cilia are absent on cells in all talpid3 chicken mutant

tissues studied, including those not known to be dependent on Hh

signalling, such as the mesonephric duct. A growing number of

human conditions known as ciliopathies, including syndromes such

as primary cilia dyskinesia, Bardet-Biedl syndrome (BBS), Joubert

syndrome and Meckel syndrome (Badano et al., 2006; Bisgrove and

Yost, 2006; Fliegauf et al., 2007; Tobin and Beales, 2007), have a

range of defects, including those associated with abnormal Hh

signalling and also polycystic kidneys. A role for primary cilia in

polycystic kidney disease was first suggested after it was discovered

that the genes affected in mice with polycystic kidneys, e.g. the orpk

and inv mice (Lehman et al., 2008; Moyer et al., 1994; Shiba et al.,

2005; Siroky and Guay-Woodford, 2006), encoded cilia associated

proteins. Thus, our finding that kidneys of 7-day-old talpid3 chicken

mutant embryos are cystic is consistent with the general inability of

talpid3 mutant cells to form primary cilia. Thus, we conclude that

the talpid3 chicken mutant is a new example of a ciliopathy and a
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Fig. 5. Microtubule dynamics in wild-type and talpid3 mutant
cells in culture. Microtubule organisation visualised with anti α-tubulin
(green), nuclei stained with DAPI (blue). CEFs from either wild-type
(E,F,I,J,M,N) or talpid3 mutant cells (G,H,K,L,O,P) were treated with
nocodazol and microtubule regrowth assessed. (A-D) Untreated cells.
(E-H) Microtubule organisation is lost when wild-type and talpid3 cells
were treated with nocodazol. (I-L) Ten minutes after nocodazol removal,
microtubule nucleation has begun in wild-type (I,J) and talpid3 mutant
cells (K,L). (M-P) Sixty minutes after nocodazol removal, microtubules
fully reformed in wild-type cells (M,N), but regrowth delayed in talpid3

mutant cells (O,P). Scale bars: 20µm in A,C,E,G,I,K,M,O; 5µm in
B,D,F,H,J,L,N,P. D
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potential model for human disease. The range of defects in different

human ciliopathies varies although the reasons for this are not clear.

Some ciliopathies, such as BBS, Joubert syndrome, Meckel

syndrome and oral facial digital syndrome (OFD) have features that

one would specifically associate with Hh signalling defects, such as

polydactyly, similar to the talpid3 mutants, whereas others, such as

those caused by mutations in polycystin 1 and polycystin 2, have

kidney defects. It will be interesting to define the precise spectrum

of defects in talpid3 chicken mutants for comparison with the human

syndromes.

Our ultrastructural studies of cells in the talpid3 mutant neural

tube suggest that ciliogenesis fails because basal bodies do not dock

at the apical cell membrane. One possible reason why docking fails

in the talpid3 mutant is that Talpid3 is involved in fusion of the

ciliary vesicle to the basal body. Another centrosomal protein,

BBS1, functions in this way by binding to Rabin8, a guanine

nucleotide exchange factor, which activates Rab8, a Rab-GTPase

that specifically traffics ciliary membrane to the base of the primary

cilium (Nachury et al., 2007; Yoshimura et al., 2007). BBS1 is part

of a complex of centrosomal proteins collectively termed the

BBSome, which also includes BBS2, 4, 5, 7, 8 and 9. Whether the

Talpid3 protein is also part of the BBSome or helps to traffic Rab8a

to the cilium remains to be investigated. Another possible reason

why ciliogenesis fails in the talpid3 chicken mutant is because

Talpid3 is required for apical actin enrichment. In oviduct ciliated

cells, the apical actin network is closely associated with basal body

appendages (Chailley et al., 1989), and recent work on Xenopus

laevis epidermal cells with motile cilia has shown that apical

enrichment of actin is required for ciliogenesis (Park et al., 2006).

Therefore, it is possible that the abnormal actin organisation in

talpid3 mutant cells results in basal body misorientation, leading to

failure of ciliogenesis. Apical actin enrichment is mediated by

activation of RhoA (Pan et al., 2007) and it has been shown that

RhoA is localised to the basal body in multiciliated cells (Park et al.,

2008), thus providing an explanation for how a centrosomal protein

such as Talpid3 could directly affect actin organisation. Furthermore,

reduced numbers of stress fibres and focal adhesions in talpid3

mutant cells suggests that RhoA activity is decreased (Nobes and

Hall, 1999). Localisation of RhoA to the basal body in Xenopus

laevis epidermal cells has been shown to be mediated by Inturned,

an effector of the Wnt planar cell polarity signalling pathway (Park

et al., 2008); interestingly, Inturned, together with Fuzzy, is required

for normal cilium formation (Park et al., 2006).

We have shown that the Talpid3 protein is present in both

centrioles of the centrosome. There are several mouse ciliopathy

models with mutations in genes encoding centrosomal proteins,
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Fig. 6. Alignment of Talpid3 proteins and domain predictions. (A) Scale and location of talpid3 mutation with highly conserved region (purple)
and coiled-coil domain (green; see Fig. S4 in the supplementary material), exons 9-12 are indicated between arrows. (B) Multiple alignments of
orthologous Talpid3 sequences (amino acids 295-735) from vertebrates and Nematostella vectensis using MUSCLE displayed with JALVIEW.
Predicted coiled-coil region green box between amino acids 498-529; highly conserved region purple box, amino acids 498-585. Chicken sequence
is used as a reference and does not contain gaps. (C) Distant sequence homologies between amino acids 392-611 (DOMAINATION domain 3) (see
Table S1 in the supplementary material) of chicken Talpid3, and amino acids 0-229 of human CCCAP. Predicted coiled-coil region from PCOILS
analysis (see Fig. S4 in the supplementary material) is shown by a solid outline; the highly conserved region is indicated by a broken outline. The
locations of boundaries for domains encoded by exons 9-13 are shown by arrows.
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including BBS1, BBS2, BBS4, OFD1 and Ftm (Davis et al., 2007;

