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Abstract In this work, a full and complete development of the tangent stiffness matrix is

presented, suitable for the use in an absolute interface coordinates floating frame of reference

formulation. For simulation of flexible multibody systems, the floating frame formulation is

used for its advantage to describe local elastic deformation by means of a body’s linear fi-

nite element model. Consequently, the powerful Craig–Bampton method can be applied for

model order reduction. By establishing a coordinate transformation from the absolute float-

ing frame coordinates and local interface coordinates corresponding to the Craig–Bampton

modes to absolute interface coordinates, it is possible to satisfy kinematic constraints with-

out the use of Lagrange multipliers. In this way, the floating frame does not need to be

located at an interface point and can be positioned close to the body’s center of mass, with-

out requiring an interface point at the center of mass. This improves simulation accuracy.

In this work, the expression for the new method’s tangent stiffness matrix is obtained by

taking the variation of the equation of equilibrium. The global tangent stiffness matrix is

expressed as a local tangent stiffness matrix, consisting of both material stiffness and geo-

metric stiffness terms, transformed to the global frame by the rotation matrix of the floating

frame. Simulations of static and dynamic validation problems are performed. These simu-

lations show the importance of including the tangent stiffness matrix for both convergence

and simulation efficiency.
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1 Introduction

The field of flexible multibody dynamics considers the study of mechanical systems that

consist of multiple deformable bodies. These bodies are connected together or to the fixed

world in their interface points. In many situations the deformation of a body remains suffi-

ciently small, such that linear elasticity theory can be used to describe the elastic displace-

ment field locally. However, the joints that are situated at the interface points may allow for

large rigid body rotations between different bodies, which causes the kinematics to be of a

nonlinear nature.

The floating frame of reference formulation is a flexible multibody dynamics formula-

tion well-suited for these types of problems. Its details are well-documented in standard

textbooks such as [1]. In the floating frame formulation, the rigid body motion of a body is

described by the absolute coordinates of the floating frame; a coordinate system that moves

along with the body. The elastic deformation is described locally, relative to the floating

frame, by a set of generalized coordinates that correspond to a specific set of mode shapes.

These mode shapes can be obtained from the body’s linear finite element model by means

of model order reduction techniques, such as the Craig–Bampton method [2]. The fact that

such reduction methods can be applied, makes the floating frame formulation a very efficient

multibody formulation for cases in which the local elastic deformation is small indeed.

Because the floating frame formulation uses the floating frame coordinates and the gen-

eralized coordinates corresponding to the local mode shapes, the kinematic constraint equa-

tions are nonlinear and in general difficult to solve analytically. As a consequence, Lagrange

multipliers are required to satisfy the kinematic constraint equations when formulating the

equations of motion. This is an important disadvantage of the floating frame formulation, as

the Lagrange multipliers cause the constrained equations of motion to be of the differential-

algebraic type rather than the differential type. In contrast, formulations in which the ab-

solute interface coordinates are part of the degrees of freedom do not need Lagrange mul-

tipliers: because the kinematic constraints are enforced at the interface points, they can be

satisfied conveniently by relating the relevant interface coordinates.

In previous work, the authors have presented a new formulation for the simulation of

flexible multibody systems [3]. This method is based on the floating frame formulation, but

uses the absolute interface coordinates as the degrees of freedom. In this way, this method

combines the advantage of the floating frame formulation in describing a body’s local elastic

behavior with the advantage of satisfying kinematic constraints without Lagrange multipli-

ers. This is realized by establishing a coordinate transformation that expresses the absolute

floating frame coordinates and local elastic coordinates in terms of the absolute interface

coordinates. The static Craig–Bampton interface modes are used for describing the local

elastic displacement field. In essence, the formulation realizes the desired coordinate trans-

formations by exploiting the fact that the Craig–Bampton modes are able to describe rigid

body motion. The global equations of motion of a flexible body were presented and the

method was validated in a number of numerical problems.

In this work, a full and complete derivation will be presented of the tangent stiffness

matrix associated with this new formulation. Although the correct form of the tangent stiff-

ness matrix was included in all validation problems in [3], its full derivation has not been

presented before. Additionally, this work discusses the importance of the tangent stiffness

matrix in static and dynamic numerical simulations. To this end, a demonstration of the ef-

fects of ignoring or simplifying the tangent stiffness matrix on both simulation accuracy and

simulation time are presented.

In static simulations, the equilibrium equations are solved by increasing the externally

applied load incrementally. Within each load increment, multiple iterations may be required
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to obtain a displacement increment that satisfies the equations of equilibrium with sufficient

accuracy. For the computation of each displacement increment, the equations of equilibrium

are linearized about the current configuration. The tangent stiffness matrix naturally arises

in this linearization.

In dynamic simulations, the equations of motion are solved incrementally by means of

numerical time integration. For computation of the next time increment, the equations of

motion are linearized about the current configuration. For the simulation of the flexible

multibody problems in this work, implicit integration schemes, such as the Adams–Moulton

scheme, can be used. In those integration schemes, the Jacobian of the equation of motion

can be used to improve the corrector step, which requires the tangent stiffness matrix.

