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Abstract

This article was written in 1999, and was posted as a preprint in CRM (Barcelona)
preprint series n0 519 in 2000. However, recently CRM (Barcelona) erased all preprints
dated before 2006 from its site, and this paper became inacessible. It has certain
importance though, as the reader shall see. Meanwhile this paper in bits and pieces
appeared in several book formats, namely in Volberg’s lecture notes [Vo], in Doudziak’s
book [Du], and in Tolsa’s book [To].

Formally this paper is a proof of the (qualitative version of the) Vitushkin conjec-
ture. The last section is concerned with the quantitative version. This quantitative
version turns out to be very important. It allowed Xavier Tolsa to close the subject
concerning Vtushkin’s conjectures: namely, using the quantitative nonhomogeneous Tb
theorem proved in the present paper, he proved the semiadditivity of analytic capacity.
Another “theorem”, which is implicitly contained in this paper, is the statement that
any non-vanishing L2-function is accretive in the sense that if one has a finite measure
µ on the complex plane C that is Ahlfors at almost every point (i.e. for µ-almost every
x ∈ C there exists a constant M > 0 such that µ(B(x, r)) 6 Mr for every r > 0) then
any one-dimensional antisymmetric Calderón-Zygmund operator K (i.e. a Cauchy in-
tegral type operator) satisfies the following “all-or-nothing” princple: if there exists
at least one function ϕ ∈ L2(µ) such that ϕ(x) 6= 0 for µ-almost every x ∈ C and
such that the maximal singular operator K∗ϕ ∈ L2(µ), then there exists an everywhere
positive weight w(x), such that K acts from L2(µ) to L2(wdµ). In particular, there
exists a a set E of positive µ-measure, µ(E) > 0, such that operator K is a bounded
operator from L2(E,µ) to itself. Moereover, a concrete estimate can be given for the
bound of its norm and the portion µ(E)/‖µ‖ if we have quantitative information on
how non-zero is ϕ and haow small is ‖K∗ϕ‖.

∗All authors are partially supported by the NSF grant DMS 9970395
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0. What this is all about

Let us be a little bit more specific. The analytic capacity of a compact set on the plane
was defined by Ahlfors in 1947 as

γ(E) = sup
f

lim
z→∞

|z f(z)|,

where the supremum is taken over all analytic functions in the complement of E such that
|f(z)| ≤ 1 and f(∞) = 0. Ahlfors showed that γ(E) = 0 if and only if E is removable
for bounded analytic functions. It was very interesting to find a geometric characterization.
This is often called the Painlevé problem since Painlevé started to study it more than 100
years ago.

Vituskin’s conjecture (1967): for sets E such that H1(E) < ∞, γ(E) = 0 if and only if
H1(E ∩ Γ) = 0 for every rectifiable curve Γ.

2



Alberto Calderón and Guy David found the geometric characterization of sets of positive
analytic capacity and finite length (= finiteH1-measure), thus proving one half of Vitushkin’s
conjecture each.

Theorem: Let E be a compact on the plane with H1(E) < ∞. Then γ(E) = 0 if and
only if H1(E ∩ Γ) = 0 for every rectifiable curve Γ.

Here H1 is 1-dimensional Hausdorff measure. The sets of finite 1-dimensional Hausdorff
measure with the latter condition satisfied are called purely unrectifiable according to Fed-
erer. Besicovitch studied them and multidimensional analogs in the 1920’s and 1930’s and
proved many very difficult and beautiful results about such sets. He called them irregular.

The “only if” part of the theorem has been proved by Calderón in 1977. It amounts
to establishing that the Cauchy integral operator on Lipschitz curves is bounded on L2

(Calderón’s problem, which he solved in 1977 for small Lipschitz constants: this turned out
to be sufficient for the “only if” part). The “if” part was considered to be super difficult.
Finally it was proved by Guy David in 1997 [D1] using also [DM]. But actually this was only
the “analytic part” of the proof. The “geometric part” was fortunately known because of
the fantastic idea of Melnikov and Verdera [MV] and a geometric theorem due to David and
Léger [L].

Here we give another (probably simpler and more streamlined, more conceptual) proof
of the “if” part in the theorem, actually of the “analytic” part.

To explain the approach we need the notion of the Cauchy integral operator. So let E in
the plane have finite H1(E). Call µ = H1|E. The Cauchy singular integral operator Cµ is

Cµg(z) = lim
δ→0

∫

E\B(z,δ)

g(ζ)

ζ − z
dµ(ζ) .

