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As a step towards proving an index theorem for hypoelliptic operators on
Heisenberg manifolds, including for those on CR and contact manifolds, we
construct an analogue for Heisenberg manifolds of Connes’ tangent group-
oid of a manifold. As is well known for a Heisenberg manifold (M, H) the
relevant notion of tangent bundle is rather that of a Lie group bundle of
graded 2-step nilpotent Lie groups G M. We define the tangent groupoid of
(M, H) as a differentiable groupoid GH M encoding the smooth deforma-
tion of M × M to G M. In particular, this construction makes a crucial use
of a refined notion of privileged coordinates and of a tangent-approximation
result for Heisenberg diffeomorphisms.

1. Introduction

A somewhat long standing open question is the existence of an index theorem for
geometric operators on contact and CR manifolds. In this context the operators
are not elliptic, so we cannot apply the classical index theorem of Atiyah–Singer
[1968a; 1968b]. The natural pseudodifferential tool to deal with hypoelliptic opera-
tors on contact and CR manifolds is provided by the Heisenberg calculus of Beals–
Greiner [1988] and Taylor [1984]. The latter holds in full generality for Heisenberg
manifolds, that is, manifolds M together with a distinguished hyperplane bundle
H ⊂ TM . This definition includes that of CR and contact manifolds, as well as
that of codimension one foliations and confoliations. Therefore, what we would
like to have is an analogue of the Atiyah–Singer theorem for hypoelliptic operators
on Heisenberg manifolds.

There are various proofs of the Atiyah–Singer index theorem. A simple and
fairly general proof is that of Connes [1994, Sect. II.5]. A salient feature in Connes’
proof is the use of the tangent groupoid of a manifold, that is, the differentiable
groupoid encoding the smooth deformation of M × M to TM (see [Connes 1994;
Hilsum and Skandalis 1987]).

In this paper, as a step towards proving an index theorem for hypoelliptic opera-
tors on Heisenberg manifolds, we construct an analogue for Heisenberg manifolds
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of Connes’ tangent groupoid. The existence of such a tangent groupoid was conjec-
tured by Bellaı̈che [1996, p. 74] for Carnot–Carathéodory manifolds and by Ponge
[2000, p. 37] for Heisenberg manifolds. We also refer to Van Erp [2005] for an
alternative description of this groupoid.

Our construction of the tangent groupoid of a Heisenberg manifold is carried out
in two steps. The first step consists in giving a suitable description of the tangent
Lie group bundle G M of a Heisenberg manifold (M, H). The latter is a bundle of
graded 2-step nilpotent Lie groups and provides us with a more accurate tangent
structure for Heisenberg manifolds than the classical tangent tangent space TM .
There are various descriptions of G M in the literature (see, e.g., [Bellaı̈che 1996;
Beals and Greiner 1988; Epstein et al. 1991; Folland and Stein 1974; Gromov
1996; Rockland 1987]).

Our description of G M stems from the existence of an intrinsic real-valued Levi
form,

(1-1) L : H × H −→ TM/H.

This is a 2-form on H with values in the normal bundle TM/H (see Lemma 2.3).
It allows us to define the tangent Lie group bundle G M as the bundle (TM/H)⊕H
together with the grading and Lie group law, such that for sections X0, Y0 of TM/H
and sections X ′, Y ′ of H , we have

t.(X0 + X ′)= t2 X0 + t X ′, t ∈ R,(1-2)

(X0 + X ′).(Y0 + Y ′)= X0 + Y0 +
1
2 L(X ′, Y ′)+ X ′

+ Y ′.(1-3)

This description of G M is simple and is completely intrinsic. What is crucial,
and more difficult, in the construction of the tangent groupoid is to relate the above
description to the extrinsic tangent nilpotent approximations of some previous ap-
proaches (see, e.g., [Bellaı̈che 1996; Beals and Greiner 1988; Epstein et al. 1991;
Folland and Stein 1974; Gromov 1996; Rockland 1987]). More precisely, given
a point x ∈ M the tangent Lie group Gx M in these approaches is obtained as the
Lie group associated to a Lie algebra of model vector fields in some privileged
coordinates centered at x . We point out that by using a refined notion of priv-
ileged coordinates, which we call Heisenberg coordinates (see Definition 2.18),
this approach coincides with ours (Proposition 2.20).

An important consequence of the equivalence between these two descriptions
of G M is a tangent approximation result for Heisenberg diffeomorphisms (Propo-
sition 2.21). Namely, in Heisenberg coordinates a Heisenberg diffeomorphism is
well approximated by a Lie group isomorphism between the tangent groups at the
points. We really do need to use Heisenberg coordinates, because in general privi-
leged coordinates we only get a Lie algebra isomorphism between the Lie algebras
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of the tangent group, and the corresponding Lie group isomorphism need not ap-
proximate the Heisenberg diffeomorphism (compare [Bellaı̈che 1996, Prop. 5.20]).

The second step is the construction of the tangent groupoid GH M of a Heisen-
berg manifold (M, H) as the b-differentiable groupoid GH M that encodes the
smooth deformation of M × M to G M (Theorem 3.7). As an abstract groupoid the
definition of GH M is similar to that of Connes’ tangent groupoid. In particular, at
the set-theoretic level we have

(1-4) GH M = G M t (M × M × (0,∞)).

In order to endow GH M with a consistent topology, with a differentiable structure,
as well as with a smooth composition map, we make crucial uses of the Heisenberg
coordinates and of the tangent approximation of Heisenberg diffeomorphisms al-
luded to above. In this sense our construction differs from the usual construction of
Connes’ tangent groupoid. In addition, this construction is functorial with respect
to Heisenberg diffeomorphisms (see Proposition 3.8 for the precise statement).

Beside potential applications towards an index theorem for hypoelliptic oper-
ators on Heisenberg manifolds, the construction of the tangent groupoid GH M is
also interesting from the point of view of Carnot–Carathéodory geometry. Namely,
Gromov [1996] and Bellaı̈che [1996] proved that the tangent group at a point of
a Carnot–Carathéodory manifold is tangent to the manifold in a topological sense
(i.e. in terms of Gromov–Hausdorff limits). However, our tangent groupoid con-
struction shows that, in the special case of Heisenberg manifolds, this tangency
occurs in a differentiable sense.

More generally, it would be interesting to construct a tangent groupoid for more
general Carnot–Carathéodory manifolds. As mentionned earlier this has been con-
jectured by Bellaı̈che, but it is believed that the approach of this paper could be
extended to deal with such a construction. Notice that in this setting the tangent Lie
group bundle G M should rather be an orbifold-bundle of Lie groups, but it should
be an actual Lie group bundle when the Carathéodory distribution is equiregular
in the sense of [Gromov 1996]. We hope to address these issues in a subsequent
paper.

The remainder of the paper is organized as follows. In Section 2, after recalling
the main facts about Heisenberg manifolds, we describe the tangent group bundle
G M of a Heisenberg manifold (M, H) and prove our approximation result for
Heisenberg diffeomorphisms. In Section 3 we construct the tangent groupoid of
(M, H) as a the differentiable groupoid that encodes the smooth deformation of
M × M to G M .

Acknowledgements. I am grateful to Alain Connes, Pierre Julg, Henri Moscovici,
Jean Renault and Erik Van Erp for discussions related to the subject matter of this
paper. I also thank the hospitality of the IHÉS, where part of this paper was written.
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2. The tangent Lie group bundle of a Heisenberg manifold

In this section, after recalling the main definitions and examples of Heisenberg
manifolds, we describe the tangent Lie group bundle of a Heisenberg manifold
in terms of an intrinsic Levi form. We then relate this approach to the nilpotent
approximation of vector fields from previous approaches by using Heisenberg co-
ordinates, which refine the privileged coordinates of [Beals and Greiner 1988] and
[Bellaı̈che 1996]. As a consequence we get a tangent-approximation result for
Heisenberg diffeomorphism which will be crucial later in the construction of the
tangent groupoid of a Heisenberg manifold.

