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ABSTRACT.   This paper investigates the   3¿  complex of Kohn and Rossi on
the unit sphere in complex  rc-space  (considered as the boundary of the unit ball).
The methods are Fourier-analytic, exploiting the fact that the unitary group  U(n)
acts homogeneously on the complex.  We decompose the spaces of sections J_nto
irreducible components under the action of  U(n)  and compute the action of  3¿  on
each irreducible piece.  We then display the connection between the  3¿,  complex
and the Dolbeault complexes of certainline bundles on complex projective space.
Precise global regularity theorems for  3/,  are proved, including a Sobolev-type
estimate for norms related to 3¿.   Finally, we solve the  3-Neumann problem on
the unit ball and obtain a proof by explicit calculations of the noncoercive nature
of this problem.

I.  INTRODUCTION

The  tangential Cauchy- Rie mann complex, or <9,   complex, is a complex of dif-

ferential operators  living on the boundary of a complex manifold which arises as

follows.  Let  M  be a complex manifold of  (complex) dimension n with smooth

boundary  bM, embedded in a slightly larger open manifold  M ; we assume  bM  is

defined by the equation  R = 0 where  R   is a  C°°  real-valued function on a neigh-

borhood of bM with  R < 0  inside  M,   R > 0  outside  M, and dR ¿ 0 on  bM.  Let
A'1 be the vector bundle of differential forms of type  (z, /') on  M , and let A_'J be

the sheaf of germs of sections of A1' over M  which are smooth up to the boundary,

i.e. which are restrictions of smooth sections over M .  Since  dR 4- 0 on  bM, the

set of all  <f e ($..Aij\bM  of the form  ¿f = d A dR  is a subbundle of ® ..Aij'\bM
which we denote by  I{dR) (for "the ideal generated by  dR"). Let  B1] be the
quotient of Al'\bM  by  (Al,\bM) O I(dR), and let  B" be its sheaf of germs of sec-
tions.  Then if C11 denotes the subsheaf of A'1 consisting of germs of sections

whose restriction to  bM lies in  I(dR) (so in particular  C1     consists of germs of

sections of A1    vanishing on  bM), we have the exact sequence
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(1) 0—*£*'-+&—§*'-+ 0.

The sheaves Al] form a complex via the Cauchy-Riemann operator d:

(2) 0— A*'0 JL A*1-L ... JL A**-* 0.
Since d(« A Ï9K) = r?z¿ A ̂    oXÇ'7') CCi(' + 1).   Therefore, by the usual diagram

chase, there is induced from (1) and (2) a complex

the  <?,   complex.  It is easily seen that the  d,   complex is independent of the

choice  of R, up to isomorphism.  Although the  d complex is elliptic, the  d,   com-

plex is not; in fact, the cotangent vectors   i(d — d)R  are characteristic at each

point.

We assume from now on that  M    carries a hermitian metric.  We denote the

pointwise scalar products with respect to this metric by pointing brackets   / , \

and the global  (integrated) scalar products by round brackets  ( , ); thus  (u, v) =

f (u, v) .  We  further denote  the    L     norms with respect to  ( , ) by   ||   ||   and the

Sobolev s-norms by   ||   ||   .

B'1 may now be identified with the  (pointwise) orthogonal complement of

I(dR)  in A11\bM, and the operator d,   is defined as follows.   If u € TiB'1)  (V will
always denote spaces of global sections), let  u'   extend  u smoothly to  M .  Then

d,u  is the orthogonal projection of du'\bM  onto  B , and this definition is

independent of the extension  u'.  We may also define the formal adjoint  D,   of d,

by  (i>hu, v) = (u, d,v), which yields the adjoint complex

hb b, b.
o^b10 ^-_ßü^... JLg«—ï)^.0

and the Laplacian  \_¡h = d.b, + O.d,.
The tangential Cauchy-Riemann operators were studied by H. Lewy  [10]  in

the case  n = 2  in connection with the problem of finding a holomorphic function

in a region of C    with given boundary values.   This work was later extended by

Kohn and Rossi  [9], who formalized the notion of   "d,   complex."   Meanwhile,

however, Lewy had been led by his work to the discovery of a smooth differential

equation which is not locally solvable   [ll], which has had vast repercussions in

the theory of partial differential equations  (cf. Trêves  [l6]).   In fact, Lewy's

example is the d,   operator for a certain strongly pseudoconvex domain in   C  ,

and it can be shown from Hórmander's criterion [l6|  that the d,   operator for any

strongly pseudoconvex 2-manifold is not locally solvable.

If M  is compact, the  d,   complex on  bM is intimately connected with the

d-Neumann problem on  M.  A form  u e T{A21)  is said to satisfy the d-Neumann
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boundary conditions  if u\bM £ F(B'')  and du\bM er(B   '     ').  A simple argument

by Stokes' theorem shows that these conditions are equivalent to the requirement

that («, dv) = {bu, v)  for all v € r(A¿0'~ U)  and  (du, dv) = (bdu, v) for all
v 6 V(A1}), where  h is the formal adjoint of d.  If we form the Laplacian  Q =

db + bd, the (9-Neumann problem can be roughly stated as the problem of solving

the equation  |   \u = v where  u satisfies the (9-Neumann conditions. More precisely,

the restriction of [ J to the space of forms satisfying the  (9-Neumann conditions

is a positive hermitian operator which has a natural extension  (the Friedrichs

extension) to a selfadjoint operator; the  (9-Neumann problem is the analysis of

this operator.

The  (9-Neumann problem is a noncoercive boundary value problem; that is,

one does not have the estimate  ||«|| s+   < c (\\\^\u\\ 2 + \\u\\ 2).   However, Kohn [6]

(cf. also Kohn and Nirenberg [8])  has shown that under suitable pseudoconvexity

conditions, the estimate   \\u\\ 2   : < c(\\\Z\u\\   + \\u\\ l) holds, and that in this case one

obtains existence and regularity up to the boundary, hypo-ellipticity, finite-dimen-

sionality of the harmonic space, and other nice properties.   In particular, this

leads to a Hodge decomposition for the  d complex, which has important applica-

tions to the theory of several complex variables.

The  d,   complex is the boundary complex associated to the  (9-Neumann prob-

lem in accordance with Spencer's general theory of Neumann problems for over-

determined elliptic systems  (cf. Sweeney  [15], also Kohn and Rossi  [9]).

The  d,   complex is important for another reason.   Under suitable pseudocon-

vexity conditions, the Laplacian  Q,   has been shown by Kohn  [7l  to satisfy the

"^-estimate"   ||u|| ?, < c((Q, u, u) + \\u\\  ).  Operators satisfying such "subelliptic"

estimates have many of the qualitative properties of elliptic operators, such as

regularity of weak solutions and compactness of the Green's operator (cf. Kohn and

Nirenberg [8]), and they have recently attracted considerable attention from

Ho'rmander, Egorov, and others.  LJ,   is the best-known example of these opera-

tors and is thus a good starting point for work in this area.

It  is  our purpose  here  to  investigate  in detail  the  case  M = B    =

\z 6 C":|z| < 1|,  bM = S    =\z e C": |z| = li.   In this situation the  d,   complex
has an added significance: it is the prototype example of the "transversally

elliptic" operators currently being studied by Atiyah and his coworkers.  An op-

erator on the manifold  X  is said to be   transversally elliptic with respect to a

group action on  X  if it commutes with the action, and the cotangent vectors

orthogonal to the orbits of the group are noncharacteristic.   In our case, the circle

group S .  acts  (as a subset of  C) by scalar multiplication on S  , and the charac-

teristics are precisely the cotangent vectors to the orbits of this action.

We shall restrict our attention to forms of purely antiholomorphic type, i.e.
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z = 0.  All the essential features of the situation are present in this special case,

so we will lose no interesting information while gaining considerably in notational

simplicity—a boon for which the reader will soon have cause to be grateful.   In any

event, it will be clear how to modify our procedure to obtain analogous results for

z > 0.

Let us take a closer  look at the operator d,   on  S   . We take  R = r - 1, where

r = CLn.zz)2 is the distance from the origin.   Let  / 6 T(B     ) be a function on

S  , and let /    extend  / to  C".  Then  d, f is the restriction to  S    ofn' ' ' b' n

df'  -{(df, dr)/(dr, dr))dr

i "z \ Li dz, 2r  r~Z ¿ra-\       a \e = l       b £> = ! / a-l

y(*L   !î fï ill
*" l dz„       r2    u,    b dz

z, —'—  1 d'zb
a = \  \"   a       r     b=l       "-b

since   (dF, dz.) = 25   ,.  When we restrict to S   , of course, we may neglect thex     a b' ab n' jo
factor of r .

In particular,

_ _ « _ _
(9,z.= dz. - z .   >    z dz   = dz . — 2 z .dr.b   i , ¿-,   a      a

a-l

The forms  d,z~. will be of fundamental importance, and we denote them by  £..

Since  {dz     A . . . A dz . : i, <• • • < i.\ is a basis for A0'  at each  point,'1 ij       1 ; r

{£.    A .. . A £. ; i    <. . . < i J  spans  B  J at each point.   It is not a basis, of

course: the   ¿.'s satisfy   ~Í.n,z.¿-= 0.^z '       1   i ^z _
We can now write down the general formula for d,.  For functions, with /, /

as above,

^/=Z— d'z.-Tz-z     V-dz.
b       idzi        '     fi    '  adza        '

á—i -,—        ¿—i      a   i  -,— ai dz.      ,• a dz.

-Y^idz.-i.Yz dz )*Y,2L¿

d,   now extends as a derivation in the usual way:
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b (.<L<. W/-A0
\zl<"-<zy '/

«9/;   .
=   y  y ——— lac a .... a ¿.

where /. extends  /.
•lyij ^ 'ly-ij _

Our program will be to make a detailed study of the d,   complex by exploiting

its symmetry with respect to the unitary group  U(n).  The sphere Sn   is a homo-

geneous space, S    = U(n)/U(n - 1), and all the vector bundles  B  ' are homoge-

neous bundles since   U(n) commutes with ¡9 and preserves the radial function  r.

For the same reason, U(n) commutes with d,.  We will therefore obtain information

about (9,   by decomposing the spaces of sections under  the group action.   This

decomposition is accomplished and a formula is obtained for the eigenvalues of

the d,   complex in Chapter II.  In Chapter III we show how the decomposition

under  the circle action relates the d,   complex to the Dolbeault complexes of line

bundles over  CP"_   .  We then derive in Chapter IV the global regularity results

for à,   in a more precise form than can be obtained from the general estimates,

and we prove a Sobolev-type theorem for norms related to l]. .   Finally, in Chap-

ter V we combine these methods with the theory of Bessel functions to solve the

(9-Neumann problem on the ball B     by eigenform expansions and obtain a rather

striking demonstration by explicit calculations of the noncoercive nature of this

problem.

The author wishes to express his gratitude to J. J. Kohn, E. M. Stein, and

D. C. Spencer for their invaluable advice and encouragement while this work was

in preparation.

II. GROUP REPRESENTATIONS
(DECOMPOSITION OF THE d~b COMPLEX)

1.   Preliminaries.  We shall assume the basic theory of unitary representations

of compact groups as presented in Stein  [14] or Weil  [18].   In addition, we need

the notion of induced representations.   If G  is a compact Lie group and H a

closed subgroup, and  p  is a unitary representation of H on a Hubert space   V,

we may form the homogeneous vector bundle  V = V x„ G  on  G/H with fiber  V;

then there is a natural representation of G on sections of  V given by  (gs)(x) =

g[s(g-  x)].  Let p. be a G-invariant measure on  G/H (which always exists for

compact  G), and let  L  (V, p) be the completion of r(V)  with respect to the

scalar product induced by p..  Then the representation of G  on  V(V) extends to a
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unitary representation of G  on  L  (V, p)  which is called the   induced representa-

tion of  p and is denoted by   i(p).  The fundamental fact about induced representa-

tions is the following:

Frobenius Reciprocity Theorem.   Let  G be a compact group, H a closed sub-

group, a an irreducible representation of G, and p an irreducible representation

of H.   Then a occurs in i(p) with the same multiplicity as  p occurs in a \H.

Proof.  See Weil  [18, §23].   (Note.   Here, as in other places, we identify the

notions of  "representation" and "equivalence class of representations" par abus

de langage. )

Now S    = U(n)/U(n - 1)  where we think of  U(n - l)  as the isotropy group of

the base point z Q = (0, 0, • • • , 0,1), that is, we embed  U(n - 1)  in   U(n) by
A \—> (      ,), and we take as invariant measure the natural measure on S     induced0   1' _ n
from  C".  Since   U(n) preserves the form ¿V, the bundles  B   7  are homogeneous

bundles.  Moreover, since   2ÓVI      = dz  I     , the fiber  B  7I       is just the span of' z g rt1 z o '^0
{dz.   A ... A dz . I     : i, < • • • < i. < n — \\,  Therefore the representation of

U(n - l)  on  B  7|z„ is just the  /th exterior power of the representation on the

antiholomorphic covectors on   C"~   .  This representation, however, is the conju-

gate of the representation on the holomorphic covectors, which in turn is the con-

tragradient of the standard representation on   Cn_1.  Since contragradient is the

same as conjugate for unitary representations, we have the following proposition:

Theorem 1. Let %' be the Hilbert space completion of V{B '). Then the

representation of U(n) on S7 is the induced representation of the jth exterior

power of the standard representation of U(n — 1)  on  C"     .

In order to analyze the spaces  J57, we need more specific information about

representations of the unitary groups.

2.   Representations of U(n).  We present here a brief outline of the representa-

tion theory of U(n) as developed in Boerner [l]  and'Weyl  [19].   For details and

proofs the reader is referred to these treatises, especially to Boerner.

The irreducible representations of  U(n) are classified by n-tuples of integers

(m .,-••, m ) with  m , > m 2 > • • • > m  ; the representation corresponding to

(m .,•••, m )  will be denoted by pirn ,,•••, m ).  These representations may be

described in the following way.

First assume  m    > 0.  We may then form the   Young diagram of the w-tuple

(m^,---,m ), which is a semirectangular array of boxes with m 1   boxes in the

first row, m2 boxes in the second row, • • • , m . boxes in the  z'th row.   For example,

the Young diagram of  (6, 5, 3, 1)  is

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



1972] THE TANGENTIAL CAUCHY-RIEMANN COMPLEX ON SPHERES 89

The standard tableau  is obtained by putting the numbers from   1  to   lLnmi in the

boxes in order along the columns, for example

10

11

12

13 15

The standard tableau defines an element  T of the group ring of the symmetric

group on   ~Z,m . letters as follows.   Let o denote any permutation of (l, ■•• ,   £m.)

which leaves the rows of the tableau invariant, i.e. which interchanges only num-

bers occurring in the same row.  Likewise, let  r denote any permutation which

leaves the columns invariant.  Then  T = S   ^^(sgn r)ra.  It can be shown that  T

is idempotent up to a constant factor.

Now  U(n) acts on the tensor space &       * C" by the   Sm.th tensor power of

the standard representation on  C".  On the other hand, the symmetric group, and

hence its group ring, acts on ®      'C" by permutation of indices.  The element  T

thus defines a projection  (up to a constant factor) on (¿y      l C" whose range

V(r. is an irreducible invariant subspace under the action of  U(n).

The representation of  U(n) on   V(m ,, ■ )  is  p{r ).

