
The TaskTracer System

Simone Stumpf, Xinlong Bao, Anton Dragunov, Thomas G. Dietterich, Jon Herlocker, Kevin

Johnsrude, Lida Li, JianQiang Shen

School of Electrical Engineering
Oregon State University

Corvallis, OR

stumpf@eecs.oregonstate.edu

Abstract

Knowledge workers spend the majority of their working
hours processing and manipulating information. These users
face continual costs as they switch between tasks to retrieve
and create information. The TaskTracer project at Oregon
State University investigates the possibilities of a desktop
software system that will record in detail how knowledge
workers complete tasks, and intelligently leverage that
information to increase efficiency and productivity. Our
approach assigns each observed user interface action to a
task for which it is likely being performed. In this
demonstration we show how we have applied machine
learning in this environment.

The TaskTracer System

Knowledge workers organize their work into discrete and
describable units, such as projects, tasks or to-do items.
The TaskTracer project at Oregon State University has
developed a desktop system which operates in the
Microsoft Windows environment, tracking most
interactions with desktop applications as well as tracking
phone calls. Once we have the past actions structured by
task, we can provide substantial value to the knowledge
worker in assisting in their daily task routines. Our goal is
to develop five capabilities: more task-aware user
interfaces in the applications we use daily, more efficient
task-interruption recovery, better personal information
management, workgroup information management and
within-workgroup workflow detection and analysis. Our
approach combines human-computer interaction and
machine learning to assign each observed action (opening
a file, saving a file, sending an email, cutting and pasting
information, etc.) to a task for which it is likely being
performed. In this demo, we show the current
implementation of the TaskTracer system and its machine
learning components, TaskPredictor and FolderPredictor.
 There have been previous efforts to build environments
that enable knowledge workers to manage multiple
concurrent activities, which we call tasks, and use
knowledge of those activities to improve productivity
(Henderson and Card 1986, Freeman and Gelernter 1996,
Dourish et al. 1999, Robertson et al. 2000, Bellotti et al.
2003). To be of assistance to a user, an agent (whether it is

a computer system or a human associate) must “know”
what the user is currently doing. In addition to the
resources used in a task, a record of user’s actions
performed on those resources must also be captured to
have the correct comprehension of the task context. There
are systems (Fenstermacher and Ginsburg 2002, Kaptelinin
2003, Canny 2004) address this issue by aiming at
recording as much information as possible about users’
activities when they interact with computers. These
activity records are obtained via monitoring the computer
file system, input devices, and applications.
 Our software, TaskTracer, employs an extensive data-
collection framework to obtain detailed observations of
user interactions in the common productivity applications
used in knowledge work (see Dragunov et al. 2004).
Currently, events are collected from Microsoft Office
2003, Microsoft Visual .NET, the Windows XP operating
system and phone calls and stored as EventMessages in a
database. In this framework, TaskTracer collects file
pathnames for file create, change, open, print and save,
text selection, copy-paste, windows focus, web navigation,
phone call, clipboard and email events. Phone call data
collection uses Caller Id to collect names and phone
numbers of callers. In addition, speech-to-text software
collects the user’s — but not the caller’s — phone speech.
 Instead of using unsupervised clustering to discover
tasks, users of TaskTracer manually specify what tasks
they are doing in the initial stage of data collection, so that
each action of the user (UI event) will be tagged with a
particular task identifier to train predictors.
 There are three main challenges to the machine learning
approach. Firstly, accuracy must be exceptionally high to
be acceptable to the user. Secondly, manual task switches
have introduce “noise” into the task-tagged event stream.
Thirdly, users may achieve the same task in different ways,
hence doing something on the same task can generate
different event streams. Conversely, different tasks may
utilize the same objects, i.e. events and resources.

TaskPredictor

TaskPredictor is a component in TaskTracer that predicts
the currently active task and sets the current task to the