2.1. Heisenberg manifolds.

Definition 2.1. (1) A Heisenberg manifold is a smooth manifold M equipped
with a distinguished hyperplane bundle H ⊂ TM .

(2) A Heisenberg diffeomorphism φ from a Heisenberg manifold (M, H) onto
another Heisenberg manifold (M, H ′) is a diffeomorphism φ : M → M ′ such
that φ∗H = H ′.

Definition 2.2. Let (Md+1, H) be a Heisenberg manifold. Then:

(1) A (local) H-frame for TM is a (local) frame X0, X1, . . . , Xd such that X1,
. . . , Xd span H .

(2) A local Heisenberg chart is a local chart with a local H -frame of TM over its
domain.

Following are the main examples of Heisenberg manifolds.

Heisenberg group. The (2n+1)-dimensional Heisenberg group H2n+1 consists in
R2n+1

= R × R2n equipped with the group law,

x · y =
(
x0 + y0 +

∑
1≤ j≤n

(xn+ j yj−xj yn+ j ), x1 + y1, . . . , x2n + y2n
)
.

A left-invariant basis for its Lie algebra h2n+1 is provided by the vector fields,

X0 = ∂x0, X j = ∂xj + xn+ j∂x0, Xn+ j = ∂xn+ j − xj∂x0,

where j ranges over 1, . . . , n. In particular, for j, k=1, . . . , n and k 6= j we have
the Heisenberg relations,

(2-1) [X j , Xn+k] = −2δjk X0, [X0, X j ] = [X j , Xk] = [Xn+ j , Xn+k] = 0.

In particular, the subbundle spanned by the vector fields X1, . . . , X2n gives rise to
a left-invariant Heisenberg structure on H2n+1.
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Foliations. A (smooth) foliation is a manifold M together with a subbundle F ⊂

TM which is integrable in the Frobenius sense, that is, the space of sections of F

is closed under the Lie bracket of vector fields. Thus any codimension-1 foliation
is a Heisenberg manifold.

Contact manifolds. Opposite to foliations are contact manifolds. A contact mani-
fold is a Heisenberg manifold (M2n+1, H) such that H can be locally realized as
the kernel of a contact form, that is, a 1-form θ such that dθ|H is nondegenerate.
When M is orientable it is equivalent to require H to be globally the kernel of
a contact form. Furthermore, by Darboux’s theorem any contact manifold is lo-
cally Heisenberg-diffeomorphic to the Heisenberg group H2n+1 equipped with the
standard contact form θ0

= dx0 +
∑n

j=1(x j dxn+ j − xn+ j dx j ).

Confoliations. According to Eliashberg and Thurston [1998], a confoliation on an
oriented manifold M2n+1 is given by a global nonvanishing 1-form θ on M such
that (dθ)n∧ θ ≥ 0. In particular, if we let H = ker θ then (M, H) is a Heisenberg
manifold which turns to be a foliation when dθ ∧ θ = 0 and a contact manifold
when (dθ)n ∧ θ > 0.

CR manifolds. A CR structure on an orientable manifold M2n+1 is given by a
rank-n complex subbundle T1,0 ⊂ TC M such that T1,0 is integrable in Frobenius’
sense and we haveT1,0 ∩ T0,1 = {0}, where we have let T0,1 = T1,0. Equivalently,
the subbundle H = <(T1,0 ⊕ T0,1) has the structure of a complex bundle of (real)
dimension 2n. In particular, (M, H) is a Heisenberg manifold.

The main example of a CR manifold is that of a (smooth) boundary M = ∂D
of a complex domain D ⊂ Cn . In particular, when D is strongly pseudoconvex (or
strongly pseudoconcave) with defining function ρ then θ = i(∂ − ∂̄)ρ is a contact
form on M .

2.2. The tangent Lie group bundle. The tangent Lie group bundle of a Heisenberg
manifold (Md+1, H) can be described as follows.

First, we have:

Lemma 2.3. The Lie bracket on vector fields induces a TM/H-valued 2-form on H

L : H × H −→ TM/H,

such that, for any sections X and Y of H near a point m ∈ M , we have

Lm
(
X (m), Y (m)

)
= [X, Y ](m) mod Hm .

Proof. We only need to check that given two sections X and Y of H near m ∈ M
the value of [X, Y ](m) modulo Hm depends only on X (m) and Y (m). Indeed, if
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f and g are smooth functions near m then we have

[ f X, gY ](m)= f (m)g(m)[X, Y ](m)− Y( f )(m)X (m)+ X(g)(m)Y (m)

= f (m)g(m)[X, Y ](m) mod Hm .

This shows that if X (m) or Y (m) vanish then so does the class of [X, Y ](m)modulo
Hm . Therefore, the latter only depends on the values of X (m) and Y (m). Hence
the result. �

Definition 2.4. The 2-form L is called the Levi form of (M, H).

The Levi form L allows us to define a bundle gM of graded Lie algebras by
endowing (TM/H)⊕ H with the smooth fields of Lie Brackets [ . , . ]gM and grad-
ings X → t.X , t ∈ R, such that, for m ∈ M and X0, Y0 in Tm M/Hm and X ′, Y ′ in
Hm , we have

[X0 + X ′, Y0 + Y ′
]gm M = Lm(X ′, Y ′),

t.(X0 + X ′)= t2 X0 + t X ′.

Definition 2.5. The bundle gM is called the tangent Lie algebra bundle of M .

Proposition 2.6. The tangent Lie algebra bundle is 2-step nilpotent and contains
the normal bundle TM/H in its center.

Proof. It follows from 2.2 that TM/H is contained in the center of gM and that
the Lie bracket [ . , . ]gM maps to TM/H , so gM is 2-step nilpotent. �

Since gM is nilpotent its associated graded Lie group bundle G M can be de-
scribed as follows. As a bundle G M is (TM/H)⊕ H and the exponential map is
merely the identity. In particular the grading of G M is as in 2.2. Moreover, as gM
is 2-step nilpotent the Campbell–Hausdorff formula gives

(exp X)(exp Y )= exp
(
X + Y +

1
2 [X, Y ]

)
for sections X , Y of gM .

We thus deduce that the product on G M is such that, for m ∈ M , and X0, Y0 in
Tm M/Hm and X ′, Y ′ in Hm , we have

(2-2) (X0 + X ′) · (Y0 + X ′)= X0 + Y0 +
1
2 L(X ′, Y ′)+ X ′

+ Y ′.

Definition 2.7. The bundle G M is called the tangent Lie group bundle of M .

The fibers of G M are classified by the Levi form L as follows:

Proposition 2.8. (1) The form Lm at m ∈ M has rank 2n if , and only if , Gm M is
isomorphic to H2n+1

× Rd−2n as a graded Lie group.

(2) The Levi form L has constant rank 2n if , and only if , G M is a fiber bundle
with typical fiber H2n+1

× Rd−2n .
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Proof. Let g be a Riemannian metric on H . Notice that (1) is a pointwise statement
and that (2) is a local statement, since G M is a Lie group bundle already. Therefore,
without any loss of generality, we may suppose that TM/H is orientable, so that
it admits a global nonvanishing section X0. Then let A denote the smooth section
of End H such that

(2-3) L(X, Y )= g(X, AY )X0 for sections X , Y of H .

Let m ∈ M . Since Lm is real-antisymmetric its rank has to be an even integer,
say rk Lm = 2n. Let us first assume that Lm is nondegenerate, i.e., Am is invertible.
Let Am = Jm |Am | be the polar decomposition of Am and on Hm define the positive
definite scalar product,

(2-4) hm(X, Y )=
1
2 gm(X, |Am |Y ) X, Y ∈ Hm .