Several remarks are in order at this point.   The effect of the "Young sym-

metrizer"  T on a tensor is first to symmetrize it with respect to the indices

occurring in the same rows of the standard tableau, then to skew-symmetrize it

with respect to the indices occuring in the same columns.  (Note that the latter

operation partially undoes the symmetry achieved by the former.) The space

V(r. may therefore be regarded as a subspace of

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



90 G. B. FOLLAND [September

[<8>m"(AnC")] ® [<gT"-i-m*(A*-1c")] ® ... ® [<8>mi_m2C"].

In particular, if m , = ••• = m .= 1,  m .,=••• = m    =0,   V(m ,,•••, »z )= A7 C".r I 77 + 1 n '       v     1' '      ra
Hence  the   /th  exterior power of the  standard representation  on   C" is

p(l, I,--., 1, 0, O,--., 0)  (/  ones).
It is now easy to see that

p{mv---, m) = (det)m"p(r?z1 -^■■•, mB_j - mn, 0).

We therefore take this equation as the definition of p(m .,■••, m ) in the general

case. It can then be shown that {p(m ., • • • , m ): m . € Z, m ,>•••> m ! forms a

complete set of inequivalent irreducible representations of  U(n).

The contragradient or conjugate representation to p(m .,•••, m )  is

p( — m  ,..., — m.).  In particular, the contragradient to  p(l,0, • • • , 0)  is

p(0, • • • , 0, - 1) = (det)-   p(l, • • •, 1, 0); the reader will recognize this fact as

nothing more than the relation between the  (n — 1) x (n — 1)  minors of a matrix

and its inverse transpose.  Now consider a representation  p(m., • • • , m )  with

m    < 0,  m   _.> 0.  This may be regarded as acting on a subspace  V(m .,•••, m )

of

[®",n-l-'»n(/\',-1C»)] ® . . .   ® [(g)ml-m2C"]

via  (det)   " times the standard representation on this space.   But by the preceding

remarks,   A"-   C" with the action (det)-   p(l,-.., 1, 0)  is isomorphic as a

U(ra)-module to  C"   , the dual space of  C".   Therefore we may regard  V(m ,,•••, m )

as a subspace of

[ <grm"C"*] ® [^»-'(A'-'c1)]
®[(g)m«-2-'"n-i(A"-2c")]®...®[(g)mi-"22C"],

and the representation  p(m^, • • • , m  )  is given by the standard action of  U(n) on

this space.

Let e ,,..., e    be the canonical basis for C".  Then it is readily verified

that for m   > 0 the tensorn —

P(mv • • • , mj

= [®m*(eiA... ^en)]

&[<gr«-i-m"(eiA ...a en_1)]®...®[<gr™ei]
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lies in   V(m ,,•••, m ).  (One need only check that the Young symmetrizer leaves

it fixed.) Likewise for m    < 0,  m    _ . > 0, the tensor

P{mv ■ ■ ■ , m^

= [(8)"m"<]®[<2>m"-1(eiA  ... ^en_1)]®...®[®ml~m2el]

lies in  Vim ,,••-, m )  since e*   corresponds to  e ,  A . • . A e      .  under the iden-xl''rz n r 1 n— 1

tification of  C"     with   A"-1C".   P(m v ■ • •, m ) will be called the  primitive
vector for p(m ., ■ • •, m ).  (This terminology comes from the theory of semisimple

Lie algebras, which applies if we restrict our representations to the simple group

sum.)
Finally, we need to know how  p(m „ • • • , m ) decomposes when it is restricted

to   U(n - I).  This question is answered by the  Branching Theorem:

p{mv • • ■ , mn)\ V(n - l) = 0 p(p ^ • • • , pn_]).
m l>Ml>m2>'">'J72-l>m??

3.   Decomposition of the spaces ,dj.  We are now ready to decompose the  d,

complex under the action of  U(n).  The first step is to identify the irreducible

representations occurring in &1.

We introduce the following notation: if a, b, • • • € Z and k ., /e     • ■ • e Z  ,

(íLt  i ÍL¿  ; • • •)  denotes the  {k. + k 2 + • • • )-tuple whose first  k .   entries are  a,

whose next   k     entries are  b,  etc.   For  example,   (1_,, - j_2, -  2^2) =

(1, 1, 1, - 1, — 1, — 2, — 2). Naturally we still write a instead of a_., and fl_„ is a zero-

tuple, so  (a_0, b_k, ■ ■ •) ~(b_k, • • •).

Theorem 2.

%°^       0       Piq,<ln_2,-P);        S""1*        ©       p(q,ln_2,-p);
p>0,q>0 p>-l,q>l

and for  1 < / < n - 2,

POi I"        ©       p{q, 1     0._2, - pi] ©   [        ©       p{q, 1, 0B    .v - P)\
\_p>0,q>l |_P>0>9>1 J-

Proof.  This is just a matter of combining Theorem 1, the Frobenius Reci-

procity Theorem, the Branching Theorem, and the observation that the  ;'th exterior

power of the standard representation of  U(n — 1)  on  C"        is  p(J_ ., ()        _i).

Thus  p(m     • • • , m  ) occurs in  t>    (and with multiplicity one) if and only if m . >

0 > • • • > 0 > m  ; it occurs in  ®"-     if and only ifm,>l>...>l>77z; and it— — —        72' ' 1   — — — —        72'

occurs in  S7 (1 < ; < n - 2) if and only Ífm,>l>>-.>l>m.   , > 0 > • • • > 0
> m  .  Setting  m.=q,m    = - p, we obtain the theorem.     Q.E.D.
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We shall denote by   <I>     . (respectively  *?     .) the subspace of ÍB7 corresponding

to the representation p{q, 1_., 0.   _•_?> ~ P^ (respectively p(q, l_y_p 0.„_y_i> ~ p))-

Thus S°= ®p>0tq>0*pJ, iB""-"r= e^-^üVt»-!).^2'; '
®„> n    -> , \§ ^   • ffi y*.    ]  for  1 < / < 72 - 2.   Our next task will be to identify thesep¿- 0,q¿ 1        pqj  ^      Pqr —     —
subspaces explicity.

Recall that the space  V(c7, 1^, 0 n_k_2, - p)  (q > 1, p > 0, 0 < k < n - 2)  on

which p(?, L^> 0.   -k-v ~ P^ acts is a subspace of

ci9t = [<g>pc«*] ® [A"+1C"] ® [<8)?_1c"];

likewise   V(0_   _,, p)  is a subspace of C000=®i'C"    and  V(q, 1    _  )  is a sub-
space of

C(-l),(7z-2)=[A"C"]®[®9-1C"].

F*   ■■ C„   • —S7  and  G„   .:
|e . : 1 < i < 721  is the canonical basis for  C", then

We define linear maps   F,   ,: C.   . —► $7  and  G_   .: Ct   ,.    , , —► ÍB7 as follows.   IfP97      i>97 pen      pq(j-i)

?*    ® (e,    A • • • A e,       )®e     ®--.®e "* ? :
c»-l

1 < a. < n, 1 < £>j < • • • < èfc + 1 < «, 1 < c. < tz|

is a basis for C     ,   {p > 0, q > 1), andpqk     r - 7  _

K,® •••  ®<p:  15«,<«l

i(e. A • • • A e ) ® e     ® • • • ® e : 1 < c. < n\
1 n c y cq_\ i

are bases for C\ ,,„  and  C.    ...      „, respectively.   F.,   . and  G^   . are definedpoo (- 1)9(72-2)       r '       ¡597 pqi
on these bases by

F,    .(e*   ® • • • ® e*    ® (e,    A • •• A e,      ) ® e     ® • • • ® «? )
¿"77      »Io «p £>t *;+l cl c9-l

al aP    c\ <=q-\¿-*> blbl ^bi Hy + 1'
z' + l

Si/6«! ® *;• »ñ, •.(«»! A ..'• A eè;) ® cci ® • • • ® eCq_)

c 1 cO- 1     l 7

for ty > 1, p > 0, and
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FPJeax®---®e*ap) = Zai---Zap-

C(_l)«(«-l)((eiA---Ae7z7®ec1®---®%_1)

I    ...z T(-1)I'*W5.£, a ... ¿.... A C,
i=l

Theorem 3-   F„   .1 V(o, 1 ., 0       ■   -,, ~ p) and G„   \V(q, 1 .   .,0      .   .,-p) arePqr    VT —;'—72—; —2'       r /JO71    yl'—J — 1'—72—j — 1'      r'

nonzero and commute with the action of U(n).  Therefore (by Schur's lemma) their

ranees are í>     . and *P     ., respectively, and they are isomorphisms of irreducible6 pqj pqj e '. ' :• -,

Í7(7z)-7720íi'z7/es.

Proof:  We see that Fpqj\V(q, 1_;, 0n_;._2, - p) and Gp,y|V(?, iy^, 0n_y_P - p)
are nonzero by observing that the primitive vectors  P(q, 1_-, 0^   _•_->> — />)  an<^

P(q, 1 .    , , 0 ,, - p)  ace among the basis elements for C.    . and  C,   ,.    ,.,

and their images are clearly nonzero.  Showing that F      . and  G     . commute with

the action of  U(n) is just a matter of unraveling the definitions.  We observe that

the action of  U(n) on the coordinate functions z . is the contragradient of the

standard action on  C", and the action on the conjugate functions  z . and their

differentials dz. is therefore the standard action on  C".  Moreover, the action onz _ _
the  ¿Vs is the standard action on   C"  since  t. = dz.- 2z .dr and  dr is invariant,^z ^z z z
Finally, the mappings taking  e ,     A • • • A e,    to  ¿\    A • ■ •  A ¿\    or

7 7

y(-i)1-1^, ç. a ••• c ••■'AUZ_, bi   bi bi bj
t=l

preserve the skew-symmetry, as is easily verified.   The theorem follows by putting

these facts together with the definition of tensor product representation; details

are left to the reader.     Q.E.D.

We define the forms  cA     . and li,.   . to be the images under  F„   . and  G,   .rpq] rpgj 6 Pq, pq]

of the primitive vectors   P(q, 1_., 0      j   ,, - .p)  and  P(q, l_-_v P_   _-_i> - p)'>

thus

*p.r^i'H%^iUl*^iA;':^"\^i   (q>i,p>o),
i=i

^■3î",^lA'"    A^7 íí>lVP><».

^00=^        (p>0),
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These forms will play a crucial role in our analysis.  The rather peculiar definition

of  i/f,      .   ,   _..  is explained by the easily verified fact that

72

£ A-.'.-Ài     .«*   y(-l)i + nz4. A ... ¿... AC .
^ 1 ^72—1 7Z    /    - Z^l ^2 ^72

1=1

Thus we could also write

which is consistent with the definition of the other i/V    .'s.pqj

4.   Further remarks.   Let us take a closer look at the space  fB    of functions

on  S   .  The primitive vectors  rA     „ = z q z? are the restrictions to S     of harmonic72 r TpqQ in n

polynomials on  Cn, as the Euclidean Laplace operator is

2

T—Î dz dz.2=1 2 Z

Since this operator commutes with the action of  U(n), and this action preserves

homogeneity, it is clear that $     „ consists entirely of harmonic polynomials of

degree p in the  z ,'s and the degree q  in the  z.'s.  Moreover, since the space

}{pq of all such polynomials transforms under  U(n) via the representation

p(q, 0^   _-,, - p)  and this representation occurs with multiplicity one in m  , we

see that í>     „ = H  q.  Therefore we have obtained a refinement of the usual de-
pqO

composition of functions on the sphere into spherical harmonics (cf. Müller [13]):

we have bigraded the spherical harmonics according to their holomorphic and anti-

holomorphic degrees.

We may make some more interesting observations by considering the special

unitary group SU(n).  Since  S    = SU(n)/SU(n — l), we could have carried through

all the preceding discussion in the context of SU(n) and obtained the decomposi-

tion of J)7 by the representations of this group.  Since the irreducible representa-

tions of SU(n) are the same as those of  U(n) modulo powers of the determinant,

the results are essentially the same.   However , two points deserve mention.

First, the spaces  &    and   ß"-     are isomorphic as  SÍ7(77)-modules.  Indeed,

P(q, 0n_2,  p) = (det)-1 p(q + 1, Ln_2, - (P - D), s°   Vo =*(*,-1)(o + l)(7z-l)'
and this isomorphism is displayed on the primitive vectors by the correspondence

= 5KZ(-^AA-Î-Ai,
z'=l

The form
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y (-iv4nz¿, a... c... ac
i—, l*\ ^Z ^72
2 = 1

is invariant under SU(n) and plays the role of a constant function.

Second, in the case  « = 2, we have  5    = SU(2)/SU(1) = SU(2); the represen-

tations  p(q, - p)\SU(2)  exhaust the irreducible representations of 5(7(2) with

p(q, - p)\SU(2) = p(q', - p')\SU(2)  if and only if p + q = p' + q1 ; and dimp(q, - p)
= p + q + 1 (as is easily verified).  Therefore we have recovered the Peter-Weyl

theorem for 5(7(2): each irreducible representation occurs in the left regular repre-

sentation with multiplicity equal to its dimension.

5.   The  d, operator.   The decomposition of the spaces  A1 allows us to calcu-

late the action of d,   explicitly.   By Schur's lemma, since d,   commutes with the

action of  U(n), on each irreducible subspace it must either be zero or an isomor-

phism onto an irreducible subspace of the same type.  In fact, we shall have no

trouble in seeing that d,   is an isomorphism whenever it can be and is zero pre-

cisely when there is no isomorphic subspace for it to map into.

Theorem 4.  d, (<ï>   nn) = 0,  dAV,,   ) = 0, and for p > 0,  q > 1,  (9,(<I>     .) =b       pOW '      b      pqj' i        r —     '   1 —     >      b      pqj

Proof.   By Schur's lemma, to prove the last statement it suffices to show that

(9,   is nonzero on <£     ..  We check it on the primitive vector:

h^hWCH % (-1)!_1 *A A • • • ct ■ • ■ a cJ±)
I=1 7+1

=qzq-lz<>c a ••• a t+1 + zq-lzfy (-iy-lc A< .A ••• Ç. ■■■ *'(■
•       1 72^1 '7+1 1 72    '     ■ *l *I 'Z '/ + 1

2=2

= (<? + i^pqu + l)^0     since q+j>0.

Schur's lemma also forces the first two statements to be true, but we can now

also see this directly,  d,(<I>   „„) = 0 because  $e00  consists of holomorphic poly-

nomials; d, CP._ ,.   ,   _ n) = 0 because d, = 0 on %n~  ; and for p > 0,  q > 1,

d,(WH   .) = 0 because  dl = 0 and <P       = cM<I>     ..    n).     Q.E.D.b      Pqj b pqj 6'    pq(l-l)'        *

Corollary.   The complex

is exact at  W for 1 </'<«— 2, and the cohomology is   ©fi>n<î)fioo at ant^

©?> 1^(-1)9(72-1) at *>
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6.   Computation of the eigenvalues.  We have seen that dA}¥     ■ ) = 0,

d ,(<í>   00) = 0, and d,: Í*     ■ —» W     , ■   ,, is a constant multiple of a unitary map

for p > 0,  ^ > 1.   This constant is determined up to a complex factor of modulus

one and so can be taken to be real and positive; when so determined, it will be

called the  eigenvalue  of d,   on  $     ..  The proof of Theorem 4  shows that this

eigenvalue is  (q + j)^4't)a<-   nil / II0a   -II"  ^e are therefore faced with the task of

computing the norms of the primitive vectors.