For many standard finite elements such as beams, plates and volume elements, expres-

sions for the tangent stiffness are well-documented; see for instance [4, 5]. However, since

the new formulation [3] is applicable to reduced order models of arbitrarily shaped three-

dimensional flexible bodies, an expression for the tangent stiffness matrix is required for

these general circumstances. The most significant contributions of this work are the de-

velopment of the general expression of the tangent stiffness matrix and a discussion of its

relevance in numerical problems.

The remainder of this work contains two theoretical sections, followed by two sections

on numerical validations. In Sect. 2, the new floating frame formulation as presented in [3]

is summarized. This is restricted to that what is necessary to derive the tangent stiffness ma-

trix. The kinematics of the floating frame formulation is introduced, where local interface

coordinates are used to describe local elastic deformation using the Craig–Bampton method.

The local interface coordinates, are expressed in terms of the difference between the abso-

lute interface coordinates and the absolute floating frame coordinates. By demanding zero

elastic deformation at the location of the floating frame, the floating frame coordinates and

local interface coordinates are both expressed in terms of the absolute interface coordinates.

In Sect. 3, the full expression for the tangent stiffness matrix is derived. To this end, the

equation of equilibrium of a flexible body is derived based on the principle of virtual work.

The tangent stiffness matrix is introduced after taking the variation in the equation of equi-

librium. This requires the variations in the relevant transformation matrices, which will be

provided. It is shown that the tangent stiffness matrix depends on the orientation of the float-

ing frame and the body’s elastic deformation. In Sect. 4, numerical validation problems that

show the importance of the tangent stiffness matrix on the simulation convergence of static

problems are discussed. In Sect. 5, numerical validation problems that show the importance

of the tangent stiffness on the simulation efficiency of dynamic problems are discussed. The

paper finalizes with the most important conclusions.

2 A floating frame formulation in terms of absolute interface coordinates
using Craig–Bampton modes

The kinematics of a three-dimensional flexible body is considered in the floating frame for-

mulation. The position and orientation of the floating frame is denoted by the pair {Pj ,Ej },

where Pj identifies the material point on the body to which coordinate frame Ej is rigidly

attached. The degrees of freedom consist of the 6 absolute coordinates of the floating frame

with respect to the inertial frame PO and the generalized coordinates associated with the

mode shapes that describe the body’s elastic deformation. Let N be the number of interface

points on the body. Then the number of interface coordinates is 6N . In order to establish

a coordinate transformation from the degrees of freedom of the floating frame formulation
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to absolute interface coordinates, the total number of generalized coordinates in both for-

mulations must be the same. Hence, the number of mode shapes taken into account in the

floating frame formulation must be equal to 6N −6. In this way, the total number of degrees

of freedom of a flexible body equals 6N .

The fact that the coordinate transformation involves the interface coordinates, suggests

that it is convenient to describe the body’s local elastic behavior such that it is uniquely de-

fined by the local interface coordinates. In this aspect, choosing the Craig–Bampton modes

as the local mode shapes is a natural choice, because the generalized coordinates correspond-

ing to the Craig–Bampton modes are in fact local interface coordinates. Let Pk identify the

interface point with index k. The local generalized coordinates associated with this inter-

face point are denoted by the (6 × 1) vector q
j,j

k , which defines the elastic displacement and

rotations of Pk (lower index k) relative to Pj (second upper index j ) and its components

are expressed in the coordinate system {Pj ,Ej } (first upper index j ). Now, the local elastic

deformation at an arbitrary point P on the body can be expressed as

q
j,j

P =

N
∑

k=1

�k

(

x
j,j

P

)

q
j,j

k . (2.1)

Here �k is the (6 × 6) mode matrix that describes the elastic displacements and rotations

due to the six Craig–Bampton modes of Pk , which is identified by the position vector x
j,j

P

on the undeformed body. Equation (2.1) is written in short as

q
j,j

P = [�P ]qj,j , (2.2)

where the (6 × 6N ) matrix [�P ] contains all the Craig–Bampton modes evaluated at P and

the (1 × 6N ) vector qj,j contains all local interface coordinates:

[�P ] ≡
[

�1(x
j,j

P ) . . . �N (x
j,j

P )
]

, qj,j ≡

⎡

⎢

⎣

q
j,j

1

...

q
j,j

N

⎤

⎥

⎦
. (2.3)

Because there are 6N interface coordinates, there will be 6N Craig–Bampton modes, not

6N − 6. Moreover, the Craig–Bampton modes are able to describe rigid body motion. Since

rigid body motion is already described by the floating frame coordinates, taking into account

all Craig–Bampton modes will cause problems of non-uniqueness. In order to remove this

singularity, six constraints are be imposed on the modes. In its most general form, one needs

to demand

F
(

qj,j
)

= 0, (2.4)

which are in general six nonlinear equations in terms of qj,j . Due to its possible nonlinear

nature, this might not be solved analytically. However, it is possible to solve Eq. (2.4) in its

tangent space. Taking the variation of Eq. (2.4) yields

∇F · δqj,j = 0. (2.5)

These are 6 linear equations in the virtual displacements δqj,j . If these equations are satis-

fied, the virtual change in the interface coordinates is such that no rigid body motion occurs.
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Fig. 1 A flexible body in its deformed configuration and its undeformed configurations (dashed lines) for

floating frame locations at an interface point and at the undeformed body’s center of mass. Placing the floating

frame close to the center of mass requires a smaller deformation. Figure was made using Adobe Illustrator

In the original work [3], the six constraints are defined by demanding that at the location

of the floating frame, the elastic deformation is zero. Explicitly this means that the virtual

change in interface coordinates should satisfy

[�j ]δqj,j = 0, (2.6)

where [�j ] now represents the Craig–Bampton mode matrix evaluated at the floating frame.

