
The Tasks with Effects Model for Safe Concurrency

Stephen T. Heumann Vikram S. Adve Shengjie Wang

University of Illinois at Urbana-Champaign

{heumann1,vadve,wang260}@illinois.edu

Abstract

Today’s widely-used concurrent programming models either pro-
vide weak safety guarantees, making it easy to write code with
subtle errors, or are limited in the class of programs that they can
express. We propose a new concurrent programming model based
on tasks with effects that offers strong safety guarantees while still
providing the flexibility needed to support the many ways that con-
currency is used in complex applications. The core unit of work in
our model is a dynamically-created task. The model’s key feature
is that each task has programmer-specified effects, and a run-time
scheduler is used to ensure that two tasks are run concurrently only
if they have non-interfering effects. Through the combination of
statically verifying the declared effects of tasks and using an effect-
aware run-time scheduler, our model is able to guarantee strong
safety properties, including data race freedom and atomicity. It is
also possible to use our model to write programs and computations
that can be statically proven to behave deterministically. We de-
scribe the tasks with effects programming model and provide a for-
mal dynamic semantics for it. We also describe our implementation
of this model in an extended version of Java and evaluate its use in
several programs exhibiting various patterns of concurrency.

Categories and Subject Descriptors D.3.2 [Software]: Language
Classifications—Concurrent, distributed, and parallel languages;
D.3.3 [Software]: Language Constructs and Features—Concurrent
Programming Structures; D.1.3 [Software]: Concurrent Program-
ming

General Terms Languages, Verification, Design, Performance

Keywords Tasks, effects, task scheduling, concurrent and parallel
programming, task isolation, data race freedom, atomicity, deter-
minism

1. Introduction

Concurrency is used for many purposes in modern programs. To
exploit the full capabilities of today’s multicore processors, paral-
lel algorithms must be used. But concurrency is also used for other
purposes. This is perhaps particularly true of interactive programs,
both on end-user devices and servers, where the behavior of the
user or client is inherently concurrent with the program. In GUI
programs, long-running operations should be run concurrently with
user interface event processing in order to preserve responsiveness.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

PPoPP’13, February 23–27, 2013, Shenzhen, China.
Copyright c© 2013 ACM 978-1-4503-1922/13/02. . . $10.00

It can also be convenient to express a full program as a set of of
modules or actors [3] that can operate concurrently and communi-
cate with each other. This can be a natural fit, for example, to the
model-view-controller design of interactive programs.

Large programs often combine multiple types of concurrency.
For example, an interactive application may separate long compu-
tations from the UI thread or use multiple concurrent modules, but
also sometimes perform data-parallel computations. We believe a
widely-applicable concurrent programming model should seek to
support all of these forms of concurrency, since they are all widely
used and are often combined within a single application.

Today, parallel and concurrent programs are commonly written
using threads, with low-level mechanisms such as locks used for
synchronization (or with carefully designed lock-free data struc-
tures). Such a programming model is flexible enough to express
many forms of concurrency, but it does not guarantee any safety
properties such as data race freedom, atomicity, deadlock-freedom,
or determinism. It also provides little well-defined structure for the
concurrent control flow and synchronization in programs, making
it difficult to reason about them manually or automatically. In addi-
tion, complicated low-level details such as processor memory mod-
els [2] can affect the semantics of programs written in this style,
further complicating the task of reasoning about them.

Many previous systems have attempted to address aspects of
these problems. Some offer more structured parallel control and
synchronization constructs, but sometimes with limitations that
prevent them from expressing general, event-driven concurrency,
and often without strong safety guarantees. Cilk [11] and Thread
Building Blocks (TBB) [22], for example, provide structured par-
allelism constructs, but they do not offer checked guarantees of
strong safety properties such as data race freedom.

Some other systems do seek to offer stronger guarantees. The
Deterministic Parallel Java (DPJ) language [13, 14] offers a strong
set of guarantees for programs that can be expressed in it. These
include data race freedom, strong atomicity [1], deadlock freedom,
and deterministic semantics with full sequential equivalence for
parallel computations that do not explicitly use nondeterministic
parallel constructs. These guarantees are very strong, but DPJ’s
parallelism model does not provide the flexibility that we seek.
Most critically, DPJ is restricted to fork-join parallelism structures,
which are not suitable for many concurrent programs.

In this paper, we propose a new model for concurrent program-
ming, which gives strong safety guarantees while providing the
flexibility needed to express a wide range of concurrent programs
in it. We call our model tasks with effects.1 It uses tasks that can
execute concurrently as the fundamental units of work. Tasks are
lighter-weight constructs than threads and support only limited op-
erations for inter-task communication and synchronization. Con-
current work is launched by creating a new task, and it is possi-

1 Two workshop papers gave preliminary descriptions of the tasks with
effects model [20, 21].

ble for one task to await the completion of another. A scheduler is
responsible for executing tasks in an efficient manner. Tasks pro-
vide a structured mechanism for concurrent control flow, while still
preserving the flexibility to express a wide variety of concurrency
patterns and parallel algorithms.

Several existing systems support task-based programming mod-
els, including Intel’s TBB, Apple’s Grand Central Dispatch and op-
eration queues [6], Microsoft’s Task Parallel Library in .NET [30],
the ForkJoinTask framework in Java 7 [33], and the tasking op-
erations in OpenMP 3.x [32]. However, they do not offer strong
safety guarantees. It is possible for two concurrent tasks to perform
conflicting accesses that give rise to data races or violations of in-
tended atomicity properties, and it is generally the programmer’s
responsibility to manually reason that such accesses do not occur
or are benign, or else to protect them using low-level synchroniza-
tion mechanisms such as locks.

We propose instead to associate a checked effect specification
with each task. The run-time system then schedules tasks so as to
ensure that only tasks with non-interfering effects can run concur-
rently. Effect specifications can take many forms, but in this work
we adopt the statically-checked effect system developed for Deter-
ministic Parallel Java [13]. In this system, the compiler statically
verifies that the memory accesses in each task or method are cov-
ered by its programmer-specified effects. By combining these static
checks with our dynamic effect-based task scheduling system, we
are able to guarantee the basic task isolation property that no two
tasks with interfering effects may run concurrently with each other.
This guarantee leads to a guarantee of data race freedom, and to
a guarantee of atomicity for tasks or portions of tasks that do not
create or wait for any other tasks.

We also define mechanisms based on effect transfer between
tasks to further enhance the utility of our model. One mechanism is
used to avoid a class of deadlocks, and also enables certain useful
programming paradigms. Another form of effect transfer is used
for nested parallel computations. It enables us to provide a compile-
time guarantee of determinism for a class of deterministic programs
and algorithms similar to those supported by DPJ. We are aware of
no other programming model which provides equally strong safety
guarantees while supporting the flexible control flow needed for
general concurrent programs such as interactive applications and
actor-like programs.

This paper makes the following contributions:

• We define the tasks with effects programming model, which
supports flexible task-based concurrency while providing a
strong set of safety guarantees.

• We describe the TWEJava language which implements this
model, and describe our compiler and runtime system for it.

• We provide a formal dynamic semantics of tasks with effects,
and describe how it guarantees task isolation, data race free-
dom, atomicity, and (for certain computations) determinism.

• We evaluate the expressiveness and performance of our lan-
guage and implementation. We show that TWEJava can be used
to write a variety of concurrent and parallel programs, including
two interactive applications, and that we can achieve substantial
parallel speedups.

The rest of this paper proceeds as follows. Section 2 presents the
TWEJava language and describes the task-related operations used
in it. Section 3 gives a dynamic semantics of tasks with effects. Sec-
tion 4 describes the safety properties of our model. Section 5 dis-
cusses our implementation of TWEJava in a compiler and runtime
system, and section 6 evaluates it on several benchmark programs.
Finally, section 7 discusses related work and section 8 concludes.

1 public abstract class Task<type TRet, TArg, effect E> {

2 // Code to be run when task is executed.

3 public abstract TRet run(TArg arg) effect E;

4

5 // Execute a task at some point in the future

6 public final TaskFuture<TRet> executeLater(TArg arg);

7 // Spawn a subtask of the current task, with effect transfer

8 public final SpawnedTaskFuture<TRet, effect E> spawn(TArg arg);

9 }

10

11 public class TaskFuture<type TReturn> {

12 // Await completion and get return value (no effect transfer)

13 public TReturn getValue();

14 // Check if task is done

15 public boolean isDone();

16 }

17

18 public class SpawnedTaskFuture<type TReturn, effect E>

19 extends TaskFuture<TReturn> {

20 // Await completion and get return value, with effect transfer

21 public TReturn join();

22 }

Figure 1. Operations supported by TWEJava. The abstract method
run must be implemented in concrete subclasses of Task, giving
the code to be run as a task. The other operations, although using
the syntax of Java methods, are in fact new task-related language
operations supported by our compiler and runtime system.

2. The TWEJava language

We implement the tasks with effects model for safe, flexible con-
currency in an extended version of Java, which we call TWEJava.
(TWEJava programs can use almost all Java language features, but
they should not use Java’s thread-based concurrency mechanisms
or lock-based synchronization, which TWEJava is designed to re-
place.) Figure 1 shows the new operations supported by TWEJava.