We cannot simply take the norms of the coefficients, for the   £.    A • ■ • A ¿\ 's
1 1    o ' *7are not a basis, much less an orthonormal one.   However, the bundle  ß   ' is a sub-

bundle of A   J\S    = /\J T  C"|5   , and this bundle has a nice pointwise-orthonormal

basis  for  its   sections   (as  a  module  over the  functions),  namely Í2-       dz-   A

• • • A dzi : 1 < i    < . . • < z . < 72S.  We therefore express the   (/j's   and  i/Vs in terms

of this basis.

For  2 < / < 72,   1 < z'j, • •• , i   < 77, set

w.       .  = y (-l)'-az. dz.   A...
T   »;     ^- la     n

•s

a=l
A ¿5.

Lemma 1.  cj.    is alternating in the indices  i,, ■
il      ij 6 1'

The verification is left to the reader.

I    :
7

Lemma 2.  ¿.   A — A £.  = £"   .z   cj. „.'2 j ^>ij a = l    a      z i      zy a

Proof.   Let  p = 2dr - "L"z  dz  .  Then, using the fact that   S"z   z   = I,~ l    a      a ö 1   tz   a        '

C    A ••• A £   = (¿5.   - 1. p) A (dz.   - 5. p) A ... A (¿5.  - 5. p)«1 ly 2! 2ir Z2 22r >,- «7

¿z. A- • • A dz .  - (z . p) A dz .   A ■ ■ -Adz.z, «i »1 z2 *

?i.   A ■ Adz.  +
6 = 1

a=l

= V z z dz.   I\ . . . A dz.¿        a  a      i y 2 y

Z
Zz(j.      .   .       Q.E.D.

«     Zj***zya ^

b = \

7

6=1

y-6+1

z.  dz.   A
*b      ll

z . dz .   A
lb     »l

zibd5hA

dz.
'b

SS
dz.

lb
A dz. Ap

A dz.   A dz

dz. 'S Adz.   Adz+zdz.   A •••Adz.i- a       a      ti i)

8 = 1
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As a corollary, we have

97

íiA».AÍ,-2] a    1 •••ja
a = l

Z   Zacúl--,a     (by Lemma 1)
-J4.1£2=7 + 1

72

£7=7+1

•N
^(-l)'-^1!^^. ... dzb ... A dz. Adza
6 = 1 ;

+ z dz, A ••• Adz.a       1 7

Zzz^dz, A • • • A dz.a  a       l 7
£2=7+1

/\

Lemma 3-

Z    Z^^'Sv^i A... dzb... Adz. Adz a.
a=j + l  6 = 1

A£ (- 1)¿" !* .£, A • • • d • • ■ A C = £ (- I)1'"' z'/fííl A ■ • • dt - • - A dz..
¿=1 2=1

Proof.  Using Lemmas 1  and  2, we find that

¿(-i)«-iVia...£....a<;.
2'=1

7 = 1   «=7+1 \ 2=1 /

The formula is then proved by expanding the oj's in terms of the dz .'s, collecting

terms, and using the fact that  "L"zaza = 1.    Q. E. D.

There now follows immediately:

Theorem 5.
7+1 ^

^pqr~zTl< YJ(-\)l-xd-zl a ... dz.... a dz.n,
2 = 1

t//     . = lq-lzp
Ypqj       l       n

Zz z   I dz, A • •. A dz .a   a I        l 7
^«=7 + 1

72 7 /\

+ Z z(-I)M+1VAA-^-A^A^
£2=7+1   6 = 1
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^i^ii^zV^r^zi^z/K-^zi2.¿=i

^(7 + 1)«^(7 + l)l|2-/ :q-lzf    y    z z
1 72       i—1 «     «

«=7+2

2 72 7 + 1+ z zj>r^
«=7+2  6 = 1

«=7+2 7+2<6<«<72

72      y+i

Z Z/i'î"1^ 6     £2!
£2=7+2   6 = 1

We are therefore reduced to computing integrals of the  type   /|za|     where a

is a multi-index.   This may most easily be accomplished by the following bit of

trickery, which was pointed out to me by V. Bargmann and E. Nelson.   Consider

/ = /      |z   |   exp(-|z|   ).   In rectangular coordinates,

■m1 Jcl:
'¿12

exP(- hi2) =n/02x -p(- ^ ^,+1 **>•
1

In spherical coordinates,

/=f°°exp(-r2)r2lal + 2"-l dr [     \za\2.
Jo       * Jsn »   -'

Since    f°?exp(-r )r m     dr = l/¿\m\, we therefore have

is
ai2     ■£***,«! 2n"al

^(|a| + n-i)!      (|a|+72-l)!

Thus

pqj -27l   \\zqzPj2 +

,["    2ir>lf, .2ir"p!(g- 1)! 1    2>+1nnp Kg - l) !
\_(p+ q + n - l)!        (p+ £7+ 72- l)!j    (p+c7 + n-l)!

+ ;)•

Likewise, keeping in mind that the terms with a - n or  ¿2=1  in the expres-

sion for  ||i/r     ,.   , . ||   are of a different form than the others, we find after some

simple calculations that
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27 + Vp!(<7-l)!
"^«(y+n'l   = 77-'—7V  (p + «-/-i).(p + q + n - 1 )!

We have now proved the main theorem.

Theorem 6.   The eigenvalue of d,   on <I>     . is° '      b pqj

Notice that y^   . = y„   , ...  Thus in some sense the  d,   complex is sym-' pqj       ' pq(n-j-l) 6 r '
metric with respect to holomorphicity and antiholomorphicity.

(9, is a weighted shift operator on © S7; therefore its adjoint b is also a

weighted shift operator with the same weights but shifting in the other direction.

Thus   b,(*     .) = 0,   bA}V.   ,, ,      ,,) = 0, and b,   maps ¥     . (p > 0) onto6      pqj 6      (-l)q(n-l) 6 r p£/7    r —
$>.   /■    i\ with eigenvalue  y„   ,.    ,v   From this it follows that the <ï>     .'s  andf>£7(7-l) 6 'pq(j-l) pqj
ty     .'s  are eigenspaces of \_\b, and the eigenvalues of \^J¡,   ate zero on í^no an<^

¥,    . w      ,. and  y2  ■ on $„   . and W     ,.   , , (p > 0, o > 1).  The  $'s  and Vs(-l)q(n-l) 'pqj pqj Pq(J + l>     r~     ' * —
are also eigenspaces of G,, the Green's operator defined by  G, = 0 on the null

space of {^}h and  G, = QHr     on the orthogonal complement, and the eigenvalues

of Gb ate zero on  <5p00 and »fi^-V) and ^7   °n  *<,,/ and  Vo + D

(p> 0, ?> 1).

Theorem 7.  <9,, b     ßTzti Q]    ¿aive closed ranges, and G,   zs compact.

Proof.   The first assertion follows from the fact that the nonzero eigenvalues

are bounded away from zero.  Also, only finitely many of the  y~   . ate greater

than any fixed constant, and each of them is the eigenvalue for a finite-dimensional

eigenspace.   Therefore   G,   is the norm limit of operators of finite rank and hence

is compact.     Q.E.D.
It should be noted that the closed range property is strictly a global one.   If

one restricts to a small open set in 5   , the situation may be quite different, as is

shown by the Lewy example  (cf. Chapter I).

Let us now form a complete orthonormal basis for  © B7.  Set  <á     . =r ^Pqj
<t>L.   • /ll<¿>.     II. and extend this to an orthonormal basis  {<ht   .: 1 <a < dim <I>     .1rpqj  '   Wr-pqjW l^pqj -      - Pqj

fot í>     .; likewise let  <i/7?    ,.   ,      ,,: 1 < a < dim yV,    ..   ,      ,, | be an orthonormalî?£77 M -1)9(72-1)        -      - (- l)q(n- 1)
basis for W,    ...      .. with iA,    ,     .      ,. = iIj     ,.   .      ,. / ||t/r,    ,,   ,      .. ||.  Set(-l)£/(72-l) f( - l)lj(72- 1 ) M- 1 )l?(72- 1)'    " M - 1 )<? (t! - 1 ) "
"A!     =yZ1<-    ,,d~,<p"   ..    ,. for p > 0,  q > 1; in particular, iff}   ■ = </<     •/||</'      ||.T Pqj      /Pq(j-D    b^pq(j-l) r-     '    '-     ' r JL'pqj      r Pq J     n^pqj"
Then  {ifrl     \  is an orthonormal basis for ?,.   ..We have  d, d>1   . = y.    ■<J/e!   ,.   , %,_ ^ Pqj pqj b^pqj       'pqjrpq(j+lr

brpq, '       b^pqj '      b^pqj       'pq (j - 1 ) ̂  pq (j - 1 )' '—'b^pqj       'Pqj^pqj'
Hz.1/^   • = y>.   ,■    i\>Ai   •■  Thus  {d>1   .L   .    U ji/>"   .}     .    forms a  canonical basis1—'b^pqj_    'pq(j-l)fpqj '^pqj'pqja        '^pqj'pqja

fot the   (9,   complex in the sense of Kodaira  (cf. Kodaira and Spencer [5]).
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III. FIBER BUNDLES
(CONNECTION WITH DOLBEAULT COMPLEXES ON CP*- l)

If we consider the circle group 5j  embedded in   U(n) as its center, i.e. as

multiples of the identity, the quotient of 5    by the  5 ^   attion is the complex mani-

fold  CP"-   .  Since the line  subbundle of   T*C"|5     spanned by  dr is the part of
T*C"|5    which is left out of the  d,   complex, and this is also the cokernel of the

pullback of  T*CPn~     via the projection, it is strongly suggested that there should

be an intimate connection between the  d,   complex on  5    and the  ¡9  complex on

Cp72-  ^  "phis is indeed the case.

That there should be such a relationship was first pointed out to me by

H. Pittie, and it was M. F. Atiyah who showed me how to express it in terms of

line bundles on   CP*-   .
In order to study the behavior of the  r?,   complex under the action of 5 ., we

need to know how the representations   p(7?z  , • • • , m ) decompose when restricted

to  5..  Recall that the irreducible representations of 5 . = (7(1) are ip(77z): 772 £ Z}

where  p(m)(e'   ) acts on  C by multiplication by elm   .

Lemma 1.  p(m .,..., m )\S . = (dim p(?7z ,,•••, m ))p(l,"m .).

Proof.  Since  5j  is the center of  U(n), by Schur's lemma it acts as multiples

of the identity on the representation space of p(m .,•••, m  ), so  p(m , • • •, m )\S l

is the sum of dim p(m v • • • , m  )  copies of some  p(M).  Now  p(77z .,•••, m ) =

(det)   * p(m , - m  , • • • , m       , - m  , 0), and  0(772,- m  , • • • , m      , - m  , 0)  is ar 1 72' 772 - 1 72' ' r 1 72' '        72-1 72'

subrepresentation of the standard representation of  U(n) on   (^)K C™,   K =

£""   (m.—m ) = 1,"m.- nm  .  By construction of this representation, 5 j  acts on

®    C" via  p(K).   On the other hand, det |5j = pira), so finally we see that  M =

K + nm   =2"t7z..     Q.E.D.72 I    i       ^e

From this lemma and the results of Chapter II, §3  and  §5, we can immedia-

tely read off the action of 5 .   on the d,   complex.

Theorem 1.   For each  m e Z, set %\m) = © $     „, ®"- 1 (772) =^sq— p=77z     pqO

©      „        ,      *„  /      n. and for  1< / < 72 - 2,  ÍB7(t7z) = [© 4>     ■]©q — P +72 — 2 =722       2>£j(72-l)' ' —J— > *-\¡Sq—p+]-m       pqj'

[©     „   •    ,      ^   •]•   Then for each  j,   ®7=ffi°° %\m), and 5.   acts onKyq—p+j—l=m     Pqj ' ' v^ttz=— °o " 1

®7(?72)  via the representation  p(m).  Moreover, since d ,(W(m)) C S7+  (m), for each

m we have a subcomplex

o^ $«M ^ SKttz) ̂ ... J^ 3*-1U) - o.

We now investigate the  d complex on certain holomorphic line bundles on

QpTz-      -pj^ project¡on 5   .-->(]p72-i  exhibas  S     as a principal bundle over

CP"-     with structure group S..  (In principal bundles the group action is on the
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right, but  since   5,   is  commutative, we  can think  of the  left  action of 5 ,   on

5    as a right action.) Let  rf be the line bundle on  CP"-     associated to the

principal bundle  5    —► CP*-     by the action  p(77z) of 5 ,   on  C.   (Note that  rf  is
the  772th tensor power of  r¡ = r¡ .) There are two simple geometrical interpretations

of rj (cf. Hirzebruch  [4, §4.2]).   On the one hand, if we think of  CP"-1  as the set
of lines in  C", then rj is the line bundle whose fiber over p  is the line which  p

is.   On the other hand, from the point of view of algebraic geometry, r\~     is the

hyperplane section bundle on  CP*-    .

Let A7 = A7T*CP*      .   Then for each  ttz we have the Dolbeault complex

o- r(vm) i* r(vm ® a1) L .. • £♦ r(r,m ® a*-1) -» o

whose cohomology group at the  /'th point may be identified with  f/7(CP*-  , Ü(r¡m))

(cf. Hirzebruch [4, §15.3]).  To relate these complexes on  CP"~     with the  (9,

complex on 5    we use the following general theorem:

Theorem 2.   Let  P —* M  be a principal bundle over the manifold M with struc-

ture group  G.   Let   V be a vector space on which  G acts on the left by the repre-

sentation R .,   E = P x c V the associated vector bundle over M, and V = P x V

the trivial bundle over  P with fiber  V.   If F  is any vector bundle over M (not

necessarily associated to  P), then  rr*F  is a vector bundle over P on which  G

acts to the right, say by  R   ; we denote the corresponding left action by  R 7, i.e.

R Ag) = R'Ag~  ).   There is a natural one-to-one correspondence between sections

of E ® F over M and sections o of V ® n*F over  P satisfying

(1) o(xg) = (Rl ® R2)(g-l)[a(x)].

Proof. This is merely a matter of disentangling the definitions. First we

note that V is naturally isomorphic to n*E, so V ® 77*F = n*(E ® F). The right

action of G on rr*E = V is given by (x, v)g = (xg, R Ag )v), so the left action

of G on V ® n*F ~ n*(E ® F) is R1 ® R r Next, there is a natural surjection

77^: 7T*(E ® F) —»F ® F which is an isomorphism on fibers and satisfies n,, N =

n*(x) ° (R 1 ® ß2)(g). Thus if s e T(E ® F), the corresponding a er(n*(E ® F))
is given by a(x) = n~,  *s(n(x)), and we have

o(xg) = n-1   s(„(xg)) = (R   ® R.){g-1)n-}r.s(n{x)) = (R,® Pj(g-1)aU),
* (xg ) L ¿ * \x } í *■

so a satisfies   (1).  Conversely, given a satisfying  (1), define  s  by s(jr(x)) =

¡7^,   -,a(x); this is well defined since

ff.(xif(x«) = ff*(x)(Ri® R2)(g)(R ,® R2)(g~l)o(x) = nHx)a (x).       Q.E.D.