The most straightforward way in which Eq. (2.6) is satisfied, is by choosing the Craig–

Bampton modes such that each of them equals zero at the location of the floating frame:

[�j ] = 0. (2.7)

This is the case when the floating frame is located in an interface point and the Craig–

Bampton modes of that particular interface point are removed from the set of modes; see

e.g. [6]. However, this makes the results dependent on the interface point chosen. More-

over, in general a better accuracy is obtained when the floating frame is close to the

body’s center of mass. In that case, the deformed configuration of a body can be described

with smaller elastic deformations. Figure 1 illustrates this effect. Alternatively, the Craig–

Bampton modes can be determined while keeping the floating frame fixed; see e.g. [7]. This

is equivalent to the first method [6] when an auxiliary interface point is introduced at the

location of floating frame. In this way, the floating frame can be close to the center of mass.

However, it is now required to determine the location of the floating frame, before com-

puting the Craig–Bampton modes. This is not convenient, since the Craig–Bampton modes

need to be recomputed if one wants to locate the floating frame on a different location. More-

over, when using an auxiliary interface point at the location of the floating frame, one in fact

uses 6 degrees of freedom more than in the method presented in [3]. This is an unnecessary

increase of the computational cost.

It is of course not necessary to demand that each individual mode equals zero at the

location of the floating frame. Equation (2.6) only prescribes that a linear combination of

modes should be such that there is zero elastic deformation at the location of the floating

frame. The general form of this constraint, Eq. (2.6), is more attractive than Eq. (2.7) in

the sense that the mathematical formulation is similar for all interface points: all interface

points are treated in the same way. That is, the remaining procedure does not depend on

what interface point is chosen to locate the floating frame in. The essence of the method [3]

is in defining how the absolute floating frame coordinates can be expressed in terms of the

absolute interface coordinates while satisfying Eq. (2.6).

In the floating frame formulation, the global position of interface point Pk relative to

the inertial frame PO is expressed in terms of the global position of the floating frame Pj

relative to PO and the local position of Pk relative to Pj :

r
O,O
k = r

O,O
j + RO

j r
j,j

k . (2.8)
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Fig. 2 The position of material

point Pk relative to PO using

floating frame Pj . Figure was

made using InkScape

Here r
O,O
k , r

O,O
j and r

j,j

k are position vectors of which the indices follow the convention as

introduced above and RO
j is the (3 × 3) rotation matrix that relates the orientation of frame

Pj to PO . Figure 2 shows a graphical representation of this relation.

For the virtual displacement δr
O,O
k

δr
O,O
k = δr

O,O
j + δπ̃

O,O
j RO

j r
j,j

k + RO
j δr

j,j

k , (2.9)

in which δπ̃
O,O
j is the skew symmetric matrix of virtual rotations, defined by the variation

of the rotation matrix as

δRO
j = δπ̃

O,O
j RO

j . (2.10)

For the virtual rotation of interface point Pk

δπ
O,O
k = δπ

O,O
j + RO

j δπ
j,j

k . (2.11)

Let δq
O,O
k denote the variation in the global interface coordinates, which is composed of

the virtual displacement δr
O,O
k and the virtual rotation δπ

O,O
k . In compact form, Eq. (2.9)

and (2.11) can be combined:

δq
O,O
k =

[

RO
j

]

δq
j,j

k +
[

RO
j

][

−r̃
j,j

k

][

R
j

O

]

δq
O,O
j , (2.12)

in which

[

RO
j

]

≡

[

RO
j 0

0 RO
j

]

,
[

−r̃
j,j

k

]

≡

[

1 −r̃
j,j

k

0 1

]

. (2.13)

By rewriting Eq. (2.12), it is possible to express the local interface coordinates in terms of

the global interface coordinates and the floating frame coordinates:

δq
j,j

k =
[

R
j

O

]

δq
O,O
k −

[

−r̃
j,j

k

][

R
j

O

]

δq
O,O
j . (2.14)

This can be done for all interface points:

δqj,j =
[

R
j

O

]

δqO,O − [�rig]
[

R
j

O

]

δq
O,O
j , (2.15)

in which

[

R
j

O

]

≡

⎡

⎢

⎣

[R
j

O]

. . .

[R
j

O]

⎤

⎥

⎦
, [�rig] ≡

⎡

⎢

⎣

[−r̃
j,j

1 ]
...

