The TAMARIN Prover for the
Symbolic Analysis of Security Protocols

Simon Meier*, Benedikt Schmidtf, Cas Cremers*, and David Basin*

* Institute of Information Security, ETH Zurich, Switzerland
T IMDEA Software Institute, Madrid, Spain

Abstract. The TAMARIN prover supports the automated, unbounded,
symbolic analysis of security protocols. It features expressive languages
for specifying protocols, adversary models, and properties, and support
for efficient deduction and equational reasoning. We provide an overview
of the tool and its applications.

1 Introduction

During the last two decades, there has been considerable research devoted to the
symbolic analysis of security protocols and existing tools have had considerable
success both in detecting attacks on protocols and showing their absence. Never-
theless, there is still a large discrepancy between the symbolic models that one
specifies on paper and the models that can be effectively analyzed by tools.

In this paper, we present the TAMARIN prover for the symbolic analysis of
security protocols. TAMARIN generalizes the backwards search used by the Scyther
tool [4] to enable: protocol specification by multiset rewriting rules; property
specification in a guarded fragment of first-order logic, which allows quantification
over messages and timepoints; and reasoning modulo equational theories. As
practical examples, these generalizations respectively enable the tool to handle:
protocols with non-monotonic mutable global state and complex control flow such
as loops; complex security properties such as the eCK model [9] for key exchange
protocols; and equational theories such as Diffie-Hellman, bilinear pairings, and
user-specified subterm-convergent theories.

TAMARIN provides two ways of constructing proofs: an efficient, fully auto-
mated mode that uses heuristics to guide proof search, and an interactive mode. If
the tool’s automated proof search terminates, it returns either a proof of correct-
ness (for an unbounded number of threads and fresh values) or a counterexample
(e.g., an attack). Due to the undecidable nature of most properties in our setting,
the tool may not terminate. The interactive mode enables the user to explore
the proof states, inspect attack graphs, and seamlessly combine manual proof
guidance with automated proof search.

The theory for Diffie-Hellman exponentiation and the application to Diffie-
Hellman-based two-party key exchange protocols have been published in [13]. In
the theses of Meier [10] and Schmidt [14], the approach is extended with trace
induction and with support for bilinear pairings and AC operators.

2 Tool Description

We first give an example that illustrates TAMARIN’s use. Afterwards, we describe
its underlying foundations and implementation.

2.1 Example: Diffie-Hellman

Input. TAMARIN takes as its command-line input the name of a theory file
that defines the equational theory modeling the protocol messages, the multiset
rewriting system modeling the protocol, and a set of lemmas specifying the
protocol’s desired properties. To analyze the security of a variant of the Diffie-
Hellman protocol, we use a theory file that consists of the following parts.
Equational theory. To specify the set of protocol messages, we use:

builtins: diffie-hellman
functions: mac/2, g/0, shk/0 [privatel

This enables support for Diffie-Hellman (DH) exponentiation and defines three
function symbols. The support for DH exponentiation defines the operator ~ for
exponentiation, which satisfies the equation (¢"z) "y = (¢ y) ", and additional
operators and equations. We use the binary function symbol mac to model a
message authentication code (MAC), the constant g to model the generator of a
DH group, and the constant shk to model a shared secret key, which is declared
as private and therefore not directly deducible by the adversary. Support for
pairing and projection using <_, >, fst, and snd is provided by default.

Protocol. Our protocol definition consists of three (labeled) multiset rewriting
rules. These rules have sequences of facts as left-hand-sides, labels, and right-
hand-sides, where facts are of the form F(t1,...,t;) for a fact symbol F and
terms t;. The protocol rules use the fixed unary fact symbols Fr and In in their
left-hand-side to obtain fresh names (unique and unguessable constants) and
messages received from the network. To send a message to the network, they use
the fixed unary fact symbol Out in their right-hand-side.