Figure 2 shows how our task system can be used in an image
editing program, which we will use as as running example. It
illustrates a simplified version of a programming pattern used in
the ImageEdit program that we have implemented in TWEJava (see
section 6). The example code shows a class Image representing
an image, with the pixel values held in two arrays, topHalf and
bottomHalf. We would like to support operations in parallel on
these two halves of the image. (We adopt this arrangement for
simplicity. In the actual ImageEdit application, it is possible to
use finer-grained parallelism.) We also want to support a variety of
operations to read and manipulate the image, which may be invoked
as asynchronous tasks. This is useful, for example, when the user
directs the program to perform a lengthy operation that should not
block the user interface while it runs.

We show the task increaseContrast (lines 6–16), which can
be executed to increase the contrast of the image. It relies on
the separate method increasePixelContrast (lines 18–26) to
actually update the pixel values in each array. This enables the
increaseContrast operation to work on the top and bottom
halves of the image in parallel, by spawning a child task to work
on the top half while the parent task works on the bottom half.

Figure 3 shows the tasks created in this computation. The GUI
system executes the increaseContrast task in response to user
input. That task in turn spawns a child task so that the two halves
of the image can be processed in parallel, and then joins that child
task after it completes. Meanwhile, the GUI system might execute
additional tasks in response to further user input. (In this example,
we show the GUI system as a task, responsible for processing low-
level input data and launching tasks in response to UI events. This
architecture would be possible, but for ease of implementation we
have so far used Java’s Swing GUI framework, with wrappers to
launch tasks in response to Swing events.)

1 class Image {

2 region Top, Bottom;

3 final int[]<Top> topHalf; // pixel values

4 final int[]<Bottom> bottomHalf;

5 ...

6 public final Task<Void, Void, writes Top,Bottom>

7 increaseContrast =

8 new Task<>() {

9 public Void run(Void _) {

10 SpawnedTaskFuture<Void, writes Top> f =

11 increasePixelContrast(topHalf).spawn(null);

12 increasePixelContrast(bottomHalf).run(null);

13 f.join();

14 return null;

15 }

16 };

17

18 private static <region runtime R> Task<Void, Void, writes R>

19 increasePixelContrast(final int[]<R> pixels) pure {

20 return new Task<>() {

21 public Void run(Void _) {

22 modify values in pixels array

23 return null;

24 }

25 };

26 }

27 }

Figure 2. Example computation.

increaseContrast+

increasePixelContrast(topHalf)+4me+

spawn+ join+

writes++

Top,+Bo;om+

writes+Top+

writes+Bo;om+

writes++

Top,+Bo;om+

increasePixelContrast(bo;omHalf)+

GUI+

writes+GUIData+

executeLater+ …+

Figure 3. Tasks in example computation.

2.1 Tasks

In TWEJava, potentially concurrent work is made by creating a
task, which will then be executed at some point when execution re-
sources are available. It is possible to check if a task is completed
or block awaiting its completion. A program written in TWEJava is
started by invoking an initial task, and creating new tasks is the
sole means of performing concurrent work. Tasks can also take
parameters as input and return a result. (Wrapper classes support
tasks with multiple parameters.) Three fundamental operations im-
plement this basic tasking model: executeLater adds a task to
the queue of tasks to be executed, getValue waits until a task is
done and gives its return value, and isDone checks whether a task
is done, without blocking.

Each type of task is specified by a subclass of the Task class,
which takes type parameters giving its input and output types,
and an effect parameter giving its effect (described below). An
executeLater operation performed on a Task instance returns a
TaskFuture object, which represents an actual execution of the
task; getValue and isDone operations can be performed on this
task future. In our example, the increaseContrast task is created
by an executeLater operation in the GUI. (The spawn and join
operations used within it will be described in section 2.5.)

The structure described above is similar to other existing task
systems, but TWEJava has a key difference. In other systems, a

task can generally be run at any time after it is queued for execu-
tion, without regard to what other tasks are running concurrently.
Because of this, the programmer must take care to ensure that there
are no data races between potentially concurrent tasks. This can be
done by using synchronization mechanisms such as locks within
tasks to guard access to shared data, or by carefully designing the
pattern in which tasks are executed and joined in such a way that
no two tasks accessing the same data might be executed concur-
rently. Using these mechanisms to guard against data races is often
complex and error-prone, and traditional thread-based systems for
concurrent programming generally do not provide a mechanism to
automatically check that they have been used correctly.

Our system solves this problem by using effects to control the
scheduling of tasks. Each task has an effect specification, which
is checked at compile time to ensure that it accurately (conserva-
tively) reflects the task’s memory accesses. These effect specifica-
tions of tasks are in turn used at run time by the task scheduler,
which will ensure task isolation—that is, that no two tasks with
interfering effects can be running concurrently.

2.2 Effects and Regions

In order to perform effect-based scheduling of tasks, our system
must know the effects of each task, and be able to check whether the
effects of two different tasks interfere with each other. Intuitively,
two tasks interfere if they could both access the same memory
location and at least one of those accesses could be a write. Two
tasks can only be run concurrently if their effects do not interfere,
which is the core property enforced by the scheduler in our system.

In TWEJava, we use the effect system originally developed
for the Deterministic Parallel Java (DPJ) language [13]. DPJ is
an extended version of Java that uses type and effect annotations
to enable the compiler to statically prove strong safety properties
for programs written using its fork-join parallel constructs. In this
work, however, we adopt its type and effect system for use in
combination with our effect-based task scheduling system.

The DPJ type and effect system is based on a partitioning of
memory into regions. The programmer can declare each object field
and array cell to be in a specified region. Region-parameterized
types and methods are also supported. This permits different in-
stances of a class to have their fields in different regions by giving
different region arguments when instantiating the class. In addi-
tion, nested hierarchies of regions are supported by using region
path lists (RPLs), and index-parameterized arrays allow each ele-
ment of an array to be placed in a distinct region. A wildcard * can
be used in RPLs to specify effects covering a set of regions.

Using this partitioning of memory into regions, the effects of
any operation in the program can be specified in terms of read
and write effects on memory regions. The programmer declares the
effects of each method as part of its method signature. The compiler
can then statically verify that the declared effects of each method
actually cover the effects of every operation in it. The DPJ type and
effect system also defines formally under what circumstances two
effects can be proven to be non-interfering. In DPJ, this information
is used purely statically to verify that programs using simple fork-
join parallelism constructs have no interference of effect between
portions of code that can run concurrently.

TWEJava adopts DPJ’s region-based type and effect system, but
couples it with a runtime representation of effects that is used by a
run-time scheduler to guarantee noninterference of effect between
concurrent tasks. This allows it to support a much wider range of
programs than DPJ can handle, including those that are inherently
nondeterministic and do not use a fork-join style of concurrency.

We also use an extension of the basic DPJ type system to sup-
port effect parameters to types (in addition to region parameters),
which was introduced in [12]. This allows us to use an effect pa-

rameter E in our definition of the abstract class Task, which will be
extended by each actual task defined in the user’s code. The defini-
tion of each actual type of task will instantiate this parameter with
that task’s effects, and the compiler will then be able to ensure stat-
ically that the effects of the supplied run method for that task are
actually covered by the effect parameter E. Thus, our runtime sys-
tem can safely use that effect parameter as a (possibly conservative)
summary of the actual effects of the task.

In our example code, we declare two region names, Top and
Bottom (line 2). We then declare the cells of the topHalf and
bottomHalf arrays to be in those two regions, respectively. The
increaseContrast task is declared with the effects writes
Top, Bottom, meaning it can read and write the pixel values in
both halves of the image. The increasePixelContrast method
has a region parameter R corresponding to the region containing the
cells of the array passed to it. Since the declared effect of the task it
returns is writes R, increasePixelContrast(topHalf) will
produce a task with the effect writes Top.

Like DPJ, we use purely static checks to ensure that each
method and task complies with its effect declaration and that
region- and effect-parameterized types are used soundly. TWEJava
never requires runtime checks associated with individual memory
accesses, which avoids a major source of overhead in some other
systems such as STMs. However, our system does need to have in-
formation on the effects of tasks available at run time so that it can
be used by the scheduler. We make this information available by
introducing a set of internal runtime classes that represent dynamic
regions and effects, and internally adding extra fields to classes
which hold the runtime instantiation of their region and effect pa-
rameters, as well as extra arguments to constructors and methods
corresponding to the region and effect parameters passed to them.

The scheduler only directly needs information about the effect
parameters of task objects, but these may depend on other region
and effect parameters in scope at the places where task classes are
declared and instantiated, making it necessary to also track those
additional parameters at run time. To minimize the overhead of
this run-time tracking, we require programmers to annotate region
parameters that need to be tracked at run time. This allows us
to avoid generating run-time tracking code for the many region
parameters that are used only in the compiler’s static analysis.
(Failing to provide such an annotation where needed will cause a
compile-time error.)