[−r̃
j,j

N ]

⎤

⎥

⎦
, (2.16)
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the matrix [−r̃
j,j

k ] can be interpreted as the displacements of interface point Pk due to a

rigid body motion of the floating frame, expressed in the deformed configuration of the

body. Hence, the matrix [�rig] represents the displacements of all interface points due to

a rigid body motion of the floating frame, expressed in the deformed configuration of the

body. Substitution of Eq. (2.15) in the constraint Eq. (2.6) yields

[�j ]
[

R
j

O

]

δqO,O − [�j ][�rig]
[

R
j

O

]

δq
O,O
j = 0. (2.17)

At this point, the floating frame coordinates can be expressed in the absolute interface coor-

dinates:

δq
O,O
j =

[

RO
j

]

[Zj ]
[

R
j

O

]

δqO,O , [Zj ] ≡
(

[�j ][�rig]
)−1

[�j ]. (2.18)

Back substitution in Eq. (2.15) yields an expression for the local interface coordinates in

terms of the global interface coordinates:

δqj,j = [Tj ]
[

R
j

O

]

δqO,O , [Tj ] ≡ 1 − [�rig][Zj ]. (2.19)

Equations (2.18) and (2.19) define the desired transformations that can be used to rewrite

the equation of motion or equation of equilibrium in the standard floating frame formulation

in terms of the absolute interface coordinates. The full derivation of the equation of motion

of a flexible body is presented in [3] and will not be repeated here, because it is not strictly

necessary for the derivation of the tangent stiffness matrix. For that purpose, the equations

of equilibrium are sufficient.

3 The tangent stiffness matrix

The equation of equilibrium of a flexible body is derived by equating the virtual work due

to externally applied forces δWext to the virtual work due to the internal elastic forces δWint.

The virtual external work is written in terms of the global generalized externally applied

forces QO
ext at the interface points:

δWext =
(

δqO,O
)T

QO
ext. (3.1)

The virtual internal elastic work is written in terms of the local generalized internal elastic

forces Q
j

int that are experienced at the interface points due to the local elastic deforma-

tion. When the Craig–Bampton modes are applied in the reduction of the body’s local finite

element stiffness matrix, the internal forces can be expressed as the product of the local

(reduced) material stiffness matrix K times the local interface coordinates qj,j , the virtual

internal work can be expressed as

δWint =
(

δqj,j
)T

Q
j

int =
(

δqj,j
)T

Kqj,j . (3.2)

Substitution of Eq. (2.19) in Eq. (3.2) yields

δWint =
(

δqO,O
)T[

R
O

j

]

[Tj ]
TKqj,j . (3.3)

The equilibrium equations in the global frame are obtained by equating Eq. (3.3) to Eq. (3.1)

[

R
O

j

]

[Tj ]
TQ

j

int = QO
ext. (3.4)
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Since [Tj ] depends on the elastic deformation of the body and [R
O

j ] depends on the orien-

tation of the floating frame, the equilibrium Eqs. (3.4) are nonlinear in terms of the gener-

alized coordinates. These equations can be solved incrementally using load stepping, which

requires one to repeatedly solve a set of linear equations in terms of small increments in the

generalized coordinates. Taking the variation of Eq. (3.4) yields

[

R
O

j

]

[Tj ]
TδQ

j

int +
[

R
O

j

]

δ[Tj ]
TQ

j

int + δ
[

R
O

j

]

[Tj ]
TQ

j

int = δQO
ext. (3.5)

On the left hand side of Eq. (3.5), the terms δQ
j

int, δ[Tj ] and δ[R
O

j ] all contain variations in

the generalized coordinates. Using the coordinate transformations presented in Sect. 2, these

terms can all be expressed as a matrix times a vector of variations in the absolute interface

coordinates. Hence, the equation can be rewritten to the following form:

KtδqO,O = δQO
ext, (3.6)

where Kt is the tangential stiffness matrix that depends on the orientation of the floating

frame and the elastic deformation of the body.

In static problems, Eq. (3.6) can be solved incrementally for the global position of the

interface coordinates. Given a certain load increment δQO
ext, Eq. (3.6) can be solved for

the corresponding displacement increment δqO,O by applying Newton–Raphson iterations.

Then the global position of the interface coordinates can be updated by adding the obtained

δqO,O to the current position of the interface points. After this, the external load can be

increased with the next load increment and a possible residual from the current step. This

procedure can be repeated until the external load is applied entirely. Clearly, the full expres-

sion for the tangential stiffness matrix Kt is needed for this procedure, which requires the

rewriting of all three terms on the right hand side of Eq. (3.5). To this end, the variation of

the transformation matrix [Tj ] must be derived, for which the variation of the transformation

matrix [Zj ] is required.

3.1 Variations of [Zj ] and [Tj ]

The variation of [Zj ] is obtained by taking the virtual change of its definition Eq. (2.18):

δ[Zj ] ≡ δ
(

[�j ][�rig]
)−1

[�j ]. (3.7)

For an arbitrary invertible matrix A the following holds for the variation of its inverse:

δA−1 = −A−1δAA−1. (3.8)

Using Eq. (3.8) and the fact that [�j ] is constant, the variation in [Zj ] is expressed as

δ[Zj ] = −
(

[�j ][�rig]
)−1

[�j ]δ[�rig]
(

[�j ][�rig]
)−1

[�j ], (3.9)

which can be written in compact form as

δ[Zj ] = −[Zj ]δ[�rig][Zj ]. (3.10)

Here, the virtual change in [�rig] is

δ[�rig] =

⎡

⎢

⎣

δ[−r̃
j,j

1 ]
...

