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Biological data analysis is the key to new discoveries in disease biology and drug 

discovery. The rapid proliferation of high-throughput ‘omics’ data has necessitated a 

need for tools and platforms that allow the researchers to combine and analyse different 

types of biological data and obtain biologically relevant knowledge. We had previously 

developed TargetMine, an integrative data analysis platform for target prioritisation and 

broad-based biological knowledge discovery. Here, we describe the newly modelled 

biological data types and the enhanced visual and analytical features of TargetMine. These 

enhancements have included: an enhanced coverage of gene–gene relations, small 

molecule metabolite to pathway mappings, an improved literature survey feature, and 

in silico prediction of gene functional associations such as protein–protein interactions and 

global gene co-expression. We have also described two usage examples on trans-omics 

data analysis and extraction of gene-disease associations using MeSH term descriptors. 

These examples have demonstrated how the newer enhancements in TargetMine have 

contributed to a more expansive coverage of the biological data space and can help 

interpret genotype–phenotype relations. TargetMine with its auxiliary toolkit is available at 

https://targetmine.mizuguchilab.org. The TargetMine source code is available at https://

github.com/chenyian-nibio/targetmine-gradle.

Keywords: data warehouse, integrative data analysis, multi-omics data analysis, gene prioritisation, drug 

discovery, data mining, knowledge discovery

INTRODUCTION

The rapid proliferation of high-throughput omics technologies has revolutionised biological research 
by significantly adding new omics data. However, as the experimental datasets increase in size and 
complexity, extraction of meaningful biological knowledge becomes qualitatively more difficult, 
expensive and labourious. Therefore, there is an ever widening gulf between data generation and 
the rate at which it can be properly analysed (Greene et al., 2014). Proper mining and curation of 
large biological datasets are necessary to develop an improved understanding of living systems and 
of disease pathogenesis.

An integrative multi-omics approach combines different types of biological data into a single 
analytical framework to understand the relationships between different cellular components (Zhu 
et al., 2012; Yan et al., 2018). Such analyses are useful to develop analytical models that can interpret 
genotype–phenotype relationships, garner the knowledge of pathways involved in cellular events and 
diseases, help pinpoint targets (such as gene and proteins) of biological and therapeutic interest and 
potentially develop intervention methods than can counteract undesirable phenotypic progression 
(i.e. diseases) (Sun and Hu, 2016; Hasin et al., 2017).
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A major challenge in multi-omics data analysis is the availability 
of clean and usable biological data. We have previously developed 
TargetMine, an integrated data warehouse based on the object-
oriented InterMine data warehouse framework (Smith et al., 2012; 
Kalderimis et al., 2014; Triplet and Butler, 2014), which models 
biological entities (such as genes and proteins) as ‘objects’ that are 
described by a set of attributes and their relationships with other 
objects are modelled as ‘references’. The InterMine system allows 
for integration of different types of biological databases, and it 
comes pre-equipped with data integration features that are able 
to directly parse the data from commonly used data formats and 
sources (such as UniProt, OBO, FASTA and BioPAX). InterMine 
also allows the users to design their own data parsers (Smith et al., 
2012; Lyne et al., 2007; Kalderimis et al., 2014). The TargetMine 
data model was developed by extending a customised version of 
the core InterMine data model. When integrating similar types 
of data from heterogeneous data sources, we first identified 
common attributes (gene identifiers for instance) which are then 
used to merge the overlapping datasets into a suitable data model. 
The data sources are prioritised based on their reliability, and 
the stored identifiers are constantly revised to update or discard 
outdated identifiers with every database update (Lyne et al., 2007; 
Smith et al., 2012).