Our first rule models the creation of a new protocol thread tid that chooses a
fresh exponent x and sends out g* concatenated with a MAC of this value and
the participants’ identities:

rule Stepl: [Fr(tid:fresh), Fr(x:fresh)] -{]—
[Out(<g~(x:fresh), mac(shk, <g~(x:fresh), A:pub, B:pub>)>)
, Stepl(tid:fresh, A:pub, B:pub, x:fresh)]

In this rule, we use the sort annotations :fresh and :pub to ensure that the
corresponding variables can only be instantiated with fresh and public names. An
instance of the Step1 rule rewrites the state by consuming two Fr-facts to obtain
the fresh names tid and x and generating an Out-fact with the sent message
and a Stepl-fact denoting that given thread has completed the first step with
the given parameters. The arguments of Stepl denote the thread identifier, the
actor, the intended partner, and the chosen exponent. The rule is always silent
since there is no label.
Our second rule models the second step of a protocol thread:

rule Step2: [Stepi(tid, A, B, x:fresh), In(<Y, mac(shk, <Y, B, A>)>)]
—{ Accept(tid, Y (x:fresh))]— []

Here, a Stepl-fact, which must have been created in an earlier Step1l-step, is
consumed in addition to an In-fact. The In-fact uses pattern matching to verify
the MAC. The corresponding label Accept(tid, Y~ (x:fresh)) denotes that
the thread tid has accepted the session key Y~ (x:fresh).

Our third rule models revealing the shared secret key to the adversary:

rule RevealKey: [] —{ Reveal()]}— [Out(shk)]

The constant shk is output on the network and the label Reveal () ensures that
the trace reflects if and when a reveal happens.

The set of protocol traces is defined via multiset rewriting (modulo the

equational theory) with these rules and the builtin rules for fresh name creation,
message reception by the adversary, message deduction, and message sending
by the adversary, which is observable via facts of the form K (m). More precisely,
the trace corresponding to a multiset rewriting derivation is the sequence of the
labels of the applied rules.
Properties. We define the desired security properties of the protocol as trace
properties. The labels of the protocol rules must therefore contain enough infor-
mation to state these properties. In TAMARIN, properties are specified as lemmas,
which are then discharged or disproven by the tool.

lemma Accept_Secret:
Vi j tid key. Accept(tid,key)@i & K(key)@j = I 1. Reveal(D@1 & 1 < i

The lemma quantifies over timepoints 4, j, and [and messages tid and key. It
uses predicates of the form F'@i to denote that the trace contains the fact F' at
index ¢ and predicates of the form i< j to denote that the timepoint i is smaller
than the timepoint j. The lemma states that if a thread tid has accepted a key
key at timepoint i and key is also known to the adversary, then there must be a
timepoint 1 before i where the shared secret was revealed.

Output. Running TAMARIN on this input file yields the following output.
analyzed example.spthy: Accept_Secret (all-traces) verified (9 steps)

The output states that TAMARIN successfully verified that all protocol traces
satisfy the formula in Accept_Secret.

2.2 Theoretical Foundations

A formal treatment of TAMARIN’s foundations is given in the theses of Schmidt [14]
and Meier [10]. For an equational theory F, a multiset rewriting system R defining
a protocol, and a guarded formula ¢ defining a trace property, TAMARIN can
either check the validity or the satisfiability of ¢ for the traces of R modulo E.
As usual, validity checking is reduced to checking the satisfiability of the negated
formula. Here, constraint solving is used to perform an exhaustive, symbolic
search for executions with satisfying traces. The states of the search are constraint

Running Tamariy 0.8.4.0

Index Download

Actions »] [Options »

Proof scripts

lemma Accept_Secret_Counter:
all-traces
"y #i #5 tid key.
((CAccept(tid, key) @ #i) A (K(
key) @ #j)) = (L)"
simplify
solve(Stepl(tid, A, B, ~x) Po #i)
case Stepl
solve(!'KUC mac(shk, <Y, $B, $A>)) @
#vk.2)
case cmac
solve(!'KUC shk) @ #vk.5)
case RevealKey
solve(splitEqs(@))
case split_case_1
solve(!KUC YA~x) @ #vk.5)
case Stepl
SOLVED // trace found
ged

Case: Step1

Out(shk)

#vk.1 : coerce[!KU(shk)] @
#vk : cmaclIKU(mac(shk, <g, $B, $A>))]

Fr(~tid) |

#r : Stept[]

Out(<grx, mac(shk, <gh~x, SA, $B>)>) | Step1(~tid, $A, $B, ~x)