Notice that Jm is antisymmetric and unitary with respect to hm , so we have J 2
m =

−J t
m Jm = −1, that is, Jm is a unitary complex structure on Hm . Therefore, we can

construct a basis X1, . . . , X2n of Hm which is orthonormal with respect to hm and
such that Xn+ j = Jm X j for j = 1, . . . , n.

On the other hand, for X and Y in Hm ⊂ gm M we have

(2-5) [X, Y ]gm M = Lm(X, Y )= gm(X, AmY )X0 = 2hm(X, JmY )X0.

Thus, for j = 1, . . . , n and k = 1, . . . , n + j − 1, n + j + 1, . . . , 2n we get

[X j , Xn+ j ]gm M = 2hm(X j , J 2
m X j )X0 = −2hm(X j , X j )X0 = −2X0,(2-6)

[X j , Xk]gm M = hm(X j , Jm Xk)X0 = −hm(Xn+ j , Xk)X0 = 0.(2-7)

These relations are the same as those in (2-1) for the Lie algebra of H2n+1. Thus
Gm M is isomorphic to H2n+1 as a graded Lie group.

Next, assume that Am has a nontrivial kernel. Then as Am is real antisymmetric
with respect to gm we have an orthogonal direct sum Hm = im Am ⊕ ker Am . In
fact, it follows from (2-3) that if X ∈ ker Am and Y ∈ Hm then

(2-8) [X, Y ]gm M = Lm(X, Y )= gm(X, AmY )X0 = 0.

Thus ker Am is contained in the center of gm M . Moreover, as Am is invertible on
im Am the same reasoning as above shows that the Lie subalgebra (Tm M/Hm)⊕

im Am is isomorphic to the (graded) Lie algebra h2n+1 of H2n+1. Therefore, gm M =

(Tm M/Hm)⊕ im Am ⊕ ker Am is isomorphic to h2n+1
× Rd−2n , and so Gm M is

isomorphic to H2n+1
× Rd−2n .

Conversely, suppose that Gm M is isomorphic to h2n+1
× Rd−2n . Then gm M is

isomorphic to h2n+1
× Rd−2n , so admits a basis X0, . . . , Xd such that

(2-9) [X j , Xn+ j ]gm M = −2X0 and [X j , Xk]gm M = [Xl, Xk]gm M = 0,
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for j = 1, . . . , n and k = 1, . . . , d with k 6= n + j and l = 2n + 1, . . . , d . Since
Lm(X, Y ) = [X, Y ]gm M for X and Y in Hm it follows from this that Lm has rank
2n. The proof of the first part of the proposition is thus complete.

Now, suppose that L has constant rank 2n. We have rk Am = 2n everywhere,
so we get a vector bundle splitting H = im A ⊕ ker A. Furthermore, the polar de-
composition of Am is smooth with respect to m, i.e., J and |A| are smooth sections
of End H . Therefore, the above process for constructing the basis X0, X1, . . . , Xd

can be carried out near every point m ∈ M in such way to yield a smooth H -frame
satisfying the relations (2-6)–(2-7). Thus, near every point of M we get a Lie group
bundle trivialization of G M as a trivial fiber bundle with fiber H2n+1

× Rd−2n .
Consequently, G M is fiber bundle with typical fiber H2n+1

× Rd−2n .
Conversely, assume that G M is a fiber bundle with typical fiber H2n+1

×Rd−2n .
Then at every point m ∈ M the Lie group Gm M is isomorphic to H2n+1

× Rd−2n ,
so it follows from the first part of the proposition that L has constant rank 2n. �

In presence of a foliation or contact structure we have more precise results.

Proposition 2.9. Let (M, H) be a Heisenberg manifold. Then the following are
equivalent:

(1) (M, H) is a foliation.

(2) (M, H) is Levi flat, i.e., L vanishes.

(3) As a Lie group bundle G M agrees with (TM/H)⊕ H.

Proof. It follows from its definition that L vanishes if, and only if, for any sections
X and Y of H the Lie bracket vector field [X, Y ] is again a section of H , that is,
if, and only if, H defines a foliation.

On the other hand, in view of the definition of the group law of G M the Levi
form L vanishes if, and only if, the group law is X.Y = X +Y , that is, if, and only
if, G M is the Abelian Lie group bundle (TM/H)⊕ H . �

Proposition 2.10. Suppose that (M2n+1, H) is a Heisenberg manifold. Then the
following are equivalent:

(1) (M, H) is a contact manifold.

(2) The Levi form L is (everywhere) nondegenerate.

(3) The Lie group tangent bundle G M is a fiber bundle with typical fiber H2n+1.

Proof. Since the equivalence of (2) and (3) follows from Proposition 2.8, we only
have to prove that (1) and (2) are equivalent. Since these are local statements we
may assume that TM/H is orientable, i.e., there exists a global nonzero 1-form θ

such that H = ker θ . As any nonzero 1-form annihiliting H is a nonzero multiple
of θ we see that (M, H) is a contact manifold if, and only if, θ is a contact form.
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Now, for any sections X and Y of H we have

(2-10) L(X, Y )= θ([X, Y ])X0 = −dθ(X, Y )X0.

This shows that L and dθ|H have same rank, so θ is a contact form if, and only
if, L is everywhere nondegenerate. This proves the equivalence of (1) and (2) and
thus completes the proof of the proposition. �

Finally, let φ : (M, H) → (M ′, H ′) be a Heisenberg diffeomorphism from
(M, H) onto another Heisenberg manifold (M ′, H ′). Since we have φ∗H = H ′,
we see that φ′ induces a smooth vector bundle isomorphism φ̄ from TM/H onto
TM ′/H ′.

Definition 2.11. We let φ′

H : (TM/H)⊕ H → (TM ′/H ′)⊕ H ′ denote the vector
bundle isomorphism such that

(2-11) φ′

H(m)(X0 + X ′)= φ̄′(m)X0 +φ′(m)X ′,

for any m ∈ M , X0 ∈ Tm/Hm , and X ′
∈ Hm .

Proposition 2.12. The vector bundle isomorphism φ′

H is an isomorphism of graded
Lie group bundles from G M onto G M ′.

Proof. If X and Y are sections of H then we have

(2-12) L(φ′

H (X), φ
′

H (Y ))=[φ∗X, φ∗Y ]=φ′

∗
[X, Y ]=φ′

H (Lm(X, Y )) mod H ′.

In view of (2-2) this implies that φ′

H is a Lie group bundle isomorphism from G M
onto G M ′. Furthemore, it follows from (2-11) that, for any t ∈ R and any section
X of G M , we have φ′

H (t.X)= t.φ′

H (X), i.e., φ′

H is graded. �

Corollary 2.13. The Lie group bundle isomorphism class of G M depends only on
the Heisenberg diffeomorphism class of (M, H).

2.3. Heisenberg coordinates and nilpotent approximations of vector fields. In
the sequel it will be useful to combine the above intrinsic description of G M with
a more extrinsic description of the tangent Lie group at a point in terms of the
Lie group associated to a nilpotent Lie algebra of model vector field. Incidentally,
this will show that our approach is equivalent to previous ones [Beals and Greiner
1988; Bellaı̈che 1996; Epstein et al. 1991; Folland and Stein 1974; Gromov 1996;
Rockland 1987].