TargetMine was initially developed and optimised for target 
discovery and prioritisation of candidate genes, especially in 
early stage drug discovery (Chen et al., 2011). We have continued 
to make significant additions and refinements to the TargetMine 
system to transform TargetMine into an integrative data analysis 
platform that can more effectively interpret information-rich 
omics datasets for biological knowledge discovery (Chen et al., 
2019). Aside from periodically updating the existing datasets, 
these new developments have involved assimilation of newer 
biological data types and a new auxiliary toolkit to assist with 
data analysis and visualisation that addresses the limitations in 
the core InterMine framework (Chen et al., 2016). 

Here, we describe our progressive efforts to enhance 
TargetMine as a data analysis platform that can better assist 
multi-omics data analysis and biological knowledge discovery 
especially in disease biology. These efforts broadly fall into 
three categories: (1) upgrading the existing data types with the 
up-to-date information available from the source repositories; 
(2) assimilating new data types, especially those data types that 
help to examine different types of gene-gene relations; and (3) 
augmenting the auxiliary toolkit to better analyse and visualise 
biological data.

We will now describe our efforts below individually.

ADDITIONAL DATA SOURCES AND 
DATA MODELS IN TARGETMINE 
PROVIDE A DEEPER COVERAGE OF THE 
BIOLOGICAL DATA SPACE

A comprehensive coverage of the biological data space is 
necessary for drug discovery and related research. To achieve 
this, we have continuously expanded the repertoire of data types 

in TargetMine. Since the last major release, we have included 
within TargetMine new biological data associated with three 
major areas—drug-target interactions, gene-disease associations 
and biological mechanisms. The inclusions of these data types 
have offered deeper insights into gene-gene relations and have 
also enabled the users to perform more probing biological queries 
with TargetMine (Table 1). To enable the user to quickly and 
easily perform complex queries, TargetMine contains a library of 
‘templates’ that consist of predefined queries with a simple form 
and description and are categorised by data types (Chen et al., 
2011; Chen et al., 2016; Chen et al., 2019).

KEGG Relations
KEGG (Kyoto Encyclopedia of Genes and Genomes) is a 
collective repository of genes, genomes, pathways, diseases 
and chemical compounds that provides a comprehensive 

TABLE 1 | Key enhancements and updates in TargetMine since the last 

published iteration (2016).

Data types, data 

models and features

New and/or 

enhanced data 

types and features

Existing data types 

and features

Protein–protein 

interactions

KEGG relations;

Post-translation 

modifications 

(phosphorylation);

PSOPIA-likelihood 

scores for all PPIs;

Gene co-expression 

scores for HCDPs 

(GCE-HCDP) 

Combined PPI repository 

from iRefindex and 

BioGRID, literature;

Classification of PPIs as 

HCs and HCDPs

Metabolomics KEGG COMPOUND –

pathway mapping;

KEGG reactions

KEGG COMPOUND

Gene-disease relations ClinVar variations;

dbSNP publications;

DisGeNET 

associations

GWAS data from NHGRI

Literature mining MeSH term 

descriptors;

Publication abstracts

NCBI PubMed links

TF-target interactions ~400,000 human 

and mouse TF-target 

annotation from 

ENCODE 

Amadeus; ORegAnno; 

HTRIdb

TargetMine auxiliary toolkit

Composite interaction 

network

Filter PPIs by HCDPs;

Filter interaction types 

by expressed-tissues 

and GEL;

Add directed PPIs 

from KEGG;

Restrict interaction 

types to within the 

user-supplied gene list

Include multiple 

interaction types

Association heatmap Dendrogram of 

hierarchically 

assembled 

associations with 

distances;

Expressed-tissue 

feature

Two-colour grid of 

squares
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mapping of the biological systems (Kanehisa et al., 2016). 
The relation element in KEGG typically specifies relationship 
between two entities (proteins and compounds) in KEGG 
pathways. KEGG relations largely correspond to signalling 
pathway maps and encode regulatory information such as 
‘A activates B’, ‘A inhibits B’ and ‘A phosphorylates B’. The 
inclusion of KEGG relations is useful, since they often provide 
an additional context to interactions between gene products 
that are not always evident from standard PPI analysis. This 
integration has enabled the users to reconstruct probable 
signal transduction paths by performing queries such as 
‘Given a pair of genes A and B, find an intermediate gene and 
relations from gene A to gene B’.1