Actually, if z ∈ E, it is not clear when the limit exists (while outsude of E the definition
is always fine). So we introduce the maximal Cauchy singular integral operator C∗

µ:

C∗
µg(z) = sup

δ>0
|
∫

E\B(z,δ)

g(ζ)

ζ − z
dµ(ζ)|

and the “cut-off” Cauchy singular integral operator Cδ
µ:

Cδ
µg(z) =

∫

E\B(z,δ)

g(ζ)

ζ − z
dµ(ζ) .

Suppose γ(E) > 0. One should find a rectifiable Γ such that H1(E ∩ Γ) > 0.

The analytic part here will end by constructing a positive (this is very important, let us
say this again, positive) φ such that

|C∗
µφ(z)| ≤ 1 ∀z ∈ C .

3



Setting ν = φ dµ and applying to this positive measure the permutation idea from [MV]
one gets

c2(ν) :=

∫ ∫ ∫
c(x, y, z)2dν(x)dν(y)dν(z) <∞

where c(x, y, z) is the reciprocal of the radius of the circle passing through x, y, z. The
quantity c(ν) is called the Menger curvature of the measure ν.

The following theorem is from the abovementioned “geometric part” of the proof. It is
due to David and Léger [L].

Theorem: If ν = φ dH1|E, φ > 0, φ ∈ L∞(E), H1(E) < ∞ and c2(ν) < ∞, then there
are rectifiable curves Γi such that ν(C \ ∪∞

i=1Γi) = 0.

Now we see that after constructing a positive φ such that |C∗
µφ(z)| ≤ 1, ∀z ∈ C, one

refers to the geometric papers [MV] and [L] to finish the proof of Vitushkin’s conjecture.
How to find such a positive φ? We have only the information that γ(E) > 0 and

H1(E) < ∞. The first condition means that there is a nonconstant bounded analytic
function f in C\E vanishing at infinity. The second condition quite easily shows that this f
is represented as a Cauchy integral of φ dH1|E = φ d µ: f(z) = Cµφ(z), ∀z ∈ C \ E. We do
not explain this now, but it is easy to assume that our µ := H1|E satisfies µ(B(z, r)) ≤ C r
for all z ∈ C and all r > 0. Then not only Cµφ(z) is bounded on C \ E, but one can prove
that there exists a finite constant C such that

|C∗
µφ(z)| ≤ C <∞ ∀z ∈ C .

But this is not at all what we need—even though it seems precisely what we wanted.
The main problem is that φ is complex valued function! It is impossible to prove that it is
positive. (Actually positivity will generically never happen.)

Here is the main result to the proof of which the rest of the paper is devoted:

Main Theorem: Let µ denote H1|E for a set E of finite 1-dimensional Hausdorff
measure. If there is a nonzero φ ∈ L∞(E) (this L∞ part can be weakened) such that
supz∈C |C∗

µφ(z)| ≤ Const < ∞, then there exists a nonnegative bounded function ψ, which
is strictly positive on the set of positive measure µ, such that supz∈C |C∗

µψ(z)| ≤ Const <∞.

Actually the fact that we work with H1 is not important. Another way of expressing the
essence of the previous theorem is to formulate its analog, which is as follows:

Theorem (on bounded Cauchy transforms of measures): Let ν denote a nonzero
complex measure with compact support on the plane. Let its Cauchy transform Cν be
uniformly bounded: supz∈C\supp(ν) |Cν(z)| ≤ Const <∞. Suppose that the area of supp ν is
zero. Then there exists a positive measure µ, absolutely continuous with respect to ν, such
that its Cauchy transform is uniformly bounded too: supz∈C\supp(µ) |Cµ(z)| ≤ Const <∞.
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We are grateful to V. Lomonosov and N.K. Nikolski who pointed out to us that this
result has the following interpretation as a result about normal operators.

Theorem (on resolvents of normal operators): Let N be a normal operator whose
spectrum σ(N) has zero area. Let Rλ, λ ∈ C \ σ(N), denote its resolvent. If there are two
vectors f, g such that g belongs to the closed linear span of {Nkf}k>0, g 6= 0, and such that
(Rλf, g) is a bounded function on C\σ(N), then there exists a nonzero vector h in the closed
linear span of {Nkf}k>0, such that (Rλh, h) is a bounded function on C \ σ(N).

In other words, if a compact set supports a complex measure with bounded nonzero
Cauchy transform, then this compact set supports a positive measure with bounded (and
also automatically nonzero) Cauchy transform. Also if the resolvent of a normal operator is
uniformly bounded on a pair of vectors f, g, (g 6= 0 being in the invariant subspace generated
by f) then it is uniformly bounded on certain h, h, h 6= 0.

So this is what we will be proving using the “perfect hair” approach in what now follows.
Few words about methods used in the proof.
The probabilistic argument is a very important thing here. It is used to compensate for

the roughness of our underlying measure. The other people have used before the arguments
involving many dyadic lattices at once. We mean a paper by Garnett and Jones called ”BMO
from diadic BMO” [GJ].

