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Summary 

A new method for solving the inverse problem of seismology is described 
in this paper. The problem is formulated as follows: the travel times of 
body waves are given at a discrete set of points, and we are required to 
find in the (V, Y )  plane (V being the velocity and Y the depth) the closed 
area which contains all velocity-depth curves corresponding to the given 
data. The method is based on the use of the function zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz(p)  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= T ( p ) - p X ( p ) ,  
p being the ray parameter, T the travel time, and X the epicentral distance. 
This method has the following advantages: it does not necessarily involve 
the estimation of p by numerical differentiation of the travel times; and it 
does not involve any interpolation of the travel-time curve between actual 
observations. Only two assumptions are made: spherical symmetry of the 
structure (the absence of horizontal inhomogeneities), and the postulation 
of a lower limit for the velocity in low velocity zones. The function z ( p )  
is estimated directly from the observed (Ti, Xi) as a singular solution of 
the Clairaut equation with free term T(X) .  

Application of the method is illustrated using data from deep seismic 
sounding in Turkmenistan. 

1. Introduction 

This paper deals with determination of the limits for velocity-depth curves from 
discrete travel-time data of refracted and reflected body waves. We assume the 
medium to be horizontally homogeneous, so that the velocity depends only upon the 
distance from the centre of the Earth; the wave propagation is assumed to follow 
from ray theory. 

This problem has been investigated by Gerver & Markushevitch (1966) for the 
general case in which low velocity zones may be present. The exact mathematical 
formulation of the problem is as follows. 

Waves are radiated from a point at the surface of a sphere of radius R ;  they 
propagate along rays determined by the equation: 

p = ro-'(r) siny(r) 

where r is the radial co-ordinate, v(r )  is the velocity of wave propagation at radius 

* Received in original form 1973 January 5 

317 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/g
ji/a

rtic
le

/3
6
/2

/3
7
7
/6

1
8
4
1
5
 b

y
 g

u
e
s
t o

n
 1

6
 A

u
g
u
s
t 2

0
2
2



378 E. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN. Bessonova zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAet at. 

r ;  y(r) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAis the angle between the radius vector and the ray, and p is the ray parameter. 
Then the parametric equations of the travel-time curve are: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

R 

t ( p )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 2 1 ru-2(r)[r2u-2(r)--p21-)dr 

~ ( p )  = 2 p  J r - ' [ r ~ u - 2 ( r ) - p 2 ] - + d r  

r ( p )  

R 

r ( p )  

p = d t / d A .  

The problem is to determine u(r) from t (A) .  It is possible (Gerver & Markushevitch 
1966) to reduce this problem to the analogous one for a half-plane Y 2 0 by the 
transformation: 

X = RA/u(R) Y = Ru-'(r) In (R/r )  

where u(y) = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAV- ' (y)  is wave slowness (reciprocal velocity); 2 X ( p )  is epicentral 
distance; and 2T(p)  is the arrival time along a ray with parameter p .  

We assume, as in Gerver & Markushevitch (1966), that the function V(y )  is 
piecewise continuous along with its first derivative and has a finite number of low 
velocity zones. The low velocity zone with index zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi begins at the depth zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAjji where 
u(yi) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= q i ,  and ends at the depth jiy so that 

U(Y> > qi if J t  < Y < J ; i .  

Then the solution of the inverse problem is given by: 

1 

Y ( p )  = 271-j zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 X(q)[q2-p2]-*dq 

P 

+ C2n-I  f t a n - ' ( [ ~ ~ ( y ) - q ~ ] / [ q ~ - p ~ ] ) ~ d y .  (2) 

The b s t  term is the Herglotz-Wiechert integral. In the second term the summation 
is taken over all low velocity zones with qi > p .  Equation (2) specifies an area con- 
taining all velocity-depth curves consistent with the given travel time (Gerver & 
Markushevitch 1966). 

To use equation (2) it is necessary to know the exact travel times for all distances 
X .  In practice, however, we know only a discrete number of travel-time data, and 
these data contain some errors. Thus most existing methods of inversion require an 
interpolation of the travel-time curve between the given data points. 

i 
Bi 
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Tau method for inversion of travel t i m e s 4  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA379 

For instance, Knopoff zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& Teng (1965) approximate the travel-time curve by 
several functions of varying complexity. The most general method, trial and error, 
does not require interpolation of data (Yanovskaya 1962; Yanovskaya & Asbel 1964; 
Lehmann 1962; Valus 1968). However, this method has its own disadvantages; it needs zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBApriori specification of the type of function by which V ( r )  is represented, and of the 
limits for this function; these limits can be supplied by our method. 

Backus & Gilbert (1970) suggested an inversion method using discrete travel-time 
data; they treat the given data set as a linear functional on the space of velocity-depth 
profiles. But the travel time is a non-linear functional, so in this method one looks 
only for the velocity-depth curves that are near some given curve, but we cannot find 
out by this method if there exist any other velocity-depth curves which are different 
from the given one and yet are in good agreement with the given travel times. 

In previously reported work (Bessonova, Fishman & Sitnikova, 1970; see also 
Keilis-Borok 1971) we had suggested an algorithm for constructing the envelope of 
all possible velocity-depth models that are consistent with a finite number of data. 
The data required were travel times, distances, and ray parameters. We had not 
interpolated the travel-time curve, and had not accepted any subjective hypotheses 
about the velocity-depth curve, but we did assume that the data are exact (i.e. contain 
no errors); this assumption involves some difficulties in practical applications. 