Post-Translational Modifications
Post-translational modifications (PTMs) are events that involve 
covalent addition of functional groups to proteins or their 
proteolytic processing during and after their biosynthesis. PTMs 
amplify the functional diversity of proteins and expand their 
influence over various cellular processes. Therefore, identifying 
and understanding PTMs help in a deeper understanding of 
cellular functions and in disease biology (Mnatsakanyan et al., 
2018; Thygesen et al., 2018). We retrieved PTM associations 
from PhosphoSitePlus (Hornbeck et al., 2015), a knowledgebase 
of mammalian PTMs, and we carefully parsed the UniProt 
sequence annotation (features) that describe regions or sites of 
interest in proteins, to create an integrated repository of PTMs 
in TargetMine. The inclusion of PTMs in TargetMine enables the 
users to perform complex queries such as ‘Given a list of proteins, 
identify upstream kinases that may phosphorylate them’2 or 
‘Given a protein and a specific residue position, identify any 
PTMs mapped to that residue’.3

KEGG Reactions Compound-Pathway 
Mappings
Metabolites are the low molecular weight compounds such as 
amino acids, sugars and lipids, which are typically substrates 
and by-products of biological processes and enzymatic reactions; 
they are widely involved in feedback regulatory processes in 
the cell and, being the downstream products, often directly 
influence the phenotype. Thus, the metabolome is often regarded 
as the link between genotype and phenotype (Krumsiek et al., 
2016). To facilitate a more effective metabolomics analysis with 
TargetMine, we first extended the existing compound class 
to create a new KEGG COMPOUND class. Subsequently, we 
referenced the KEGG COMPOUND class both with the existing 
Enzyme and Pathway classes using the relationships extracted 
from the KEGG COMPOUND database. We also defined a 
new Reaction class to describe the biochemical reactions in 
the KEGG reaction database, and this class was referenced 
with all of the KEGG COMPOUND, pathway and enzyme 
classes. Given a list of compounds, the users can now retrieve 
the corresponding enzymes involved in their metabolism, the 
enzymatic reactions involving these metabolites and, even map 
them to the corresponding pathways and diseases associated 
with the pathways. Users can also perform enrichment analyses 

to prioritise the enzymes/genes and pathways specifically 
associated with their metabolites of interest (see example below).

Disease-Gene Mappings
A deeper understanding of disease pathogenesis requires a 
mapping of links between genes, pathways and specific diseases, 
but they are difficult to obtain in general. Recently, we have 
enhanced the integration of genetic linkages to diseases by 
improving the existing GWAS data model and adding the 
variation annotations from ClinVar (Landrum et al., 2015), and 
the disease associations that were extracted from the associated 
publications in dbSNP (Chen et al., 2019). We have also included 
gene-disease associations compiled in DisGeNET, an integrative 
platform of curated gene-disease associations (Pinero et al., 
2017). This integration has enabled the users to perform queries 
such as ‘Given a gene, find the related SNPs and any diseases 
associated with these SNPs’.4

Scientific Literature Survey
Literature survey is indispensable to annotating gene information, 
interpreting gene sets and facilitating further research. However, 
scientific literature is increasing exponentially, making it difficult 
for the researchers to find, study and understand new publications 
of interest. To facilitate an easier sharing of scientific knowledge, 
we have incorporated document representations such as MeSH 
(Medical Subject Headings) (Rogers, 1963) descriptors (such 
as general article, review, clinical study, case report, etc.) 
and abstracts into TargetMine. This implementation allows 
the users to quickly screen for scientific texts (based on their 
MeSH descriptors) associated with their gene(s) of interest. For 
example, users may restrict their query to retrieving only those 
publications classified as ‘case report’ by constraining the ‘Mesh 
Terms’-> ‘Identifier’ attribute for the MeSH Terms identifier 
‘D002363’ (case reports). Researchers typically rely on abstracts 
to assess an article for further reading and often; abstracts are 
the only source of information that are freely available (Germini 
et al., 2017). To allow the users to easily access and scan article 
abstracts of interest, we leveraged the attribute ‘Abstract Text’ 
within the ‘Publication’ class. This implementation allows the 
users to retrieve publications associated with their gene(s) 
of interest along with their corresponding abstracts; this 
implementation also allows the users to quickly and easily 
scan multiple abstracts in a single webpage, instead of visiting 
the individual ‘Publication report’ pages and clicking on the 
available PMID links to access the corresponding abstracts on 
NCBI PubMed (as was the case previously).