We use dyadic martingale decomposition in our proof. We want to mention that looking
at dyadic martingale decomposition is also a variation of an old theme, initiated, at least
in the context of the Cauchy integral, by Coifman, Jones and Semmes in their paper [CJS].
There they proved a T (b) theorem for the Cauchy integral using a Haar basis adapted to b.
The main strategy of our proof is looking at dyadic martingale decomposition, but a random
one!

Going further.
Let us recall the definitions of the Cauchy capacities. The first is the complex Cauchy

capacity (not a very good name because it is a non-negative set function). We define it for
ν ∈Mc(K):= complex measures supported on K.

γc(K) := {sup |ν(K)| : |Cν(z)| ≤ 1∀z ∈ C \K, ν ∈Mc(K)} .

The second is the positive Cauchy capacity or just the Cauchy capacity:

γc(K) := {supµ(K) : |Cµ(z)| ≤ 1∀z ∈ C \K, ν ∈M+(K)} .

Here M+(K) is a set of all positive measures supported on K. Obviously,

γ+(K) ≤ γc(K) ≤ γ(K) .

We actually prove in this paper the following theorem (a sort of inverse to the previous left
inequality).
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Theorem. Let K be a compact set of zero area. Then

γ+(K) ≥ A
(
1 +

(diamK

γc(K)

)2( ‖ν‖
γc(K)

)42)−1/2

γc(K) , (INV )

where ν is a measure that (almost) gives the supremum in the definition of γc. Its total
variation in (INV) hinders us from proving that

γc ≥ Aγ+ .

Recently Xavier Tolsa [XT3] used (INV) and a very clever “induction on scales” that ap-
peared in the preprint by J. Mateu, X. Tolsa and J. Verdera [MTV], in which it is shown
that the condition conjectured by Mattila characterizes the Cantor sets of vanishing analytic
capacity, to prove: .

γc ≥ Aγ+ .

This solves an old open problem. Actually, this implies the positive answer to Vitushkin’s
question whether the analytic capacity is semi-additive (with absolute constant). In fact,
it is relatively easy to prove that γ+ is semi-additive (see [NTV2], [NTV3]). The uniform
comparability of γc and γ+ implies uniform comparability of γ and γ+ (indeed, this is just
an easy approximation argument using the fact that for any compact set which is a finite
union of rectifiable curves, γc coincides with γ+).

Acknowledgements. We are grateful to Michael Frazier and Joan Verdera for many
helpful remarks.

I. Suppressed operators K
Φ

Let Φ be a nonnegative Lipschitz function, i.e., Φ(x) > 0 for every x ∈ C and

|Φ(x)− Φ(y)| 6 |x− y| for every x, y ∈ C.

Define

k
Φ
(x, y) =

x− y

|x− y|2 + Φ(x)Φ(y)
.

Lemma: The kernel k
Φ
is an antisymmetric Calderon-Zygmund kernel. It is also really well

suppressed at the points where Φ(x) > 0 or Φ(y) > 0. Namely,

|k
Φ
(x, y)| 6 1

max{Φ(x),Φ(y)} for all x, y ∈ C.

Proof: Clearly,

|k
Φ
(x, y)| 6 1

|x− y| and k
Φ
(x, y) = −k

Φ
(y, x).
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Since k
Φ
is antisymmetric, to prove the second claim of the lemma, it is enough to show

that |k
Φ
(x, y)| < 1

Φ(x)
for all x, y ∈ C. We have Φ(y) > Φ(x)− |x− y|. Therefore

|k
Φ
(x, y)| 6 |x− y|

|x− y|2 + Φ(x)(Φ(x) − |x− y|) =
|x− y|

|x− y|2 + Φ(x)2 − Φ(x)|x− y|

=
|x− y|

Φ(x)|x− y|+ (Φ(x)− |x− y|)2 6
1

Φ(x)
,

and we are done.
To prove the first claim of the lemma, let us show that

|∇xkΦ(x, y)| 6
4

|x− y|2 .

Indeed,

|∇xkΦ(x, y)| 6
1

|x− y|2 + Φ(x)Φ(y)
+

2|x− y|2 + |x− y|Φ(y)
[|x− y|2 + Φ(x)Φ(y)]2

6
3

|x− y|2 +
|x− y|Φ(y)

[|x− y|2 + Φ(x)Φ(y)]2
=

3

|x− y|2 +
Φ(y)

[|x− y|2 + Φ(x)Φ(y)]
|k

Φ
(x, y)|

6
3

|x− y|2 +
Φ(y)

|x− y|2
1

Φ(y)
=

4

|x− y|2 ,

finishing the proof of the lemma.