In this paper we consider the case when the travel-time data are determined at a 
discrete number of distances (with errors in both distance and time). Values of the 
ray parameter are not required, and we need not calculate them by numerical 
differentiation of the travel-time curve. The only subjective hypothesis we make is 
that the velocity in the low velocity zones is greater than some given constant. In 
the present paper we apply the ‘ z method’ to deep seismic sounding data in order 
to investigate the velocity distribution in the Earth’s crust. In a subsequent paper we 
will use earthquake data to investigate the velocity distribution in the mantle. 

This paper is based on theoretical results of Gerver & Markushevitch (1966, 
1967). In the 1966 paper they introduced the function ~ ( p ) :  

This function holds a prominent place in our method; it connects travel times and 
velocity-depth curves; the title of the present paper was chosen to reflect the basic 
role of the function zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz(p).  

Several papers relevant to our present work have appeared recently. McMechan 
& Wiggins (1972) and Wiggins, McMechan & Toksoz (1973) expanded our ‘method 
of parallelograms ’ (Bessonova zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAet al. 1970) for the interpretation of real data. With 
their approach, it is necessary to derive narrow limits for the function X ( p )  from 
observed data (p i ,  X i ) ,  which is a very subjective matter. We know that the error in 
the value of a function is proportional to the error in the argument and to the deri- 
vative of the function. With seismic data, the derivative X’(p )  can be very large, and 
the values of p calculated by differentiation of the travel-time curve (or known from 
array measurements) contain large uncertainties. 

In comparison with this, in our method we estimate z ( p )  for a given value of p 
as the extreme value of some function. Since the derivative at an extremum is zero, 
this is easy. Our method is stable to errors in the data, in the sense that the un- 
certainty in z@) is of the same order as the uncertainty in T,(X,), and the limits for 
the velocity-depth curve can be derived by integrating the limits for z(p)  with a weight- 
ing function. Further comments on the McMechan & Wiggins paper will be made 
in our subsequent paper, where we use the same data as they. 
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380 E. N. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBABessonova zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAet of. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Johnson zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& Gilbert (1972a, b) also used the function z(p), but their method of 

calculation of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7 ( p )  has practical difficulties. First, it is necessary to know the value of 
the ray parameter p ;  then X ( p )  is calculated as the average value of X, (p , )  for p t  in 
some interval. As will be shown below, the result of such a calculation is often in- 
correct because of errors in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBApi. Moreover, the calculation of z(p) by integrating 
X ( p )  is incorrect, since in the presence of low-velocity zones we have zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

1 

7(p)  = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 X(q)dq+  Xcri. 
P 

In the present paper, the function zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz (p )  is estimated directly from T,(Xi) without 
using the ray parameter values. 

2. Properties of z(p) 

The function z(p)  is connected with the velocity-depth curve by the equation 

U P )  

Z(P) = 1 b 2 ( Y )  -P21* dY (3) 
0 

(Gerver & Markushevitch 1966) and with the travel-time data by the relation 

Z(P) = T(P)-PX(P) .  (4) 

The function 7 ( p )  is monotonically decreasing, and continuous everywhere except at 
a finite number of points p = q i  corresponding to the low velocity zones. At these 
points it has a negative jump ci: 

(Ti = j k ( y ) - q : l * d y .  (5) 
? I  

Thus cri is characteristic of the magnitude of the low velocity zone. 
Let w@) be a piecewise constant function: 

Then 

is continuous and 

w(p) = Cat for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAqi > p .  
i 

P 

(Gerver & Markushevitch 1967). Therefore 

if p # qt and X ( p )  exists. 
z’@) = -X(P)  (9) 

If we know 7 ( p )  then except at a finite number of points we know X ( p )  and T(p): 

X ( p )  = -z’@) and T(p)  = z (p)+pX 

(see Gerver & Markushevitch 1966, Section 10). 
The function z(p) has a simple geometrical interpretation: the tangent of the 

travel-time curve at the point with co-ordinates X@), T(p) is characterized by a 
slope p and time intercept z(p). 
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Tau method zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAfor inversion of travel times-I 38 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
The function zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz ( p )  has one important characteristic in the language of differential 

equations. If we consider the relation (4) as an equation for z(p),  then using (9) we 
can write zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(4) in the form: 

This is Clairaut's equation (see Appendix); its general solution is a one-parameter 
family of straight lines: 

Equation (10) also has one singular solution-it is the envelope of the family of 
curves (11). Thus we have a definition of the function z(p): if we take the Clairaut 
equation (10) with the travel-time curve as a free term, then the singular solution of 
this equation is z(p).  This definition of z(p)  is important because it does not involve 
the use of a parametric form of travel-time curve strongly connected with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp .  

In Section zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 below, this definition of z(p) will be used for stable estimation of 
z(p)  from a discrete number of points on the travel-time curve. But first, in Sections 3 
and 4 we shall show how to obtain the envelope of velocity-depth curves from given 
estimates of the function z(p). 

z = pz' + T (  - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2'). (10) 

= Cp+T(C) .  (1 1) 

3. Transformation of limits for z(p) into limits for Y(p) 

The Herglotz-Wiechert equation gives the depth corresponding to a given velocity 
in terms of the function X ( p ) .  However, it is z(p)  and not X ( p )  that we can estimate 
from the travel-time curves. Thus it is essential to construct the first term in (2): 

1 

4 ( p )  = 227-1 x(q) [+p2]-*dq.  J 
P 

To substitute z (4)  for X ( q )  we average + ( p )  in some interval (a, b), 0 < a < b < 1: 

$(a, b) = (b-a)-' 4 ( p ) d p  = 227-l(b-a)-' X(q)[q2-p2]- 'dqdp (13) 
a p  J'S 

4 ( p )  is limited in the interval (a, b), so the integral exists. The function X(q)[q2-p2]-*  
is summable, i.e. the integral 

exists for every domain 9 in the area a < p < b, p < q < 1 .  In this case we can 
interchange the order of integration: 