INCLUSION OF COMPUTATIONALLY 
PREDICTED ASSOCIATIONS AND 
SCORES IN TARGETMINE

TF-Target Associations
Transcription factor (TF)–target gene interactions determine gene 
expression patterns, and therefore, regulate cellular functions. 
Previously, we had included expert-curated experimentally 
validated human TF-target gene interaction data from Amadeus 
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(Linhart et al., 2008), ORegAnno (Griffith et al., 2008) and 
HTRIdb (Bovolenta et al., 2012) to create a combined repository 
in TargetMine (Chen et al., 2016). To expand the coverage of 
TF-target gene interactions, we examined and processed the vast 
amounts of TF-binding site data compiled by the Encyclopedia 
of DNA Elements (ENCODE) consortium (see Methods). Over 
200,000 new TF-target gene interactions corresponding to 23 
human TFs were incorporated into TargetMine in this manner. 
We also incorporated nearly 200,000 TF-target gene interactions 
corresponding to 39 TFs in the mouse genome, thereby providing 
a detailed coverage of gene-regulatory associations in mouse that 
were not available in the previous iterations of TargetMine.

PPI Confidence Scores Using Predicted 
Likelihood of PPIs
PPIs are vital to virtually every cellular process, and their 
dysregulation typically leads to cellular dysfunction including 
diseases. However, it is necessary to assess the PPI data properly 
to ensure the robustness of PPIN-based analyses in investigating 
disease-causing biological pathways and to discover druggable 
target proteins. We had previously performed a confidence 
assessment of our combined PPI repository and defined a reliable 
high-quality subset termed ‘high-confidence direct physical 
PPIs’ (HCDPs) (Chen et al., 2016). HCDPs have been helpful 
in analysing network topological properties and identifying key 
components of the presently characterised interactome maps, 
namely, network ‘hubs’ and ‘bottlenecks’ (Tripathi et al., 2013; 
Chen et al., 2016). However, HCDPs constitute only a small 
proportion of all available PPIs, and using HCDPs alone for 
PPI-based network analysis may often exclude potentially useful 
PPIs. This is especially true for the mouse and rat interactomes 
in TargetMine, where HCDPs are rather sparse. Therefore, 
we have included an additional measure for the assessment 
of PPI reliability. In our group, we had previously developed 
prediction server of protein–protein interactions (PSOPIA), an 
integrative averaged one-dependence estimators (AODE)–based 
method to predict the likelihood of interaction between a pair 
of proteins based on experimentally characterised homologous 
PPIs (Murakami and Mizuguchi, 2014). We employed PSOPIA 
to evaluate all PPIs within TargetMine, and the output PSOPIA 
scores were tagged to the individual PPIs as a new attribute 
PsopiaScore. This implementation has enabled the users to query 
the interacting partners of a gene/protein or a list of genes/
proteins of interest and to infer overall PPI networks involving 
these genes/proteins consisting of all interactions judged to be of 
sufficiently high quality by the user, either based on their HCDP 
status and/or their PSOPIA scores.

