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Abstract 

Knowledge workers spend the majority of their working 
hours processing and manipulating information. These users 
face continual costs as they switch between tasks to retrieve 
and create information. The TaskTracer project at Oregon 
State University investigates the possibilities of a desktop 
software system that will record in detail how knowledge 
workers complete tasks, and intelligently leverage that 
information to increase efficiency and productivity. Our 
approach assigns each observed user interface action to a 
task for which it is likely being performed. In this 
demonstration we show how we have applied machine 
learning in this environment. 

The TaskTracer System  

Knowledge workers organize their work into discrete and 
describable units, such as projects, tasks or to-do items. 
The TaskTracer project at Oregon State University has 
developed a desktop system which operates in the 
Microsoft Windows environment, tracking most 
interactions with desktop applications as well as tracking 
phone calls. Once we have the past actions structured by 
task, we can provide substantial value to the knowledge 
worker in assisting in their daily task routines. Our goal is 
to develop five capabilities: more task-aware user 
interfaces in the applications we use daily, more efficient 
task-interruption recovery, better personal information 
management, workgroup information management and 
within-workgroup workflow detection and analysis. Our 
approach combines human-computer interaction and 
machine learning to assign each observed action (opening 
a file, saving a file, sending an email, cutting and pasting 
information, etc.) to a task for which it is likely being 
performed. In this demo, we show the current 
implementation of the TaskTracer system and its machine 
learning components, TaskPredictor and FolderPredictor.  
 There have been previous efforts to build environments 
that enable knowledge workers to manage multiple 
concurrent activities, which we call tasks, and use 
knowledge of those activities to improve productivity 
(Henderson and Card 1986, Freeman and Gelernter 1996, 
Dourish et al. 1999, Robertson et al. 2000, Bellotti et al. 
2003). To be of assistance to a user, an agent (whether it is 

a computer system or a human associate) must “know” 
what the user is currently doing. In addition to the 
resources used in a task, a record of user’s actions 
performed on those resources must also be captured to 
have the correct comprehension of the task context. There 
are systems (Fenstermacher and Ginsburg 2002, Kaptelinin 
2003, Canny 2004) address this issue by aiming at 
recording as much information as possible about users’ 
activities when they interact with computers. These 
activity records are obtained via monitoring the computer 
file system, input devices, and applications.  
     Our software, TaskTracer, employs an extensive data-
collection framework to obtain detailed observations of 
user interactions in the common productivity applications 
used in knowledge work (see Dragunov et al. 2004). 
Currently, events are collected from Microsoft Office 
2003, Microsoft Visual .NET, the Windows XP operating 
system and phone calls and stored as EventMessages in a 
database. In this framework, TaskTracer collects file 
pathnames for file create, change, open, print and save, 
text selection, copy-paste, windows focus, web navigation, 
phone call, clipboard and email events. Phone call data 
collection uses Caller Id to collect names and phone 
numbers of callers. In addition, speech-to-text software 
collects the user’s — but not the caller’s — phone speech.  
 Instead of using unsupervised clustering to discover 
tasks, users of TaskTracer manually specify what tasks 
they are doing in the initial stage of data collection, so that 
each action of the user (UI event) will be tagged with a 
particular task identifier to train predictors.   
    There are three main challenges to the machine learning 
approach. Firstly, accuracy must be exceptionally high to 
be acceptable to the user. Secondly, manual task switches 
have introduce “noise” into the task-tagged event stream. 
Thirdly, users may achieve the same task in different ways, 
hence doing something on the same task can generate 
different event streams. Conversely, different tasks may 
utilize the same objects, i.e. events and resources. 

TaskPredictor 

TaskPredictor is a component in TaskTracer that predicts 
the currently active task and sets the current task to the 
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predicted task on the user’s behalf. In contrast to plan 
recognition, our approach does not rely on an explicit 
induction of a plan or next events based on prior, 
sequential events. On-line learning is utilized to update the 
model if the user corrects the predicted task. The 
probabilistic framework we are employing in 
TaskPredictor can be outlined as follows. Suppose 
observation O = (ot-k ,…, ot-1 , ot ) be an ordered set of 
observations from time t – k to t, where k is 0 if we ignore 
the temporal relationship and only consider the current 
observation. Our goal is to get a probabilistic distribution 
about the current task given O, P(Taskt = taski | ot-k ,…, ot-1 
, ot). Feature construction occurs as follows. A Window-
document segment (WDS) consists of the time period in 
which a window has the focus and this window is looking 
at a single document. It is assumed that the user is on a 
single task in the same WDS and a prediction is only 
necessary when the WDS changes. We make a prediction 
when navigation events occur in Internet Explorer, 
window focus switches, when a new application is started, 
or a resource is opened or saved. The source for the 
features comes from window titles, file pathnames, website 
URLs, and document content. Each source is segmented 
into a set of “words”, where each word corresponds to a 
binary variable wi in the feature vector. We utilize a 
stopword list to eliminate irrelevant features. We then use 
a Naïve Bayesian classifier to learn P(w | taski) and P(taski) 
and make predictions by using Bayes rules to calculate 
P(taski | w).  
    We have evaluated this approach by testing on a dataset 
collected from a team member, containing 81 different 
tasks, 11455 WDS and 1239 features. Always making a 
prediction, θ = 0, where θ is the normalized probability of 
a task that is computed from the Naive Bayes model, 
provides an accuracy of 25%. Once “meaningless” events, 
such events that happen in all tasks (e.g. open/save dialogs, 
blank web pages) or events not related to any tasks (e.g. a 
file used by an application all the time) are removed, the 
accuracy can be further increased to 60%. Furthermore, we 
are investigating abstentions from making a prediction (i.e. 
imposing a threshold θ between 1 and 0), which increases 
the level of correct predictions to 85% (θ = 0.9). It still 
remains to be investigated whether or not reduced 
coverage is good enough to the user, but not every WDS is 
a task switch so an abstention might be the right answer. 
We are currently exploring feature selection by using 
information gain which appears to push the accuracy to 
95%.  

FolderPredictor 

Similarly, we have implemented a FolderPredictor to 
reduce the user cost of accessing resources given a certain 
task. Knowledge workers often have different folders for 
each task. In our approach we sort the folders based on the 
frequency in which user has opened/saved files before and 
use exponential decay to do a recency weighting. We 

currently employ these predictions by changing the 
navigation pane of the Windows Open or Save As dialog 
box. At the moment the usefulness of the prediction is 
evaluated by the cost to the user in reaching the desired file 
i.e. the distance between predicted folders and user's 
destination folder; it is on average one click away from the 
set of folders returned by FolderPredictor. 
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