δ[−r̃
j,j

N ]

⎤

⎥

⎦
, δ

[

−r̃
j,j

k

]

=

[

0 −δr̃
j,j

k

0 0

]

. (3.11)
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For the variation in [Tj ], also the virtual change of its definition Eq. (2.19) is taken:

δ[Tj ] = −δ[�rig][Zj ] − [�rig]δ[Zj ]. (3.12)

Substitution of Eq. (3.10) in Eq. (3.12) yields

δ[Tj ] = −δ[�rig][Zj ] + [�rig][Zj ]δ[�rig][Zj ]. (3.13)

In compact form, this can be rewritten:

δ[Tj ] = −[Tj ]δ[�rig][Zj ]. (3.14)

3.2 First tangent stiffness term: [K1]

The expressions for δ[Zj ] and δ[Tj ] as established in Eq. (3.10) and Eq. (3.14) will now

be used for the derivation of the tangent stiffness matrix. For the first term in Eq. (3.5), the

virtual change in internal forces δQ
j

int is required. Since the local material stiffness matrix

K is constant, this can simply be written as

δQ
j

int = Kδqj,j . (3.15)

Using Eq. (2.19), the virtual change in local interface coordinates is expressed in terms of

the virtual change in global interface coordinates:

δQ
j

int = K[Tj ]
[

R
j

O

]

δqO,O . (3.16)

And so the first term in Eq. (3.5) can be expressed as

[

R
O

j

]

[Tj ]
TδQ

j

int =
[

R
O

j

]

[K1]
[

R
j

O

]

δqO,O , [K1] ≡ [Tj ]
TK[Tj ]. (3.17)

[K1] can be recognized as the transformed local material stiffness matrix. The transforma-

tion matrices [Tj ] remove the rigid body component from the local material stiffness matrix

K and the rotation matrices [R
j

O] transform the local material stiffness matrix to the global

frame.

3.3 Second tangent stiffness term: [K2]

In order to rewrite the second term in Eq. (3.5), the following notation is introduced first:

Q̂
j

int = [Tj ]
TQ

j

int. (3.18)

The virtual change in [Tj ] is required in Eq. (3.5). Substitution of Eq. (3.14) and Eq. (3.18),

this can be written as

[

R
O

j

]

δ[Tj ]
TQ

j

int = −
[

R
O

j

]

[Zj ]
Tδ[�rig]

TQ̂
j

int. (3.19)

The multiplication of δ[�rig]
TQ̂

j

int can be expanded as

δ[�rig]
TQ̂

j

int =

[[

0 0

δr̃
j,j

1 0

]

. . .

[

0 0

δr̃
j,j

N 0

]]

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

[

F̂
j

int,1

M̂
j

int,1

]

...
[

F̂
j

int,N

M̂
j

int,N

]

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (3.20)
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In this, the generalized forces Q̂
j

int,k of interface point k are decomposed in the forces F̂
j

int,k

and moments M̂
j

int,k . Equation (3.20) can be rewritten:
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. (3.21)

With this, the second term in Eq. (3.5) becomes

[

R
O

j

]

δ[Tj ]
TQ

j

int = −
[

R
O

j

]

[Zj ]
T
[

F̂
j

int

]T
δqj,j . (3.22)

At this point, the transformation from the local interface coordinates to the global interface

coordinates can again be made using Eq. (2.19):

[

R
O

j

]

δ[Tj ]
TQ

j

int = −
[

R
O

j

]

[Zj ]
T
[

F̂
j

int

]T
[Tj ]

[

R
j

O

]

δqO,O . (3.23)

In short form, this can be written as

[

R
O

j

]

δ[Tj ]
TQ

j

int =
[

R
O

j

]

[K2]
[

R
j

O

]

δqO,O , [K2] ≡ −[Zj ]
T
[

F̂
j

int

]T
[Tj ]. (3.24)

3.4 Third tangent stiffness term: [K3]

For the third term in Eq. (3.5), the variation of the rotation matrix is rewritten with Eq. (2.10)

and for the internal forces Eq. (3.18) is used:

δ
[

R
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]
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TQ
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R
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j
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j Q̂
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In this, δπ
j,O

j and Q̂
j

i can be interchanged by considering the following:
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This can be written in compact form as
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Substitution of Eq. (3.27) and using the transformation Eq. (2.18) to express the virtual

position of the floating frame in terms of the virtual position of the interface coordinates

yields for the third term in Eq. (3.5):

δ
[
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O

j

]

[Tj ]
TQ

j

int = −
[

R
O

j

]([

F̂
j

int

]

+
[

M̂
j

int

])

[Zj ]
[

R
j

O

]

δqO,O . (3.28)

And so the third term in Eq. (3.5) can be expressed as

δ
[
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O

j

]
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TQ

j

int =
[
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]
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([

F̂
j

int

]
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int

])

[Zj ]. (3.29)

Combining Eqs. (3.17), (3.24) and (3.29) yields an expression for the virtual change in the

equilibrium equation in terms of the variation in global interface coordinates:

[

R
O

j

](

[K1] + [K2] + [K3]
)[

R
j

O

]

δqO,O = δQO
ext. (3.30)

And thus the expression for the tangential stiffness matrix is obtained:

Kt =
[

R
O

j

](

[K1] + [K2] + [K3]
)[

R
j

O

]

. (3.31)

It can be seen that it consists of a local stiffness matrix, rotated to the global frame. The local

tangential stiffness matrix contains the local material stiffness matrix. The matrices [K2] and

[K3] together form the geometric stiffness matrix Kg . They depend explicitly on the internal

forces by means of [F̂
j

int] and [M̂
j

int]. Moreover, the geometric stiffness matrix depends on

the deformation of the body by means of the transformation matrices [Zj ] and [Tj ].