Gene Co-Expression Analysis for 
Prediction of Novel DNA-Binding Proteins 
and for Improved PPI-Based Network 
Analysis
Gene expression refers to the process where the genetic 
information encoded in a gene is transcribed into a functional 
gene product—RNA or the eventual protein. Gene expression 
analysis involves mapping and analysing collective gene 

expression patterns that dictate cellular function under different 
environments. The spread of technologies that can map global 
gene expression profiles has led to an abundance of genome-
wide gene expression data (transcriptome) for many cell and 
tissue types and physiological conditions (Barrett et al., 2012; 
Kolesnikov et al., 2015). Global gene expression profiles have 
been variously analysed to search for genes that are differentially 
expressed in different cellular and physiological conditions (such 
as development, infection and diseases) and to predict functions 
for genes of unknown function. A guiding principle of function 
prediction using gene expression is guilt-by-association, which 
assumes that genes with related functions are more likely to 
have correlated properties such as interactions and expression 
patterns (Singer et al., 2004).

In this study, we have sought to leverage global gene 
co-expression (GCE) patterns to minimise biological noise and to 
further refine and improve PPI-based network analysis (Figure 1). 
To assess the effectiveness of this approach, we performed GSFE 
analysis on a multiple gene sets gathered from literature and 
then repeated the tests on modified gene sets that included 
both co-expressed genes and randomly selected unrelated genes 
(biological noise) (see methods). Among the 298 curated gene sets 
that were tested, 81% (240) were associated with overall higher 
F1 scores when HCDPs or globally co-expressed HCDPs (GCE-
HCDP) where added to the initial gene list, compared with initial 
gene sets (Figure 2; Table 2, S1). Furthermore, of the 240 gene 
sets where GCE showed an improved prioritisation performance, 
in 170 of them (~70%), inclusion of GCE-HCDP contributed to a 
better performance in terms of F1 scores as compared to inclusion 
of HCDPs alone (Figure 2; Table 2).

Our observations suggested that the inclusion of HCDPs and 
GCE-HCDPs contributed to improved target prioritisation and 
gene set analysis with TargetMine.

ENHANCED DATA ANALYSIS AND 
VISUALISATION WORKFLOW WITH 
TARGETMINE

We had previously developed an auxiliary toolkit to assist 
with data analysis and visualisation in TargetMine without 
any scripting and/or programming efforts on the part of the 
user (Chen et al., 2016) (https://targetmine.mizuguchilab.org/
tutorials/auxiliary-toolkit/). We have subsequently added new 
analytical and visualisation features to further enhance the 
ability of TargetMine as a data analysis platform. For instance, 
we have now added a dendrogram to the association heatmap 
function, which permits users to quickly and more easily 
identify clusters of genes that share significant functional 
attributes. We have also introduced the ‘Expressed Tissue’ 
feature that allows the users to hierarchically assemble a 
heatmap of user-supplied genes and the cell/tissues where they 
are highly expressed and thereby obtain a contextual view of 
their expression patterns. We have also enhanced the efficacy 
of the network visualisation function. In the present form, the 
function would permit the users to supply a list of genes and 
construct and visualise a composite interaction network that 
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includes all the biomolecular interactions within TargetMine, 
i.e. PPIs, MTIs, PCIs/drug-target interactions and TF-target 
gene interactions that are associated with the query genes. 
However, adding too many interactions can also render the 
network very dense and complex, therefore becoming difficult 

to load and visualise properly in the browser. To address 
these concerns, we have added a series of features to select 
and filter biomolecular interactions by qualitative assessment 
and/or contextual information. For instance, the ‘Interaction 
Network’ feature allows the user to restrict the PPI selection 
to ‘HCDPs’ or expand them to include ‘All’ PPI types by 
selecting the corresponding circles. We have also introduced 
features that permit the users to filter the interaction types 
by expressed tissues and GELs. We have also introduced a 
feature to allow the users to specifically include and visualise 
directed gene–gene relations parsed from KEGG. Moreover, 
we have improved the network feature to restrict the MTIs, 

FIGURE 1 | Assessing the potential benefits of including GCE data in target prioritisation with TargetMine. GCE, gene co-expression; HCDP, high-quality direct 

physical PPIs; IPC, integrated pathway clusters; PPI, protein–protein interactions.