1 min (q, b) 

&,b) = 2n-'(b-a)-l  J X ( q )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 [q2-p21-*dqdP 

a a 

1 

where 

= 2n-1(b-a)-' X(q)a(q ;  a,b)dq (14) .J 
cos- (a/q) i f a < q < b  

cos- l(a/q) - cos- '(blq) i f b < q  < 1. 
(1 5 )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa(q; a, b> = 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/g
ji/a

rtic
le

/3
6
/2

/3
7
7
/6

1
8
4
1
5
 b

y
 g

u
e
s
t o

n
 1

6
 A

u
g
u
s
t 2

0
2
2



382 E. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN. Besonova zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAet al. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
The function u(q) increases in the interval zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(a, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAb) and decreases in the interval (by 1). 

Now we integrate the expression (14) by parts, using equation (8): 

1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
1 X(q)a (q ;a ,b )dq  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-Q(q)~(q ;aYb) l :  + J %) q '( 4 ;a, b) 

a a 
1 

= J r (q)P(q;a,b)dq- c aia(qi;a,b) (16) 
q i > a  

a 
where 

uq - 1 [ q 2  - a21 -+ i f u < q < b  
(17) 

The term outside the integral is zero, because 1(1) = 0 and a(a;a,b) = 0; the last 
sum is obtained by direct integration using (6) and (7). Thus we have: 

where 

I a q - ' [ q 2 - a z ] - ) - b q - 1 [ q 2 - b 2 ] - ~  i fb  < q < I .  
8h; a, b) = a,'(% a, b) = 

$(a, b) = b)-42(a, b) (18) 

(19) dl(U,b) = 2n-'(b-a)-' j z(q)P(q;u,b)dq 
a 

a(q;a,b) and P(q;u,b) are defined by (15) and (17). 92(a,b)  is related to the low 
velocity zones; we shall investigate it in the next section. Now we shall estimate 

Suppose that in the interval (d ,  1) we know two functions t ( p )  and Z(p) such that: 
b). 

?(p) < z(p) < t(p) for 0 < d < p < 1. (21) 

(22) 

We have from (17): 

I P(q; a, b) > 0 

P(q; a, b) < 0 

for a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc 4 < b 

for b < 4 c 1. 

It follows from (19), (21) and (22) that if d < a, then 

2n-'(b-a)-' j zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAm; u, b) P(4; 4 b)dq < +1(a, b) 
a 

1 

< 2n-l(b-a)-l 7j(q;a,b)P(q;a,b)dq (23) 
a 

where 

If t(p) and ?(p) were piecewise linear functions, the integrals in (23) could be calculated 
in explicit form. 
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Tau method for inversion of travel times-I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA383 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Now we have to pass from the estimates (23) over average values to the estimates 

of Y (p) .  Since Y ( p )  is monotonically decreasing, we have: 

where 
Y (b) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA< P(a, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAb) < Y zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(a) 

b 

0 

P(u, b) can be represented as the difference between +'(a, b) and the term con- 
nected with low velocity zones (equations (32) and (33)) .  In this section we consider 
velocity-depth curves without low velocity zones, so that P(a, b) = ~ $ ~ ( a ,  b); in 
Section zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4 we shall correct the estimates of P(a, b) to allow for low velocity zones. 

Let us take the upper estimate 
1 

Y(b) < P(a, b) < 2n-' (b-a)-' "iq; a, b) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP(q; a, b)dq. (26) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAj 
We fix the inverse velocity by and our problem is to find an optimal averaging interval 
(a, b) so that the estimate (26) would be best in some sense. For a very small interval 
(a, b) the second inequality in (26) gives a very crude estimate, because the right- 
hand term in (26) tends to infinity if a -+ b. Increasing the interval (a, b), the estimate 
(26) is at first improved because the difference between the integral and P(a,b) 
decreases; further on it deteriorates because the difference P(a, b)- Y(b)  increases; 
thus it is not difficult for us to find an optimal averaging interval. 

We start with an averaging interval of 0.01. If 0.02 gives a better estimate (26) 
than 0.01, then we try 0-03, 0.04, etc., until the estimate (26) is improved; otherwise 
we try 0.005, 0.0025, etc. In an analogous way we can find an optimal averaging 
interval (a, b) for the lower estimate given by the equation 

Y(u) > P(a,b) > 2n-'(b-a)-' i j(q;a,b)B(q;a,b)dq. (27) 

So we have the following algorithm: we step along the p-axis from 1 to d ,  where d 
is specified by (21). For each value of p we look for optimal averaging intervals for 
lower and upper estimates, and then we calculate estimates of Y ( p )  by equations (26) 
and (27). 

i zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
4. Low velocity zones 

Let us now take the second term in equation (2): 

where 

Yt 

We shall use the averaged function: 
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a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
It follows from zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(2) and (18) that 

(32) 
where 

(33) 
Now we have to estimate zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA"'(a, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAb). It is sufficient to investigate the single summand zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Bi(a, b) corresponding to the ith low velocity zone: 

Y(u ,b )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= $(a,b)+\r(a,b) = 91(a,b)-Y,(u,b) 

Yl (a, b) = M a ,  b) - W a ,  6). 