2.3 Effect-Based Task Scheduling

The key property that our run-time task scheduler must enforce is
that two tasks with interfering effects will not be run concurrently.
To do this, the scheduler will have to delay the execution of tasks
that are created while another task with interfering effects is already
executing. It may also delay tasks for other reasons, e.g. waiting
until execution resources are available.

In Figure 3, the increaseContrast task with effects writes
Top, Bottom is run while the GUI task with effect writes
GUIData continues to execute. To determine if the new task may be
run concurrently with the already-executing task, the scheduler will
check if these two sets of effects interfere with each other. In this
case, the region GUIData is disjoint from Top and Bottom, so the
two tasks have non-interfering effects and may be run concurrently.

If a third task is run with executeLater while these two
tasks are executing, its effects will be checked against those of
both existing tasks. Thus, another task trying to access the im-
age data in the regions Top and Bottom would have to wait
until the increaseContrast task is done, but a task access-
ing different regions might be able to run concurrently. (The
increasePixelContrast(topHalf) task is run with the spawn

operation, which uses effect transfer to avoid the need for these
run-time checks; see section 2.5.)

Considerable variation is possible in the design of an effect-
aware task scheduler. Our initial prototype implementation uses
an approach based on a linear queue of tasks, which is described
in section 5.2. For greater performance and scalability, the effect
checking could be structured around regions, so that tasks access-
ing unrelated regions do not need to be explicitly checked against
each other. A scheduler may also provide additional properties re-
lated to fairness or task ordering, in addition to the basic property of
noninterference. For interactive programs, it is valuable to preserve
responsiveness through fairness properties that avoid delaying the
execution of one task excessively while other tasks execute ahead
of it. But for efficiency in many parallel codes, it would be desirable
to use algorithms similar to Cilk’s work-stealing scheduler [11],
which preferentially execute recently-created tasks on each proces-
sor. We believe that the design of high-performance effect-based
task schedulers is a valuable area for future work.

2.4 Effect Transfer When Blocked

The model we have described so far envisions the effects of each
task remaining unchanged while it runs, and says that two tasks
with interfering effects may not run concurrently. This will lead to
deadlock if one task blocks waiting for another task that has yet
to run and which has effects that interfere with those of the first
task. For example, if task A creates task B using executeLater,
then blocks on B using getValue, and the effects of tasks A and B
interfere, deadlock results because B cannot begin execution until
A is complete.

We wish to prevent this form of deadlock and enable certain
useful programming patterns involving this sort of blocking, so we
introduce a mechanism for effect transfer from a blocked task to
the task it is blocked on. The key idea is that a getValue or a
join operation (described later) “transfers” enough effects from
the blocking task to the target task to allow the target task to begin
execution. For example, if a task A is blocked on another task B
using getValue, we record this fact and ignore any effect conflict
between A and B in deciding whether B can be executed. We also
extend this to indirect blocking through chains of blocking opera-
tions. Note that a task that blocks will always remain blocked until
all the tasks it directly or indirectly blocks on are done. Therefore,
this mechanism does not enable two tasks with conflicting effects
to be actively running at the same time.

This form of effect transfer prevents the type of deadlock de-
scribed above, and it also allows some useful programming pat-
terns. One of these is for one module of the program with effects
on a certain region to launch and block on a task in another module,
which may “call back” to the first module by launching and block-
ing on another task whose effects interfere with those of the first
task. Another useful programming pattern enabled by this mecha-
nism is similar to a locked or atomic block in other programming
models. One task can launch a second task with a superset of its
effects, and then use a getValue operation to wait for the second
task. This transfers the first task’s effects to the second task (al-
lowing it to access the same regions as the first task), and leaves the
second task to wait until it can acquire access to the regions covered
by its other effects, which may correspond to a shared resource.

2.5 Effect Transfer for Nested Parallelism

Our system supports an additional form of effect transfer which
is particularly suitable for nested parallelism, as used in fork-join
style computations. It is a mechanism to transfer some of the effects
of a parent task to a newly-created child task, and later transfer
those effects back to the parent task when the child task completes.
We call these operations spawn and join, respectively. A child

task created with spawn may run immediately, since “ownership”
of its effects is transferred directly from the parent to the child task,
and thus no other tasks with conflicting effects may be running
concurrently.

In Figure 2, these mechanisms are used to operate in paral-
lel on the two halves of the image. We use the spawn opera-
tion to run the increasePixelContrast(topHalf) task (line
11). This transfers the effect writes Top directly from the parent
increaseContrast task to the new child task, which means the
new task can be enabled for execution immediately. The parent task
also continues executing concurrently, with its remaining effect
writes Bottom. The increasePixelContrast(bottomHalf)
operation is run as a method within the parent task, which is pos-
sible since its remaining effect writes Bottom covers the effect
of the method call. After that computation finishes, the parent task
joins the spawned child task. This join operation also transfers the
child task’s effect writes Top back to the parent task. After this,
both halves of the image will have been updated, so any other task
that waits for the increaseContrast task to finish will know that
the full operation is complete.

2.5.1 Spawning and joining child tasks

The spawn operation executes a new task, whose effects must be
entirely covered by the effects of the parent task calling spawn.
It immediately transfers those effects to the spawned task, which
allows that task to be enabled for execution immediately, without
going through the normal effect-based scheduling process required
when using executeLater. Since the effects are transferred di-
rectly from the parent task to the child task, data in regions covered
by those effects cannot be modified by any other task in the in-
terim, so the child task reading that data is guaranteed to see the
values last seen or written by the parent task.

The join operation permits effect transfer back to the parent
task at the end of a child task. Apart from effect transfer, join
behaves like getValue: it will await the completion of the joined
task, and return the result value produced by it, if any. The dif-
ference is that join will transfer effects directly from a completed
task to the task that joins it. This permits the task that called join to
perform subsequent operations covered by the effects of the joined
task. One application of this is that data written by the completed
child task can be read by its parent task after the child task is done.

Only tasks executed with spawn are joinable, and this is re-
flected by the fact that spawn returns a SpawnedTaskFuture,
which supports the join operation. Furthermore, only the parent
task that spawns a task may join it, and a task may only be joined
once (violating these rules causes an exception to be thrown). Also,
the system implements an implicit join operation prior to return-
ing from each method for all the tasks spawned by that method
that have not already been explicitly joined. These measures ensure
that all spawned tasks get joined, and that all the effects transferred
from a method with spawn are returned to it through join oper-
ations before the method returns. This simplifies our static effect
analysis, since a method never “gives up” effects from the perspec-
tive of its callers.

2.5.2 Covering Effect Analysis for Effect Transfer

Implementing effect transfer makes the static analysis of covering
effects more complex, since a spawn or join operation subtracts
or adds effects to the task in which it is executed, thereby changing
the covering effects applicable to subsequent code in that task. This
would be easy to address if we used dynamic checks to determine
whether the effect of each memory operation is covered by the
current effects of the task in which it appears, but we want to use
a static analysis to determine this in order to minimize runtime
overheads and detect as many errors as possible at compile time.

To do so, we added a dataflow analysis algorithm in the com-
piler to conservatively compute the current covering effect applica-
ble to each expression in the program. The current covering effect
at the beginning of a method is given by its declared method ef-
fect summary. When spawn operations are encountered, the stat-
ically declared effects of the spawned task are subtracted from
the current covering effect, and a SpawnedTaskFuture param-
eterized by the effects of the spawned child task is returned. At
join operations, the effects given by the static type of the joined
SpawnedTaskFuture are added to the current covering effect. At
control flow join points, a minimum of the current covering effects
from the different control flow paths is used. Using an iterative
dataflow analysis, we can thus conservatively compute the current
covering effect applicable to each expression in the program. The
effects of each expression can then be compared against its current
covering effect to ensure the expression’s effects will be covered.

In our example the covering effect of the increaseContrast
task is initially writes Top, Bottom. When it spawns a child
task (line 11), its covering effect then becomes writes Bottom,
since the writes Top effect has been transferred to the spawned
child task. When that task is joined (line 13), the covering effect of
the parent task once again becomes writes Top, Bottom.

One detail that must be accounted for in this analysis is that
effect-parameterized types in the static program code are in gen-
eral only a conservative summary of the actual effects of tasks at
run time, and they may contain wildcard elements in their region
specifiers. The actual effects of the Task object used at run time
may be smaller than the effects given in the static type, e.g. by
omitting some of the effects that are included in the static type or
replacing effects on RPLs containing wildcards (which can cover
a set of regions) with effects on a fully-specified RPL designating
a single region in that set. We generally use a conservative static
analysis: spawns are treated as transferring away all the effects in
the static type of the spawned task, including ones with wildcards.
Subsequent operations in the parent task may not interfere with
those transferred-away effects, which conservatively ensures that
they cannot interfere with any of the actual effects of the child task
at run time.

As an exception in this conservative analysis, however, we al-
low spawn operations even if we cannot be certain at compile time
whether or not the effects of the spawned task will actually be cov-
ered at run time. In this case, we generate code to keep track of
the run-time covering effects in the method containing the spawn
operation (updated only when a spawn or join operation is per-
formed). An exception will be thrown if the effects of the spawned
task are not actually covered at run time. This limited dynamic
checking is useful for cases where we do not have full information
on the effects of spawned tasks at compile time. For example, a
loop may spawn tasks to operate on different elements of an index-
parameterized array, but our compiler cannot determine statically
whether each of the elements is distinct, so this mechanism effec-
tively enables the check to be performed dynamically instead.