Fr(~x) - ;0

#vk.2 : coerce[!KU(gh~x)]

rsteplt-tid, $A, $B, ~x) | In(<g, mac(shk, <g, $B, $A>)>) |
| #i - Step2[Accept(~tid, gx)] |

Fig. 1. TAMARIN’s interactive mode

systems. For example, a constraint can express that some multiset rewriting step
occurs in an execution or that one step occurs before another step. We can also
directly use formulas as constraints to express that some behavior does not occur
in an execution. Applications of constraint reduction rules, such as simplifications
or case distinctions, correspond to the incremental construction of a satisfying
trace. If no further rules can be applied and no satisfying trace was found, then
no satisfying trace exists. For symbolic reasoning, we exploit the finite variant
property [3] to reduce reasoning modulo F with respect to R to reasoning modulo
AC with respect to the variants of R.

2.3 Implementation and interactive mode

TAMARIN is written in the Haskell programming language. Its interactive mode
is implemented as a webserver, serving HTML pages with embedded Javascript.
The source code of TAMARIN is publicly available from its webpage [15]. Figure
shows TAMARIN’s interactive mode, which integrates automated analysis and
interactive proof guidance, and provides detailed information about the current
constraints or counterexample traces. Users can carry out automated analysis of
parts of the search space and perform partial unfoldings of the proof tree.

3 Experimental results

TAMARIN’s flexible modeling framework and expressive property language make
it suitable for analyzing a wide range of security problems. Table [I| shows selected
results when using TAMARIN in the automated mode. These results illustrate
TAMARIN’s scope and effectiveness at unbounded verification and falsification.

Key exchange protocols. We used TAMARIN to analyze many authenticated
key exchange protocols with respect to their intended adversary models [13]. These
protocols typically include Diffie-Hellman exponentiation and are designed to

Protocol Security property Result Time [s] Details in

1. KAS1 KI with Key Compromise Impersonation proof 0.7
2. NAXOS eCK proof 4.4
3. STS-MAC KI, adversary can register arbitrary public keys attack 4.6
4. STS-MAC-fixl KI, adversary can register arbitrary public keys proof 9.2
5. STS-MAC-fix2 KI, adversary can register arbitrary public keys proof 1.8
6. TS1-2004 KI attack 0.3
7. TS2-2004 KI with weak Perfect Forward Secrecy attack 0.5
8. TS3-2004 KI with weak Perfect Forward Secrecy non-termination -
9. UM Perfect Forward Secrecy attack 1.5
10. TLS handshake secrecy, injective agreement proof 2.3
11. TESLA 1 data authenticity proof 4.4
12. TESLA 2 (lossless) data authenticity proof 16.4
13. Keyserver keys are secret or revoked proof 0.1
14. Security Device exclusivity (left or right) proof 0.4
15. Contract signing protocol exclusivity (abort or resolve) proof 0.8
16. Envelope (no reboot) denied access implies secrecy proof 32.7
17. SIGJOUX (tripartite) Perfect Forward Secrecy proof 102.9
18. SIGJOUX (tripartite) Perfect Forward Secrecy, ephemeral-key reveal attack 111.5
19. RYY (ID-based) Perfect Forward Secrecy proof 10.3
20. RYY (ID-based) Perfect Forward Secrecy, ephemeral-key reveal attack 10.5
21. YubiKey (multiset) injective authentication proof 19.3
22. YubiHSM (multiset) injective authentication proof 7.6

Table 1. Selected results of the automated analysis of case studies included in the
public TAMARIN repository. Here, KI denotes key independence.

satisfy complex security properties, such as the eCK model @ﬂ Earlier works had
only considered some of these protocols with respect to weaker adversaries, which
cannot reveal random numbers and both short-term and long-term keys. The
SIGJOUX and RYY protocols use bilinear pairings, which require a specialized
equational theory that extends the Diffie-Hellman theory.

Loops and mutable global state. We also used TAMARIN to analyze protocols
with loops and non-monotonic mutable global state. Examples include the TESLA
protocols, the security device and contract signing examples from , the keyserver
protocol from , and the exclusive secrets and envelope protocol models for
TPMs from . In each case, our results are more general or the analysis is more
efficient than previous results. Additionally, TAMARIN was successfully used to
analyze the YubiKey and YubiHSM protocols [7].