First, pick m ∈ M and let us describe gm M as the graded Lie algebra of left-
invariant vector field on Gm M by identifying any X ∈ gm M with the left-invariant
vector field LX on Gm M given by

LX f (x)=
d
dt f

(
t exp(X) · x

)∣∣
t=0 =

d
dt f (t X · x)

∣∣
t=0, f ∈ C∞(Gm M).
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This allows us to associate, to any vector field X near m, a unique left-invariant
vector field Xm on Gm M such that

(2-13) Xm
=

{
LX0(m) if X (m) 6∈ Hm,

LX(m) otherwise,

where X0(m) denotes the class of X (m) modulo Hm .

Definition 2.14. The left-invariant vector field Xm is called the model vector field
of X at m.

Let us look at this construction in terms of an H -frame X0, . . . , Xd near m, i.e.,
of a local trivialization of the vector bundle (TM/H)⊕ H . For j, k = 1, . . . , d set

L(X j , Xk)= [X j , Xk] = L jk X0 mod H.

With respect to the coordinate system (x0, . . . , xd) corresponding to X0(m), . . . ,
Xd(m) we can write the product law of Gm M as

x · y =
(
x0 +

1
2

d∑
j,k=1

L jk xj yk, x1+y1, . . . , xd+yd
)
.

The vector fields Xm
j , j =1, . . . , d , in (2-13) are just the left-invariant vector fields

corresponding to the vectors of the canonical basis e1, . . . , ed , i.e., we have

(2-14) Xm
0 = ∂x0 and Xm

j = ∂xj −
(1

2

d∑
k=1

L jk xk
)
∂x0, 1 ≤ j ≤ d.

In particular, for j, k =1, . . . , d, we have the relations

(2-15) [Xm
j , Xm

k ] = L jk(m)Xm
0 and [Xm

j , Xm
0 ] = 0.

Let X be a vector field near m. Then X is of the form X = a0(x)X0 + · · · +

ad(x)Xd near m, and its model vector field Xm is thus given by the formula

(2-16) Xm
=

{
a0(m)Xm

0 if a0(m) 6= 0,

a1(m)Xm
1 + · · · + ad(m)Xm

d otherwise.

Now, let κ : dom κ → U be a Heisenberg chart near m = κ−1(u) and let
X0, . . . , Xd be the associated H -frame of T U . There exists a unique affine coordi-
nate change v→ψu(v) such thatψu(u)=0 andψu∗X j (0)= ∂xj for j =0, 1, . . . , d .
Indeed, if for j = 1, . . . , d we set X j (x)=

∑d
k=0 B jk(x)∂xk then we have

ψu(x)= A(u)(x − u), where A(u)=
(
B(u)t

)−1
.
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Definition 2.15 [Beals and Greiner 1988].

(1) The coordinates provided byψu are called the privileged coordinates at u with
respect to the H -frame X0, . . . , Xd .

(2) The map ψu is called the privileged coordinate map at u with respect to the
H -frame X0, . . . , Xd .

Remark 2.16. In [Beals and Greiner 1988] the privileged coordinates at u are
called u-coordinates, but in the special case of a Heisenberg manifold they corre-
spond to the privileged coordinates of [Bellaı̈che 1996] and [Gromov 1996].

Notice that in the privileged coordinates at u we can write

X j = ∂xj +

d∑
k=0

ajk(x)∂xk , j = 0, 1, . . . d,

where the ajk’s are smooth functions such that ajk(0)= 0.
Next, on Rd+1 we consider the dilations

(2-17) δt(x)= t ·x = (t2x0, t x1, . . . , t xd), t ∈ R,

with respect to which ∂x0 is homogeneous of degree −2, while ∂x1, . . . , ∂xd are
homogeneous of degree −1. Therefore, we may let

X (u)
0 = lim

t→0
t2δ∗t X0 = ∂x0,(2-18)

X (u)
j = lim

t→0
tδ∗t X j = ∂xj +

d∑
k=1

bjk xk ∂x0, j = 1, . . . , d,(2-19)

where bjk = ∂xk aj0(0) for j, k = 1, . . . , d . In fact, for any vector field X =

a0(x)X0 + · · · + ad(x)Xd we have

lim
t→0

t2δ∗t X = a0(0)X (u)
0 ,

lim
t→0

t−1δ∗t X = a1(0)X (u)
1 + · · · + ad(0)X (u)

d when a0(0)= 0.(2-20)

Observe that X (u)
0 is homogeneous of degree −2 and X (u)

1 , . . . , X (u)
d are homo-

geneous of degree −1. Moreover, for j, k =1, . . . , d, we have

(2-21) [X (u)
j , X (u)

0 ] = 0 and [X (u)
j , X (u)

0 ] = (bk j − bjk)X
(u)
0 .

Thus, the linear space spanned by X (u)
0 , X (u)

1 , . . . , X (u)
d is a graded 2-step nilpo-

tent Lie algebra g(u). In particular, g(u) is the Lie algebra of left-invariant vector
fields over the graded Lie group G(u), consisting of Rd+1 equipped with the grad-
ing (2-17) and the group law

x · y =

(
x0 +

d∑
j,k=1

bk j xj yk, x1+y1, . . . , xd+yd

)
.
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Now, if near m we set L(X j , Xk)= [X j , Xk] = L jk X0 mod H , then we have

(2-22) [X (u)
j , X (u)

k ] = lim
t→0

[
tδ∗t X j , tδ∗t Xk

]
= lim

t→0
t2δ∗t (L jk X0) = L jk(m)X

(u)
0 .

Comparing this with (2-15) and (2-21) shows that g(u) has the same constants
of structure as gm M , and is therefore isomorphic to it. Consequently, the Lie
groups G(u) and Gm M are isomorphic. An explicit isomorphism can be obtained
as follows.

Lemma 2.17. Consider a diffeomorphism φ : Rd+1
→ Rd+1 of the form

(2-23) φ(x0, . . . , xd)= (x0 +
1
2 c jk x j xk, x1, . . . , xd),

where c = (c jk), ct
= c, is a symmetric matrix in Md(R). Then φ is a graded

isomorphism from G(u) onto the Lie group G consisting of Rd+1 equipped with the
group law,

(2-24) x .y = (x0 + y0 +

d∑
j,k=1

(bk j + ck j )x j yk, x1 + y1, . . . , xd + yd).

Moreover, under φ the vector fields X (u)
0 , . . . , X (u)

d transform into

φ∗X (u)
0 =

∂

∂x0
,(2-25)

φ∗X (u)
j = ∂x j +

d∑
k=1

(b jk + c jk)xk∂x0, j = 1, . . . , d.(2-26)

Proof. First, since φ(t ·x)= t ·φ(x) for any t ∈ R, we see that φ is graded. Second,
for x and y in Rd+1 the product φ(x) ·φ(y) is equal to

φ
(
x0 + y0 +

d∑
j,k=1

bk j xj yk, x1 + y1, . . . , xd + yd
)

=
(
x0 + y0 +

d∑
j,k=1

bk j xj yk +
1
2

d∑
j,k=1

cjk(xj+yj )(xk+yk), x1 + y1, . . . , xd + yd
)

=
(
x0 +

1
2

d∑
j,k=1

cjk xj xk + y0 +
1
2

d∑
j,k=1

(
cjk yj yk+(bk j+ck j )xj yk

)
, x1+y1, . . . , xd+yd

)
.

Thus, in view of the law group of G we have φ(x · y)= φ(x) ·φ(y) and φ is a Lie
group isomorphism. Consequently, for each j = 0, . . . , d , the vector field

φ∗X (u)
j = φ′

(
φ−1(x)

)(
X j (φ

−1(x))
)

is left-invariant on G. In fact, as φ′(0)= id and X (u)
j (0)= ∂xj we see that φ∗X (u)

j is
the left-invariant vector field on G that coincides with ∂xj at x = 0. Therefore, by
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substituting bjk + cjk for bjk in (2-18)–(2-19), we get the formulas (2-25)–(2-26)
for φ∗X (u)

j . The lemma is thus proved. �

Since by (2-21) and (2-22) we have L jk = bk j − bjk for j, k = 1, . . . , d, we
deduce from Lemma 2.17 that an isomorphism of graded Lie groups from G(u)

onto Gm M is given by

(2-27) φu(x0, . . . , xd)=
(
x0 −

1
4

d∑
j,k=1

(bjk+bk j)xj xk, x1, . . . , xd
)
.