B,(a,b) = (b-a)-'aia(q,;a,b)-Ai(u,6). (35) 

a(qi; a, b) = cos-'(a/q,)-cos-'(b/qi). (36) 

A,(a,b) = (b-a)-' [ni(b)-ni(a)]. (37) 

We assume that the interval (u,b) does not contain a low velocity zone, i.e. 
q i  > b. Then 

Let ITi(p) denote a functional of A&), Hi'@) = Ai(p) .  Then 

It follows from (35), (36) and (37) that 

Bi(a, b) = (b-a)-'{[o, c~s- ' (a/qi)+I l i (~) ] -  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[oi ~~s-'(b/qi)+IT~(b)]}. (38) 
According to Lagrange's theorem there exists a number zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5, a < 5 < b, such that 

&(a, b) = ai(qiZ-p)-"Ai(() .  (39) 
Considering (5) and (29), we have: 

$1 

where 

One of the advantages of our method compared to using equation (2) is that 
Bi(a, b) < Ai(a, b), i.e. as the depth below the low velocity zone increases, Bi(a, b) 
decreases proportionally to Qi3, whereas Ai@) decreases only as Qi.  

Since Qi  > tan-' Qi,  we have Bi(a, b) > 0 and Y(a, b) > 0. Hence the upper 
estimate (26) could only improve in the presence of a low velocity zone. 

In (39) the minuend is independent of the velocity distribution within the low 
velocity zone for fixed oi. As to the subtrahend, the following statement can be 
formulated (it follows from the convexity of the function tan-' X ;  for details see 
Markushevitch & Reznikov 1973). This subtrahend is minimal for the deepest 
possible, and correspondingly most narrow, rectangular low velocity zone, i.e. for the 
case when the velocity is constant and as small as possible. It is maximal for the 
widest shallow rectangular low velocity zone. 

For a rectangular low velocity zone, equation (40) can be written 

Bi(a,b) = oi(b-a)-' [ I - Q ~ - '  tan-' QJ. (42) 
Now we need estimates of the parameters zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAo,, q i ,  Qi. 

As will be shown in Section 5, we can find values di, iji, 6i, and ai such that 

iji < qi < cji ifi < ai < 6i (43) 
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Tau method for iirversion of travel times-I 385 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
from the estimates of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA~ ( p )  given by t ( p )  and ?(p) .  

given value zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAVi: 
Now we assume that the velocity in the ith low velocity zone is greater than some 

Vi zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA< V ( y )  for j j i  -= y -= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAj i .  

We write ti, = l/Vi. Since the function zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAQi-' tan-' Qi decreases monotonically, 
we have the following upper estimate of Bi(a, b): 

where 
B,(a,b) < zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAd.i[ij:-5:2]-+ [I-Q,-, tan-' Qi] (44) 

Qi = { [ t i i 2 - ~ , 2 ] / [ q i 2 - 5 : z ] } ) .  (45) 

We can get a final lower estimate for Y ( p )  from (27), (32), (34) and (44). 
The lower estimate for Bi(a, b) corresponds to the widest and shallowest rect- 

angular low velocity zone for a given ci.  The upper estimate hi for the width of the 
ith low velocity zone can be obtained as follows: h ,  is equal to the supremum of the 
difference between the upper and lower estimates of Y ( p )  in the interval (ql,ql), 
given by (26) and (27). Further on we can use induction. Suppose we have upper 
and lower estimates for Y ( p )  with allowance for the first i- 1 low velocity zones. 
Then hi is equal to the supremum of the difference between these estimates in the 
interval (qi, 4,). Determining hi in this way we can calculate the lower estimate U i  
for u(y)  in the interval ( J i ,  j i )  from the relation 

iFt = h i [ + f j , 2 ] 3 .  

Now we have the lower estimate for Bi(a, b): 

where 
~ , ( a , b )  5,[q:-c2]-+ [I-&-' tan-' (46) 

(47) 

Hence we get the final upper estimate for Y ( p )  from (261, (32), (34) and (46). 
If the interval (a, b) contains a low velocity zone, i.e. q i  < b, we take the lower 

estimate that is constant and equal to the existing estimate at the point b; the upper 
estimate remains unaffected. 

We use the average values Bi(a, b) for estimates of Y ( p )  at the ends of the interval 
(a, b); consequently we can take for our calculations 5: = +(a+b) in (44)-(47). 

From estimates of Y ( p )  obtained in this way, we can calculate estimates of the 
function V ( y )  outside the low-velocity zones. In addition, we know the domains in 
the (V ,y )  plane containing low velocity zones, and the estimates of bi which are 
characteristic of the magnitude of the low velocity zones. However, we do not know 
anything about the velocity distribution within the low velocity zones. 

It remains to carry out the most interesting and most difficult part, namely to 
get estimates of ~ ( p )  from given travel-time data. 

- 
Qi = { [ U : - ( i i 2 1 / [ ( i 1 2 - 5 2 ] } 3 .  

5. Transformation of Ti(Xi) into limits for z ( p )  

Suppose we have a discrete number of exact travel-time data, namely the epi- 
central distances X i  and the corresponding travel times Ti = T ( X i ) .  We want to 
transfer this information to the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(T, p )  plane. Each point (Ti,  X i )  of a travel-time curve 
corresponds to the straight line l i  with slope - X i  and time intercept Ti in the ( ~ , p )  
plane. Each l i  is the tangent of the graph ~ ( p ) .  Thus our problem is to construct 
the envelope of the set of straight lines 1,; each of these lines is given by the equation 

z = Ti -px i .  (48) 
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386 E. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN. Bessonova zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAet zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAal. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
This problem can be reformulated using the Clairaut equation. We have the set 

of particular solutions (48) of the equation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
r(p) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= pr’(p)+ T(-r ’)  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(49) 

and the problem is to find its singular solution. 
Unfortunately an arbitrary curve cannot be properly determined by a finite 

number of its tangents, and there is no stable dependence in the metric of the space 
C between the arbitrary free term of the Clairaut equation-T(X) in our case-and 
its singular solution. Our purpose is to find a stable dependence between T ( X )  and 
7(p) by use of the characteristic properties of the travel-time curve and of the function 

We need the following definition: suppose that the observed T(X,) in some 
interval of X can be connected by a curve which is convex upwards or downwards. 
We shall call the travel-time curve on such an interval a generally direct or generally 
receding branch respectively. 