4 Related Tools

There are many tools for the symbolic analysis of security protocols. We focus
on those that can provide verification with respect to an unbounded number of
sessions for complex properties. In general, the TAMARIN prover offers a novel
combination of features that enables it to verify protocols and properties that
were previously impossible using other automated tools.

Like its predecessor the Scyther tool , TAMARIN performs backwards rea-
soning. However in contrast to Scyther, it supports equational theories, modeling
complex control flow and mutable global state, an expressive property specification
language, and the ability to combine interactive and automated reasoning.

The Maude-NPA tool [6] supports protocols specified as linear role-scripts,
properties specified as symbolic states, and equational theories with a finite
variant decomposition modulo AC, ACI, or C. It is unclear if our case studies
that use global state, loops, and temporal formulas can be specified in Maude-
NPA. With respect to their support of equational theories, Maude-NPA and
TAMARIN are incomparable. For example, Maude-NPA has been applied to XOR
and TAMARIN has been applied to bilinear pairing.

The ProVerif tool [2] has been extended to partially handle DH with in-
verses (8], bilinear pairings [12], and mutable global state [1]. From a user
perspective, TAMARIN provides a more expressive property specification language
that, e. g., allows for direct specification of temporal properties. The effective-
ness of ProVerif relies largely on its focus on the adversary’s knowledge. It has
more difficulty dealing with properties that depend on the precise state of agent
sessions and mutable global state. The extension [1] for mutable global state is
subject to several restrictions and the protocol models require additional manual
abstraction steps. Similarly, the DH and bilinear pairing extensions work under
some restrictions, e. g., exponents in the specification must be ground.

References

1. Arapinis, M., Ritter, E., Ryan, M.: Statverif: Verification of stateful processes. In:
Proc. CSF. IEEE (2011)

2. Blanchet, B.: An efficient cryptographic protocol verifier based on Prolog rules. In:
Proc. CSFW. IEEE (2001)

3. Comon-Lundh, H., Delaune, S.: The finite variant property: How to get rid of some
algebraic properties. Term Rewriting and Applications pp. 294-307 (2005)

4. Cremers, C.: The Scyther Tool: Verification, falsification, and analysis of security
protocols. In: Computer Aided Verification. LNCS, vol. 5123. Springer (2008)

5. Delaune, S., Kremer, S., Ryan, M.D., Steel, G.: Formal analysis of protocols based
on TPM state registers. In: Proc. CSF. pp. 66-80. IEEE (2011)

6. Escobar, S., Meadows, C., Meseguer, J.: A rewriting-based inference system for the
NRL protocol analyzer and its meta-logical properties. TCS 367, 162-202 (2006)

7. Kiinnemann, R., Steel, G.: YubiSecure? Formal security analysis results for the
YubiKey and YubiHSM. In: Preliminary Proc. STM’12 (2012)

8. Kiisters, R., Truderung, T.: Reducing protocol analysis with xor to the xor-free
case in the Horn theory based approach. J. Autom. Reasoning 46(3-4), 325-352
2011

9. (I_Jal\/la?cchia7 B., Lauter, K., Mityagin, A.: Stronger security of authenticated key
exchange. In: ProvSec. LNCS, vol. 4784, pp. 1-16. Springer (2007)

10. Meier, S.: Advancing Automated Security Protocol Verification. Ph.D. thesis (2013)

11. Modersheim, S.: Abstraction by set-membership: verifying security protocols and
web services with databases. In: Proc. CCS. pp. 351-360. ACM (2010)

12. Pankova, A., Laud, P.: Symbolic analysis of cryptographic protocols containing
bilinear pairings. In: Proc. CSF. IEEE (2012)

13. Schmidt, B., Meier, S., Cremers, C., Basin, D.: Automated analysis of Diffie-Hellman
protocols and advanced security properties. In: Proc. CSF. IEEE (2012)

14. Schmidt, B.: Formal Analysis of Key Exchange Protocols and Physical Protocols.
Ph.D. thesis (2012)

15. http://www.infsec.ethz.ch/research/software/tamarin:

http://www.infsec.ethz.ch/research/software/tamarin