Definition 2.18. Let εu = φu ◦ψu .

(1) The new coordinates provided by εu are called Heisenberg coordinates at u
with respect to the H -frame X0, . . . , Xd .

(2) The map εu is called the u-Heisenberg coordinate map.

Remark 2.19. The Heisenberg coordinates were first introduced in [Beals and
Greiner 1988], where they were called “antisymmetric u-coordinates” and used as
a technical tool for inverting the principal symbol of a hypoelliptic sublaplacian.

Next, Lemma 2.17 also tells us that

φ∗X (u)
0 = ∂x0 = Xm

0 ,

φ∗X (u)
j = ∂xj −

1
2

d∑
k=1

L jk xk∂x0 = Xm
j , j = 1, . . . , d.

Since φu commutes with the Heisenberg dilations (2-17), by using (2-18) and
(2-19) we get

lim
t→0

t2δ∗t φu∗X (u)
0 = Xm

0 and lim
t→0

tδ∗t φu∗X (u)
j = Xm

j , j = 1, . . . , d.

Combining this with (2-16) and (2-20) shows that, for any vector field X near m,
in Heisenberg coordinates at m we have, as t → 0,

(2-28) δ∗t X =

{
t−2 Xm

+ O(t−1) if X (m) ∈ Hm,

t−1 Xm
+ O(1) otherwise.

Therefore, we obtain:

Proposition 2.20. In Heisenberg coordinates centered at m = κ−1(u), the tangent
Lie group Gm M coincides with G(u).

2.4. Tangent approximation of Heisenberg diffeomorphisms. If φ : M → M ′

is a smooth map between (standard) smooth manifolds, then for any m ∈ M the
derivative φ′(m) yields a tangent linear approximation for φ in local coordinates
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around m. We shall now prove an analogous result in the Heisenberg setting. To
this end, it will be useful to endow Rd+1 with the pseudonorm,

‖x‖ =
(
x2

0 + (x2
1+ . . .+x2

d)
2)1/4, x ∈ Rd+1,

so that, for any x ∈ Rd+1 and any t ∈ R, we have

(2-29) ‖t · x‖ = |t |‖x‖.

From now on we let φ : (M, H)→ (M ′, H ′) be a Heisenberg diffeomorphism
from (M, H) to another Heisenberg manifold (M ′, H ′).

Proposition 2.21. Let m ∈ M and set m′
= φ(m). Then, in Heisenberg coordinates

at m and at m′, the diffeomorphism φ(x) has a behavior near x = 0 of the form

(2-30) φ(x)= φ′

H(0)x +
(
O(‖x‖

3), O(‖x‖
2), . . . , O(‖x‖

2)
)
,

where φH is as in Definition 2.11. In particular, there is no term of the form xj xk ,
1 ≤ j, k ≤ d , in the Taylor expansion of φ0(x) at x = 0.

Proof. Let X0, . . . , Xd be an H -frame of TM over a Heisenberg chart κ near
m and let Y0, . . . , Yd be an H ′-frame of TM ′ over a Heisenberg chart κ1 near
m′. Set u = κ(m), so that in privileged coordinates at u we have X j (0) = ∂xj

for j = 0, . . . , d . As the change of variables φu from privileged coordinates to
Heisenberg coordinates at u is such that φu(0) = 0 and φ′

u(0) = id, we see that in
Heisenberg coordinates at m we also have X j (0)= ∂xj for j = 0, . . . , d . Similarly,
in Heisenberg coordinates at m′ we have Yj (0) = ∂xj for j = 0, . . . , d. As φ′(0)
maps H0 to H ′

0 it then follows that, with respect to the basis ∂x0, . . . , ∂xd , the
matrices of φ′(0) and φ′

H (0) take the forms

(2-31) φ′(0)=

(
a00 0
b A‖

)
and φ′

H (0)=

(
a00 0
0 A‖

)
,

for some scalar a00 6= 0 and some matrices b ∈ Md1(R) and A‖ ∈ GLd(R). In par-
ticular, we have φ′(0)x = φ′

H(0)x + x0(0, b1, . . . , bd). Thus, the Taylor expansion
of φ(x) at x = 0 takes the form

(2-32) φ(x)= φ̂(x)+ θ(x), φ̂(x)=
(
x0 +

1
2

d∑
j,k=1

cjk xj xk, x1, . . . , xd
)
,

where cjk = ∂2
xj,xk

φ0(0) and θ(x)=
(
θ0(x), . . . , θd(x)

)
is such that

θ0(x)= O
(
|x0||x | + |x |

3)
= O(‖x‖

3),(2-33)

θj (x)= O
(
|x0| + |x |

2)
= O(‖x‖

2), j = 1, . . . , d.(2-34)

To complete the proof we need only to show that cjk = 0 for j, k = 1, . . . , d .
Possibly after replacing φ by φ′

H (0)
−1

◦φ we may assume that φ′

H (0)= id. Since
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by Proposition 2.12 φ′

H (0) is a Lie group isomorphism from G = G0 M onto G ′
=

G0 M ′, this implies that G and G ′ have the same group law, namely,

x · y =

(
x0 + y0 +

1
2

d∑
j,k=1

L jk xj xk, x1+ y1, . . . , xd + yd

)
,

where the structure constants L jk are such that

L(X j , Xk)(0)= L(Yj , Yk)(0)= L jk X0(0).

Therefore, using (2-14) we see that, at the level of the model vector fields (2-13),
we have

(2-35)
Xm

0 = Y m′

0 = ∂x0,

Xm
j = Y m′

j = ∂xj −
1
2

d∑
k=1

L jk xk∂x0, j = 1, . . . , d.

As in (2-31) φ′

H (0) is the diagonal part of φ′(0) we have φ∗X0(0)= Yj (0) mod H ′

0
and φ∗X0(0)= Yj (0) for j = 1, . . . , d. Therefore, using (2-13) we obtain

(2-36) (φ∗X j )
m′

= Y m′

j = Xm
j for j = 0, . . . , d.

On the other hand, as we are using Heisenberg coordinates both at m and m′,
from (2-28) we get

Xm
j = lim

t→0
tδ∗t X j and (φ∗X j )

m′

= lim
t→0

tδ∗t φ∗X j = lim
t→0

(δ−1
t ◦φ ◦ δt)∗(tδ∗t X j ).

Since (2-32)–(2-34) imply that limt→0 δ
−1
t ◦φ ◦ δt = φ̂, we see that

(φ∗X j )
m′

= lim
t→0

(δ−1
t ◦φ ◦ δt)∗ lim

t→0
(tδ∗t X j ) = φ̂∗Xm

j .

Combining this with (2-36) we then get

(2-37) φ̂∗Xm
j = (φ∗X j )

m′

= Xm
j for j = 1, . . . , d.

Now, the form of φ̂ in (2-32) allows us to apply Lemma 2.17 to get

φ̂∗Xm
j = ∂xj +

d∑
k=1

(
−

1
2 L jk + cjk

)
xk∂x0 .

Combining with (2-35) and (2-37) then gives L jk = L jk − 2cjk , from which we
deduce that cjk = 0 for j, k = 1, . . . , d. The proof is thus complete. �

Remark 2.22. An asymptotics similar to (2-30) is given in [Bellaı̈che 1996, Propo-
sition 5.20] by using privileged coordinates at u and u′

= κ1(m′), but the leading
term there is only a Lie algebra isomorphism from g(u) onto g(u

′). It is only in
Heisenberg coordinates that we recover the Lie group isomorphism φ′

H (m) as the
leading term of the asymptotics.