FIGURE 2 | The inclusion of HCDPs filtered by Gene co-expression (GCE-

HCDP) to generate extended gene sets led to an overall improved target 

prioritisation performance when compared with the inclusion of unfiltered 

HCDPs and un-extended gene sets.

TABLE 2 | The inclusion of HCDPs filtered by gene co-expression (GCE-HCDP) 

to generate extended gene sets led to an overall improved target prioritisation 

performance when compared with the inclusion of unfiltered HCDPs and 

un-extended gene sets.

a. Average F1-score

Original test 0.211

+HCDP 0.327

+Co-exp-HCDP 0.341

b. T-test

Original test +HCDP

+HCDP 5.77×10−18

+Co-exp-HCDP 5.93×10−22 6.14×10−20
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PCIs/drug-target interactions and TF-target gene interactions 
to the user supplied gene list.

APPLICATIONS WITH USE CASES

Trans-Omics Data Analysis
To demonstrate the effectiveness of TargetMine in assisting 
multi-omics data analysis, we re-examined a previously 
published multi-omics data on mitochondrial links to 
liver metabolism, and the effects of a high-fat diet on it 
(Williams et  al., 2016). We first retrieved the biomolecules 
(110 transcripts, 27 proteins and 25 metabolites) that were 
differentially expressed in high-fat diet (HFD) fed mice relative 
to control (see methods). Next, the differentially expressed 
transcript, protein and metabolite sets were transformed into 
the corresponding transcriptome, proteome and metabolome 
differentially expressed gene (DEG) sets, respectively (see 
Supplementary File S1 for the detailed methodology with 
the help of an example). The inferred DEG sets (containing 
84, 29 and 62 genes, respectively; Supplementary Table 

S1, Supplementary Figure S1) were first compared (using 
the list operations in TargetMine) to identify overlapping 
genes. Three DEGs (Ces2a, Cyp3a11 and Csad) were shared 
across transcriptome and proteome DEG sets, and a solitary 
gene, cysteine sulfinic acid decarboxylase (Csad), was 
downregulated across all the three DEG sets (Supplementary 

File S1B). Csad is an enzyme that plays a key role in generating 
taurine from cysteinesulfinate in liver, and its hepatic 
expression and abundance are typically downregulated by bile 
acids responsible for modulating lipid metabolism (Kerr et al., 
2014). Our observations, therefore, clearly suggested that the 
fluctuations in Csad levels were likely to be modulated by 
dietary fat via bile acids. Additionally, we were also able to 
prioritise signatures that were consistent with an HFD model 
such as cytochrome p450 subunit Cyp3a11 that functions in 
retinoic acid metabolism.

Next, the individual DEG sets were then subjected to 
pathway enrichment analysis (see methods). Five enriched 
pathways were associated with the transcriptome DEG set, 
11 enriched pathways with the proteome DEG set, and 17 
enriched pathways were associated with the metabolome 
DEG set, respectively. KEGG pathway sub-categories ‘Lipid 
metabolism’, ‘Global and overview maps’, ‘Cancers: Overview’ 
and ‘Metabolism of cofactors and vitamins’ were commonly 
represented in the enriched pathways across all the three 
DEG sets (Supplementary File S1B). Specifically, KEGG 
pathway ‘Metabolic pathways’ was commonly enriched in all 
the three DEG sets; ‘Steroid hormone biosynthesis’, ‘Linoleic 
acid metabolism’, ‘Retinol metabolism’, ‘Arachidonic acid 
metabolism’ and ‘Chemical carcinogenesis’ were commonly 
enriched in Transcriptome and Proteome DEG sets (associated 
with Cyp3a11), and ‘Drug metabolism—other enzymes’ was 
commonly enriched in Proteome and Metabolome DEG sets, 
respectively (although no gene overlap was observed). Taken 
together, our observations have suggested that higher levels of 
dietary fat are responsible for dysregulation of cellular factors 

and pathways associated with lipid metabolism and as such 
have provided promising candidates for further research.