Let us now give the definition of a loop. We consider a single-valued function zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
T*(X) = inf T ( X )  for a generally direct branch of the travel-time. curve and 

T * ( X )  = sup T ( X )  for a generally receding branch. Then a loop is some con- 

nected subset of the graph T ( X )  which does not belong to the graph T*(X)  or 
T,(X). We do not know anything about small loops from our discrete travel-time 
data, but the following consideration shows how to construct an envelope in the 
( 7 , p )  plane which contains the graph 7 ( p ) ,  whether or not there are loops in the 
travel-time curve. 

We suppose that we know some general branch of the travel-time curve in the 
metric of the space C., i.e. there is a sufficiently narrow band L in the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(T, X) plane 
which contains our general branch with given Ti(X,):  see Fig. 1. We assume that the 

z(P). 

X 

X 

0 
X 

FIO. 1. Construction of ~(p)  from T(X). 
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Tau method for inversion of travel times-I 387 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
band zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAL is limited by two monotone smooth convex functions T(X) and T(X) ,  i.e. 
all necessary conditions are satisfied for T ( X )  and T ( X )  to be a continuous branch of 
the travel-time curve without loops. Let D(X)  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT ( X )  - T(X). 

We shall consider below the case of the generally direct branches of the travel- 
time curve, so that T ( X )  and T ( X )  are convex upwards; the case of generally receding 
branches can be considered in an analogous way. 

We shall now describe how to estimate the limits of z(p)  from the band L. 
Let zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 be a tangent (with slope p )  of the travel-time curve at some point which lies 

within the band L. It is clear that 1 lies between two parallel tangents: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7 of T ( X )  and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
1 of T ( X ) .  The time intercept of 1 is ~ ( p ) ;  therefore zfp) is limited by two time inter- 
cepts: ?(p) of 1 and ?@) of 7. We have: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

6b) = ?(p ) -? (p )  < max [D(X*) ,  W X , ) ]  

where X *  and X ,  are abscissas of the points of tangency i with Tand 1 with T(X) ,  
respectively. It gives us a stable dependence of ~ ( p )  on T ( X )  in the metric of the 
space C.  

This theoretical result emphasizes the basic role of the function z(p).  The con- 
struction of the band L from real data presents many difficulties, but it is not necessary 
for estimation of z(p). Let us fix po  and consider the function z(X,po): 

.W,Po) = T(X) -po  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx. 
This function is similar to the reduced travel time often used in seismology. We have: 

T X ‘ ( X ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAPo) = P(X> -Po 

p ( X )  is a multivalued function. There is a unique point To = T ( X o )  of the travel- 
time curve for which p ( X o )  = p o .  Therefore zX’ (X ,  p o )  has a single zero and z(X, p o )  
has a single stationary point, which is a maximum for the generally direct and a 
minimum for the generally receding branch of the travel-time curve. We have: 

T G O Y  Po) = To-Po xo = T(Po) ,  

i.e. the extreme value of r ( X ,  p o )  is z(po). 
Thus we use the following algorithm: we select a general branch of the travel- 

time curve-let Ti, Xi, i = 1,2, ..., n be the given data on this branch. Then we find 

FIG. 2. Large loop on the travel-time curve. 
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388 E. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN. Bessonova zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAet al. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
an interval of p where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT ( X ,  p )  has an extremum, and for values p ,  in this interval, with 
some finite step size we construct the set of points o(Xi, p,) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= Ti-pk zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAXi, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi = I, 2, . .., n. 
From this set we estimate the extreme values of the function T ( X ,  p,), and this is our 
estimate for z(pk).  Due to the monotone character of o(p) we are able to construct 
the band M in the (7, p )  plane which contains the curve ~ ( p ) .  The error in T ( p k )  does 
not exceed the error in Ti plus p k  times the error in X i ;  i.e. the error in ~ ( p )  is of 
the same order as the error in T ( X ) .  Notice that even the presence of large un- 
noticed loops in the travel-time curve does not damage the estimates of ~(p)  obtained 
in this way (see Fig. 2). If o(X,p,) reaches an extremum for X = X,, we have 
x(pk) w xk, but the error in this condition can be rather large. It is noteworthy that 
the method of estimation of ~ ( p )  described above is simply a convenient procedure 
for solving the Clairaut equation (49). 

The estimates of the function ~ ( p )  between two neighbouring bands MI and M ,  
corresponding to two consecutive branches of the travel-time curve can be calculated 
by the ‘ method of parallelgrams ’ using the estimates of X ( p )  in this interval 
(Bessonova et al. 1970; Keilis-Borok 1971). Three cases are shown in Fig. 3; they 
differ in the existence of non-existence of gaps in T and p between M ,  and M , :  

(1) There are no gaps in p and T .  This means that we have no evidence of a low 
velocity zone. 

(2) There are some gaps in p and T .  We cannot prove that a low velocity zone 
exists, but we have to take into account that this zone may exist in the interval zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
{q, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4) with (T < 6.  

(3) There is no gap in p ,  but there is a gap in T .  lf we have estimates of X ( p ) ,  
we can prove that a low velocity zone exists in the interval (ij, q), with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 < (T < b. 

In cases (2) and (3) we use the values ij, 4, 17, 6- for estimates of the summand 
connected with the low velocity zones in the expression for Y ( p )  (see Section 4). 