Finally, for future use we mention the following version of Proposition 2.21.
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Proposition 2.23. In local coordinates and as t → 0 we have

t−1
· εφ(u) ◦φ ◦ ε−1

u (t ·x)= (εφ(u) ◦φ ◦ ε−1
u )′H(0)x + O(t),

locally uniformly with respect to u and x.

Proof. By combining Proposition 2.21 and (2-29) we get

(2-38) t−1
· εφ(u) ◦φ ◦ ε−1

u (t ·x)= (εφ(u) ◦φ ◦ ε−1
u )′H(0)x + O(t).

A priori this holds only pointwise with respect to u and x . However, the asymp-
totic bound above comes from remainder terms in Taylor formulas at t = 0 for
components of 9(u, x, t) := εφ(u) ◦ φ ◦ ε−1

u (t ·x). Since 9 is smooth with respect
to u and x , it follows that the bounds in (2-38) are locally uniform with respect to
u and x . Hence the result. �

3. The tangent groupoid of a Heisenberg manifold

In this section we construct the tangent groupoid of a Heisenberg manifold (M, H)
as a groupoid encoding the smooth deformation of M × M to G M . In this con-
struction a crucial use is made of Heisenberg coordinates and of the tangent ap-
proximation of Heisenberg diffeomorphisms provided by Proposition 2.21.

3.1. Differentiable groupoids. Here we recall the main definitions on groupoids
and illustrate them with the example of Connes’ tangent groupoid.

Definition 3.1. A groupoid consists of a set G, a distinguished subset G(0)⊂ G, two
maps r and s from G to G(0) (called the range and source maps) and a composition
map,

◦ : G(2)=
{
(γ1, γ2) ∈ G × G

∣∣ s(γ1)= r(γ2)
}

−→ G,

such that the following properties are satisfied:

(1) s(γ1 ◦ γ2)= s(γ2) and r(γ1 ◦ γ2)= r(γ1), for any (γ1, γ2) ∈ G(2);

(2) s(x)= r(x)= x for any x ∈ G(0);

(3) γ ◦ s(γ ) = r(γ ) ◦ γ = γ for any γ ∈ G;

(4) (γ1 ◦ γ2) ◦ γ3 = γ1 ◦ (γ2 ◦ γ3);

(5) each element γ ∈ G has a two-sided inverse γ−1 so that γ ◦ γ−1
= r(γ ) and

γ−1
◦ γ = s(γ ).

The groupoids interpolate between spaces and groups. This aspect especially
pertains in the construction by Connes [1994, Section II.5] (see also [Hilsum and
Skandalis 1987]) of the tangent groupoid G = GM of a smooth manifold M .

At the set-theoretic level we let

G = TM t
(
M × M × (0,∞)

)
and G(0) = M × [0,∞),
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where TM denotes the (total space) of the tangent bundle of M . The inclusion ι of
G(0) into G is given by

(3-1) ι(m, t)=

{
(m,m, t) for t > 0 and m ∈ M,

(m, 0) ∈ TM for t = 0 and m ∈ M .

The range and source maps of G are such that

r(p, q, t)= (p, t) and s(p, q, t)= (q, t) for t > 0 and p, q ∈ M,

r(p, X)= s(p, X)= (p, 0) for t = 0 and (p, X) ∈ TM ,

while the composition law is given by

(p,m, t) ◦ (m, q, t)= (p, q, t) for t > 0 and m, p, q ∈ M,(3-2)

(p, X) ◦ (p, Y )= (p, X + Y ) for t = 0 and (p, X), (p, Y ) ∈ TM .(3-3)

In fact, GM is a b-differentiable groupoid in the sense of the definition below.

Definition 3.2. A b-differentiable groupoid is a groupoid G so that G and G(0) are
smooth manifolds with boundary and the following properties hold:

(1) the inclusion of G(0) into G is smooth;

(2) the source and range maps are smooth submersions, so that G(2) is a subman-
ifold (with boundary) of G × G;

(3) the composition map ◦ : G(2) → G is smooth.

In the case of the tangent groupoid G = GM the topology is such that:

• the inclusions of G(0) and G(1) := M × M × (0,∞) into G are continuous and
G(1) is an open subset of G;

• a sequence (pn, qn, tn) from G(1) converges to (p, X) ∈ TM if, and only if,
lim(pn, qn, tn)= (p, p, 0) and for any local chart κ near p we have

lim
n→∞

t−1
n
(
κ(qn)− κ(pn)

)
= κ ′(p)X.

One can check that this condition does not depend on the choice of a particular
chart near p.

The differentiable structure of GM is obtained by gluing those of TM and of
G(1) = M × M × (0,∞) by means of a chart of the form,

(3-4) γ (p, X, t)=

{(
p, expp(−t X), t

)
if t > 0 and (p, t X) ∈ dom exp,

(p, X) if t = 0 and (p, X) ∈ dom exp.

Here exp : dom exp → M × M denotes the exponential map associated to an ar-
bitrary Riemannian metric on M , so that γ maps an open subset of TM × [0,∞)
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onto an open neighborhood in G of the boundary TM (see [Connes 1994], [Hilsum
and Skandalis 1987], [Cariñena et al. 1999]).

3.2. The tangent groupoid of a Heisenberg manifold. We now construct the tan-
gent groupoid G = GH M of a Heisenberg manifold (Md+1, H).

As an abstract groupoid GH M is defined as follows. First, we set

G = G M t
(
M × M × (0,∞)

)
and G(0) = M × [0,∞),

where G M denotes the (total space) of the tangent Lie group bundle of M . We
have an inclusion ι : G(0) → G as in (3-1), namely,

ι(m, t)=

{
(m,m, t) for t > 0 and m ∈ M,

(m, 0) ∈ G M for t = 0 and m ∈ M .

The range and source maps are defined similarly to (3-2)–(3-3) by letting

r(p, q, t)= (p, t) and s(p, q, t)= (q, t) for t > 0 and p, q ∈ M,

r(p, X)= s(p, X)= (p, 0) for t = 0 and (p, X) ∈ G M .

In addition, we endow G with the composition law

(p,m, t) ◦ (m, q, t)= (p, q, t) for t > 0 and m, p, q ∈ M,(3-5)

(p, X) ◦ (p, Y )= (p, X.Y ) for t = 0 and (p, X), (p, Y ) ∈ G M .(3-6)

It is immediate to check the properties (1)–(5) of Definition 3.1, noticing that
the inverse map is here given by

(p, q, t)−1
= (q, p, t) for t > 0 and p, q ∈ M,

(p, X)−1
= (p, X−1)= (p,−X) for t = 0 and (p, X) ∈ G M .

Therefore, G = GH M is a groupoid.

Definition 3.3. The groupoid GH M is called the tangent groupoid of (M, H).

We now turn the groupoid G = GH M into a b-differentiable groupoid. First, we
endow G with the topology such that:

• the inclusions of G(0) and G(1) := M × M × (0,∞) into G are continuous and
make G(1) an open subset of G;

• a sequence (pn, qn, tn) from G(1) converges to (p, X) ∈ G M if, and only if,
lim(pn, qn, tn)= (p, p, 0) and for any local Heisenberg chart κ : dom κ → U
near p we have

(3-7) lim
n→∞

t−1
n · εκ(pn)

(
κ(qn)

)
= (εκ(p) ◦ κ)

′

H (p)X,
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where t ·x is the Heisenberg dilation (2-17) and εu denotes the coordinate
change to the Heisenberg coordinates at u ∈ U with respect to the H -frame
of the Heisenberg chart κ (see Definition 2.18).