Extracting Gene-Disease Associations 
From Literature Using Mesh Descriptors
A vast amount of untapped associations between genes and 
diseases are scattered across biomedical literature. A quick 
and efficient mining of such information can help interpret 
genotype-phenotype relationships and also speed up database 
curation. The inclusion of MeSH descriptors now allows the 
TargetMine users to easily survey for annotated gene-disease 
associations for their gene(s) of interest. As a case study, we 
extracted literature-embedded gene-disease associations for 
PPARγ (peroxisome proliferator–activated receptor gamma), 
a nuclear receptor that is implicated in the pathology of 
numerous diseases including obesity, diabetes and cancer. 
Next, we sought to retrieve all the publications that were 
indicative of the involvement of PPARγ in disease pathogenesis 
by constraining the query for MeSH term attribute ‘Diseases’. 
We retrieved 397 unique disease associations for PPARG in this 
manner (Supplementary File S2).

CONCLUSIONS

TargetMine is a versatile data analysis platform that provides 
a unified, homogenous representation of diverse types of 
omics and other biological data; it allows the users to query 
and navigate across the stored data types and analyse them 
in a singular interface. In this study, we have described the 
augmentation of the TargetMine by progressively improving and 
expanding the coverage of data types and by adding new and 
improved analytical features. We have also demonstrated how 
the extension of TargetMine system has significantly boosted its 
capabilities to survey the biological target space, to assist multi-
omics data analysis, to interpret novel genotype-phenotype 
relationships and to facilitate biologically relevant knowledge 
discovery, especially in disease biology.

For the future developments, we will continue to accommodate 
new and emerging data types of interest and expand the analytical 
features. We also aim to introduce a workflow function for multi-
omics data analysis that will allow the users to more easily and 
effectively analyse and interpret their omics datasets and advance 
their research.

METHODS

Tf-Target Gene Associations From Encode
The binding events (peaks) for human and mouse TFs with 
binding profiles in different cell types were downloaded from 
the ENCODE resource (Davis et al., 2017). To accommodate the 
additional TF-target information, we redefined the erstwhile 
protein-DNA interaction class into a new transcriptional 
regulation class. The promoter region was defined as 10,000-
bp upstream of the transcriptional start site (TSS). We 
extracted binding site positions within this hypothesised 
promoter region, and we identified the corresponding genes 
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by mapping the genomic coordinates downstream of the TSS 
to the genomic coordinates stored within TargetMine. Next, 
we mapped the TFs whose binding sites were identified in this 
manner with the downstream genes to generate new TF-target 
gene associations.

Gene Co-Expression Analysis

Data Sets
The gene sets were retrieved from GeneSigDB, a database of 
curated gene signatures (Culhane et al., 2012). To obtain a 
reasonable size of candidates, we selected only the human, mouse 
and rat gene sets that consisted of 30~80 genes; 642 gene sets were 
selected in this manner. The genes in the so-called ‘standardised’ 
gene list in GeneSigDB were represented by Ensembl identifier 
and symbol; for further analysis, we mapped them to Entrez 
Gene identifier (Gene ID) using TargetMine (build 20160629). 
The Ensembl identifiers that were not mapped to a corresponding 
Gene ID were excluded from the list, thereby marginally 
reducing the sizes of the gene sets. Next, we performed pathway 
enrichment analysis on each of these gene sets, and only those 
gene sets (298 out of 642) that were associated with at least one 
enriched pathway (pathways were judged to be significant if the 
adjusted p-value was 0.05 or less) were taken up for subsequent 
analyses (Figure 1).