4 Numerical validation: equilibrium analysis

In order to investigate the effect of the tangent stiffness matrix in equilibrium analysis, a

static validation problem is used. In this static problem, a cantilever beam with circular

cross section is considered. The total length of the beam is 1 m. The outer radius of the cross

section is 0.01 m with a wall thickness of 0.001 m. The Young modulus is 70.0E9 Pa. The

beam subjected to a vertical tip force that is applied with 100 N increments. Within each load

increment, Newton–Raphson iterations are performed until the numerical solution satisfies

equilibrium within a certain error margin.

Figure 3 shows the beam’s deformed configuration for applied loads of 300, 1000 and

10000 N when using one, three and ten bodies. For each body, only the 12 Craig–Bampton

boundary modes are taken into consideration. For each body, the floating frame is attached to

the center of mass. In [3], it was already shown that results obtained with the new method are

in good agreement with results obtained with finite element software Ansys and multibody

software Spacar [8]. In this analysis, it was observed that, for low values of the applied load,

exactly the same solutions were obtained when only the material stiffness matrix [K1] was

used instead of the full tangential stiffness matrix. However, for high values of the applied

load, simulations in which only the material stiffness matrix is used do not converge. In

these cases, increasing the number of load increments does not work: [K2] and [K3] must

be included. In this example, convergence was reached for loads up to approximately 500 N

when only the material stiffness matrix was used. Moreover, it was observed that when using

one body, the simulation up to a load of 10 000 N did not converge. More than one body is

required to reach such high loads.
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Fig. 3 Deflected beam

configuration, using 1, 3 and 10

bodies. Graphs were plotted

using Matlab and the figure was

created using Adobe Illustrator

Fig. 4 Convergence of the

solution when increasing the

number of bodies. The graphs

were plotted using Matlab and

the figure was created using

Adobe Illustrator

Figure 4 shows the relative error of the tip displacement as a function of the number

of bodies for applied loads of 300, 1000 and 10 000 N. To this end, the simulation with

ten bodies is used as a reference. The difference in tip displacement with respect to the

simulation with ten bodies is computed and divided by the total tip displacement of the

simulation with ten bodies. From this figure, it can be seen that the difference in tip position

when using ten bodies instead of nine is less than 1%. Also, it can be seen that when one is

willing to accept a relative error of 5%, one needs one, two and four bodies for loads up to

300, 1000 and 10 000 N, respectively.

Figures 5 and 6 show the convergence of the solution with increasing iterations for an

applied load of 500 N, using the full tangent stiffness matrix and material stiffness matrix,

respectively. In these figures, the vertical axes display the magnitude of the iteration’s dis-

placement increment. From both figures it can be seen that 5 load increments are used and

that within each load increment multiple iterations are used to reach equilibrium. It can be

seen that when the full tangent stiffness matrix is used, the required number of iterations

is lower. Moreover, the number of required iterations per load increment remains constant,

even at higher loads. If only the material stiffness matrix is used, the required number of

iterations per load step increases significantly at higher loads.
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Fig. 5 Increment in the

generalized coordinates for

increasing iterations when using

the full tangent stiffness matrix.

The graph was plotted using

Matlab and the figure was created

using Adobe Illustrator

Fig. 6 Increment in the

generalized coordinates for

increasing iterations when using

the material stiffness matrix only.

The graph was plotted using

Matlab and the figure was created

using Adobe Illustrator

From this static validation problem it is learned that, for high values of the applied load,

taking full tangent stiffness matrix into account is essential for convergence. For low val-

ues of the applied load, the material stiffness matrix is sufficient to guarantee convergence,

but more iterations are required to reach this convergence. For this reason, the full tangent

stiffness matrix is always advised, even when performing simulations in which the applied

loads remain small.

5 Numerical validation: dynamic analysis

In order to investigate the effect of the tangent stiffness matrix in dynamic analysis, mul-

tiple dynamic validation problems are used. Those problems consist of a cantilever beam

subjected to a dynamic tip load, a rotating beam and 2D and 3D slider-crank mechanisms.

In all simulations, only the 12 Craig–Bampton boundary modes are taken into account for

each body. For each body, the floating frame is attached to the center of mass. The Adams–

Moulton implicit time integration is used. In this section, simulation results are be presented

in which simulations with and without the use of the Jacobian are compared. The Jacobian

is based on either the full tangent stiffness matrix or based on the material stiffness matrix

only. In all simulations, it was observed that not the accuracy of the numerical solution is
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Fig. 7 Vertical tip position of

the beam using 1, 3 and ten

bodies. The graphs were plotted

using Matlab and the figure was

created using Adobe Illustrator

influenced by which form of the Jacobian is used, but only the simulation time required to

obtain this solution.