In our case, we take  M = CP*-1,   G = Sy   P = Sn,   V = C,   Rl = p(m),  E =
rf, and  F = À7.  As we noted above, 77*À7  can be naturally identified with the
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bundle  B   7.   Thus the correspondence of Lemma 2 gives an injection of

V(r¡m ® A7 )  into r(S   7)  which extends to an injection of its completion

L  (rf ® A7)  with respect to the naturally induced hermitian metric into   a>.  We

denote this injection by  Tm'".

Theorem 2.   The range of T™  is  3!>!(m).  The diagrar

0 -.  %\m)

L2(r,m)

ab %Km)

... m
1 1

L2(77m® A1)

db ^

1-1

db %n-l(m)

L2(t7'"®A*-1)

commutes, yielding an isomorphism between the Dolbeault complex of rf and the

mth piece of the  d,   complex on 5   .o n

Proof.   The only difficulty in proving the first assertion is in keeping the

left and right actions straight.   If the circle acts to the left on 5   , there is an

induced left action on the antiholomorphic  /-covectors which we denote by  R ..

This is the natural action we use when considering the  (9,   complex.   But we are

considering the action on 5    as a right  action.   Therefore   R . becomes a  right

action, and the corresponding left action required by Lemma 2  is given by

According to these remarks, then, the equivariance conditions for forms in

the range of  Tm are o(xg) = p   (g~  )R (g)a(x), which can be written R (g)a(g~ x) =

p    (g)a(x) (since g-  x = xg~ ).   But the LHS just defines the action of 5 j  on

forms induced by  R ., so  Range (T7*) is that subspace of Jr  on which 5 .   acts

via  p(m), i.e.  Range (Tm) = %j(m).

To prove the second assertion, it suffices to prove the commutativity of the

diagram for smooth sections; it then follows easily that  T^ÍDom d ) = Dom d ,   and

that the diagram commutes in general.  Consider the diagram

C*-!o!

^
»72

CP*-1
where the maps are the natural injections and projections.   Now   C* - |0S  is a

principal bundle over   CP*-     with structure group  C* = C - JO!, and 5     is the

corresponding principal bundle with reduced structure group.   Thus the conse-

quences of Lemma 2  hold for  C* - iOÎ -^ CP*-     in a way compatible with

those  for 5    —> CP"     . In particular, to each section s e T(rf x À7) corresponds
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the equivariant  /-form   n^,     ° s o n(.) on  C" - iOi, and  Tm(s) = tí    ,. o s o „  (.)

= í*(i7«.)°s °7i{')).  Replacing s  by ds,

(2) TT       ,      O ds O ff   (.)  =   z'*(î7 o ds O   77(0).v   y 2*(0 2 *i-)

Moreover, if I(dr) is the ideal generated by (9r  (cf. Chapter I), we have

(3) 77 cds on (.)± l(dr)
2*.(0 2

by the remarks at the beginning of this chapter.

Next, since  77 is a holomorphic map, 77^,   , ° ds ° n(.) = ddr^,   , ° s ° 77(.)).  But

since  77^ ,   ^ ° s o 7r(.)  extends  77 +,     ° s ° 77-,(•), it follows from the definition

of db   that   d,(772=t.,   , ° s °772(.))   is  determined by the  two  conditions

<V772*(0 °s •*j^)« '*d("*(.) °s °^-)) mod I(dr)  and <96(t72:K. j °s ° rr(.)) A. l(dr).
Comparing these with  (2) and  (3), we see that  <?z,^772*( • ) ° s ° ^2 ^'^ = 7r2*( • ) °

ds °772(-), i.e. dJJs = Tjâs.     Q.E.D.
From our knowledge of the  d,   complex we can now read off a complete

description of the eigenspaces and eigenvalues of the  d complexes on the line

bundles  rf.   In particular, we have

Theorem 3-  If m < 0,

dimH'(CPn-l,G(r,m))
(n-n1--?)       0=0),

0 (/ >  0).
If m> 0,

dimf/7(CP"-1,0(7?m)) f    0      (/'<«-1),
{(ZZ\)     (i=n-l)

where  (m-¡) = 0  if m < n.
72- v

Proof.   The Dolbeault cohomology of  rf  is isomorphic to the  772th piece of

the  (9,   cohomology.   In particular, it is zero in degrees   1 < j < » — 2.   For / = 0,

the cohomology is

S0-W n )ol = r e
I 9-7>=7iP¿° £J-7>=722 P>0

(^(-772)00 U^0)'

(0 (777 > 0).

But $ is the space of homogeneous holomorphic polynomials of degree —1

in 72 variables, whose dimension is  ("~ _~f).  F°r 1' ~ n ~ 1> tne cohomology is
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%"-l(m)n

!

^/ ,  \/ X,   N/ ,   N (tTZ    >    72),(- l)(772-72+l )(72— 1 ) -       "

0 (t72 <  72).

But  *?,,., ...      ,.  is isomorphic (cf. Chapter II, §4) to the space of homo-(— 1 )(t72 — 72+ 1 )(72— 1 ) r v r '    "     ' r

geneous antiholomorphic polynomials of degree  m — n   in  77   variables, and this

has dimension  (m~l).     O.E.D.
72—1 ^

Of course, this theorem can also be proved directly by the methods of complex

analytic geometry.   (The reader is invited to perform this computation as a check

to our present results.) In fact, if we define  £}(m) abstractly as the subspace of

.fr  transforming under the  5 .  action via  p(m), Theorem 2 goes through without

change; knowing the result of Theorem 3  then enables us to state that the coho-

mology of the (9,   complex is infinite in degrees   0 and n — .1   and zero elsewhere

without knowing the decomposition of the spaces   .ir   under the action of  U(n).

IV.   FOURIER ANALYSIS (REGULARITY OF THE ~db COMPLEX)

First some definitions and notations:

(1) S .... denotes the unit sphere in   R*     , so that  5,.      ,.££ S .   (We reserve(/V ) r (272- 1 ) 72 y

the notation  5     for the  /V-sphere considered abstractly.)

(2) H,   denotes the space of spherical harmonics of degree  k on 5 .„    i.e.

the space of homogeneous harmonic polynomials of degree k  on  R restricted

to S(Ny
(3) A* denotes the Laplace-de Rham operator on 5.,...

(4) ||   ||   denotes the   L     norm, ||   ||     (s £ R)  denotes the Sobolev s-norm, and

||      denotes the uniform norm.

(5) If A  and B   ate nonnegative functions of x,   A(x) ~ B(x) means that

A(x) = Q(B(x)) and  B(x) = Q(A(x));  that is, there exist positive constants  c v c .

suchthat  c   A(x) < B(x) < c   A(x)  for all x.

(6) A(x) <  B(x) means that A(x) < cB(x)  fot some  c > 0 independent of x,

i.e. A(*)=0(B<i)).

1.  Distribution theory on spheres.   One can do distribution theory on 5....

by letting spherical harmonic expansions play the role of Fourier transforms.

This is a well-known part of the folk literature of Fourier analysis, but we repro-

duce the proofs as there seems to be no convenient reference.  We will need the

following facts  (cf., e.g., Müller [13]   for proofs);

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



1972] THE TANGENTIAL CAUCHY-RIEMANN COMPLEX ON SPHERES 105

(2) dim H^ = (2k + N - l)((k + N - 2)! /(N- l)\k{).
(3) K,   is an eigenspace of A* with eigenvalue  /e(/e + N - 1).

We can define global Sobolev norms for functions by   || / ||    = ||(A* + I)s    f\\

since  A* is elliptic and 5,„.  is compact.   Hence if / = 'L'^h^,   h,  eH,, then

2 = ¿[AU+/V-1) + 1]S||AJ2^2]U+1)2S||AJ

For forms, we may either define  ||u||    = ||(A*+ /)       w||   as above, or we may take

the sum of the  s-norms of its coefficients with respect to some basis.  We shall

only be interested in forms coming from the  d,   complex  (N = 2n — 1), and for these

we can compute the  s-norms as follows.  Since  A* commutes with  U(n), the

spaces  <£>     . and  1'     . are eigenspaces of (A* + /)       ; hence from the first defini-r pqj Pqj &      r >
tion, if  Z2 = 2L     (b,_     d>q   . + e.      éa   .)   (in terms of the canonical basis ofpqa      pqa^pqj Pqa^pqj'
Chapter IV),

2 V-ih 1211.«     M 2   .    , 121,.,«     N2N

Pqa
Z^.J'li^JiM^«!2^^»^-

To compute   ||<t!>"   .||     and   \\fja   .||   ,  in turn, we  use  the second definition with

the basis   {dz .    A ...  A dz . \.  By Theorem 1, Chapter IV, each coefficient of

<pq   ■ is  a  spherical harmonic of type   (p, q); hence   ||0°   .||    ~ (p + q + l)s.   The

¡A's  are a bit more complicated.   Each coefficient of i/V    . except that of' Pqj
dz .  A • • ■ A dz . is a spherical harmonic of type  (p + 1, q) and the coefficient of1 7
dz ,  A • • • A dz . is1 7

; q-izf y z i
1 72   ¿—I       «

7+1

1 72

q + / - i      Ji,     _ P + n - /      7      _
p + q + n _ !   2- Z«Z«      p+ q+n_l   2-,Z«

Tfrt*
p + q + n - 1       :

since  S*z   z    =1.   This is the sum of a spherical harmonic of type  (p + 1, q)

and one of type  (p, q - 1).   Thus the coefficients of \¡ia   . are sums of spherical

harmonics of types   (p + 1, q) and  (p, q - 1)  so   ||<A"   .|| 2 -^- (p + q + 2)   s +

(p + q)2s ^ (p + q + l)2s.  We have proved

Theorem 1.   If u e S7',   a = 2„     (b        ót'^'+K     <A"   .), then' pqas   pqa ^pqj pqa^pqj"

I «IL2. Z[i^J2(^^1)2s + isJ2^ + ̂ 1)2s]-
pa«
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Next we prove the Sobolev lemma for functions on 5,.,..  We state and prove

the crucial estimate in a general form which will also be useful later.

Proposition 1.   Let G be a compact group, H a closed subgroup,  V an irreduc-

ible invariant subspace of L  (G/H)  under the action of G,   p: G —» Aut (V) the

representation of G  on  V, and D = dim V.   Suppose there is no other subspace of

L  (G/H) on which the action of G is equivalent to p.   Then if the measures of G

and G/H are normalized to be   1,  sup !||/ \x : f £ V, \\f || = 1 ! = DV\

Proof.  Let  tt: G —* G/H be the projection,  77*V= {77*f = / ° 77: / £ V\.  Then
n*V is an irreducible invariant subspace of  L  (G) with representation equivalent

to p, consisting of functions which are constant on cosets of  H, and  77* is a uni-

tary equivalence of   V and  77*V.  Since  p occurs with multiplicity one in the rep-

resentation of  G  on  L  (G/H), which is the induced representation of the trivial

representation of H on  C, Frobenius Reciprocity tells us that the trivial represen-

tation occurs with multiplicity one in  p|W, i.e. there is a unique /j eV  (up to

constant multiples) which is invariant under the action of H.  Take   \\f A\ = 1   and

complete /,   to an orthonormal basis  f v • • •, fD  of  V. With respect to this basis

we form the matrix of entry functions of   p,

P<J{gUfG/H //*Hp(g)/;]U)¿* = (/, p(g)f).

By the Peter-Weyl theorem (cf. Stein [l4D, p occurs with multiplicity D  in

L  (G), namely on the spaces  W . (i = I, • • •, D)  spanned by the columns   {pki\k = 1

of the matrix  (p..).  Next, observe that for g £ G,   h £ H,

Pn(gb) = (fv pigtifj = {fv p(g)p(h)fl) = (/,, p(g) fx) = PlAg),
pu(hg) =(fx, pihgifj = (/j, p(h)p(g)f1) = (p(h-l)fv p(g)f1)

= (/l» ?(«)/,) = ?„(«)

by the invariance of /,.  Since  p,.(gh) = pn(g)  and  p occurs with multiplicity

one in  L  (G/H), we must have  p..  £ tt*V; then since  p,.(hg) = p.Ag), we must

have  p.. = crr*f,   for some constant c.   In fact, by the Schur orthogonality rela-

tions, Up,,! = D~     and hence  c = D~   .  Since an irreducible subspace is spec-

ified by giving one vector in it, it follows that  77*V = W

Lemma 1.  Dp^  is a reproducing kernel for W., i.e. for any f £ W.,   / =

Dp.. *f where  * denotes convolution.

Proof.  It suffices to prove the assertion for the basis  Sp.,S.
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pn » pn(x) =J*g p¿1(*y-1)pn(y)¿y

j

j

= D-^Pz,W517=D"V!lW
y

by Schur orthogonality.

Now by Young's inequality, for any / £ W ,,   \\f\\x < D\\f || ||pu|| =DM||/||, so

»«ft.il/ILiV «..V, ll/H = li = supi||/|L:/eW1, \\f\\ = l\<Dy\  Thesupremum D'á
is actually achieved, since   |77*/,(e)| = D    p   (e) = D     where  e is the identity of

G.    Q.E.D.
We apply Proposition 1   in the case  G = S0(N +1),   H = SO(N),  G/H = 5(N),

V = H, ,   D ~ (/ê + 1) .  That the spaces H,   are irreducible and inequivalent for

AÍ > 1  follows from the representation theory of SO(N) (cf. Boerner [l]).   (In this

case, Lemma 1   is equivalent to the classical Funk-Hecke formula for spherical

harmonics.)  If N = 1,  H,   (k > 0)  splits into two one-dimensional representations

spanned by  e1       and  e_!     ; since these have absolute value 1, the conclusion

of Proposition 1  remains valid.

Lemma 2.  If s > N/2 then  \\f ¡^ <   ||/ || s for all f £ £°°.

Proof.  Let f = Io? h,,  h,  el.  Then

<Zii¿JL^Z«M(^D(N-1)/2
0 o

Z«M2^+d2s) ^Z*w~1-l-2s

¿N-1-2S

and the sum on the right converges provided s > N/2.  (Note:  This calculation is

entirely analogous to the integration in polar coordinates which proves this lemma

in   R", since the "eigenfunctions " for the Laplacian on  R"  are distributions

whose Fourier transforms are supported on a spherical shell.)

Theorem 2  (Sobolev).  H   C CT if s > r + N/2.
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Proof.   If D   is a differential operator of order at most r, \\Df\\     <   \\Df\\   _   <

11/11     for s > r + N/2, so sequences of C°°  functions which converge in the s-norm

converge in the  Cr topology.  Since  H    is the completion of C°°  with respect to

||   ,  H     is continuously embedded in (_''.     Q.E.D.
Thus we see that  C°° = Df/ , and the  C°° topology is the same as the topol-

ogy given by the family of norms  !||   ||, : k £ Z   }.  Since  5..,.  is compact, the dis-

tributions are just the continuous linear functionals on  C°°, and hence the space

of distributions is  U" ■   Every distribution can thus be expanded in spherical

harmonics with coefficients that grow at most polynomially.

The  Rellich  lemma  is  trivial  in  this   setup.  If   s < s', the   isometry

(A* + I) '    : H   —» H i, when considered as an operator on  H  , has eigenvalue

""(&+■ l)s~       on H,.   Hence it is the norm limit of operators of finite rank and

therefore compact.

Finally, we state a criterion for real analyticity.

Theorem 3-  f=^°^b,h,   (h,  eH,, ||¿t|| = 1)   zs real analytic if and only if for
some a < 1,   b, = Q(ak).