Lemma 3.4. The condition (3-7) is independent of the choice of Heisenberg chart.

Proof. Assume that (3-7) holds for κ . Let κ1 be another Heisenberg chart near p,
and let φ = κ1 ◦ κ−1. Letting xn = κ(pn) and yn = κ(qn), we have

t−1
n · εκ1(pn)(κ1(qn))= t−1

n · εφ(xn)(φ(yn))(3-8)

= δ−1
tn ◦ εφ(xn) ◦φ ◦ ε−1

xn
◦ δtn

(
tn · εxn (yn)

)
.

On the other hand, since φ is a Heisenberg diffeomorphism it follows from
Proposition 2.23 that as t goes to zero we have

δ−1
t ◦ εφ(x) ◦φ ◦ ε−1

x ◦ δt(y)− ∂y(εφ(x) ◦φ ◦ ε−1
x )H (0) y −→ 0,

locally uniformly with respect to x and y. Since (xn, yn, tn)→
(
κ(p), κ(p), 0

)
and t−1

n · εκ(pn)(κ(qn))→ (εκ(p) ◦ κ)
′

H (p)X , by combining this with (3-8) we get

lim
n→∞

t−1
n · εκ1(pn)(κ1(qn))=

(
εφ(κ(p)) ◦φ ◦ ε−1

κ(p)

)′
H (0)

(
(εκ(p) ◦ κ)

′

H (p)X
)

= (εκ1(p) ◦ κ1)
′

H (p)X.

Hence the lemma. �

Next, in order to endow GH M with a manifold structure we cannot make use
of an exponential chart as in (3-4) because, unless G M is a fiber bundle, the Lie-
algebraic structures of its fibers vary from point to point. Instead we can proceed
as follows.

Let κ : dom κ → U be a local Heisenberg chart near m ∈ M . We get a local
coordinate system near G M| dom κ ⊂ G by letting

γκ(x, X, t)=

{(
κ−1(x), κ−1

◦ ε−1
x (t ·X), t

)
if t > 0 and x, ε−1

x (t ·X) ∈ U ,(
κ−1(x), (κ−1

◦ ε−1
x )′H (0)X

)
if t = 0 and (x, X) ∈ U×Rd+1.

The map γκ is one-to-one from an open neighborhood of the boundary U×Rd+1
×0

in U × Rd+1
× [0,∞). Moreover, γκ is continuous off the boundary. It is also

continuous near any boundary point (x, X, 0) because if a sequence (xn, Xn, tn) ∈
dom γκ with tn > 0 converges to (x, X, 0) then (pn, qn, tn) = γκ(xn, Xn, tn) has
limit

(
κ−1(x), (κ−1)′H (x)X

)
= γκ(x, X, 0), for we have

t−1
n · εκ(pn)(κ(qn))= Xn −→ X = κ ′

H (κ(x))(κ
−1)′H(x)X.
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The inverse γ−1
κ is given by

γ−1
κ (p, q, t)=

(
κ(p), t−1

· εκ(p) ◦ κ(q), t
)

for t > 0,(3-9)

γ−1
κ1
(p, X)=

(
κ(p), κ ′

H (p)X
)

for (p, X) ∈ G M in the range of γκ1 .(3-10)

Therefore, if κ1 is another local Heisenberg chart near m then, in terms of φ =

κ−1
1 ◦ κ , the transition map γ−1

κ ◦ γκ1 is

γ−1
κ ◦ γκ1(x, X, t)=

{(
φ(x), t−1

· εφ(x) ◦φ ◦ ε−1
x (t ·X), t

)
for t > 0,(

φ(x), φ′

H(x)X, 0
)

for t = 0.

This shows that γ−1
κ ◦γκ1(x, X, t) is smooth with respect to x and X and is meromor-

phic with respect to t with at worst a possible singularity at t = 0 only. However,
by Proposition 2.23 we have

lim
t→0

t−1
· εφ(x) ◦φ ◦ ε−1

x (t ·X)= φ′

H (x)X,

so there is no singularity at t = 0. Hence γ−1
κ ◦ γκ1 is a smooth diffeomorphism

between open subsets of Rd+1
×[0,∞). Therefore the coordinates system γκ allows

us to glue together the differentiable structures of G M and G(1) = M × M ×(0,∞)

to turn G into a smooth manifold with boundary.
Next, G(0)=M×[0,∞) is a manifold with boundary and the inclusion ι:G(0)→G

is smooth. In addition, the range map r and the source maps s are submersions
off the boundary. Moreover, in a coordinate system γκ near the boundary of G the
maps r and s are given by

(3-11) r(x, X, t)= (x, t) and s(x, X, t)=
(
ε−1

x (t ·X), t
)
,

which shows that ∂x,tr and ∂X,t s are invertible near the boundary. Hence r and s
are submersions on all G.

Let us now look at the smoothness of the composition map.

Proposition 3.5. The composition map ◦ : G2
→ G is smooth.

Proof. Since ◦ is clearly smooth off the boundary we only need to understand what
happens near the boundary. Using (3-11) we see that in a local coordinate system
γκ near the boundary two elements (x, X, t) and (y, Y, t) can be composed if, and
only if, we have y = εx(t · X). Then for t > 0 using (3-5) and (3-9) we see that
(x, X, t) ◦

(
ε−1

x (t ·X), Y, t
)

is equal to

γ−1
κ

((
κ−1(x), κ−1ε−1

x (t ·X), t
)
◦
(
κ−1ε−1

x (t ·X), κ
−1

◦ ε−1
ε−1

x (t ·X)
(t ·Y ), t

))
= γ−1

κ

((
κ−1(x), κ−1

◦ ε−1
ε−1

x (t ·X)
(t ·Y ), t

))
=
(
x, t−1

· εx ◦ ε−1
ε−1

x (t ·X)
(t ·Y ), t

)
.
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On the other hand, for t =0 from (3-6) and (3-10) we see that (x, X, 0)◦(x, Y, 0)
is equal to

γ−1
κ

((
κ−1, (κ−1

◦ ε−1
x )′H(0)X

)
◦
(
κ−1, (κ−1

◦ ε−1
x )′H(0)Y

))
= γ−1

κ

((
κ−1(x),

(
(κ−1

◦ ε−1
x )′H(0)X

)
·
(
(κ−1

◦ ε−1
x )′H(0)Y

))
= γ−1

κ

(
κ−1(x), (κ−1

◦ ε−1
x )′H(0)(X ·Y )

)
= (x, X ·Y, 0),

where we have used the fact that (κ−1
◦ε−1

x )′H (0) is a morphism of Lie groups (cf.
Proposition 2.12). Therefore, we get

(x, X, t) ◦
(
ε−1

x (t ·X), Y, t
)
=

{(
x, t−1

· εx ◦ ε−1
ε−1

x (t ·X)
(t ·Y ), t

)
for t > 0,

(x, X ·Y, 0) for t = 0.

This shows that ◦ is smooth with respect to x , X , and Y and is meromorphic with
respect to t with at worst a singularity at t = 0. Therefore, in order to show the
smoothness of ◦ at t = 0 it is enough to prove that

(3-12) lim
t→0+

t−1
· εx ◦ ε−1

ε−1
x (t ·X)

(t ·Y )= X · Y.

Lemma 3.6. Let ψu denote the affine change to the privileged coordinates at u as
in Definition 2.15. Then with respect to the law group of the u-group G(u) we have

(3-13) lim
t→0

t−1.ψu ◦ψ−1
ψ−1

u (t.v)
(t.w)= v.w,

locally uniformly with respect to w.