5.1 Cantilever beam

In the dynamic cantilever beam problem, the same cantilever beam is used as in the static

problem described in the previous section. However, in this case, a transient vertical tip force

is applied. In 0.05 s, the force is increased linearly from 0 to 2500 N and maintained constant

at this value after 0.05 s. A simulation was performed using ten bodies and validated with

multibody software Adams and Spacar, from which it was concluded that the new method

yields reliable results. Then simulations were performed with a varying number of bodies,

according to the new method. Figure 7 shows the vertical tip position as a function of time

when using one, three and ten bodies.

Figure 8 shows the relative error of the vertical tip displacement as a function of the

number of bodies. To this end, the simulation with ten bodies is used as a reference and the

root mean square error of the entire time simulation is used for comparison. The difference

in tip position when using ten bodies instead of nine is less than 1%.

Figure 9 shows the effect of including the Jacobian in the numerical time integration

scheme on the simulation time. In order to compare the effects of simulations when using

a varying number of bodies, the vertical axis displays the simulation time of a simulation

in which the Jacobian is used relative to the simulation time when no Jacobian is used.

This is done such that when this relative measure equals 1, both simulations were equally

fast. When the relative measure is lower or higher than 1, including the Jacobian made the

simulation faster or higher, respectively. From this figure, it can be seen that the use of the

Jacobian is only beneficial when a small number of bodies is used. Simulations with two

or four bodies showed that using a Jacobian saves approximately 40% of simulation time.

However, when six or more bodies are used, up to 50% more simulation time is required

when using the Jacobian. Slightly shorter simulation times are obtained when using the full

tangent stiffness matrix instead of the material stiffness matrix.

5.2 Rotating beam

In the rotating beam problem, again the same beam properties are used as in the previous

problems. The beam is hinged at its left interface point and given a constant angular velocity
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Fig. 8 Convergence of the

solution when increasing the

number of bodies. The graph was

plotted using Matlab and the

figure was created using Adobe

Illustrator

Fig. 9 Effect of including a

Jacobian based on the full

tangent stiffness matrix or

material stiffness matrix only on

simulation time. The graphs were

plotted using Matlab and the

figure was created using Adobe

Illustrator

Fig. 10 Graphical representation

of the rotating beam problem,

subjected to a transient

perpendicular tip force. The

figure was made using InkScape

of 100 rad/s. During the first 0.01 s of the simulation, a constant tip force of 50 N is applied

perpendicular to the beam, in the plane of rotation. Figure 10 shows a graphical representa-

tion of the problem. Figure 11 shows the tip deflection as a function of time when using one,

three and ten bodies. Figure 12 shows the relative error of the tip deflection as a function of

the number of bodies. To this end, the simulation with ten bodies is used as a reference and

the root mean square error of the entire time simulation is used for comparison. The differ-

ence in tip position when using ten bodies instead of nine is less than 1%. Figure 13 shows

the effect of including the Jacobian in the time integration on the simulation time. From this

figure it can be seen that when using four bodies or more, using the Jacobian requires up to

50% more simulation time than when no Jacobian is used. There is little difference between

using the full tangential stiffness matrix and using the material stiffness matrix only.
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Fig. 11 Deflection of the tip of

the beam, measured relative from

its dynamic equilibrium position,

using 1, 3 and ten bodies. The

graphs were plotted using Matlab

and the figure was created using

Adobe Illustrator

Fig. 12 Convergence of the

solution when increasing the

number of bodies. The graph was

plotted using Matlab and the

figure was created using Adobe

Illustrator

Fig. 13 Effect of including a

Jacobian based on the full

tangent stiffness matrix or

material stiffness matrix only on

simulation time. The graphs were

plotted using Matlab and the

figure was created using Adobe

Illustrator

5.3 D slider-crank

The 2D slider-crank problem is adopted from [9] and shown in Fig. 14. The rigid crank

with length of 0.15 m is rotating with a constant angular velocity of 150 rad/s. The flexible
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Fig. 14 2D Slider-crank

mechanism with flexible

connector. Figure was made

using InkScape

Fig. 15 Midpoint deformation

of the connector, using 2, 4 and

10 bodies. Graphs were plotted

using Matlab and the figure was

created using Adobe Illustrator

connector with length of 0.3 m has a uniform circular cross section with a diameter of

0.006 m and is made of steel. In the simulation a Young’s modulus of 0.2E12 Pa and a

mass density of 7.87E3 kg/m3 is used. The end of the connector is connected to a slider

with a mass half the mass of the connector. The slider is able to translate without friction

on its base. The angular velocity of the crank introduces an initial linear velocity and an

angular velocity of the connector, assuming no deformation. Figure 15 shows the transverse

deflection of the midpoint of the flexible connector when using two, four and ten bodies.

Figure 16 shows the relative error of the midpoint deflection as a function of the number

of bodies. To this end, the simulation with ten bodies is used as a reference and the root

mean square error of the entire time simulation is used for comparison. The difference in tip

position when using ten bodies instead of nine is less than 1%. Figure 17 shows the effect

of including the Jacobian in the time integration on the simulation time. From this figure, it

can be seen that using the Jacobian always reduces the simulation time by approximately a

factor 2. There is little difference between using the full tangential stiffness matrix and using

the material stiffness matrix only.