For joins, we need to be sure that the actual run-time effects
of the task being joined are not less than those specified in the
static type. To do this, we statically treat joins as performing effect
transfer only if the effect parameter of the joined task’s static type is
fully-specified (i.e. contains no wildcards). We also adopt the typ-
ing rule that an effect-parameterized type A is only treated as a sub-
type of another effect-parameterized type B if either the correspond-
ing effect parameters are exactly equivalent, or the effect parame-
ters in B are not fully-specified. This ensures that fully-specified
effect parameters in the static types of SpawnedTaskFutures ex-
actly match the actual parameters used when instantiating the task
object at run time, so we may safely use those parameters in the
static analysis of join operations.

configuration:
〈〈〈

$PGM y execute
〉

k

〈

0
〉

id

〈

·
〉

env

〈

·
〉

spawned

〉

task∗

〈

·
〉

running

〈

·
〉

waiting

〈

·
〉

genv

〈

·
〉

store

〈

1
〉

nextLoc

〉

T

rule executelater
*

(λXTs .S) : (Tt -> T)Eff .executeLater(Vs)

loc(L)
···

+

k

*

L

L+Int 1

+

nextLoc

*

···
·

L 7! TF(Eff , bindto(XTs ,Vs) y S ,?T)
···

+

store

*

···
·

L
···

+

waiting

rule start-task
*

···
L

·
···

+

waiting

〈

··· L 7! TF(Eff ,K ,_) ···
〉

store

*

R ·

(L,Eff ,?)

+

running ·
〈

···
〈

K y return nothing;
〉

k

〈

GEnv
〉

env

〈

L
〉

id ···
〉

task

〈

GEnv
〉

genv

when 8(L2,Eff
2
, B) 2 R : Eff#Eff

2
_ L 2 B

rule spawn
*

(λXTs .S) : (Tt -> T)Eff .spawn(Vs)

loc(L)
···

+

k

*

···
·

L
···

+

spawned

*

···
·

L 7! TF(Eff , ·,?T)
···

+

store

*

L

L+Int 1

+

nextLoc

·
〈

···
〈

bindto(XTs ,Vs) y S y return nothing;
〉

k

〈

GEnv
〉

env

〈

L
〉

id ···
〉

task

*

···
·

(L,Eff ,?)
···

+

running

〈

GEnv
〉

genv

rule getvalue-succeeds
*

loc(L).getValue()

V
···

+

k

〈

L1

〉

id

〈

··· L 7! TF(_,_,V) ···
〉

store

*

···
(L1 ,_, _

?

)
···

+

running

rule join-succeeds
*

loc(L).join()

V
···

+

k

〈

L1

〉

id

*

···
L

·
···

+

spawned

〈

··· L 7! TF(_,_,V) ···
〉

store

*

···
(L1 ,_, _

?

)
···

+

running

rule getvalue-blocks

〈

loc(L).getValue() ···
〉

k

〈

L1

〉

id

*

···
(L1 ,_, ?

{L}

)
···

+

running

rule join-blocks

〈

loc(L).join() ···
〉

k

〈

L1

〉

id

*

···
(L1 ,_, ?

{L}

)
···

+

running

rule indirect-blocking
*

···
(L,_, ts2) (_,_, ts1

ts2 [ts1

)
···

+

running

when (L 2 ts1) ^Bool (ts2 * ts1)

rule return
*

return V ; y _

awaitSpawned y (setRetVal V) y done

+

k

rule set-return-value
*

setRetVal V

·
···

+

k

〈

L
〉

id

*

···
L 7! TF(_,_, _

V

)
···

+

store

rule await-spawned
*

awaitSpawned

((loc(L).join()) ;) y awaitSpawned
···

+

k

〈

··· L ···
〉

spawned

rule await-spawned-done
*

awaitSpawned

·
···

+

k

〈

·
〉

spawned

rule done

〈

···
〈

done
〉

k

〈

L
〉

id ···
〉

task

·

*

···
(L,_,_)

·
···

+

running

rule isdone-true
*

loc(L).isDone()

true
···

+

k

〈

··· L 7! TF(_,_,V) ···
〉

store

rule isdone-false
*

loc(L).isDone()

false
···

+

k

〈

··· L 7! TF(_,_,?T) ···
〉

store

Figure 4. Dynamic semantics of tasks with effects.

3. Dynamic Semantics of Tasks with Effects

We have formalized the dynamic semantics for the core operations
of the tasks with effects model in the context of a basic imperative
language. A program in this language consists of a set of global
variable declarations and task declarations (which are similar to
function declarations in a traditional language, but include an effect
specification for each task). Here we present and describe only
those semantic rules related to tasks, which are shown in Figure 4.

These rules are written using the K semantic framework [36],
which is based on rewriting logic and operates on a configuration
of nested cells which corresponds at any point to the current state
of the execution. (Although the K framework is less common than
the standard approach for operational semantics, it has significant
advantages, especially in that it is more modular and flexible.) Each
rule may apply when it can match the configuration elements on the
top of it, and when it applies any elements with a horizontal line
under them are replaced by what is below the line. K supports lists,
sets, and maps, and a rule may match a single element from these
structures, either anywhere in them or at the front of a list; in these
cases, the remainder of the structure is denoted by ellipses. A dot

represents the identity element of these structures, and an underline
is a ‘don’t-care’ element that can match anything. K rules also obey
a locality principle, saying that a rule matching two subcells that
appear within the same outer cell must match only two subcells
within the same instance of that outer cell.

At the top of Figure 4, we show the initial configuration of the
program. It consists of a task cell (of which there may later be
more than one, indicated by the *); a running cell which will hold
a set containing information on running tasks; a waiting cell which
will contain a set of IDs of tasks waiting to execute; a genv cell
holding the global environment (mapping identifiers to locations in
the store); a store cell which will map locations (integers) to various
objects; and a nextLoc cell giving the next available location in the
store. Each task cell contains code to be executed in its k subcell;
an ID in its id subcell (corresponding to a location in the store); the
current environment in its env subcell; and a set of IDs of spawned
child tasks in its spawned subcell. The initial configuration will
pass the program code to a special operation execute (not shown)
which initializes the store and global environment based on the
declarations in the program and then runs the task named main.

Note that we present here only a dynamic semantics, which
presupposes that the program has passed all static checks, including
type checking and checking that the current covering effects at
each point in each task correctly cover all the memory accesses it
may perform. (Dynamic computations of current covering effects
are not needed in this formalism, because the effects of each task
are fully defined statically and there is no provision for dynamic
instantiation of region or effect parameters.) These semantics are
agnostic to the specific effect system used, but a formalism of the
DPJ type and effect system used in TWEJava is presented in [13].

3.1 Starting Tasks

The first major class of rules in our semantics relates to starting
tasks. The EXECUTELATER rule implements the executeLater
operation. It will apply once the executeLater operation is the
next piece of code to execute, after a task name in the code has been
evaluated to a lambda expression (comparable to a Task object in
TWEJava) and its arguments have been evaluated to values (simple
rules not shown). The EXECUTELATER rule will allocate a new
location L in the store, and store a TF tuple (corresponding to a
TaskFuture in TWEJava). This tuple contains the effect of the
task, the code to be executed when it is run, and the task’s return
value (initially ⊥T , indicating it has not yet been set). The rule adds
the ID (location) of this task to the set of tasks waiting to run, and
the result of the operation is a reference to that location.

The START-TASK rule is then responsible for actually starting
one of the tasks in the waiting set. When it applies, it will create a
new task cell in the configuration, containing the code of the new
task to be run. (This cell may exist side-by-side with other task
cells.) The rule also adds a tuple (L, Eff, ∅) to the running cell.
This indicates that the task L is now running, and holds its effects
and an initially-empty set of tasks that it is blocked on. Finally,
the key element of this rule is the condition relating to the existing
contents R of the running cell. This will contain information about
all the other currently-running tasks, and we use it to ensure our
model’s basic property of task isolation. Specifically, the new task
L cannot be started unless for every already-running task L2, either
the effects of L are non-interfering with those of L2 (denoted by #)
or L is in the set of tasks on which L2 is blocked. This latter case
implements our mechanism for effect transfer when blocked.

The SPAWN rule is similar to a combination of the EXECUTE-
LATER and START-TASK rules, since it allows a task to start imme-
diately without the need for the effect checking in the START-TASK

rule. One addition, however, is that the ID of the spawned task is
added to the spawned set of its parent task, which keeps track of
child tasks that have been spawned and not yet joined.