AAAI-05 Intelligent Systems Demonstrations / 1712

predicted task on the user’s behalf. In contrast to plan
recognition, our approach does not rely on an explicit
induction of a plan or next events based on prior,
sequential events. On-line learning is utilized to update the
model if the user corrects the predicted task. The
probabilistic framework we are employing in
TaskPredictor can be outlined as follows. Suppose
observation O = (ot-k ,…, ot-1 , ot) be an ordered set of
observations from time t – k to t, where k is 0 if we ignore
the temporal relationship and only consider the current
observation. Our goal is to get a probabilistic distribution
about the current task given O, P(Taskt = taski | ot-k ,…, ot-1
, ot). Feature construction occurs as follows. A Window-
document segment (WDS) consists of the time period in
which a window has the focus and this window is looking
at a single document. It is assumed that the user is on a
single task in the same WDS and a prediction is only
necessary when the WDS changes. We make a prediction
when navigation events occur in Internet Explorer,
window focus switches, when a new application is started,
or a resource is opened or saved. The source for the
features comes from window titles, file pathnames, website
URLs, and document content. Each source is segmented
into a set of “words”, where each word corresponds to a
binary variable wi in the feature vector. We utilize a
stopword list to eliminate irrelevant features. We then use
a Naïve Bayesian classifier to learn P(w | taski) and P(taski)
and make predictions by using Bayes rules to calculate
P(taski | w).
 We have evaluated this approach by testing on a dataset
collected from a team member, containing 81 different
tasks, 11455 WDS and 1239 features. Always making a
prediction, θ = 0, where θ is the normalized probability of
a task that is computed from the Naive Bayes model,
provides an accuracy of 25%. Once “meaningless” events,
such events that happen in all tasks (e.g. open/save dialogs,
blank web pages) or events not related to any tasks (e.g. a
file used by an application all the time) are removed, the
accuracy can be further increased to 60%. Furthermore, we
are investigating abstentions from making a prediction (i.e.
imposing a threshold θ between 1 and 0), which increases
the level of correct predictions to 85% (θ = 0.9). It still
remains to be investigated whether or not reduced
coverage is good enough to the user, but not every WDS is
a task switch so an abstention might be the right answer.
We are currently exploring feature selection by using
information gain which appears to push the accuracy to
95%.

FolderPredictor

Similarly, we have implemented a FolderPredictor to
reduce the user cost of accessing resources given a certain
task. Knowledge workers often have different folders for
each task. In our approach we sort the folders based on the
frequency in which user has opened/saved files before and
use exponential decay to do a recency weighting. We

currently employ these predictions by changing the
navigation pane of the Windows Open or Save As dialog
box. At the moment the usefulness of the prediction is
evaluated by the cost to the user in reaching the desired file
i.e. the distance between predicted folders and user's
destination folder; it is on average one click away from the
set of folders returned by FolderPredictor.

References

Bellotti, V., Ducheneaut, N., Howard, M. and Smith, I.

2003. Taking Email to Task: The Design and Evaluation of

a Task Management Centered Email Tool. Proceedings of

the SIGCHI conference on Human factors in computing

systems, Ft. Lauderdale, Florida, ACM Press.

Canny, J. 2004. Gap: A Factor Model for Discrete Data.

Proceedings of SIGIR, ACM Press.

Dourish, P., Edwards, K., LaMarca, A. and Salisbury, M.

1999. Presto: An Experimental Architecture for Fluid

Interactive Document Spaces. ACM Transactions on

Computer-Human Interaction (TOCHI) 6(2): 133-161.

Dragunov, A., Dietterich, T. G., Johnsrude, K.,

McLaughin, M., Li, L. and Herlocker, J. L. 2004.

Tasktracer: A Desktop Environment to Support Multi-

Tasking Knowledge Workers. International Conference on

Intelligent User Interfaces, San Diego.

Fenstermacher, K. D. and Ginsburg, M. 2002. A

Lightweight Framework for Cross-Application User

Monitoring. IEEE Computer 35(3): 51-59.

Freeman, E. and Gelernter, D. 1996. Lifestreams: A

Storage Model for Personal Data. ACM SIGMOD Record

25(1): 80-86.

Henderson, A. and Card, S. 1986. Rooms: The Use of

Multiple Virtual Workspaces to Reduce Space Contention

in a Window-Based Graphical User Interface. ACM

Transactions on Graphics (TOG) 5(3): 211 - 243.

Kaptelinin, V. 2003. Umea: Translating Interaction

Histories into Project Contexts. Proceedings of the

SIGCHI conference on Human factors in computing

systems, Ft. Lauderdale, Florida, ACM Press.

Robertson, G., van Dantzich, M., Robbins, D., Czerwinski,

M., Hinckley, K., Risden, K., Thiel, D. and Gorokhovsky,

V. 2000. The Task Gallery: A 3d Window Manager.

Proceedings of the SIGCHI conference on Human factors

in computing systems, The Hague, The Netherlands, ACM

Press.

AAAI-05 Intelligent Systems Demonstrations / 1713