Proof. Let λv(w)= v ·w and µt(w)= t−1
·ψu ◦ψ−1

ψ−1
u (t ·v)

(t ·w). For w= 0 we have

(3-14) µt(0) = t−1
·ψu ◦ψ−1

ψ−1
u (t ·v)

(0) = t−1
·ψu

(
ψ−1

u (t ·v)
)

= v = λv(0).

Remark also that µt and λv are both affine maps and we have

(3-15) µ′

t = δ−1
t ◦ψ ′

u ◦
(
ψ−1
ψ−1

u (t ·v)

)′
◦ δt .

Let X0, . . . , Xd be the H -frame associated to the Heisenberg chart κ (seen as
an H -frame on U = range κ) and set w0 = 2 and w1 = · · · = wd = 1. By (2-18)
and (2-19) we have X j (u)= (ψ−1

u )′(∂xj ) for j = 0, . . . , d . Therefore, we get

(δ∗t ψu∗X j )(v) = δ−1
t ◦ψ ′

u
(
X j (ψ

−1
u ◦ δt(v))

)
= δ−1

t ◦ψ ′

u ◦
(
ψ−1
ψ−1

u (t ·v)

)′
(∂xj ).
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Combining with (3-15) we thus obtain

twj (δ∗t ψu∗X j )(v)= δ−1
t ◦ψ ′

u ◦
(
ψ−1
ψ−1

u (t ·v)

)′
(twj ∂xj )

= δ−1
t ◦ψ ′

u ◦
(
ψ−1
ψ−1

u (t ·v)

)′
◦ δt(∂xj ) = µ′

t(∂xj ).

Now, for j = 1, . . . , d, let X (u)
j be the left-invariant field on G(u) with X (u)

j = ∂xj .
Recall that, by the very definition of G(u) we have X (u)

j = limt→0 twj (δ∗t ψu∗X j ).
Thus,

X (u)
j (v)= lim

t→0
µ′

t(∂xj ).

In fact, as X (u)
j is left-invariant, we have

X (u)
j (v) =

(
λv∗X (u)

j

)
(v) = λ′

v

(
X (u)

j (0)
)

= λ′

v(∂xj ).

Therefore, we have limt→0 µ
′
t(∂xj )= λ′

v(∂xj ) for j = 0, . . . , d, which yields

lim
t→0

µ′

t = λ′

v.

Since by (3-14) we have µt(0) = λv(0) and since µt and λv are affine maps, it
follows that as t goes to zero µt(w)= t−1

·ψu ◦ψ−1
ψ−1

u (t ·v)
(t ·w) converges to λv(w)=

v ·w locally uniformly with respect to w. Hence the lemma. �

Next, let φx be the map (2-27), that is, the transition map from x-coordinates to
Heisenberg coordinates centered at x . Recall that φx is an isomorphism of graded
Lie groups from G(x) to the tangent group Gx = (κ∗G M)x . Therefore, as εx =

φx ◦ψx we get

t−1
· εx ◦ ε−1

ε−1
x (t ·X)

(t ·Y )= δ−1
t ◦φx ◦ψx ◦ψ−1

ψ−1
x ◦φx (t ·X)

◦φε−1
x (t ·X) ◦ δt(Y )

= φx
(
δ−1

t ◦ψx ◦ψ−1
ψ−1

x (t ·v)
◦ δt(wt)

)
,

where we have let v = φ−1
x (X) and wt = φε−1

x (t ·X)(Y ). Combining this with (3-13)
we get

lim
t→0

t−1
· εx ◦ ε−1

ε−1
x (t ·X)

(t ·Y ) = φx(v · lim
t→0

wt) = φx
(
φ−1

x (X) ·φ
−1
x (Y )

)
= X · Y.

This proves (3-12) and thus completes the proof of Proposition 3.5. �

Summarizing all this we have proved:

Theorem 3.7. The groupoid GH M is a b-differentiable groupoid.

Finally, let φ be a Heisenberg diffeomorphism from (M, H) onto a Heisenberg
manifold (M ′, H ′) and let us compare the tangent groupoids GH M and GH ′ M ′. To
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this end consider the map 8H : GH M → GH ′ M ′ given by

8H (p, q, t)= (φ(p), φ(q), t) for t > 0 and p, q ∈ M,(3-16)

8H (p, X)= (φ(p), φ′

H (p)X) for (p, X) ∈ G M .(3-17)

For t > 0 and p, q ∈ M we have

rM ′ ◦8H (p, q, t)= (φ(q), t)=8H ◦ rM(p, q, t),

sM ′ ◦8H (p, q, t)= (φ(p), t)=8H ◦ sM(p, q, t),

while for (p, X) ∈ G M we have

sM ′ ◦8H (p, X)= rM ′ ◦8H (p, X) = (φ(p), 0)

=8H ◦ rM(p, X) = 8H ◦ sM(p, X).

Hence rM ′◦8H =8H◦rM and sM ′◦8H =8H◦sM . Incidentally8H (G
(2)
H M) agrees

with G(2)H ′ M ′.
Moreover, for t > 0 and m, p, q ∈ M we have

8H (m, p, t) ◦M ′ 8H (p, q, t)=
(
φ(m), φ(q), t

)
=8H

(
(m, p, t) ◦M (p, q, t)

)
,

and for p ∈ M and X, Y ∈ G p M we get

8H (p, X) ◦M ′ 8H (p, Y )=
(
φ(p), φ′

H (p)(X ·Y )
)

=8H
(
(p, X) ◦M 8H (p, Y )

)
.

All this shows that 8H is a morphism of groupoids. In fact, the map defined by
replacing φ with φ−1 in (3-16) and (3-17) is an inverse for 8H , so 8H is in fact a
groupoid isomorphism from GH M onto GH ′ M ′.

Next, it follows from (3-16) that8H is continuous off the boundary. To see what
happens at the boundary consider a sequence (pn, qn, tn) converging to (p, X) ∈

G M and let κ be a local Heisenberg chart for M ′ near p′
= φ(p). By pulling

back the H ′-frame of κ by φ we turn κ ◦ φ into a Heisenberg chart so setting
(p′

n, q ′
n, tn)=8H (pn, qn, tn) we get

t−1
n · εκ(p′

n)
(κ(q ′

n))= tn · εκ◦φ(pn)(κ ◦φ(qn))−→ (κ ◦φ)′H (p)X = κ ′

H (p)(φ
′

H (p)X).

Thus, 8H is continuous from GH M to GH ′ M ′.
It also follows from (3-16) that 8H is smooth off the boundary. Moreover, if κ

is a local Heisenberg chart for M ′ then 8H ◦γκ◦φ(p, X, t) coincides for t > 0 with(
φ
(
φ−1

◦ κ−1(x)
)
, φ
(
φ−1

◦ κ−1
◦ ε−1

x (t ·X)
)
, t
)

=
(
κ−1(x), κ−1

◦ ε−1
x (t ·X), t

)
= γκ(x, X, t),
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while for t = 0 it is equal to(
φ
(
φ−1

◦ κ−1(x)
)
, φ′

H
(
φ−1

◦ κ−1(x)
)(
(κ−1

◦ ε−1
x )′H (0)X

)
, 0
)

=
(
κ−1(x), (κ−1

◦ ε−1
x )′H (0)X, t

)
= γκ(x, X, 0).

Hence γκ ◦ 8 ◦ γκ◦φ = id, which shows that 8H is smooth map. Since similar
arguments show that 8−1

H is smooth, it follows that 8H is a diffeomorphism. We
have thus proved:

Proposition 3.8. The map 8H : GH M → GH ′ M ′ given by (3-16)–(3-17) is an iso-
morphism of b-differentiable groupoids. Hence the isomorphism class of b-group-
oids of GH M depends only on the Heisenberg diffeomorphism class of (M, H).
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