3.2 Awaiting Completed Tasks and Blocking

The next group of rules relates to the potentially blocking opera-
tions getValue and join. They both can be applied to a reference
to a location containing a TF tuple. The GETVALUE-SUCCEEDS

rule addresses the case where the task in question is complete, and
as such has a return value V stored in its TF tuple. In this case,
the result of the operation is that value. Since the task that executed
the getValue operation (L1) will no longer be blocked, we empty
the blocked-on set in its running tuple. The JOIN-SUCCEEDS rule is
similar, but also requires that the task being joined was in the cur-
rent task’s spawned set, and removes it. This reflects the fact that
a task can only be joined once, and only by the task that spawned
it. (If a join operation violates these rules, the task that executes it
will hang in our formalism. In TWEJava, an exception is thrown.)

The next two rules, GETVALUE-BLOCKS and JOIN-BLOCKS,
handle the case where the task L may not yet be done. These
rules put L in the blocked-on set for the task L1 that does a
getValue or join operation on L. This potentially allows L to be

started based on effect transfer, using the START-TASK rule. The
INDIRECT-BLOCKING rule propagates entries in the blocked-on
sets when there is a chain of blocked tasks, allowing effect transfer
to be applied in the case of indirect blocking. (In the TWEJava
implementation, this propagation is fully performed at the time a
getValue or join operation is evaluated.)

3.3 Finishing Tasks and Checking If Tasks are Done

The next group of rules relates to finishing a task. The RETURN

rule handles a return statement (which may be in the program’s
code, or the return nothing; that we insert at the end of each
task when starting it, in case it does not explicitly return a value).
The rule says to first await any spawned children of the current task
that have not yet been joined, then set the task’s return value in its
TF tuple (which will signal that the task may be considered done),
and finally erase its task cell and its entry in the running set. The
next several rules implement these operations.

Finally, the last two rules implement the isDone operation. A
task is considered done once its return value has been set to a value.
If it is still undefined (indicated by ⊥T), then the task is not done.

4. Safety Properties

Our model guarantees strong safety properties, including our ba-
sic task isolation property, plus data race freedom and atomicity
properties stemming from it. We also avoid a significant class of
deadlocks and can prove that many computations are deterministic.

4.1 Task isolation

The task isolation property of our system is that no two tasks may
be actively running concurrently with interfering covering effects.
The basic check used to guarantee this is to record the effects of
each running task in the running set, and compare the effects of
new tasks against the effects of all existing tasks before allowing
them to start in the START-TASK rule.

There are two cases where we can start tasks even though
they might appear to have effects interfering with those of another
running task. One is that a task A may be allowed to start while
a task B with conflicting effects is in the running set if A is in
the blocked-on set for B. In this case, our rules guarantee that B
cannot resume execution until A has completed, so we allow A to
run based on our first effect transfer mechanism.

The other case is the spawn operation. In this case, our cov-
ering effects analysis ensures that the spawned task’s effects are
subeffects of its parent task’s effects (so they may not conflict with
anything that the parent’s effects do not) and that the parent task
will not execute any operations that conflict with the effects of the
spawned task between where it is spawned and where it is joined.

4.2 Data race freedom

Data race freedom follows from the combination of the task isola-
tion property and the guarantee provided by our static checks that
the specified effects of each task cover all its memory accesses.

The formalism in section 3 implicitly uses a sequentially-
consistent memory model, but in fact the tasks with effects model
requires memory updates to be visible only between operations
ordered by a limited set of happens-before edges. Our model im-
poses some order on any two tasks with interfering effects. This
gives rise to happens-before edges between the end of one task
and the start of any subsequent task with interfering effects, anal-
ogous to those between a lock release and subsequent acquisition
in other systems. A full happens-before relation for our model is
given by the transitive closure over these edges as well as edges
for task creation, waiting or checking for task completion, and the
sequential program order within each task. Any two accesses to a

memory location where at least one is a write will be ordered by
this happens-before relation.

4.3 Atomicity

A task or portion of a task that does not create or wait for any
other tasks behaves atomically. It has fixed effects that cover all
the memory locations it can access, and the scheduler will ensure
that no other tasks performing conflicting accesses run concurrently
with it, which ensures it is atomic. This atomicity property also
extends to portions of tasks that contain task creation operations,
in the sense that the semantics are equivalent to those given by
creating the new tasks only at the end of the parent task or just
before the next getValue or join operation in it.

Atomicity does not always extend across getValue or join
operations, as our mechanism for effect transfer when blocked may
allow other tasks with conflicting effects to run before the blocking
operation completes. However, this potential for non-atomicity is
limited to running the task(s) that are directly or indirectly blocked
on, and it does not occur in cases where those tasks have definitely
finished prior to the getValue or join operation. Also, a deter-
ministic computation (discussed below) effectively executes atom-
ically, as it is semantically equivalent to a sequential execution with
no task-related operations. As in languages with explicit atomic
constructs, it remains the programmer’s responsibility to identify
sections of code that should behave atomically and write the code
in a way that ensures they do so, e.g. by not using getValue or
join operations within such sections.

4.4 Deadlock avoidance

Our model avoids deadlocks in the case that a task A directly or
indirectly blocks on another task B whose effects conflict with
A’s effects, using the effect transfer mechanism discussed in sec-
tion 2.4. While we do not prevent all deadlocks, we believe this
class of deadlocks is significant, and we found our effect transfer
mechanism to be useful in practice, particularly in the interactive
FourWins program (see section 6).

4.5 Determinism

Many parallel algorithms are deterministic. That is, they always
produce the same output given the same input state. Since this is an
expected property of many algorithms, detecting violations of it is
a useful way of finding bugs. Moreover, knowing that a program or
an algorithm is deterministic makes it much easier to reason about:
the user of the program or algorithm knows that it will always
produce the same output given the same input, so they need not
be concerned that different parallel interleavings of operations may
produce different results. Determinism also makes a program or
algorithm much simpler to debug, since one knows that the same
result will be produced every time it is run with a given input.

DPJ [13] can provide a compile-time guarantee of determin-
ism using the combination of its type and effect system and simple
parallelism constructs supporting only fork-join patterns of paral-
lelism. We provide a similar static guarantee of determinism for
deterministic algorithms or programs written in TWEJava. All pro-
gramming patterns for which DPJ can give a guarantee of deter-
minism can also be expressed and proven deterministic using the
tasks with effects model. Our model also allows us to give a static
guarantee of determinism for certain computations in a program
while still allowing the rest of the program to use the full flexibility
of TWEJava (including non-fork-join concurrency structures), and
guaranteeing our other safety properties for the whole program.
Thus, our feature for guaranteed determinism can be used within
programs that could not be expressed with DPJ.

To request that the compiler check and enforce the determinism
of a certain task or method, the programmer can annotate it as

@Deterministic. In code that has this annotation, the compiler
will enforce that the only task-related operations used in the code
are the spawn and join operations described in section 2.5. Also,
code annotated as deterministic may only call other deterministic
methods and spawn other deterministic tasks.

These restrictions ensure that the code invoked from a determin-
istic task or method (including through the creation of other tasks)
accesses memory only as specified by its declared effects. More-
over, there is a defined order by which control of each region cov-
ered by those effects is transferred between tasks, as determined by
spawn and join operations. (Note that the form of effect described
in section 2.4 will never be needed for join operations within a
deterministic computation, and thus will not occur.) Therefore, for
a given input state of the memory in regions covered by the effects
of the deterministic task or method, there is a deterministic out-
put state that will not vary between executions of the code. This
state is the same as the state produced if the code were executed
sequentially with each task’s code run at the point where the task is
spawned. These deterministic computations are also deadlock-free.

5. Compiler and Runtime System

Our implementation of TWEJava consists of a compiler and a
runtime system, which we briefly describe here.

5.1 Compiler

The compiler is based on the DPJ compiler, which checks that ef-
fect declarations are correct and that types are used correctly. Our
extended version also supports the new features of TWEJava de-
scribed in Section 2. These include generating code to record effect
parameters and some region parameters for use at run time; per-
forming a data flow analysis to determine the covering effects for
each operation (accounting for operations that do effect transfer);
and checking the use of the @Deterministic annotation.

To enable interoperation with existing Java code and libraries
that do not have region and effect annotations (including the Java
standard libraries), the compiler allows methods without effect an-
notations to be called within methods that have effect annotations.
This produces a warning, but that warning can be suppressed for
individual methods. Since we have not written an extensive stan-
dard library for TWEJava, we take advantage of this capability to
use Java standard library features such as the Swing GUI system,
I/O routines, and math functions. The compiler cannot give a full
guarantee about the correctness of code making such calls, so the
programmer has to manually reason about it, but that reasoning can
be encapsulated by writing annotated wrapper methods that inter-
nally call unannotated library routines.

5.2 Runtime System

Code generated by our compiler can be run using our runtime sys-
tem, which implements the various task-related operations in TWE-
Java. We use an effect-based scheduler to enforce our model’s key
property of task isolation. Our current prototype implementation
uses a queue of tasks protected by a single lock to manage the
effect-checking phase of task scheduling. The effect-based sched-
uler enables a task for execution only once it is safe to do so based
on its effects. Once a task is enabled for execution by our scheduler,
it is handed off to a version of the Java ForkJoinPool framework,
which is responsible for actually executing tasks using a thread
pool.