Global Gene Co-Expression Analysis
Global gene expression profiles for human genes were retrieved 
from gene expression omnibus (GEO) (Barrett et al., 2012; 
Kolesnikov et al., 2015), and gene co-expression levels were 
computed as described earlier (Ahmad et al., 2018).

Gene Prioritisation With PPI and GCE
The aim of the gene prioritisation is to identify a relatively 
important subset of genes form a list of candidates for 
further analysis. The first step of target prioritisation within 
TargetMine involves uploading a list of initial candidate genes 
or proteins (e.g. a set of differentially expressed genes or a 
set of proteins that interact with a given protein) to create 
a TargetMine gene list. Next, the enrichment of specific 
biological themes such as KEGG/Reactome pathways, 
integrated pathway cluster (IPC) (Chen et al., 2014), gene 
ontology terms etc. is estimated by performing Fisher’s exact 
test here followed by multiple testing correction to control 
the false discovery rate. The genes associated with the most 
significantly enriched biological associations (that satisfied, 
in this instance, a condition of p ≤ 0.05 after a multiple test 
correction with the Benjamini and Hochberg procedure 
(Benjamini and Hochberg, 1995; Benjamini et al., 2001)) are 
judged to be highly important to the biological phenomenon 
under study and therefore selected for further analyses.

For each of 298 gene sets, we replaced at random 75% genes 
with an equal number of unrelated randomly selected genes 
from the corresponding genome to generate test gene sets to 
incorporate biological noise. To avoid any bias incurred due 
to the selection of random genes, the process was repeated 
10 times to infer 10 test gene sets for each curated gene list. 

Next, the HCDPs for the genes within the test gene sets were 
retrieved from TargetMine and were appended to the initial 
test gene sets to create extended test gene sets. Independently, 
co-expressed HCDPs for the test gene sets were retrieved from 
TargetMine and were appended to the initial test gene sets to 
create extended test gene sets. Only the interacting partners 
that had a GCE value greater than 0.03 or less than −0.03 with 
the genes in the test gene sets were considered. Finally, the 
prioritisation tests (Figure 1) were then performed for each 
test gene set.

Evaluating the Performance of GCE-Filtered HCDPs 

in Target Prioritisation
To evaluate the protocols, we compared the enriched pathways 
among the reference gene sets, the ‘noisy’ gene sets and the 
extended noisy gene sets that were independently generated with 
the inclusion of HCDPs and GCE-HCDPs.

The enriched pathways (p-value < 0.05) were then mapped to 
their corresponding IPC (Chen et al., 2014). These enriched IPCs 
from the reference gene set were defined as the true positives 
(TPs) in this instance, and the rest were defined as false positives 
(FPs). TPs which were not found in the test results were defined 
as false negatives (FNs). For each gene set, the F1-score was 
estimated as follows: 

F
TP

TP FP FN
1

2

2
=

+ +
 

The test was performed 10 times for each gene set (from 
the step that we randomly generated the ‘noisy’ gene set). A 
student t-test was also performed to compare the significance 
of the differences between the two approaches. If the new 
prioritisation protocol achieved an overall higher F1-score 
than standard enrichment analysis, it was assumed to have 
provided an improved prioritisation performance, even the 
difference was trivial.

Gene Set Inference and Pathway Enrichment for 

Multi-Omics Data Analysis
The biomolecules (transcripts/genes, proteins and metabolites) 
were judged to be differentially expressed if they were statistically 
significantly (p ≤ 0.05; t-test) increased or decreased more 
than 1.5-fold i.e. if the fold change (FC) ≥1.5 (upregulated) or 
FC ≤ 0.667 (downregulated) in mice fed with high-lipid diet 
relative to the control. The biological pathway data from KEGG 
were used to assign functional annotations to the DEGs, using 
TargetMine. Statistical significance of the pathway enrichment 
was determined by Fisher’s exact test, and the p-values were 
corrected for multiple testing using the Benjamini–Hochberg 
procedure. The enriched pathways were considered statistically 
significant if the adjusted p ≤ 0.05.
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