Ferrante et al., 2006; Mykytyn et al., 2004; Nishimura et al., 2004;

Vierkotten et al., 2007). BBS1, BBS2, and BBS4 mutant mice still

form primary cilia, although they are abnormal or degenerate,

whereas both OFD1 and Ftm mutant mice lack primary cilia and

have a similar phenotype to talpid3 chicken mutants, including

polydactyly and dorsalised neural tube. Furthermore, OFD1 has

been shown to localise to both centrioles in human undifferentiated

embryonic cells (Romio et al., 2004). Thus, the talpid3 chicken

mutant most closely resembles OFD1 mutant mice. There are no

ultrastructural studies, to date, of cells from either OFD1 or Ftm

mutants, and therefore it is not clear whether ciliogenesis fails at the

same stage in these mutants as in talpid3. Another centrosomal

protein ODF2, has been suggested to be necessary for basal body

docking. However, in Odf–/– cells, unlike talpid3 mutant cells, basal

bodies fail to mature and lack appendages (Ishikawa et al., 2005),

suggesting that Talpid3 acts downstream of ODF2.

Other centrosomal proteins play roles in microtubule organisation

but our observations suggest that this is not the case for Talpid3 as

both the microtubule network in interphase cells and mitotic spindles

appear normal in mutant cells. A change in microtubule dynamics,

however, was observed in talpid3 mutant cells. Ede and Flint (Ede

and Flint, 1975) found that talpid3 cells move slower than wild-type

cells, but showed that this was not due to the talpid3 mutant cells
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Fig. 7. Structure/function analysis of Talpid3 protein: rescue of cilia formation and neural tube patterning in talpid3 mutant embryos
and centrosomal localisation. (A-H) Schematic diagrams of chicken Talpid3 protein illustrating expression constructs used for rescue experiments.
Coiled-coil domain (green) highly conserved region (purple) is shown. (A) Full-length Talpid3 protein. (B) N-terminal 1-366 amino acids, note talpid3

mutation leads to premature stop codon after amino acid 366. (C) Amino acids 366-1524 containing highly conserved region. (D) Amino acids 483-
1524 containing highly conserved region. (E) Amino acids 533-1524 lacking coiled-coil domain. (F) Amino acids 483-1524 containing coiled-coil
domain but lacking remainder of highly conserved region. (G) Amino acids 653-1524 lacking highly conserved region. (H) Amino acids 483-653
highly conserved region only. Columns show number of talpid3 mutant embryos with cilia/number of embryos tested and number of talpid3 mutant
embryos with neural tube patterning rescued/number of talpid3 mutant embryos tested. NT, not tested. (I-P) Transverse sections of talpid3 mutant
neural tube electroporated with expression constructs, dorsal is upwards; ventral is downwards. Expression domains of homeodomain transcription
factors (green), RFP is in red (control for transfection efficiency); nuclei stained with DAPI (blue). (I-L) Expression patterns after electroporation of
construct C. (I) Nkx2.2 and (J) Islet1 (arrows) expression on electroporated side, indicated by RFP (red). (K) Pax6 is detected in a normal expression
domain (between arrows), with a gap of non-Pax6 expressing cells indicated by white bracket. Pax6 is also expressed more ventrally where cells are
not electroporated (RFP absent). (L) Pax7 expression is restricted more dorsally on electroporated side; compare level of arrowhead on
electroporated side (RFP, red), with that on control side. (M-P) Expression patterns after electroporation with construct E, showing lack of rescue,
despite successful electroporation (RFP, red). (M,N) No Nkx2.2 and Islet1 expression is induced when compared with non-electroporated side of
neural tube. (O,P) Pax6 and Pax7 expression domains remain expanded ventrally on electroporated side of neural tube. (Q,R) Rescue of primary cilia
in talpid3 mutant neural tube following electroporation with construct D. Primary cilia are indicated with arrows, stained with anti-acetylated
tubulin (green) and centrosomes indicated with arrowheads, stained with anti-γ-tubulin (red). Compare electroporated side (Q) with non-
electroporated side (R). (S-U) HEK293T cells transfected with hsKIAA0586ex11/12::GFP. (S) γ-tubulin marks centrosome (red, arrowed).
(T) Localisation of hsKIAA0586ex11/12::GFP fusion protein (green; arrow). (U) Merged image shows hsKIAA0586ex11/12::GFP colocalises with γ-
tubulin in centrosome (arrow). Scale bars: 175µm in I-P; 8µm in Q-R; 3µm in S-U.
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moving intrinsically more slowly but instead spending more time at

rest. This pausing might be explained by the slower rate of

microtubule re-growth observed in talpid3 mutant cells.

We have identified a region of the Talpid3 protein that is

conserved all the way down to Nematostella vectensis. This

conserved region is sufficient for centrosomal localisation and

interestingly there is significant distant homology between this

region in Talpid3 and a region in another centrosomal protein,

CCCAP (centrosomal colon cancer autoantigen protein) (Kenedy et

al., 2003) (Fig. 6C) (PSI-Blast E value 1e-47 and sequence similarity

47%). Further structure/function analysis of the Talpid3 protein

showed that the highly conserved region is required but not

sufficient to rescue primary cilia formation, thus suggesting that

other domains in the C terminus are also required. Rescue of neural

tube patterning in the mutant provides a powerful assay with which

to identify these domains. A deeper understanding of the Talpid3

protein will give new insights into mechanisms involved in normal

ciliogenesis and may also shed light on the basis of human

ciliopathies.
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