When attempting to execute a task, our implementation gener-
ally works by scanning from a task’s position forward toward the
head of the queue (which includes both running and waiting tasks),
checking if the task’s effects conflict with those of each task ahead
of it. If a conflicting task is found when attempting to schedule a

task, then the later task is marked as waiting for the earlier one to
complete. This approach will generally run conflicting tasks in the
order that they were enqueued, but there is also a mechanism for
prioritizing tasks that a running task is blocked on.

We show below that with this relatively simple scheduling ap-
proach we can achieve substantial speedups on a range of bench-
marks. However, the tasks with effects model could also be imple-
mented with other more scalable scheduling approaches. In particu-
lar, if we associated information about enqueued tasks with regions,
then tasks with effects on unrelated regions would not need to have
their effects explicitly compared against each other, and we could
also avoid the need for a single global task queue lock.

6. Evaluation

We have carried out an evaluation of the tasks with effects model
and our TWEJava language by porting several concurrent programs
to it and writing one new one from scratch. We are principally con-
cerned with demonstrating that TWEJava and the tasks with effects
model can express a variety of concurrent programming styles used
in real-world applications, but we also show that substantial parallel
speedups can be achieved with our current TWEJava implementa-
tion.

6.1 Expressiveness

We ported four existing concurrent programs to TWEJava and
wrote one new application in it. The first ported program is an
interactive Connect Four game implementation called FourWins,
which was ported from an original code that used JCoBox [37], an
actor-like concurrent programming system for Java. The FourWins
code is structured in terms of modules that behave similarly to ac-
tors, including the game state, board state, game controller, GUI
view, and human and computer players. These modules communi-
cate by sending messages between each other, sometimes, but not
always, blocking until the message is processed. Our general ap-
proach in most parts of this code was to introduce a region holding
the data for each module, and to define a number of types of tasks
corresponding to each message that may be sent to that module.
Those tasks have either read or write effects on the module’s region,
as needed. This code also includes a parallel computation in the
computer player’s AI, to explore the tree of possible future moves.
That recursive parallel computation consumes most of the execu-
tion time, and it is the portion for which we report performance
results below. We note that the complex concurrency structure of
this program, with code from multiple actors running concurrently
and sending messages between each other, cannot be expressed in
many more restrictive parallelism models that require structured
parallelism (e.g. fork-join) or involve a single conceptual flow of
control.

The other interactive GUI application we implemented is an
image editing application called ImageEdit, which we wrote from
scratch in TWEJava. It allows the user to open one or more images
and apply various image editing filters to them. Each of the images
is displayed in a separate window and updated as filters are applied
to it. Each image has a region associated with it, and the actual
pixel data for the image is broken up into a 2-D grid of blocks, with
the data for each block placed in a separate region using index-
parameterized arrays. (By default, and in our benchmarks, a block
is simply a group of adjacent lines totaling about 100,000 pixels,
but the user may specify other block dimensions.) Concurrency is
possible both by doing concurrent operations on different images
and by operating in parallel on one image at the level of blocks.
ImageEdit currently includes filters for Gaussian blur, sharpening
(unsharp mask), detecting edges in the image (based on the Canny
edge detection algorithm [15]), darkening or brightening the image,
and converting it to grayscale. All of the filters can use parallelism

at the level of blocks, sometimes using several computation steps
in sequence with parallelism in each step. The only non-parallel
step in any of them is a short final step in the edge detection
filter to identify edges in the input image that cross between two
different blocks. Computation in this program is driven by user
input events, so the program as a whole does not follow the fork-
join computation model required by systems like DPJ. It could be
written in other task-based concurrency models that do not use
effects, but these would not provide the strong safety guarantees of
TWEJava and would require the programmer to manually ensure
that tasks performing conflicting memory operations cannot run
concurrently.

The other three benchmarks were previously written in DPJ [13],
and we ported our versions from the DPJ versions, following a
similar pattern of regions and effects. These are the force compu-
tation from a Barnes-Hut n-body simulation; a k-means clustering
algorithm (originally adapted from STAMP); and a Monte Carlo fi-
nancial simulation, originally from the Java Grande parallel bench-
marks. These three benchmarks allow us to evaluate the impact
of the run-time scheduling overheads in our system by comparing
against the original DPJ versions, which do not have any overheads
related to effect-based scheduling at run time.

The Barnes-Hut force computation involves a parallel loop over
a set of bodies, computing and adding up the forces on each body
due to the other bodies. We create one task per thread using the
spawn operation, each operating on a portion of the total set of
bodies, which is divided using an index-parameterized array. The
resulting computation is deterministic and has good parallelism.

The Monte Carlo simulation includes a deterministic parallel
loop to compute an array of results, followed by a reduction step
that updates globally shared data. In the DPJ version, this reduc-
tion step used DPJ’s commutative annotation, which represents an
unchecked assertion from the programmer that two invocations of
a certain method are commutative and that it internally uses the
necessary locking to correctly synchronize concurrent invocations.
In the TWEJava version, this commutative method is replaced by a
task, and our system automatically guarantees that this task behaves
atomically. Thus, TWEJava offers a stronger safety guarantee than
DPJ, since it does not require the programmer to correctly insert
manual locking operations. As with Barnes-Hut, we create one task
per thread in the parallel loop.

The k-means computation involves a parallel loop with a reduc-
tion step. In the original STAMP code, this reduction step is an
atomic block, but in the DPJ version it is a commutative method
with internal locking. In TWEJava, it is a task. As in Monte Carlo,
the DPJ version relied on unchecked, manual locking, so TWE-
Java offers a stronger safety guarantee than DPJ. The structure of
the reduction computation in k-means requires that we create many
reduction tasks, independent of the number of threads.

We were able to express all the parallelism that was present
in the original codes that we ported. Both the executeLater/
getValue operations and structured parallelism with spawn are
used in our benchmarks. The former are necessary for unstructured
parallelism such as messaging between actors or modules, and
for defining tasks that behave like atomic or synchronized blocks,
while the latter can be used in parallel loops or recursive parallel
computations.

6.2 Performance

We measured the performance of our benchmark codes on a ma-
chine with four Intel Xeon E7-4860 processors (40 total cores, 80
hardware threads using Hyper-Threading) and 128 GB of memory,
running Scientific Linux 6.3 with kernel 2.6.32 and 64-bit Oracle
JDK 7u9. Figures 5 and 6 report the speedups achieved in the par-
allel portion of each code. For ImageEdit, we report speedups for

0"

4"

8"

12"

16"

20"

24"

28"

32"

0" 8" 16" 24" 32" 40"

S
p
e
e
d
u
p
&

Threads&

Barnes.Hut&

TWEJava"

DPJ"

80"

0"

4"

8"

12"

16"

20"

24"

28"

32"

0" 8" 16" 24" 32" 40"

S
p
e
e
d
u
p
&

Threads&

Monte&Carlo&

TWEJava"

DPJ"

80"

0"

4"

8"

12"

16"

20"

24"

28"

32"

0" 8" 16" 24" 32" 40"

S
p
e
e
d
u
p
&

Threads&

K.Means&

TWEJava"

DPJ"

80"

Figure 5. Parallel speedups of benchmarks ported from DPJ, showing performance of TWEJava and DPJ versions. These speedups are
for the parallel portion of each code and are relative to the DPJ code compiled and run in sequential mode, in which the DPJ parallelism
constructs are erased by the compiler, creating a sequential program with no run-time overheads related to parallelism constructs.

0"

4"

8"

12"

16"

20"

24"

28"

32"

0" 8" 16" 24" 32" 40"

S
p
e
e
d
u
p
&

Threads&

FourWins&

TWEJava"

80"

0"

4"

8"

12"

16"

20"

24"

28"

32"

0" 8" 16" 24" 32" 40"

S
p
e
e
d
u
p
&

Threads&

ImageEdit&6&Edge&Detec9on&

TWEJava"

80"

0"

4"

8"

12"

16"

20"

24"

28"

32"

0" 8" 16" 24" 32" 40"

S
p
e
e
d
u
p
&

Threads&

ImageEdit&6&Sharpen&

TWEJava"

80"

Figure 6. Speedups for the FourWins AI computation and two filters in the ImageEdit application. We did not have pure sequential versions
of these programs available for comparison, so we give speedups relative to the TWEJava codes run using one worker thread and configured
so that the major potentially-parallel computations in the codes each run as a single task, thereby minimizing task-related overheads.

both the edge detection filter and the sharpening filter. We also com-
pared the parallel running times to DPJ for the codes where there is
a DPJ version. The multi-threaded DPJ version internally executes
tasks on a thread pool, but it does not have the overhead of run-
time effect-based task scheduling, and previous work has shown it
is generally quite efficient [13].

Each of our TWEJava benchmarks achieves significant speed-
ups, with maximum speedups on the various benchmarks ranging
from 7.5x to 23.6x. The Barnes-Hut and FourWins benchmarks
continue scaling substantially up to 80 threads (with the gains going
from 40 to 80 threads attributable to Hyper-Threading). The other
benchmarks show good scaling at lower numbers of threads, but do
not continue scaling above 24 to 32 threads.