In this way we get the envelope in the ( T ,  p )  plane which contains the graph of the 
function ~ ( p ) ;  its upper boundary is the graph of f(p) and its lower boundary is the 
graph of Q). As we have seen in Sections 3 and 4, this information is sufficient for 
construction of the envelope in the (V ,  Y )  plane which contains all velocity-depth 
curves consistent with the given travel-time data. 

In  Sections 6-8 we shall apply this ‘ o  method’ to deep seismic sounding for 
investigating the velocity distribution in the Earth’s crust. 

’ t  ’ t  

1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAII m 
FIG. 3. Estimation of the existence of wave guides from ~(p). 
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Tau method for inversion of travel times-I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA389 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
6. Experimental data 

In 1962-1964 detailed deep seismic sounding along profiles was carried out in 
Central Turkmenia (Ryaboyi 1966a, b). Body waves recorded at distances up to 
300 km have propagated through media which for all practical purposes are hori- 
zontally homogeneous (after introducing near-surface time corrections). The record- 
ings were made along a set of parallel and reversed profiles; the average difference 
between times on reversed profiles is about zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0.1 s The horizontal homogeneity allows 
us to apply the ' zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7 method '. 

Let us describe the observed waves. The first arrivals at distances up to about 
10-12 km correspond to the sedimentary layers. Between 10-12 km and 120-125 km 
the first arrivals correspond to refracted zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp o  waves, which propagate in the upper part 
of the consolidated crust (Fig. 4). 

Po waves are characterized by intensive and prolonged oscillations; their phase 
correlation is continuous for distances of several dozen kilometres. 

In the later arrivals two basic groups of waves appear. These are the waves 
reflected from the bottom of the crust zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(PIM) and from a boundary in the lower part 
of the consolidated crust (P,). The PIM and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP, waves have intensive arrivals. They 
are well correlated along the profile and can easily be identified on the parallel and 
reversed profiles. The P ,  and PIM waves can be followed from 50 to 60km up 
to 150-170 km and 280-290 km, respectively. 

Between Po and P ,  a considerable number of weak unclear arrivals exist, with a 
short range of correlation. We shall designate these waves as P,. The apparent 
velocities of these waves are intermediate between those of Po and P, waves. The 

I 1 

L 
) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA200 253 

FIG. 4. Scheme of travel-time curves of main recorded waves: (1) Basic waves, 
reliably separated and correlated; (2) p ,  waves, with small amplitude and poor 

correlation. 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/g
ji/a

rtic
le

/3
6
/2

/3
7
7
/6

1
8
4
1
5
 b

y
 g

u
e
s
t o

n
 1

6
 A

u
g
u
s
t 2

0
2
2



390 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
physical nature of the PI waves is unclear. Possibility they are reflections from 
heterogeneities in the middle part of the consolidated crust. After the disappearance 
of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAPo waves at 120-125 km, the P ,  waves appear as first arrivals up to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA15&160 km. 
Further on, waves refracted in the upper mantle zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(PzM) appear as first arrivals. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE. N. Bessonova zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAet al. 

7. Application of the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA' z Method ' 
As initial data we use the travel times of first arrivals and the travel times of P, 

and PIM waves for epicentral distances at intervals of 5 km. The accuracy of the 
travel times is less than 0.1 s. The velocity at the free surface, V(O),  is assumed to be 
1-25 km s-'; therefore p = 1*25/V(y). We have to obtain an estimate of the function 
.i(p) by the methods described in Section 5. First of all we shall investigate the travel- 
time curve of the first arrivals at distances from 10 to 205 km. To eliminate the 
influence of local near-surface inhomogeneities we smoothed the travel time, re- 
placing each arrival time by the average of five successive points. For the smoothed 
data we plot fi = T i - p X i  us. X for 0.23 < p < 0.145, at an interval of 0.0025 
(Fig. 5).  Since Ti and Xi are one-half the time and distance values, the error in Ti 
is less than 0.05. As these curves possess more than one extremum it follows that in 
the first arrivals several different waves are present. Let us try to separate them. 

0 1475 

0 I5 

0 1525 

0 155 

0 1575 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0 I6 

0 1625 

0 165 

01675 

0 17 

0 1725 

0 175 

0 1775 

0 18 

0 1825 

0 185 

0 1875 

0 19 
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0195 

0 1975 

0 20 

02025 
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X (krn) 

Fie. 5. +(X,p)  for different p, corresponding to first arrivals. 
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Tau method for inversion of travel times-I 39 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
6 -  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
5 -  

4 -  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
r 

3 -  

2 -  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
I I I I I I I I I I  I I  I 

014 015 016 017 018 019 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 2 0  021 0 2 2  0 2 3  0 2 4  0 2 5  026 0 2 7  028  
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FIG. 6. Estimation of ~ ( p )  in the p interval corresponding to waves propagating 
through the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAEarth's crust. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

From Fig. 5 it is not difficult to see that the behaviour of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAr (X,p)  is regular at 
distances from 10 to llOkm (0.20 6 p < 0.23). Apparently here we have Po waves 
(see Section 6). Their apparent velocity changes from 5-6 to 6-3 km s- '. In accordance 
with the theory described in Section 5,  the maxima of the derived curves shifts along 
the diagonal from the lower left corner to the upper right corner. The value of the 
maximum is determined with error less than 0.05. Then on the ( r ,p )  plane we con- 
struct a band of average width 0.06 containing the graph r(p) in the interval 
0.2 < p < 0.225. 

The estimates of r (p )  for 0.20 < p 6 0.225 obtained in this way are shown in 
Fig. 6. 