Proof.   Let D ., • • •, D „  be a set of vector fields which spans the tangent

space to 5.,,.  at each point.   Since  5.^.  is compact, it follows from the Hadamard

radius-of-convergence formula that global real analyticity is equivalent to the

existence of  8 > 0  such that   \\Dmf\\oo )S  m\/8m  for 772 = 0, l,---,   and /' = 1,
..., M.   In particular, ||A*m/|L <  (2777)!/52m.   Now

where

so

A.*"7=Z [k(k+ N- l)]mbkhk
0

[k(k+ N-l)]mb. = (c      (A*mf)h.,*      JS(N) *

\bk\<[k(k+ N- l)]-mf\(A*mf)'hk

<[k(k+ N- l)]-m\\^*mf\\00k(

<((2m)}/(k8)2m)k(N-1)/2<(2m/k8)2mk^N-1^2.

?fe1
■AN-D/2

For k  sufficiently large we may choose  m  approximately equal to  k8/4, whence

\bk\  < (l/2)kh/2kw-l)/2.   Setting   a = (l/2)8/4 < 1, we have  \bk\ <
k 'a       ~ a   , since  k =\J\a     ).

Conversely, if èfe = Q(ak) with a < 1, this implies   |èj  ^ k(l - ">N)/2ak/2.

Therefore
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0

oo oo

<  V   Ze™+"+(l-3N)/2+(N-l)/2fl7e/2 = y  ¿*flfc/2_

0 0

Let the largest term in the last sum occur at  k = kQ. By comparing the graphs of

xmax/    and the step function whose value is  knak' on  [k, k + l]  when k < kQ

and  kmak'2 on  [k - 1, k) when  k > kn, we see that

oo

£ kmakl2 < J°° xmax'2dx + ^flfe°/2

x/ljr ±    m*Y vmW2<  f 00 *max/ *d* +   max

[0,

Now  log (l/fl) > 0, so if we set  8 = (1/2) log (l/a) and make the change of vari-

ables  x' = 8x, we obtain

C°°x™a*/2dx=(°°(X-)me-*ld(X-)^--.
Jo Jo   \S / \8 j     8   sm

On the other hand,

772

max    x   a
[0,°o)

„x/2 / 2777   '       \" /mV" J_    <ml_
\e\og(l/d)J \e )     gzTz - g772

Thus we have shown

||(A*)(77z+N)/2/||    kZi
'   'oo ~    g772

Finally, by Theorem 2,

Kf\\~ s \\í\\m+N^\\^){m"N)/2í\\<\\^)im+N)/2f\L<~,
o

which shows  / is real analytic.     Q.E.D.

Corollary.  If N = 2n- 1,   u £%1,   u = 'L(bjd>k + cfei/ffe)   where   4>k e
®p+q=k®pqj>  ^k £ ®p+q^pqp   W = l  and W = l> then u IS real ana-
lytic if and only if, for some  a < 1,  b,  and c,   are 0(a).

Proof.  As in Theorem 1, write  if/, = cf, + r¡,   where the coefficients of  ¿j,

(respectively  rjk) ate spherical harmonics of degree  k + 1   (respectively  k — 1).

Then apply Theorem 3  to the coefficient of each dz .   A • • • A dz .   in the sumsrr j M zy
1.b,cpu-i  ^cu {¡yi  ^•ckTlk'   (De£ails are left to the reader.)
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2.   The index of d, ■  As an application of these methods for N = 1, we com-

pute the index of (9,   (considered as an operator on  ©"    LB7).   The kernel and

cokernel of an operator which is transversally elliptic with respect to a group  G

are representation spaces of G and hence have characters which are defined as

distributions on  G.   The  index  is the difference of these characters.
.a

Let z = el    be the standard coordinate on 5 j = 5...,so the character of p,

is z   .  Then by the results of Chapter III,

-H(v:;y-¿(::;>-'.
The remarks of § 1   show that this is indeed a distribution on 5,   and in fact be-

longs to  Hs for  s <-72  since  (*-J \k) and  (*"-j)  are Q(kn~l).

Moreover,

Zfe = (l-z)-"     for Izl < 1,
72-   1

¿  (k~l\z-k    =(l-z)-"     for|*|>l.
72+1 72-   1

Thus   index (r9,)  is the Sato hyperfunction associated with the analytic function

(1 - z)~" on  C - 5 ,, in accordance with a general formula of Atiyah  (not yet

published).

3.   Global regularity of db.  The global regularity properties of the d,   com-

plex can be easily read off by looking at the eigenvalues of d,   vis-à-vis the

results of §1.   Kohn and Nirenberg [8]  have shown that corresponding local reg-

ularity properties hold on  i)7  for  I </'<» — 2, but these results seem to be

inaccessible by our present methods.

Combining Theorem 1  with the fact that  y     . ~ ((p + 1)17)     and the inequal-pqj
ity  p + q + 1 < 2(p + 1)¡7 < (p + q + 1)     (except when  p = - 1   or q = 0) which is
the sharpest possible inequality relating   (p + \)q  with powers of  p + q + 1, we

obtain the following results, which we state as a theorem:

Theorem 4.   (1) For 1 </' <n — 2, the equation \Z\uu = v bas a unique solution

for every distribution-valued form v.   The estimate   ||z2||   _    < || Hiz£||   _      < ||«||

holds whenever u £ H    and t > 0, and this inequality is the sharpest possible.

In particular, taking  t = 1, we see that the application of Q,   results in the loss

of between one and two derivatives, the exact amount depending on the"spectrum'

of the  form   in  question.   For forms   u £  ©oc_1 (<J?      . © ¥      .)  (p = const.)   or

u £  ®;=0(®pqj®ypqj)   (q -const.),   || \Jb «Il s ~ï«||s + //" forms   u £
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0 ($     . © *P     .),   ||  ~l,u\\    ~ \\u\\     .,.  (Similar remarks apply in the^p — q^const.       pqj pqj   '    " '—'6    n s "    Il s+2 er/
following cases.)

(2) On  5?    aW $*       /¿e harmonic space H  z's infinite-dimensional, so we

cannot hope to obtain any regularity for arbitrary solutions of \^},u = v.   However,

if v _J_ H, z"/3e72 there is a unique solution  u _L H o/ Q¿z2 = 77, í772íi  |tv||      ,   < |L|L

s M,+2-
(3) If v £ H   (íB7) (0 < /' < 72 - 1),   (9, 7v = 0 fl72£z' u  z's orthogonal to the harmonic

space  (if any), then there is a unique solution u of d ,u = v which is orthogonal

to the null space of d,, and \\u\\      , ,,   < \\v\\     <  \\u\\      ,.   Likewise for  b,.f '      b H   lls + l/2   ~ "   "s ~   ii   iis+1 ' 6
(4) In all of the above cases, if v is real analytic, then the solution u will

also be real analytic, since exponential decrease of the coefficients is not

affected by factors like ((p + \)q)     or (p + \)q.

Details of the proofs are left as a (trivial) exercise.

4.   The ¿-norms.   In this section we introduce Sobolev-type norms for Q,. We

shall work exclusively with functions; analogous results for forms are obtained by

taking norms componentwise.  We could define a norm by   |||/||| = ||(Ofo + /)/||, but

this is not very satisfactory because  Q,   is lopsided: it has a large null space

for which this norm provides no information.  We proceed to remedy the defect.

Let L]& be the conjugate operator to L]fe, defined by [],/ = (¡ZhzO). Then

the 5> 0's are eigenspaces for Q, with eigenvalue y Q. Thus Q, + Q, is

symmetric with respect to p and  q  and annihilates only constants; the eigenvalue

°f Dfc + Dè + ' °n  ®pq0 is  y\q0 + Y¿p0+1 ~ (P + D(? + 1).  We therefore
define the family of Sobolev-type norms  ¡|||   |||     Q: s £ R\  by   |||/|||     0 =
||((Lk + dli + ')       / II«  (The subscript zero is included to facilitate a later gener-

alization.) The results of §3  show that   ||   ||    .     < |||   |||     0  < ||   ||     for s > 0 and

II   Il s £ III   llls.O ̂  II   Ws/2 for s < 0; more precisely, HI   |||s_0 ~ ||   \\s/2 on
©p=const.$^0   and    ©t = co.st.$iî0   and   HI    IL.O  ~ H    h   OD   ©i-^co.st.^O"

We denote the completion of  C°° with respect to  ||    |||     . by B     „.  The distribu-

tion theory of § 1  can then be reformulated in terms of the spaces  B     „.  Specifi-

cally, we have  C°° = I Iß    Q; every distribution belongs to some  B    Q;   ||    |||     Q

is compact with respect to  ||    |||s,  Q whenever s > s'; and Bs . cC' whenever
s > (272 - 1) + 2r.

I   I,   and  L],   are only half as strong in the direction tangent to the circle

orbits as in the other directions  (cf. Chapter I), and we can therefore obtain

sharper estimates if we can control differentiation in the "bad" direction directly.

Fortunately, the unit vector field X  tangent to the circle orbits is just the infini-

tesimal generator of the circle action.  Since  5     is the center of  U(n), X com-

mutes with the action of   U(n), and so the  <5     „'s  are eigenspaces of X.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



112 G. B. FOLLAND [September

Proposition 2.  The eigenvalue of X on $     „ is  i(p — q).

Proof.  According to Theorem 1, Chapter III, every / £ $     0  satisfies

f(e~i6x) = ei(q-P)6f(x).  Therefore  Xf(x)=d/dd[f(ei6x)]e=Q = i(p-q)f(x).     Q.E.D.
Letting   |X| = (—X  )    be the operator whose eigenvalue on  $     „is   \p - q\,

we define the norms   ||    ||| (s, a € R) by

ll|/llls,a=l|(Dè + Dfc + /)s/2(|x| + /)7ll,
and we let Ö be the completion of C00  with respect to  ||    |||       .

Proposition 3.  For a > 0,

III IIU.0<lll llU<lll |Wt0.
Proof.  The first inequality is obvious.   On the other hand, let / = X/\   h^1 J ' i I pq   pq

where   /      eC,   i      e $     „,   II £     II = 1.  Then1 pq pq pqO'    »    pq»

r~TT(p+inq+in\p-q\ + D2a\fPq\
2

pq\     ■     lili HI s- +-2CT.0*

Moreover, these inequalities are the sharpest possible: |||   |||     „ ~ |||   |||    a on

©f-^const.^^O  and   HI    IL + 2a,0~W    HI s ,a  °"    ®p = con s u^pq 0   and

®4=const.    p£iO-      Q-E-D.

Theorem 5.   If s,o>  0, ZtW   ||   || s,   < |||   \\\s¡0.  < ||   ||s+cr ".¿ere  s'  =

min (s,(s/2) + a).  These inequalities are sharp.

Proof.   Let  f = S/\   h.     as above.  Our method will be to break up sums of' i pq   pq r

the form  Zp^>QA(p, q) into lp<¡¡ + 2p=? + 2p>¡¡ and then, setting  m = \p - q\,
rewrite this as

^      A(p, p + m) + y^ A(p, p) +      V      A(c7 + 77z, £/).
772> 0 , P> 0 P> 0 772> 0 , <?> 0

The idea behind this is to change from the coordinates  (p, q) in   "Fourier trans-

form space"  to the coordinates  (p + q, p - q), in which the directions parallel to

the axes are the directions of greatest strength of  Q^j, + Q,   and X, respectively.

First, suppose a > s /2, so  min (s,(s f2) + a) = (s 12) + a.   Then

H/12s/2)+a~    Z     ̂ +*+   iy+2a\fpq\2
p, £f>0

~       X        ^+772+l)-^|/p(p+m)|2+^(2p+1)-2CT1/pp|2
77Z> 0 , P> 0 />> 0

+ x (2f+-vij*«'i/{€4.)fi
772> 0 , <?> 0
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Now

£ (2p+772+l)-2HWm)|2
772> 0 , p> 0

<        £      (p +m+lV(P+ m +2)2°\fpip+m)\2
m>0,p>0

X      (p+m+lV(p+l)2<7(m+l)2cr\fp(p.5j ¿^ V^T    ,n-r    U     Vf-    r    „ v-.x, I 7 p (/) +m )

772>0,i>>0

X        (p +  772 +   l)*(/> +   l^U+l)2^^
772>0, i>>0

^(p+inq+lVilp-ql + D^fpqW
P<q

and likewise

£   (29 + 772 + ir+^i/(9+m)9|2<X(p+i)^ + i)s(|p-9| + D2H/Ml
772>0,£J>0 p>q

Also,

Z ^P+ir+2cr\fpp\2< z(p+Ds+2a\fpp\2 < Z (p+ ^2%p\2-
p> 0 ¿>> 0 i>> 0

Therefore

ll/"(2/2)+^      Z      ̂ +l)^+l)S(|p-?l  +  l)2<T|/M|2~lll/ll|2a.
P. £/>0

An examination of this calculation shows that   II   II.   ,,.       ~ ||| on"    "(s/2)+cr "I    Hls.tr
©„_ <I>     „ and   ffi  _ 4>     n.^p-const.    Pqv ^g-const.    p£/ 0

Next, suppose a > s/2, so min (s, (s/2) + a) = s.   Then essentially the same

calculation with the roles of  s  and  2a reversed shows that   || <

and  ||   ||    ~ HI   HI    _ on   ©.      _ $.   n.   Finally,il    "s ni    IHs.tr ^^p—q -const.    pqO ''

is, cr

is.cr-Z (p+Ds(?+i)*(ip-?i + i)2H/g2
P. q>o

< z (/>+?+D2s+2CTi/fj ,2~l/ll2pq< "I  "s+cr>
P.q>o

and   III   lllSi<r ~ll   lls+a on  (for example)   0p> 0®p(2p)0-     Q.E.D.

Corollaries.   (1)  For s, a > 0 izve ¿flive  B,„    „CB        CB     „ 07215? H   .    Cv   ' '      — s + 2tr,0 s,tr s,0 s+tr
B    _Cff   .   /    ,   ,,..   v   These inclusions are sharp and are continuous but nots,cr m in (s ,(s/2 )+tr) r
COTTZpflCT;.
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(2) B is naturally dual to B       _   , so the the inclusion relations for s, a

< 0 are obtained by dualizing those in  (1).

(3) C.°° = I IB    a, and every distribution lies in some  B       .

(4) ||    II    a is compact with respect to  ||    |||   ,     ,   if and only if s > s'  and

a>a'.

Thus we can do distribution theory with the spaces  B       , and we get more

efficient relations with the  H    spaces than with the spaces  B    „.  The analogue

of the Sobolev theorem is that  B        C Ç7 if s > r + n - ]/¿ and a > (r + n — 14)/2;
we can also take a to be smaller if we let s  be larger.  However, we can obtain a

much sharper result for  r = 0 by a direct argument.

Lemma 1.  // ¿      e *     . and |l¿     II = 1, then'       pq pqO II    pq" '

IIVL   S  (P + D("-2)/2(9 + l)(*-2'/2(p + q + 0».

Proof.   By the general formula for the dimensions of representations of   U(n)

(Boerner [l, p. 201]), we have

(p+n-2)\(q + n-2)\(p+q + n-\)
dua %aa *-;-w-;-~ (P + 1)       (? + 1)       (P +9+1).

The lemma now follows from Proposition 1, taking G = U(n),  H= U(n — l).     Q.E.D.

Theorem 6.  B        C £    if for some e > 0, s > n - 1 + e and a > (1 - e)/2, and

the inclusion is continuous.