The benchmarks for which we have DPJ versions perform very
similarly to the DPJ versions up to at least eight threads, but show
worse scaling at high numbers of threads. Several types of over-
head in the TWEJava system may be responsible for these perfor-
mance differences. The overheads of our effect-based run-time task
scheduling system include the need to check the effects of tasks
against each other to see whether they conflict, and the need to
track some region parameters and all effect parameters at run time,
rather than erasing them during compilation. These overheads can
become larger with larger numbers of threads, because there will
generally be more tasks active at once in such configurations. An-
other important factor limiting the scalability of our current im-
plementation is that our effect-based scheduler uses a single queue

protected by a single lock, so all the effect-based scheduling opera-
tions in the system are essentially serialized. Also, the DPJ runtime
system can use recursive subdivision to split the iterations of par-
allel loops into tasks, while in TWEJava we converted these con-
structs to loops that sequentially spawn off child tasks. This may
also contribute to the inferior scalability of the TWEJava codes. It
would be possible to implement this sort of recursive subdivision in
the tasks with effects model, but TWEJava currently does not have
convenient language constructs for it.

We believe the overheads of effect-based task scheduling are
particularly important factors in explaining the inferior scaling of
our version of KMeans compared to the DPJ version on large
numbers of threads, because the TWEJava version uses a task rather
than a locked block for the reduction step. This is called a large
number of times, regardless of the number of threads (550,000
times in our benchmark configuration). Since task scheduling is a
heavier-weight procedure than simple locking around a short block,
and particularly since (as noted above) the scheduling of each task
is effectively sequentialized in our current implementation, this
leads to poorer scalability for the TWEJava version of the code.

In the case on ImageEdit, one factor limiting the speedups
achieved is that each time the image is updated, some sequential
operations are necessary to actually change the image displayed
in the GUI, which is implemented with Java’s Swing framework
and therefore needs to do GUI operations on a single thread, in
accordance with Swing’s architecture. This is a larger factor for the

sharpening operation than for the edge detection operation, since
the core parallel computation for sharpening is faster than for edge
detection. We believe this at least partially accounts for the poorer
scalability of sharpening compared to edge detection, as well as the
overall scalability limits of the ImageEdit computations.

While our system has run-time overheads related to task schedul-
ing and dynamic tracking of region and effect parameters, it still
delivers significant parallel speedups, sometimes comparable to
the DPJ versions of the codes (particularly on relatively low num-
bers of threads). We believe the scalability and performance of
our system could be improved by implementing a scheduler that
does not use a single lock and a compiler and scheduler that work
together to minimize the number of dynamic effect comparisons
(e.g. by avoiding the need for run-time checking of covering ef-
fects when child tasks are spawned in a loop). However, we think
our current implementation without these optimizations still gives
good enough performance to be used in many applications, partic-
ularly in desktop and mobile systems with relatively low numbers
of cores.

7. Related Work

Traditional multithreaded systems such as Java or Posix threads
are more flexible than TWEJava in the sense that they allow al-
most any desired concurrency and synchronization structure to be
expressed, but they provide no guarantees about the absence of con-
currency errors, and also have few or no facilities that simplify rea-
soning about such errors. Some systems, including OpenMP [32],
Cilk [11], Threading Building Blocks (TBB) [22] (except for the
“lower-level” task interfaces), and Java’s ForkJoinTask [33] are
more structured and easier to reason about than traditional threads.
However, these systems still do not provide any correctness guar-
antees such as data race freedom or determinism. The programmer
still has to reason manually to ensure that data sharing patterns are
correct and synchronization is present when needed. These systems
simplify such reasoning by limiting programs to use a particular
parallelism structure (e.g. fork-join), but in doing so, can no longer
express the forms of concurrency required by many programs such
as interactive applications, servers, and actor-style programs. TWE-
Java is able to express all these kinds of programs and yet provides
strong correctness guarantees.

RCCJava [18] can ensure data race freedom, but it does not pro-
vide structured concurrency constructs or guarantee other safety
properties such as determinism. SharC [5] allows flexible concur-
rent control flow while providing a guarantee of data race free-
dom, but it also does not provide structured concurrency constructs
and cannot guarantee stronger properties like determinism. Core-
Det [8], Kendo [31], Grace [9], and DMP [16] allow multithreaded
programs to be executed with a deterministic execution order that
does not vary from run to run, but they do not provide structured
parallelism constructs, and the deterministic execution order they
provide is not related in an obvious way to the program code and
may change if the code or input changes, which limits their utility
as tools for reasoning about program behavior.

Many parallel and concurrent programming systems provide
various correctness guarantees but have weaker expressive power
than TWEJava. These include Jade [35], Prometheus [4], DPJ [13,
14], OoOJava [23], Dynamic Out-of-Order Java (DOJ) [17], Pān̄ini
[27], SvS [10], Legion [7], and Ke et al.’s system for paralleliza-
tion with dependence hints [25]. Several of these systems, includ-
ing Jade, Prometheus, OoOJava, DOJ, and Pān̄ini, guarantee deter-
ministic semantics (often with equivalence to a unique sequential
program) but these systems are unable to express inherently non-
deterministic algorithms, or programs where concurrency is due to
external requests or user input and the input and its timing may
affect the program’s results. SMPSs [34] is also designed to pro-

vide sequential-equivalent semantics and uses a form of effect an-
notations for task scheduling, but these annotations are not veri-
fied, so the programmer is responsible for ensuring that the annota-
tions are correct in order to ensure proper program behavior. Sev-
eral systems, including (at least) Jade, SvS, Legion, DOJ, SMPSs,
and Aida [28], have used effects in some form to guide run-time
scheduling decisions, but TWEJava provides the ability to express
programs not supported by any of these other languages and gives
stronger safety guarantees than some of them.

DPJ, Legion and SvS can express nondeterministic programs,
but not programs requiring flexible concurrency structures, iden-
tified above. DPJ supports programs with both deterministic and
nondeterministic algorithms, and provides the strongest parallel
correctness guarantees we know of, but because it is limited to
fork-join parallel structures, it is not suitable for many concurrent
programs. TWEJava supports a much broader class of programs
than DPJ, and provides almost as strong correctness guarantees: its
primary weakness compared to DPJ is that it only provides lim-
ited protection from deadlocks. Like DPJ, Legion cannot express
programs with general concurrency and synchronization patterns
because there are no mechanisms for explicit “join” synchroniza-
tion between tasks (tasks block for other tasks only due to inter-
fering effects, enforced by the scheduler) and the effects of a par-
ent task must be a superset of the effects of its child tasks. Le-
gion also provides significantly weaker correctness guarantees than
DPJ or TWEJava, although it allows more dynamic assignment of
data to regions, and explicit program management of locality via
region maps. SvS executes tasks according to a statically-defined
task graph, which limits the language to a narrower range of con-
current applications than TWEJava. SvS allows both deterministic
and nondeterministic algorithms, and guarantees data race freedom
to such programs. One key difference is that SvS infers potential
conflicts due to implicit sharing of data between tasks, and uses an
approximate run-time analysis of the memory possibly accessed by
a task. While these features reduce the annotation burden on the
programmer, they increase the likelihood of spurious dependences
(“false positives”) that prevent two tasks from executing in parallel.
TWEJava does not suffer from such false positives when checking
for effect interference between tasks.

Transactional memory systems [19] use speculative execution
to enforce correctness guarantees such as atomicity. These sys-
tems guarantee that atomic blocks declared by the programmer ex-
ecute in isolation from each other, performing rollback and retry
if necessary. To date, implementations have often relied on soft-
ware transactional memory (STM). STM systems generally have
high overheads, stemming from the need to track memory accesses
and check for conflicts, combined with wasted computation when
rollbacks occur. In contrast, TWEJava only requires conflict checks
(on task effect summaries) before a task begins execution and never
rolls back partially-completed tasks. Also, to avoid exorbitantly
high overheads, many STM systems only guarantee isolation be-
tween two atomic blocks (weak isolation). In these systems, state-
ments outside atomic blocks may still race with other statements
inside or outside atomic blocks, so there is not a full guarantee of
data race freedom.

Several other systems also use optimistic parallelism. Ga-
lois [26] focuses on irregular algorithms and requires the program-
mer to specify which operations are semantically commutative and
define inverse methods for use on rollback. Non-deterministic al-
gorithms in DPJ also use atomic blocks implemented via an STM
system, which has fairly poor absolute performance [14]. Aida [28]
also focuses on irregular parallelism. It guarantees the absence of
data races, deadlock and livelock, via a mechanism called “dele-
gated isolation,” where a task that conflicts with another concurrent
task is rolled back and then “delegates” all its computation and data

to the latter task. Galois, DPJ and Aida are all limited to highly
structured, fork-join concurrency.