5.4 3D slider-crank

The dynamic 3D slider-crank mechanism is adopted from [10] and shown in Fig. 18. The

physical properties of the mechanism are the same as in the 2D case described above. The

horizontal position of the rotation axis d is 0.1 m. In the initial configuration, the crank is

oriented vertically upward. Figure 19 shows the deflection of the midpoint of the flexible

connector in its local y-direction when using two, four and ten bodies. Figure 20 shows the

relative error of the midpoint deflection as a function of the number of bodies. To this end,

the simulation with ten bodies is used as a reference and the root mean square error of the

entire time simulation is used for comparison. The difference in tip position when using ten
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Fig. 16 Convergence of the

solution when increasing the

number of bodies. The graph was

plotted using Matlab and the

figure was created using Adobe

Illustrator

Fig. 17 Effect of including a

Jacobian based on the full

tangent stiffness matrix or

material stiffness matrix only on

simulation time. The graphs were

plotted using Matlab and the

figure was created using Adobe

Illustrator

Fig. 18 3D Slider-crank

mechanism with flexible

connector. The figure was made

using InkScape

bodies instead of nine is less than 1%. Figure 21 shows the effect of including the Jacobian

in the time integration on the simulation time. It can be seen that for this problem the effect

of using the Jacobian on the simulation times is only small. Depending on the number of

bodies and on which stiffness matrix is used, simulation times are in the order of 10% shorter

or longer compared to the simulation in which no Jacobian is used. The simulation of ten

bodies using the material stiffness matrix did not converge.
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Fig. 19 Midpoint deformation

of the connector, using 2, 4 and

10 bodies. The graphs were

plotted using Matlab and the

figure was created using Adobe

Illustrator

Fig. 20 Convergence of the

solution when increasing the

number of bodies. The graph was

plotted using Matlab and the

figure was created using Adobe

Illustrator

Fig. 21 Effect of including a

Jacobian based on the full

tangent stiffness matrix or

material stiffness matrix only on

simulation time. The graphs were

plotted using Matlab and the

figure was created using Adobe

Illustrator

6 Conclusion

The floating frame formulation has the advantage that model order reduction methods can be

applied on the linear finite element models of individual bodies. In the newly presented float-
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ing frame formulation, the use of Craig–Bampton interface modes as local shape functions is

crucial. The fact that the Craig–Bampton modes are able to describe six rigid body motions

is exploited to establish a relation between the floating frame coordinates and the absolute

interface coordinates. In this way, the equilibrium equations and equations of motion of a

flexible multibody system can be expressed in terms of the absolute interface coordinates.

As a consequence, no Lagrange multipliers are required in order to enforce kinematic con-

straints between bodies.

The use of the full tangent stiffness matrix can be of importance in both static and dy-

namic analysis, because of the fact that incremental solution procedures are used. Moreover,

for some applications the importance of the tangent stiffness matrix is based on physical

grounds, in particular when deformations become large. In this work, the tangent stiffness

matrix for the new absolute interface coordinates floating frame formulation was developed.

To this end, the variation in the equation of equilibrium was taken. The resulting expressions

were rearranged such that the global tangent stiffness matrix can be written as a local tan-

gent stiffness matrix, rotated to the global frame. The local tangent stiffness matrix consists

of the material stiffness matrix, which is based directly on the linear finite element model,

and a geometric stiffness matrix, which is based on the internal elastic forces, experienced

by the interface points. Hence, the tangent stiffness matrix depends both on the orientation

of the floating frame and on the local elastic deformation of the body.

Validation by means of numerical problems has shown that in the case of high loads

and/or large deformations, the full tangent stiffness matrix must be taken into account in or-

der to guarantee convergence. In dynamic simulations, the use of a Jacobian in the numerical

time integration of the equation of motion shows mixed results. For some problems, the sim-

ulation times reduced when using the Jacobian, whereas for other problems the simulation

times increased. In all simulations it was seen that simplifying the tangent stiffness by the

material stiffness only does not result in a significant reduction of the simulation time. For

some problems, simulations using the material stiffness only failed to converge. Therefore,

it is recommended that if the Jacobian is used, the full tangential stiffness is implemented.

It is concluded that in the new formulation, taking into account the full tangential stiffness

matrix has no influence on the accuracy of the solution and little influence on the simulation

times. Based on the many dynamic problems studied in the work, no generally applicable

advise can be given about whether to include or not to include the Jacobian.

The absolute interface coordinates floating frame formulations as previously published is

an important step in creating efficient superelements of arbitrarily shaped three-dimensional

bodies, based on the bodies’ linear finite element models. With the developments presented

in this paper, the inclusion of the tangent stiffness matrix is realized, which can be taken

into account directly when creating those superelements. It is advised to implement the full

tangent stiffness matrix at all times, because its expression is readily available, it may be

required for convergence and does not influence the computational costs significantly. In

this sense, this work is also a contribution to the further development of reduction methods

suitable for geometrically nonlinear flexible multibody systems.
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