Proof.   Let / = X/\    h .     as above.  By Lemma 1,1 ipq   pq ' '

II/IL<ZIWH^L
<Xl/M|(p+i)("-2)/2(?+i)(n-2)/2(p+-?+i)M

• (p+ l)s/2(q+ 1)S/2(\P- q\ + 1)7(P+ l)S/2(?+ DS/2(|P-?| + D<

<\T,(p+Ds(q+i)s(\P-q\ + i)2a\fPq\2y

• [T,{p+ i)n-2-s(q+Dn-2-s(p + q+i)(\P-i\ + i)-2a]M

by the Schwarz inequality.  The first factor in the last expression is ~|||/|||s a; it

remains to show that the second factor converges.   Using the same trick as in

Theorem 5,

X  [(p+ i>(?+ i)] "~2" (p+q+i)(\p-q\ + i)"2"
t7.£f>0

=        Z [(p+l)(p+7"+l)]"_2"S(2p+772+Ü(777+l)-2CT+^(p+l)2("-2-S)(2p+l)
772>0,p>0 P>0

+ Z [(-?+™+l)(?+l)]"_2_S(2?+772+l)(772+l)-2C7-.
772>0,£7>0
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The second term is less than  2£  >„(p + l)  *-   *     , which converges provided

2t2 - 2s - 3 < - 1, i.e. provided s > » — 1.   The first and third terms are equal, and

we have, assuming s > 72 — 1,

£       [(p+ l)(p+ 777+ 1)] n~2-s i2p+m+ 1)U+ 1)-2CT

77Z>0, /5>0

< £ (777+ l)-2a£ (p + l)n-2-s(p+ m+ l)"-1-s

772>0 p>0

= Z (m+ l)"-1-s-2crZ(P+ Dn-2-S(p/(m+ 1) + l)n~l-s
77Z>0 p>0

<Z{m+^"~1~S'2C7Z{P+l)n -2-s

772>0 p>0

since  (p/(m + l) + i)"-1--* < 1    Convergence of the second factor again requires

s > 72 - 1.  Convergence of the first factor requires  h — 1 — 's — 2a < — 1, i.e.  a >

(1 + (77 - 1 - s))/2.   Taking e — {s — n + l)/2, we see that under the hypotheses of

the theorem, ||   ||      <  ||    ||| and the conclusion follows immediately.     Q.E.D.

Corollary.  B    0C C     if s > n.

This follows directly from Theorem 6 and Proposition 3-

We conclude with some heuristic remarks.   Theorem 6 says  (except for the

factor of e) that  B        C C°   if s > n - 1  and a > lA-   The results of Chapter III
show that L],   is essentially the pullback of the Laplacian on  CP"      , and  X

s.o-

-16
restricted to an orbit is just the Laplacian on  5      The ordinary Sobolev theorem

says that f/^CP""1) C(?0(CP"-1)  if s > 77 - 1  and 7^(5 ¡) C <Ü°(S x) if a > %
Thus, in some sense, these two phenomena are combined by the fibration

5    —» 5    —» CP"- l  to yield our result.
1 72 '

It seems likely that the following generalization of Theorem 6 should be true:

Conjecture.   B        C Cr if for some i>0, s>r + 7z-l+e and  a > (r + 1 — e)/2.

The estimate needed to establish this assertion is   |||D/|||    a <\\\f\\\s  T g.   /,

where  D  is any differential operator of order at most  r.  Indeed, we have

iiixvins.<T~Z(?+1)s^+1)s(i7i-^ + l)2cri7i-?i27i

<£(p+l)S+7(?+l)S+7(|p-£y-| +  l)2tT+7|

pq'

|2'pq'

L+7'. tr+7'/2*

Hence it suffices to prove the estimate for  D  involving only differentiations in

directions orthogonal to X.   But Q,   is   "elliptic"  in these directions, in a sense

made precise by Theorem 2  of Chapter III, so there should be good control over

such  D's.  However, we have not yet found a satisfyingly rigorous proof.
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V. BESSEL FUNCTIONS
(THE fJ-NEUMANN PROBLEM ON THE UNIT BALL)

LSeptembe

Let (l7 denote the Hilbert space of square-integrable  (0, /) forms on the unit

ball  B    C C", so that  U7 is the completion of V(A   ')  in the notation of Chapter I.
Recall that  u £ Y(A   7)  is said to satisfy the  c9-Neumann conditions if u\S    £ %J

and  du\S    £ $7     .   The restriction of ¿9b + be? to forms satisfying the  r9-Neumann

conditions is a positive hermitian operator; we denote its Friedrichs extension

by  [J (and use the symbol \^\ only fot this purpose).  In this chapter we will

solve the following strong form of the  r9-Neumann problem on  B   :  determine the

spectral decomposition of  Ci7  under  Qj, that is, find the eigenvectors and eigen-

values for (_].  Actually, in order not to clutter up the notation with factors of 2,

we will deal with the operator   2Q, which as a differential operator is just the

Laplace-de Rham operator.

1.  The r9-Neumann problem for functions.   For functions we have the well-

known formula

2Q il
¿v2

2n - 1 _r9_ + J_ A*
r        dr      ,2

(cf. Müller  [l3, p. 38])  where  A* is the Laplacian on 5   .  Since the radial and

tangential differentiations are not mixed, the trick of  "separation of variables"

works, and the eigenfunctions will be of the form f(r)g(d), where  6 denotes a

coordinate on  5  .   But we already know that functions on  5    decompose under  A*

into spherical harmonics; therefore, adjusting a factor of rp  q, we seek eigenfunc-

tions of the form f(r)h       where  h       is a harmonic polynomial of type  (p, q).

First let us see what the r9-Neumann conditions mean for such functions.  The

first condition is vacuous, and the second says \d(f(r)h    ), dr) |  =1 = 0. Therefore

o=y-4-(f(r)hj
*- 2r dz pq1

«   z

7=1

=z
1 2r

dh
/'W-f*     +f(r)~

2r pq
7=1 2r

rf'(r)
+ qf(r) pq 7=1

by the Euler homogeneity formula.   Thus the boundary condition is

(1) 1/2/'(l) + ?/(l)=0.

With this we quickly dispose of the eigenvalue  0.  Since  h       is already

harmonic, by uniqueness for the Dirichlet problem, we must have f(r) — const.

(1) then becomes q = 0, so the null space of 2Q consists precisely of the holo-

morphic functions.
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The nonzero eigenvalues are all positive, so we may write them as  À ,   0 <

A < oo.   To solve the equation  (2|    | - À   )(f(r)h    ) = 0, we use the formulapq'

272 (9F   dGU(fg) = (Uf)g + f(Ug)-ZEt ,-
dx   dx1 a "   a

(where x ., • • • , x       ate real Cartesian coordinates on  C")  and the Euler homo-

geneity rule, which yield

2D(f(r)hpg) = -[f"(r) + ((2n+2p+2q-l)/r)f'(r)}hpq.

The equation

f"(r) + ((272 + 2p + 2q - l)/r) f'(r) + X2f(r) = 0

becomes Bessel's equation of-order  p + q + n — 1  after the changes of variables

R = Ar,   F(R) = RP+q+n~ ¡ f(R), and hence the solutions which are regular at the

origin are constant multiples of r  ~"—P-qj ,(Xr).° r J p+q+n—l

A short computation shows that the boundary condition (1) is equivalent to

(2) V;+?+„_1W + (9-p-72+l)/p+9+n_1(A) = 0.

It is known from the theory of Bessel functions  ([17, Chapter XVIII])  that the

positive  A's  satisfying this equation form a countable discrete set and that the

corresponding functions  / _i(^r)  form a complete orthogonal system with

respect to the weight function  r on  (0, 1).  (The case  q = 0 is exceptional: here

one must add the function 7-P+"-     to make the system complete, which accounts

for the eigenvalue  0.) The expansion of a function on  (0, 1) with respect to such

a system is called a  Dzwz series.

Let À     ,, À     2'""' ke tne countable set of positive   A's satisfying  (2) enu-

merated in increasing order.   (The superscript 01, superfluous at present, will

become significant in the next section.)  Let

/01    (r) = c    r1-"-P-qj (A01    T)I pqm7'      Cpqr J p+q+n-VApqmr>

where the constant  c„    is determined so that /\      (r)h^     has   L  -norm   1pq 'pqm pq
wherever h^  \S    has  L  -norm   1   on 5   .  Moreover, let h\  , ¿     , • • • be a completepq'    72 72 pq       pq' r

set of harmonic polynomials of type  (p, q) which are orthonormal on 5   .  (For exam-

ple, we could take  h"    to be the harmonic extension to  B     of cbq   „  on 5   .) We*     ' pq _ 72 ^PqO 72 '

then have the solution to the (9-Neumann problem for functions:

Theorem 1.   The set  {h"A.    U j/        (r)hq   \ is an orthonormal basis forp0 pa 'pqm pq  pqma '
U    consisting of eigen/'unctions for  2Q   The eigenvalue of hqfí is  0, and the

eigenvalue of f01    (r)ha    is(X°J   )2.° '   'pqm pq Pqm

Proof.   The orthogonality and completeness follow in the usual way from the
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orthogonality and completeness of spherical harmonics and Bessel functions on

5    and (0, 1), respectively.    Q.E.D.

2.  The (9-Neumann problem for forms.   Here again the method will be to expand

forms as in Chapter II on each spherical shell with coefficients depending on  r

and then to obtain a Bessel equation for these coefficients.  The first step, there-

fore, is to define extensions of eV    . and  tii ̂    . to the interior of the ball, which^f><?7 ' Pqj
we will still denote by  d¡     . and  tir'    ^pqj ^ pqj

We use the analytical expression

7 + 1 /\
j>„   .= zq-lzpy (-iY-lz.dz, A ... dz.... Adzrpqj 1 72   '    ' 2 1 2 7+1

2=1

to define  ¿>     . on all of  B   .   Further we define^pqj 72

(dz., dr)  _ "   Za 2dr
C- = dz . —-dr - dz . — z . \^ — d~z   = d~z . — z .-

!       {Jr. dr) C        'T' " '        '   r

on  Ö    — jOi and then define

¡Ä     .= rz-q-xzpC, A ... A£..r pqj 1 72^1 ^;

The factor of r is inserted to make  tii     . homogeneous of degree  p + q, as   <f>

is; it also has the effect of making every  ifj     . except  tii,    ..,,      j,  continuous at

0.  It is clear that these extensions of cp     . and ifjpqj preserve the property of

being pointwise orthogonal to forms of the type  9 A dr.  It is also easy to check

that

</,     .= rl^-^Cdz, A ... A ¿i. + (-l)72<¿,,   ,.  ... Adr^ pqj 1 72       1 7 ^pq(j-l)

foi p > 0, and

~zq-X      n ^
tii,   „   ,     ,,=■——  y (-l)i+"z-.dz, A ••• dz..-. A dz .
r (- 1)£J(72- 1 ) r L-i Z 1 I 72

2'=1

Now let  d>t   ., tiit   ■ be the canonical basis forms of Chapter IV.  We extendrpqj'   ^ Pqj r
these forms to the interior just as above by requiring their coefficients to be homo-

geneous of degree p + q.

Except at the origin,  every  (0, /')-form 6 can be expressed as  6 = öj +■ d2Adr

where  6,  and  ö„  are pointwise orthogonal to the ideal generated by  dr.   dl  and

62 can then be expanded in terms of the  <p's and til's with coefficients depending

on r.  We therefore look for eigenvectors of   2Q   of the form    /(r)</i>£   -,  f(r)tiiap   -,

f(r)(pq   . Adr,  f(r)tii"   ■ A dr where in the last two cases the boundary condition
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/(l) = 0 must be satisfied.   The thing that will make this easy is the fact that [_

acts componentwise with respect to the natural basis in  C":

r~\(ya.       .dz.   A ••■ A dz.  )= V(r>.       . ) dz .   A • • • A dz .LJ\¿^    z,---zy        I, lj)     Z^XL_I     lyij II t..

(This follows from the Weitzenbo'ck formula, or by direct calculation.)

First let us consider forms of the type

/W0p?j = /wt1^Z(-i)i-1V51a...^...a¿5)+1.
z'=l

Since  q > 1  and  j <n — 2, each coefficient of  c£>     . is a harmonic monomial of■3  _ 7  _ » ^pqj

type" (p, q). Therefore, applying the arguments of §1 to each coefficient, we see

that (2Q- X2)(f(r)<ppq) = 0 if and only if f(r) = crl-n-p~q J p+g+n_ AXr), or f(r)
= c in case  À = 0.   Moreover,

d(f(r)<p,Jpqj
/' + 1 A \

+ (£7+/)/(r)ï«-L^51 A ... A rf*/+

, » /(r)  . 2(-l)7 TI^l+(q+!)f(r) ^7?97

—
Therefore the  (9-Neumann condition requires

(3) y,f'(l)+(q + j)f(l)=  0.
Thus the eigenvalue   0 does not occur.  As in §1, (3) is equivalent to

W M;+3+n_1U) + (í7-p+2/-72+l)/í)+?+n_1(A)=0,

and there is a countable sequence  À7    ., À7    2, • • •  of positive numbers satisfying

this equation, yielding an orthogonal sequence of Bessel functions.  Setting

til    (A = c      rl-"-P-qj (\jl    r)
lpqmK' pqj ' p +£/ +72 - V   pqm

with the normalizing constant  c        as before, and then letting the unitary group

act, we see that  {/'       (r)cbt    L is an orthonormal basis for the subspace of' 'pqm      "pqj  pqma c
u7 whose elements are in the span of the  <p's on each sphere.

Furthermore, since  2|    I commutes with d, the forms  r9(/7.      (r)</3f   .)  are an
1—' ' pqm       ~ pqj

orthogonal set of eigenforms with the same eigenvalues  (À7      )   .  (They auto-

matically satisfy the second boundary condition since they are  (9-closed.) A

straightforward computation shows that   b(/7       (r)<fap   •) = 0> so
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KJ2f'pU^apqj - 2{J(f'plqm(r)^pqj) - 2bd(fHm(r)(p«pq!).
It follows  then from the  fact that d is  a  weighted  shift operator that

{22 (A7.1    )-  d(f'A    (r)d"   .)L is an orthonormal basis for another large sub-pqm ' pqm       ^ pqj    pqma &

space of u7+ , orthogonal to the one constructed above.

We cannot play the" same game with the  i/r's  or <p A dr's, because their coef-

ficients with respect to the natural basis are not harmonic.  However,

0pqj A *
= [rzq-1zpndzl A ... A dz.+ 2(-l)70p<?(y_1)A dr] Adr

(72

— Z */■

= -zq-lzp y z.dz, A ... A dz. A dz.
J        1 72   ¿^ 2 1 7 22

7 + 1

for p > 0, and

<*<_!*<„_!, A dr

=iif-i (y (-i)^*^.^, a ... £¿5.... a dz \a( — y z .d z

ri

=- ~zq~   y  zjzd~z, A
_ 7      1       *—•     1   1      12t1 1

= ^z9.~1dz, A ... A dz .

A dz

Since /' > 1, the coefficients of these forms are harmonic monomials of type

(p + 1, q - 1).   Thus we obtain eigenforms of  2\^\ with eigenvalue  À    of the type

/(r)i/f     . A dr by taking /(r) = Cr p~q] _ ^(Xr), and the first boundary
condition is  /(l) = 0.   (Hence  X = 0, which would require /(r) = c, is impossible.)