Further we are able to single out the regular behaviour of r ( X , p )  at distances 
from 160 to 200km (0.145 < p < 0.155); see Fig 6. These are PZM waves; their 
apparent velocity changes from 8-1 to 8.4 km s-'. The estimates of the r@) for p 
values close to 0.15 are obtained in an analogous way. They are shown in Fig. 6. 

The curves r ( X ,  p) for X between 120 and 150 km are irregular and cannot be 
interpreted in this way. One must remember that at these distances, PI waves appear 
as first arrivals; their nature was discussed in Section 6. We exclude these waves from 
the travel-time curve and do not consider them further. 

It is useful to compare the results obtained in this way with the results obtained 
by the usual method of interpreting deep seismic sounding data. For that we shall 
choose the times of the first arrivals from 10 to 205 km with an even smaller interval: 
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one kilonetre. We shall try to obtain values of the ray parameter zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp by differentiating 
the travel-time curve. We know the exact values of Xi, so assuming that the errors in 
calculating Ti are independent and normally distributed we can determine p i  by the 
technique of statistical regression. Through each five successive points (Ti ,  X i )  we 
draw a polynomial of the third or smaller order using least squares; the value of the 
polynomial at the middle point we assume as Ti; differentiating the polynomial with 
respect to X we obtain the values of pi at the middle point. Determining p i  at each 
point in this way we make the errors in pi not independent, but still normally distri- 
buted. The cloud of points obtained for p i ( X i )  is shown in Fig. 7; in Fig. 8, the 
corresponding cloud of points z i ( p i )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= T,-pi  X i  is shown. 

We see that the condition of monotonicity of the function zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz ( p )  is rudely violated, 
so it is evident that the values of z,(pJ are calculated with large errors. The errors 
in the values of Ti are not large and the error in zi(pi) is due to the errors in differen- 
tiation. Let us in fact take the values of pi from the function of X ( p )  obtained not by 
differentiation, but by our method (see the continuous line in Fig. 7). The values 
z i (p i )  corresponding to these pi have small scatter and lie well within a narrow zone, 
shown in Fig. 7. 

Due to the errors in p i ,  each point zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz i  has moved from its true position along the 
tangent z = T i - p X ,  to the graph of the function 701). The travel-time curve of the 
first arrivals is generally direct (see Section 5), which is why the graph of the 701) 

function is convex downwards. In this case all the tangents lie below the graph of 
~ ( p ) .  Therefore all the z i ,  which are calculated with significantly wrong pi, also lie 
below the graph of ~ ( p ) .  This explains why the cloud of points in Fig. 8 has a clear 
upper boundary and a very indefinite lower boundary; it also explains the presence 
of negative z i  

In an analogous way we determined the curves z ( X ,  p )  for different p corresponding 
to the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP, arrivals at distances from 60 to 160 km, with a 5-km interval. The behaviour 
of these curves is regular for 0.075 < p < 0.195; it is possible to estimate reliably the 
minimum points, which we use to calculate z ( p ) .  The estimates of z (p )  thus obtained 
are shown in Fig. 6.  The apparent velocity changes from 6.5 to 7.2 km s-'. Later, 
more comments will be made about why the graph of z(p) is shown by a dotted line 
in the interval 0.175 < p < 0.185. 

We constructed two separate bands of z@); now we have to join them. The joint 
is of type II (see Section 5), i.e. there is a gap in p from 0.1925 to 0.20, corresponding 
to the velocity interval 6.3-6.4kms-l, and a gap in z from 1.1 to 1.7. The corres- 
ponding part of the travel-time curve is not observed, apparently because it corres- 
ponds to arrivals with small amplitudes. We can put the graph of the function z(p) 

. 
01 I I I 1 I I I 1 -  

0 25 50 75 I00 I25 I50 I75 200 
X (kml 

FIG. 7. Derivation of epicentral distance X from the ray parameter p :  (1) X,(pl)  
values obtained by numerical differentiation; (2) X ( p )  obtained by the 7 method. 
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393 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

FIG. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA8.  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA~ ~ ( p , )  values obtained zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAby numerical differentiation. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0 155 

0 1575 

0 16 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0 1625 

0.165 

0 1675 

0 17 

0 1725 

0 1735 

0 1875 

L I I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
250 215 150 * 

Xlkrn) 

FIG. 9. s(X,p)  for different p ,  corresponding to PIM waves. 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/g
ji/a

rtic
le

/3
6
/2

/3
7
7
/6

1
8
4
1
5
 b

y
 g

u
e
s
t o

n
 1

6
 A

u
g
u
s
t 2

0
2
2



394 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN. Bessonova zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAet zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAal. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
inside a parallelogram as shown in Fig. 6; it is constructed according to the assumption 
that the corresponding part of the travel-time curves goes between 100 and 500 km. 
We cannot prove that there is a low velocity zone in the examined part of the travel- 
time curve, but we must take into account the possibility of existence of a low velocity 
zone in the interval 0.1925 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA< p < 0.20. For this low velocity zone, 0 < 0.5. 

The estimates of z(p) calculated in an analogous way from the P I M  wave travel 
times between zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA60 and 240 km distance are shown in Fig. 7 for 0.155 < p < 0.185. 
The graphs r(X, p) for different values of p corresponding to PIM. The apparent 
velocity changes from 6.8 km s-l  to 8.1 km s- ' .  The way in which this zone joins 
the two zones already considered is of type I and causes no difficulties. 