A more flexible style of concurrent programming is actors [3].
In the basic actor model, a concurrent system is composed of
several actors, each potentially having local state, but no shared
state between the actors. Actors communicate by sending messages
to other actors, and computation is done at each actor in response
to the messages received. Each actor processes only one message
at a time, so all concurrency is due to the simultaneous execution of
different actors. Actor-style programs are natural to express using
our system: a region can be defined to correspond to each actor, and
tasks with effects on that region can be thought of as equivalent
to messages sent to and processed by that actor. Several actor-
like programming models for shared memory systems [24, 29, 37]
broaden the basic actor model to include some form of shared state
between actors, but these systems are generally less flexible than
our effect system, and in some cases do not guarantee data race
freedom. Our system, when used to write actor-style programs, can
express both shared state between actors and internal concurrency
within actors, while guaranteeing data race freedom as well as,
where desired, deterministic, sequential-equivalent semantics for
parallel algorithms used within an actor.

8. Conclusion

We have described and defined the semantics of a new concurrent
programming model based on tasks with effects, and presented a
language called TWEJava that implements it. TWEJava can express
a wide range of concurrent and parallel programs, while deliver-
ing very strong safety properties including task isolation, data race
freedom, atomicity, and optionally determinism. We have imple-
mented several concurrent programs in TWEJava and shown that
our present implementation can give substantial parallel speedups.

Acknowledgments

This work was funded by the Illinois-Intel Parallelism Center at
the University of Illinois at Urbana-Champaign. The Center is
sponsored by the Intel Corporation.

References

[1] M. Abadi, A. Birrell, T. Harris, and M. Isard. Semantics of transac-
tional memory and automatic mutual exclusion. In POPL, 2008.

[2] S. V. Adve and K. Gharachorloo. Shared memory consistency models:
A tutorial. IEEE Comp., Special Issue on Shared-Mem. Multiproc.,
pages 66–76, December 1996.

[3] G. Agha. Actors: A model of concurrent computation in distributed

systems. MIT Press, 1986.

[4] M. D. Allen, S. Sridharan, and G. S. Sohi. Serialization sets: A
dynamic dependence-based parallel execution model. In PPOPP,
2009.

[5] Z. Anderson, D. Gay, R. Ennals, and E. Brewer. SharC: Checking data
sharing strategies for multithreaded C. In PLDI, 2008.

[6] Apple. Concurrency Programming Guide. http://developer.
apple.com/library/mac/documentation/General/
Conceptual/ConcurrencyProgrammingGuide/, Dec. 2012.

[7] M. Bauer, S. Treichler, E. Slaughter, and A. Aiken. Legion: Expressing
locality and independence with logical regions. In SC’12, 2012.

[8] T. Bergan, O. Anderson, J. Devietti, L. Ceze, and D. Grossman. Core-
Det: A compiler and runtime system for deterministic multithreaded
execution. In ASPLOS, 2010.

[9] E. D. Berger, T. Yang, T. Liu, and G. Novark. Grace: Safe multi-
threaded programming for C/C++. In OOPSLA, 2009.

[10] M. J. Best, S. Mottishaw, C. Mustard, M. Roth, A. Fedorova, and
A. Brownsword. Synchronization via scheduling: Techniques for
efficiently managing shared state. In PLDI, 2011.

[11] R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E. Leiserson, K. H.
Randall, and Y. Zhou. Cilk: An efficient multithreaded runtime sys-
tem. In PPOPP, 1995.

[12] R. L. Bocchino and V. S. Adve. Types, regions, and effects for safe
programming with object-oriented parallel frameworks. In ECOOP,
2011.

[13] R. L. Bocchino, V. S. Adve, D. Dig, S. V. Adve, S. Heumann, R. Ko-
muravelli, J. Overbey, P. Simmons, H. Sung, and M. Vakilian. A type
and effect system for Deterministic Parallel Java. In OOPSLA, 2009.

[14] R. L. Bocchino, S. Heumann, N. Honarmand, S. V. Adve, V. S. Adve,
A. Welc, and T. Shpeisman. Safe nondeterminism in a deterministic-
by-default parallel language. In POPL, 2011.

[15] J. Canny. A computational approach to edge detection. IEEE Trans.

Pattern Analysis and Machine Intelligence, 8(6):679–698, June 1986.

[16] J. Devietti, B. Lucia, L. Ceze, and M. Oskin. DMP: Deterministic
shared memory multiprocessing. In ASPLOS, 2009.

[17] Y. h. Eom, S. Yang, J. C. Jenista, and B. Demsky. DOJ: Dynamically
parallelizing object-oriented programs. In PPoPP, 2012.

[18] C. Flanagan and S. N. Freund. Type-based race detection for Java. In
PLDI, 2000.

[19] T. Harris, J. Larus, and R. Rajwar. Transactional Memory, 2nd Edition

(Synthesis Lectures on Comp. Arch.). Morgan & Claypool, 2010.

[20] S. Heumann and V. Adve. Disciplined concurrent programming using
tasks with effects. In HotPar, 2012.

[21] S. Heumann and V. Adve. Tasks with effects: A model for disciplined
concurrent programming. In WoDet, 2012.

[22] Intel. Intel Thread Building Blocks Reference Manual. http:
//software.intel.com/sites/products/documentation/
hpc/tbb/referencev2.pdf, Aug. 2011.

[23] J. C. Jenista, Y. h. Eom, and B. C. Demsky. OoOJava: software out-
of-order execution. In PPOPP, 2011.

[24] R. K. Karmani, A. Shali, and G. Agha. Actor frameworks for the
JVM platform: A comparative analysis. In Principles and Practice of

Programming in Java (PPPJ), 2009.

[25] C. Ke, L. Liu, C. Zhang, T. Bai, B. Jacobs, and C. Ding. Safe parallel
programming using dynamic dependence hints. In OOPSLA, 2011.

[26] M. Kulkarni, K. Pingali, B. Walter, G. Ramanarayanan, K. Bala, and
L. P. Chew. Optimistic parallelism requires abstractions. In PLDI,
2007.

[27] Y. Long, S. L. Mooney, T. Sondag, and H. Rajan. Implicit invocation
meets safe, implicit concurrency. In Generative Programming and

Component Engineering (GPCE), 2010.

[28] R. Lublinerman, J. Zhao, Z. Budimlić, S. Chaudhuri, and V. Sarkar.
Delegated isolation. In OOPSLA, 2011.

[29] Microsoft. Axum. http://msdn.microsoft.com/en-us/
devlabs/dd795202.

[30] Microsoft. Task Parallel Library (TPL). http://msdn.microsoft.
com/en-us/library/dd460717.aspx.

[31] M. Olszewski, J. Ansel, and S. Amarasinghe. Kendo: Efficient deter-
ministic multithreading in software. In ASPLOS, 2009.

[32] OpenMP Architecture Review Board. OpenMP Application Program
Interface, Version 3.1. http://www.openmp.org/mp-documents/
OpenMP3.1.pdf, 2011.

[33] Oracle. Java Platform, Standard Edition 7 API specification. http:
//download.oracle.com/javase/7/docs/api/.

[34] J. M. Perez, R. M. Badia, and J. Labarta. A dependency-aware task-
based programming environment for multi-core architectures. In IEEE

International Conference on Cluster Computing, 2008.

[35] M. C. Rinard and M. S. Lam. The design, implementation, and
evaluation of Jade. TOPLAS, 20(3):483–545, May 1998.

[36] G. Roşu and T. F. Şerbănuţă. An overview of the K semantic frame-
work. Journal of Logic and Algebraic Programming, 79(6), 2010.

[37] J. Schäfer and A. Poetzsch-Heffter. JCoBox: Generalizing active
objects to concurrent components. In ECOOP, 2010.

http://developer.apple.com/library/mac/documentation/General/Conceptual/ConcurrencyProgrammingGuide/
http://developer.apple.com/library/mac/documentation/General/Conceptual/ConcurrencyProgrammingGuide/
http://developer.apple.com/library/mac/documentation/General/Conceptual/ConcurrencyProgrammingGuide/
http://software.intel.com/sites/products/documentation/hpc/tbb/referencev2.pdf
http://software.intel.com/sites/products/documentation/hpc/tbb/referencev2.pdf
http://software.intel.com/sites/products/documentation/hpc/tbb/referencev2.pdf
http://msdn.microsoft.com/en-us/devlabs/dd795202
http://msdn.microsoft.com/en-us/devlabs/dd795202
http://msdn.microsoft.com/en-us/library/dd460717.aspx
http://msdn.microsoft.com/en-us/library/dd460717.aspx
http://www.openmp.org/mp-documents/OpenMP3.1.pdf
http://www.openmp.org/mp-documents/OpenMP3.1.pdf
http://download.oracle.com/javase/7/docs/api/
http://download.oracle.com/javase/7/docs/api/

	Introduction
	The TWEJava language
	Tasks
	Effects and Regions
	Effect-Based Task Scheduling
	Effect Transfer When Blocked
	Effect Transfer for Nested Parallelism
	Spawning and joining child tasks
	Covering Effect Analysis for Effect Transfer

	Dynamic Semantics of Tasks with Effects
	Starting Tasks
	Awaiting Completed Tasks and Blocking
	Finishing Tasks and Checking If Tasks are Done

	Safety Properties
	Task isolation
	Data race freedom
	Atomicity
	Deadlock avoidance
	Determinism

	Compiler and Runtime System
	Compiler
	Runtime System

	Evaluation
	Expressiveness
	Performance

	Related Work
	Conclusion