The second boundary condition is vacuous, for

^f(r)tiipqj A dr)

= /' (r)dr A tiipqj Adr+ f(r)ditfipqj A dr)

= 0+ f(r)d(1/7zq-lzpndzl A ••• A £7'5;. A (J(72)) = 0.

As before, there is a countable sequence  X,2,,X'    „, ■ • •  of À's for which the' M i>£jl'      p<?2' ■
boundary condition is satisfied, and the corresponding f1      (r) = c     .r     n~P-q
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• / - l^öoTTz ^ ^orm a complete orthogonal set on (0, 1) with respect to the

weight function r.  (The expansion of a function with respect to this basis is a

Fourier-Be s sel series, but the same theory applies as with the Dini series  (cf.

Watson [17, Chapter XVIIÍ1).) Therefore, letting the unitary group act, we see that

I/Í     (r)tiit   ■ A dr\ is an orthonormal basis for the subspace of U7 +    whose ele-' pqm      r pqj _ r

ments are in the span of the  tii A dr's  on each sphere.

Just as we obtained another subspace by applying r9 to the f(r)<p's, we obtain yet an-

other one by applying b to the f(r)ifj A dr's, and Í2*U^ J~ ^(/'^(/ty^. A dr)\pgma
is an orthonormal basis for this subspace.  An explicit formula for these forms will

be useful. Since

<£ «i — tydz.   A Adz.)'j/

2ZLl)%^.r..¿/cte.Vz¿1A dz. Adz.,

we have

bWMpqi A or)

>6    d
■   Z    Z   (-^^(f(r)-Z^zPnza)dZlA
o=7 + l  6 = 1 °Zb

• dz, ... A dz. A dz

+ (-l)7 + 1    y    — (f(r)lq-1zpz )dz.A- Adl
£2=7 + 1 dZa

= Z X<-»
£2=7+1    6=1

»/'(»>_ /Cs
2r

z.z'l    '■z^z dz, A ••• dz,b     1 72    £2 1 b
A dz. A dz

7 «

(-1)7 + 1 (p+TZ-Mr^-L^^i?-1^    ¿    V2r £2 = 7+1

dz, A • •. Adz.1 ;

(-1)7+1 rf'(r)
+ (p+ n- j)f(r) ti1 pqj   +-ÍP+ n- j)f{r)<t>pqU-D Adr

Note that this automatically satisfies the right boundary condition:  /(l)   = 0.

We have now obtained the complete decomposition of the spaces  (I7. To show

this, we need some lemmas.

Lemma 1.   If u = g1(r)tiipqj + gp)<^pqij^i) A ar ^P > °)  then
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du = |^(- l)7g;(r) +   ?+r;~1     g2(r) + ~ (2q + 2/ - l)gx(r)J rfipqj A ¿V,

, f(-l)7 2(p + 72-/) '        (-1)7' ■"]
= LT" 8'2     +-r- 8l     + ~^T    P + 2n ~ 2/ + 1} g2   J *pq^- l >•

(-1)""1
(9«=     (-l)"-lg'(r)+-—- (2<7+272- 3) g(r)U     ,)?(n_n Adr

and bu = 0.

Proof.   Brute force computation.

Lemma 2.   The formulas of Lemma 1  are true with  iA     ., cA     ,.    ,. replaced byI I ^Pqj' ^pq(j- I)       e '

^pqj' ¿pqlj-lY

Proof. The action of the unitary group taking (p f_i» to <£* fi_. > is the

same as the one taking </( ■ to tilt -, by construction of tfit •• Since d and b

commute with  (7(72), we are done.

Lemma 3.  [] annihilates no form of the type

Proof.   By Schur's lemma it suffices to consider a fixed (p, cj), i.e. u = %c u"

where  Z2fl = g^OOv^y + g^^lqij- 1) A *"•  Ihe formula  ([>, u) = (¡9k, ¿a) +
(bu, bu)  shows that |   \u = 0 if and only if <9tv = 0 and  bu = 0.  Since  tii"   ■
(respectively <f>"   ,•_[•,)  is orthogonal to  tit"   ■   (respectively  <pa   f_n)  for a ,= a',

Lemma 2  shows that  du = 0 and  bu = 0 if and only if r9z2a = 0 and bz2a = 0 for
each £7.  Thus it suffices to consider a fixed a and (after a unitary transformation)

we may take a = \.

Therefore we must show that there is no form u = g ,(r)tii     ■ + e Ar)Ô     ,.    ,,A_ _ "1       rpqj       ö2'   '^pqij-l)
¿V which is harmonic and satisfies the  (9-Neumann conditions.  After some compu-

tation we find that

—r< iïrUi^  gl(r)+i(-^  ̂ Tll. ,2(r,j
\_\(p+q+"-f 2 P+Í7 + 72-1      2(

+ ^|(-l)7gl(r)+lg2(r)|
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P+ n- j     4^    - q + j- 1
1

7 + 1

-y ziz4-y z.z\ \dz,A..-Adz.
p+q+n-l   ^    '   '      í+f+«-lftí   '   '(/     !

+ 7{(-Dyg1W + ̂   g2(r)\
r  \ 2 )

Z  Z   {-Dt-1^adzlA...dz....Adz.AdzA.
tal £Z=7+1

The coefficient of each <¿z . A . . . A dz . is a sum of homogeneous harmonic poly-

nomials multiplied by functions of r. Since u is harmonic if and only if each coef-

ficient is harmonic, and a harmonic function on B    is determined by its values on
72 '

any sphere about the origin, it follows that these functions of r ate constant. Thus

r-1[(-l)7g1(r)+^g2W] = c1,

\p+q+n+l 2 p+q+n-l

Solving for g .  and g ,, we find

g Ar) = c2/r + (-lV[(q+ / - l)/(p + £7 + 72- l)] c^r,

g2(r) = 2(-l)7-1 c2/r+ 2[(p+ 72- /)/(? + q + n - l)] c yr.

The first boundary condition says  g Jl) = 0, i.e.

(-l)7-1c2 + [(p + 72- j)/(p+ q + n- l)]ct = 0.

By Lemma 1, the second boundary condition says

(- lYg'Al) + {q+j-l) g2(l) + (- l)'(2q + 2/ - l)gl(l) = 0,

i.e.

(-l)7-'c2+^l-^-c1 + (£7+./-l)r2(-l)7-L2 + 2     P+n~Í      c]
1      p+ q + 72 - 1     l l p+q+n-i^\

+ (- 1)7(2£7 + 2/ - 1) \c. + (- l)7      q+1~l     c 1 = o.
|_2 p+q+n-l     :J

The LHS reduces to  [2(p + q + n)(q + j - l)/(p + q + n - l)]c y   Therefore  c j = 0,
whence  c 2 = 0, which implies g y = g 2 = 0.     Q.E.D.

Lemma 4.  [] annihilates no form of the type  k = 2  a&V^^I- IV? (72- 1)"
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Proof.   The same reasoning as in Lemma 3 shows that it suffices to consider

« = «^(-n^-ir-r^r'Zi-D!+"V-iA-"¿V" a </*„.
1=1

Since   z*- z. is harmonic, if |    \u = 0 we would have  g(r)/r = c.  The boundary

condition, by Lemma 1, is  (-1)*- L + (-l)n~l(2q + 2n- 3)c = 0, i.e.   c = 0.      Q.E.D.

Lemma 5.  [¡] z's infective on U7 /or /' > 0.

Proof.  We have already noted that [] annihilates no forms of the type g{r)<p

or g(r)tir A dr, and Lemmas 3  and  4 show that Q] annihilates no forms in the

orthogonal complement.

We are now ready to state the solution of the  ¿-Neumann problem:

Theorem 2.

^i\m^apqj\pqma  U l/yi^^-DA 5H

ul2MU(7^)l)-^(/(77ml)l(^(._n)|^ma

uL'^U72   )-1b(/7'2   (rty"   .A ¿ML.   .Í>977Z 'pqm      ^ pqj pqma

is a complete orthonormal basis for U7 consisting of eigenforms for  2\^\ with

eigenvalues  (A7,1    )2,  Ui'"1'2)2,  Ui7-1)1)2,  (A7:2   )2 respectively.   (In  Q1° Pqm     'pqm        '  '        2>£im      _ '        p£/77z r '
(respectively  U*-  ) forms of the type  tii A dr (respectively <p) do not occur, and

in  (ln only forms of the type  xfj A dr occur.)

Proof.  We need only show completeness; everything else follows from the

foregoing discussion together with the remark that the ranges of d and   b are

orthogonal.
Let  u7.,  U72, and (37   denote the spaces of forms of types  <f>,   tii A dr, and

g ,ifi + g 2<p A dr respectively.   Then  U7, u72, u7   are mutually orthogonal and

invariant under I   j, and ©? (Î7 = (27.  We have already seen that í/7      iñcp"   . \1—I' v" 1     z ' 'pqm     rpqj   pqma

spans  U7   and  {fj ~      (r)i/>"   . A<?rL          spans  U7,.   It remains to be shown thatr 1 'pqm ^ pqj pqma     r 2 _ _
the other basis elements span  U7, which amounts to showing that d(LV.~   O Dom â)

+ b(u7 +   D Dom b)  is dense in  U7.  Since  [] is injective  (Lemma 5) and self-

adjoint, its range is dense.  Therefore, given  u £ U7, we can find  v v v2, ¡v     . . .

in  u7  (because  U7,  is invariant) such that  u =¡ lim (|   \v   ) = lim(dbv    + bdv   ).
3 3 . _ '-'    772 772 _    77Z

By Lemma 2, bv     £ &', ~ l  and dv     £ (î7'+  ; by construction, by     £ Dom d and_' 'ml m 2      '     ' m
dv     £ Dom b, and this is what we needed.     Q.E.D.

772 ^

Corollary.   The basis elements of Theorems 1  and 2 (if we take  h.    = <¿     „J i v * pq       ^pqO

in Theorem 1) form a canonical basis for ©"â7  z'tz the sense of Kodaira and

Spencer   [5].
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The reader may find it reassuring to see the forms  (9(/7      W'tL   ■)  anc^

b(/;2    (r)iA„   ■ A dr)  expressed as  la.        . dz .   A • • • A dz .   where the  a .y'pqm      ^ Pqj '        r zj-.-zy        zj zy 'l-'-'j
ate sums of homogeneous harmonic polynomials multiplied by appropriate Bessel

functions, so that it is directly obvious that these forms are eigenvectors for  2|    |.

To accomplish this we use two well-known recursion formulas for Bessel functions,

namely

(d/dx)(x-^j(x)) = -x-^].Ax),
jj, fj,    i

/      l(x)+}un(x)  =(2pA)/M(x)     (cf. Watson [17, p. 17]).

Applying these to the expressions for d(f7}    (r)<±>^   .)  and  b(f'2     (r)\li„   . A dr)  inrr i     o r s> pqm    'r-pqj' x' pqm      " Pqj

terms of the dz.'s, we obtain (modulo a normalizing constant)

^lllm^pq)
= (—----)^r2-p-q-"Jh+   .      ,(A"    r)zq~lzpdz, A ... A ¿I|+1

\p+q+n-l        2 >P+q+n-2     pqm        1 72       1 7 + 1

_jqm_      „_p_q , (A17     r)^q-lzP
2 J p+q +72     pqm 1 72

il1 a + i * \+ w - y - i /_   _ £7 + /Iv¡-p+C7+72-lj P +  ■?
Ez 5. I ¿z, A ••• A d z .,,ill 7+1
7+2 /

7 + 1 72 ^

+ V    V    (-l)1+J-1z.zdz. A ••• dz....Adz.Adz
í—á       i-^l 2    £2 -       1 2 7 £2
1 = 1    £7=7+2

and

M/&«W*M/A *)

( p-TT^iTJ ̂-^"^WHi^T1"«^-

+ x/2    T-n-p-4j (w2   ^-l^P
i>£J772 Jp+q+n    pqm        1 72

I P+n- j   J^    _ q+ j- 1
{-D'+l[    ' '    y zt.-      *     ' y zt. )dzA...Adz.

\p+q+n-l^    ll      p+q + n-l   4?    7!/p+£7+77-l      J p+£7+72        .    /+1

+ 2]   Z (-^'"'V/L^'' dzr..'Adz.Adzp
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Thus each of these is the sum of a term  of harmonic type  (p, q — 1) and one of

harmonic type   (p + 1, q).  Note also that a factor of  À appears in each term, as

we expect from the canonical basis property.

In particular,

b(/MÄ^.l„,.-l,A^)

2 = 1

= A(72-1)2    -72-£7+l, (A(*-1)2 r)(-l)"-1rii2A(-l)£?m ■/£i+72-lVA(-l)£J772rn      L' V ( - 1 ) £J (72- 1 )*

Indeed, we could have derived this expansion for the forms  g(r)ifi ,   _      by

observing that the coefficients of rtii,..   ,      n are harmonic of type  (0, £7) and

using the  boundary condition   lAf'(l) + (q + n - l)f(l) = 0 where  f(r) = (l/r)g(r).

The recursion formula   x]   (x) + pj Ax) = x]  _Ax)  shows that this boundary con-

dition is equivalent to the boundary condition f(l)= 0 for /(r)i/>       .   .      ,. Adr.

3.   Distribution of the eigenvalues.   The estimates for the eigenvalues of [¡

are obtained from facts about the zeros of Bessel functions  (Watson [17, Chapter

XVl). We summarize the main results in a theorem:

Theorem 3.   (1) For some constant  c = c(p, q, j),  X1       = c + 77777 +■ Q(l/m),

and for some constant c = c(p + q), X1' 2    = c + 77777 + G(l/m).

(2) Let  v = p + q + n-l,  H = q - p + 2j - n + 1.   Then

(vKv + 2))H < A72 . < (2(v + 1M1/ + 2))Kpql

(Av+ 2))Vl<Xp1ql<(2(v+ l)(v+ 3))H if H> 0,

((v+ 2)(¡/+ H)YÁ<Xip\l <(2(v+ l)(v+ H))l/i    if-v<H<0,

((v+ l)(v+ 3)YA <Xp,10l <(2(v+ 2)(v+ 4)YA  (fot which H = -„).

Proof.  With v, H as above, A7'      is the  mth positive zero of X]\X) + HJJ.X),
and  A7        is the  772th positive zero of /  (A).   The asymptotic formulas of    (1) for

these zeros were derived by C. N. Moore  [l2l.

Denote by  7",   (/') the smallest positive zero of  /     (/').  Then  A7.   , = /   ,
J    ' /x    '/x r J /x    J fj. pq l      ' V

and since  ] V(X), J ' (X)   ate positive for small  À and their zeros are intertwined,

we have  /'    < A7       < /'    provided  H > 0.  Also, for H = - v, the recursion formula

A/>) - v)v(X) =- XJ^AX) shows that Aj^ = fv+v The estimates for A7^, XjJ,
(H > 0), and  À   ;.  then follow from the estimates for /'  , /'   in Watson [17, p. 4861.
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For the case - v < H < 0, we use higher recursion formulas.   First

*/>7 + H]V(X) = (v+ H)]v(X) - XJV+1(X).

Since  v + H > 0  and ]„(X) = X^[l + 0(A2)], it follows that XI'(X) + H]   (A) > 0r v v
for small  A, whence  A7    . < ? ' ■   Next,' pq1       'v '

2(v + 1)[A/;(A) + H]V(X)} = -A2/v+2(A) + {2(v+ l)(v + H) - X2]]V(X).