The splitting of the graph of ~ ( p )  in the interval 0.175-0-185 (the dotted line in 
Fig. 6) is explained in the following way. In the lower part of the consolidated crust 
there is a discontinuity, with a jump in velocity from 6.4-6.5kms-I to 6.75- 
6.85kms-'; the rays refracted from this discontinuity form the P, branch. The 
rays corresponding to velocities larger than 6.85 km s-'  are split at this boundary. 
According to our theory, in such a case we have to include in the travel-time curve only 
the refracted wave arrivals and not the reflelcted ones (Gerver & Markushevitch 
1966). Therefore we have to use the PIM branch to estimate ~ ( p )  in the interval 
0.175 < p Q 0.185. 

FIG. 10. The area which contains all possible velocity-depth curves: (1) in the 
absence of wave guides; (2) and (3) lower boundary in the presence of wave guides. 
The lower limit for velocity inside wave guides is 6 km s-I for (2) and 5 . 5  km s-I 

for (3). 
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Thus we estimated zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA~ ( p )  for 0.1475 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA< p < zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0.225. In order to get information about 

the velocity-depth curve we must specify the behaviour of the function z (p)  for 
0-225 < p < 1. We use borehole data on velocities in the upper two kilometres of 
the sediments; from these velocities we calculated z ( p )  for 0.225 < p < 1. Thus 
since we have estimates of the function z(p) for 0.1475 < p < 1 and also some 
information about low velocity zones, we are able to use the equations of Sections 3 
and 4 to build a region containing all the velocity-depth curves corresponding to the 
examined travel-time data. The result is shown in Fig. 10, which shows the boundaries 
of the above-mentioned region in the absence of low velocity zones and also in the 
presence of these zones, for different limits on the velocity in them. 

8. Discussion of results 

The obtained results (Figs 10 and 11) show the main features of the velocity- 
depth distribution within the crust, and allow us to determine rather accurately some 
of its parameters (for example, the thickness of the crust); simultaneously they show 
that our data do not allow us to determine all the important features of the velocity 
distribution uniquely. In particular, the question whether low velocity zones exist 
remains open. This is clearly seen in Fig. 11, which shows three different velocity- 
depth curves for which the calculated travel times fit the observations, for Po, P z ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
PIM, and PZM waves with error not exceeding 0.1 s. All the parts of the calculated 
travel-time curves which are absent on the real observed ones correspond to waves 
with very small amplitudes. All calculated graphs of z (p )  are inside the zone we 
determined (Fig. 6). Note the existence of velocity-depth curves which correspond 
simultaneously to two kinds of data: (i) observed travel times, and (ii) the function 
z (p) ,  fitting the limits determined by our method. This confirms our calculations of 
z(p)  from T ( X ) .  

V Ikmkek)  

0; 6 7 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA8 
I I 1 -  

FIG. 11 Three examples of velocity-depth curves fitting the observed travel times 
with error less than 0-  1 s. 
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In spite of the non-uniqueness we are able to describe some general features of all 
possible velocity-depth curves. In the consolidated crust, three layers are clearly 
separated. The upper layer has a thickness of about 7 km; it occupies the depth 
interval from 2-3 km to 9-10 km, depending on the thickness of unconsolidated 
sediments. This layer is characterized by a high velocity gradient, about 0 .0841 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAs-'. 
The velocity of longitudinal waves in this layer increases from 5-5-5.6kms-' to 
6.2-6.3 km s-'. 

The second layer has a thickness of 16-18 km; the velocity gradient in this layer 
is smaller than in the first one by a factor of about 10-4 is about 0.01 s-'. The 
velocity in this layer outside the low velocity zones lies in the range 6.3-6-5 km s-'. 
Low velocity zones are possible here, but we are able to determine neither their depth 
nor the distribution of velocities inside them. The two layers mentioned above are 
separated by a boundary of second order (discontinuous velocity gradient with 
continuous velocity). 

At a depth of about zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA25-28 km, the velocity increases sharply from 6 4 - 4 5  km s- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA' 
to 6-8-6-9?ans-'. Below this depth the third layer, with thickness S-lOkm, is 
situated. The velocity in this layer increases slowly, reaching 6.9-7.0 ?an s- ' at the 
lower boundary of the crust. The depth of this boundary is about 35-37 km. Below 
it the velocity jumps to a value of about 8.1 km s-'. 

The results obtained are in good agreement with the already known data on the 
structure of the crust in this region, and contribute important corrections and 
additions to these data. 

The basic advantage of the method of inversion described here is its reliability and 
independence of a great number of subjective assumptions. To specify the velocity- 
depth distribution inside the limits which are determined here, we must use additional 
data. 
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Appendix 

Properties of Clairaut’s equation 

Clairaut’s equation is a first-order linear differential equation of the form: 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4 is a given function (see, for example, Ince (1956)). The general solution is 
the one-parameter family of straight lines 

Under the condition 4’(p) # 0, the singular solution is (in parametric form): 

which is an envelope of the family (A2). Suppose we have a travel-time curve T ( X ) ,  
and consider the Clairaut equation 
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We take a point of the travel-time curve Ti zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= T(Xi), and let p i  = (dT/dX)(.,,,,,. 
The straight line y i ( p )  = T i - p X i  is a tangent to the curve z (p)  at the point [Pb z(pi)J. 
We have yi(pi)  = Ti-piXi = r(p3 and y i ’ (p)  = -Xi = - X ( p i )  = r’(pi). The 
function zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAyi@) is a solution of (A4), and each y i (p )  is a tangent of the curve z (p) .  

Therefore z (p)  is an envelope of the family of curves {yi@)}  and a singular solution 
of (A4). 

These elementary considerations are important for understanding the method 
described in this paper. They allow us to construct the envelope of z (p)  from the 
Ti(Xi)  without differentiating the travel-time curve or making array measurements of 
the ray parameter p. 
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