Setting  A = A7    ,, the LHS vanishes; however, since  X'    . < j[   </,,</     ,, it fol-0 Pqy pql     ' v      ' v     i v+2'
lows that  Ju(Xpl j) > 0,  ]v+2(X'p1 j) > 0.   Therefore we must have  A7.1 , <
(2(v+ l)(v + H)Y¿.  Finally,

X]'v+2(X) = [2(v+ 1)+ H- 2(v+ l)(v+ 2)(v+ H)/X2]]p(X)

-{l-2(v+l)(u+ 2)/A2][A/^(A) + HjJJÙl

Setting  X = A7    ,, the second term on the RHS vanishes.   If A7    , <((v+ 2)(u + H))   ,D pq1 pq 1 —

the RHS would be  < HJv(X'pql) < 0; but ((i/ + 2)(v + H))Vl < v + 2 < j'v ¡t  so the
LHS would be positive; contradiction.     Q.E.D.

Corollary.  [] has closed range; and if /' > 0,  [] z's surfective on  U7.   More-

over , the Neumann operator N (defined by  N = 0 on the null space of [~| and

N = \^\~     on the orthogonal complement)  is compact.

Proof.  (2) implies that all nonzero eigenvalues of  2Q are  > 72, so the restric-

tion of \_~\ to the orthogonal complement of the null space is bounded below and

hence has closed range.  [ J is therefore surjective for / > 0 by Lemma 5, §2.

Moreover, (2) implies that the inequalities A7.      < c or A7.      <c can hold only when' r ^ Pqm pqm '

(2(p + q))Á < c (the worst case being A7'   ), and  (1) then implies that there are

only finitely many eigenvalues less than any fixed c.   The eigenvalues of N being

the reciprocals of the eigenvalues of L], the spectrum of N is discrete with only zero

as a limit point.  Since each  A7       , Ai       is the eigenvalue for a finite-dimensionalr pqm'     pqm &

space  (namely an irreducible representation space of  U(n)), it follows that  N  is

the norm-limit of operators of finite rank and hence compact.     Q.E.D.

4.  The r9-Neumann problem on an annulus.   The theory of § 1  and  §2  can be

easily adapted to give the solution of the (9-Neumann problem on the annulus  A

= {z £ C": p < |z| < 1},   0 < p < 1.   The functions  f(r) will now be general cylinder

functions,

/(r) = rl—p-q[cl]p+q+n_l(Xr) + c2Yp+q+n_AXr)},

and we will have to impose an additional boundary condition at  r = p:

p/'(p)/2 + (q+ j) f{p)= 0
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for forms of type   <p and j (p) = 0 for form of type tii A dr.  The operator

d 2/dr2 + [(2n+ 2p+ 2q- Û/r] d/dr

is nonsingular on the interval  [p, l], so the ordinary Sturm-Liouville theory (cf.

Coddington and Levinson  [2, Chapter 7])  guarantees the existence of complete

eigenfunction expansions for the f(r)'s.   Thus we obtain numbers  A7       (p),

A7      (p)  and corresponding functions f      (p; r), /7      (p; r) which yield a complete

orthogonal decomposition of the spaces  U7(A   )  just as in Theorems 1   and   2.

The main difference is in the harmonic spaces.   If h       is a harmonic poly-

nomial of type  (p, £7), then  h       and  r       -n — P — q)^       are DOtrl harmonic on A   , so

for A= 0 we must take  f(r) = c . + c 2r  [-l~n~ P~ 1\  R is easy to see that no such

f (r) can satisfy the boundary conditions

rfAr)/2 + (q + f) fir) = 0       (/< 72 - 2)
or f (r) — 0 at both   r = 1   and r = p, except for the case  q = /' = 0 when f(r) = c.

works; thus there are no harmonic forms of the types  cp or tii A dr except for the

harmonic space of functions which we have already found for p = 0.   Lemma 3  of

§2  also remains valid, although the linear algebra in the proof becomes rather

more formidable.   Lemma 4, however, breaks down: g(r) = r3     "-   q  satisfies the

boundary conditions given by Lemma 1, so we obtain an infinite-dimensional har-

monic space in (f*-  (A   )  spanned by  {r       *"  ?tA?_ 1 )  ,      , J     .   This comes as

no surprise, considering the behavior of the  d,   complex.  It is also indicated by

the general theory of the  (9-Neumann problem since the basic estimate of Kohn  [61

for A     fails to hold for / = 0 and  ; = n — 1.
We do not have precise results about the eigenvalues corresponding to Theo-

rem 3, since the equations defining the A(p)'s   are considerably more complicated.

In fact, in the notation of Theorem 3, if  F .(A, r) = XrJ ' (Ar) + HJp(Xr) (respective-

ly  FjU, r) = }v(Xr))  and  F-JCA, r) = XrY'v(Xr) + HYv(Xr) (respectively  F A.X, r) =
Y AXr)) then the equation for  A7.     (p)  (respectively  A7,     (p))  isV T pqm r r j      pqm r

Fj(A, l)F2(A, p) - FAX, p) F2(X, l) = 0.

We can state the following proposition:

Theorem 4.   The functions  X1      (p) and A7      (o) are continuous on the half-' Pqm r Pqm r '
open interval [O, 1).

Proof.  Continuity at  0 follows from Theorem 3-1  of Coddington and Levinson

[2, Chapter 9l, since the operator

d2/dr2 + {(2n + 2p + 2q - l)A] d/dr

is of limit-point type at  0.  Continuity on  (0,1) follows from Theorem 4.1 (ibid.),
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as this theorem works equally well when the equation is nonsingular at the end-

points.     Q.E.D.
Unfortunately, to obtain the qualitative results of §3  a stronger result such

as equicontinuity of the  A(p)'s  is necessary.   However, indications are quite

strong that the qualitative behavior of the  (9-Neumann problem for p > 0  is the

same as for p = 0 except for the existence of the extra harmonic space.

5.  Sobolev estimates for L].  We now return to the complete unit ball.   From

the general theory of the-(9-Neumann problem it is known that  ||u||      .   <  ||     |z¿||     <

||z7||      2 for u £ Qj n Dom([3,  /' > 0.   Our investigation of the  ¿\   complex, in

which the Laplacian  Q,   satisfied the same estimate, showed that the strength of

J\h on  u depends on the spherical harmonic decomposition of  u : Q,   is strongest

on forms with  p — q = const, and weakest on forms with p = const, oí q = const.

We are therefore led to expect that [] may exhibit a similar behavior, except that

it is likely to be less symmetric in  p  and  £7.  Indeed, this seems to be the case.

The search for a precise relationship between £] and the Sobolev norms is

unfortunately beset by a series of technical difficulties which will become appar-

ent, so our results are rather incomplete.   However, we are able to shed some

light on the most essential features of the situation.  We can display infinite-

dimensional subspaces of U7  (0 < j < n - 1) on which   \\[^}u\\  < \\u\\ 1 (whence

I   \u\\  ~ ||m|| .   for / > 1   by general theory), and these spaces occur with £7 = const.

(On U* the  (9-Neumann conditions coincide with the Dirichlet conditions, which

are  coercive;  cf. Dunford and Schwartz  [3, §XIV.6].  Hence||L¡]£7||  <~ \\u\\ 2 on

u".) Moreover, we show that  ||     |k|| ~ ||"|| 2 on the subspace of U7  with p =

q + 2/'.
First we consider functions, where we naturally restrict our attention to the

orthogonal complement of the harmonic space.   The technique is to compare the

(9-Neumann problem with the coercive  £77-Neumann problem.   Thus let  A denote the

selfadjoint extension of the Laplace-de Rham operator - 4~L(d /dz .dz .) deter-

mined by the boundary condition   {du, dr) |  _. = 0.   For  u £ Dom (A)  we have

(AM72,   AV"u) = (Au,   u) = (du,   du)^ || a || t

(provided u is orthogonal to the constants), so by continuity   ||A   u\\ ~ ||z2¡     for

u £ Dom (A   ).   More generally one can show that  Dom(A -    )  is a closed sub-

space of H  , and  A     2: Dom (As'  )CH    —» L     is a topological isomorphism.

However, we will see from the proof of Lemma 2  that, for s > 3/2,  H    D Dom(|    |)

(£Dom(A      ), so this method will not yield higher s-norm estimates for Q.

The eigenfunction decomposition of U for A proceeds just as in §1. The

¿-Neumann problem does not respect the complex structure, so only the total de-

gree  k = p + q  of the spherical harmonics is relevant.  If we look for a solution of
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A — p   = 0 of the form f (r)h,   where  h,   is a harmonie polynomial of degree k, we

get- the modified Bessel equation as before and hence  f(r) = cr  ~n~kj Apr).

The boundary condition is / (1) + 7e/(l) = 0; equivalently p./'    k_ A.p) +

(l - n)J     , _  (p) = 0.  We denote the positive roots of this equation by p, ,, pk2, • • •,

and the corresponding /'s  (normalized as usual) by /, j, /, 2, • • • .  Theorem 3

gives the behavior of the  p^/'s, taking  H = 1 - n.

The first thing we notice is that for p = q  the  (9-Neumann and  (/-Neumann

conditions coincide.  Hence

Lemma 1.  // u  is in the span of the f       ^     's,   ||2|   \u\\ = \\Au\\  ~ ||"||2-

The next step is to compute the change-of-basis matrix from the  |   ¡-eigen-

basis to the  A-eigenbasis.   For brevity we shall write  A^.       = A„     ,   /\       = /.      ,0 ' Pqm Pqm     ' pqm      ' pqm'
v — p + q+n— 1,  H = q — p — n + 1,  K = 1 — n.   Then  if h       is a harmonic poly-
nomial of type  (p, q)  with   /_   \h     |    = 1, we have

Apqmt^fpqm^hpq'fk^hpq^

^}^pqmr)2rdrQ]u(Hlr)2rdr}^

Using formulas from Watson  [17, pp. 134—135]  together with the boundary condi-

tions, we find

fl,a yr' ,      .       tq-p)jv{Xpqm)]v(pk)

AZ>£?772 P-kl

f/U        r)2rdr = ±J    (A        )2 \l + %l^1J0 ' V     pqm 2 Pq A2
L P977Z     J

and so

1 vJ = Kqm - tí¿m ♦ ("2 - ̂ /KqJ" t1 + (*2 - "V^i*   iq *P)'
pprnl ml

Lemma 2.  /.      (r)/j      eDom(AH).pqm pq

Proof.  We have
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fpqm{r)hpq=T,Apqmlfkír)hpq-
(=1

SO

¿AVpqm^hpq^llHlApqmllk^hpq'
1=1

2and it suffices to show that the latter sum converges in  L   , i.e.

H^kl\Apqml\2<
1=1

Since   K    < v ,   the term   1 + (K   — v )/pí¡ is less than one and increases as

/ —► oo.  Therefore

/ = !
2^, V-kVApqml

<2\q-p\ 1 + H2-v2

A2pqm

K2-v2

rtjbl

1    <x> p-ll
k=l \x2pqm-^2kl\

But p,,= c, + In + 0(1.//)   by Theorem 3, so for sufficiently large   /,

V-lAKqm - Hl\ 2 < (2ln)2/(mn)4, and thus

P-ll <cj]—-<oo.       Q.E.D.
' = ll^77z-^/|2-     ~(M

The following lemma provides the crucial step:

Lemma 3.   // u  is in the span of {f     Ar)h     : 0 < p < °°, q = const. ¡= 0], ther

Oil < Hr
Proof.   By  Lemma 2, it  suffices  to  show  that   ||2[H(/      iD'L   )||  <

cW^Á^pql^hpq^W   with  c  independent of p.   Well, ^TLi |A ̂  , ,|2 - 1  by the
Parseval theorem, so

\lUUpq¿r)hpq)\\2

= K  7 = A^  , V |/4pql pql   Â-*,   '
pql

pqll'
/ = ! Pkl     /=1

AM1  *.,*•=. .,       Kql   „,V,

Z^L^Vl'1

<-rH^li\Apqu\2
p-ki '=i ni

■ Mli.    — iA* </„,«*„>!*.
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But by Theorem 3,

Ap9l < [2{v + H)(v+l)]2 = [4q(p +q + n)]2

fot p  sufficiently large so that H < 0, and

p2kl> (v + K)(v + 2) = (p + q)(p + q + n + 1).

From this it is clear that  AJ*   ,/pz,, < const, as  p —> oo,     Q.E.D.

It is essential to take  ttz = 1   in this lemma.   One can easily see that  A,.   , <' pql
p, . < A     2 < p, 2 <• • • , so that all the  A       ,   m > 1, ate reasonably large.   The
bad behavior is caused by the smallness of the first eigenvalue when q — p <K 0.

(When £7 = 0, of course, the first eigenvalue is actually zero.)

A more thorough investigation of the coefficients A        , should yield more

precise estimates for Q.   However, this seems to depend on some rather delicate

and abstruse estimates for  A and p, ,, which are beyond the range of the pre-

sent author's expertise.

We now apply the above results to forms of the type f(r)<p     . with /' > 0.

Each coefficient in  cp't   . is a homogeneous harmonic polynomial of type  (p, q).

Since we may define the   1-norm of a form to be the square root of the sum of the

squares of the 1-norms of its coefficients, Lemma 2 provides the method for cal-

culating the 1-norm of f (r)cpa   ..  The numbers  A7        satisfy the same estimates

as  A    . (with  v + H = 2q + 2/'); therefore Lemma 3  has an exact analogue:

\\U(íÍlqi(r)<t>apq)\\<c 11/^jW^JI,  with  c  independent of p when £7 = const. We
have

Theorem 5.  Suppose  u £.Q1 n DomQ,   /' > 0.   Then   || ^\u\ ~ ||7z|| 1 when  u

is in the span of {fl Ar)(fra   \      (q = const.), and  ||     |tt|| ~ \\u\\ 2 when  u  is in

the span of j/''1   ...      ¿>f     ...   .\ or in the span of {P2   (r)tii1 ,.   ,. A dr\.r '     ' (q + 2j)qm ~( q + 2j)qj'qma r '    ,; pqm* 'tpq(j-l) 'pqma

Proof. The first assertion follows from the preceding observations and the

fact that ||u|| < || |z¿|| for /' > 0. The (9-Neumann conditions for forms of the

type P ^4>ab ■ with p = q + 2/ coincide with the ¿-Neumann conditions for

their coefficients, and for forms of the type  /72    (r)tiiq   ,.    ,, A dr they coincideJr      'pqm        '   pq (j - 1 ) '

with the Dirichlet conditions for their coefficients.  Since, as we have remarked,

both of these are coercive, the theorem is proved.     Q.E.D.

It should be true more generally that  ||'   \u\\ ~ \\u\\ .  fot u of the type

f(r)cpa   .,   p — q - const.  A possible approach would be to show that the boundary

conditions /'(l) + (p + q + c)f(l) = 0 for functions of the type  f(r)hp, where  c

is independent of p  and q, define a coercive problem, but we have not worked

out the details.   It is also probable that the estimates which hold for forms of the

type f(r)<p and f{r)tii A dr also hold for those of the types  d(f(r)q))  and

b(f(r)(f> Adr), respectively. However, the latter forms are not directly amenable to our
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methods, since their coefficients are not homogeneous harmonic polynomials.  We

therefore leave these assertions in the realm of conjecture.
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