From now on, we will denote by K
Φ
the operator with kernel k

Φ
.

Pick some very small number δ > 0. It will stay fixed throughout the rest of the paper
and will be used in many formulae without any special comment. The reader may think
that δ is just an abbreviation for 45−239.

II. Perfect random dyadic lattices and good functions

Let µ be a measure on the complex plane C satisfying 0 < µ(C) < +∞.
Assume that D is a random dyadic lattice (this phrase means that we have a family

of dyadic lattices endowed with some probability P , and we use the letter D to denote an
element in the family), and let Λ, {∆

Q
}
Q∈D be the (random) family of projections associated

with D. As usual, this means that

Λ,∆
Q
: L2(µ) → L2(µ), ∆

Q
Λ = Λ∆

Q
= 0 for all Q ∈ D, ∆

Q
∆

R
= 0 when Q 6= R,

and for every function ϕ ∈ L2(µ), one has

ϕ = Λϕ+
∑

Q∈D
∆

Q
ϕ,

where the series converges at least in L2(µ). Assume also that for every ϕ ∈ L2(µ),

2−1||ϕ||2
L2(µ)

6 ||Λϕ||2
L2(µ)

+
∑

Q∈D
||∆

Q
ϕ||2

L2(µ)
6 2||ϕ||2

L2(µ)
.
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Remark:
Let us make a couple of useful observations about such families of projections.
First of all, note that for every sequence of complex numbers {c

Q
}
Q∈D that is finite in

the sense that only finitely many c
Q
do not vanish, we have

2−1
∑

Q∈D
|c

Q
|2||∆

Q
ϕ||2

L2(µ)
6

∥∥∥
∑

Q∈D
c
Q
∆

Q
ϕ
∥∥∥
2

L2(µ)

6 2
∑

Q∈D
|c

Q
|2||∆

Q
ϕ||2

L2(µ)
.

Indeed, consider the function ϕ̃ :=
∑

Q∈D cQ∆Q
ϕ and note that Λϕ̃ = 0, ∆

Q
ϕ̃ = c

Q
∆

Q
ϕ.

Now it remains only to apply our assumption to the function ϕ̃ instead of ϕ itself.
Now take any function ψ ∈ L2(µ). We have

∣∣∣
∑

Q∈D
c
Q
〈∆

Q
ϕ, ψ〉

∣∣∣ =
∣∣∣
〈∑

Q∈D
c
Q
∆

Q
ϕ, ψ

〉∣∣∣

6

∥∥∥
∑

Q∈D
c
Q
∆

Q
ϕ
∥∥∥
L2(µ)

‖ψ‖
L2(µ)

6
√
2‖ψ‖

L2(µ)

[∑

Q∈D
|c

Q
|2||∆

Q
ϕ||2

L2(µ)

] 1
2
.

In particular, this means that if F ⊂ D is some family of dyadic squares, then

∑

Q∈F
|〈∆

Q
ϕ, ψ〉| 6

√
2‖ψ‖

L2(µ)

[∑

Q∈F
||∆

Q
ϕ||2

L2(µ)

] 1
2

(just take c
Q

= 0 for Q /∈ F and choose c
Q

for Q ∈ F in such a way that |c
Q
| = 1 and

c
Q
〈∆

Q
ϕ, ψ〉 = |〈∆

Q
ϕ, ψ〉|; if the family F is infinite, do it for all its finite subfamilies and

then pass to the supremum).
Also, let us take any finite family F ⊂ D such that ‖∆

Q
ϕ‖

L2(µ)
> 0 for every Q ∈ F .

Take c
Q
= 0 for Q /∈ F and choose c

Q
for Q ∈ F in such a way that |c

Q
| =

|〈∆
Q
ϕ, ψ〉|

||∆
Q
ϕ||2

L2(µ)

and

c
Q
〈∆

Q
ϕ, ψ〉 =

|〈∆
Q
ϕ, ψ〉|2

||∆
Q
ϕ||2

L2(µ)

.

Then we get

∑

Q∈F

|〈∆
Q
ϕ, ψ〉|2

||∆
Q
ϕ||2

L2(µ)

6
√
2‖ψ‖

L2(µ)

[∑

Q∈F

|〈∆
Q
ϕ, ψ〉|2

||∆
Q
ϕ||2

L2(µ)

] 1
2
,

or, which is the same,
∑

Q∈F

|〈∆
Q
ϕ, ψ〉|2

||∆
Q
ϕ||2

L2(µ)

6 2‖ψ‖2
L2(µ)

.

Now, of course, the summation on the left can be extended to all squares Q for which
‖∆

Q
ϕ‖

L2(µ)
> 0.
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We will not need anything beyond this, so we are not going to say the magic words that
the projections Λ and {∆

Q
}
Q∈D generate a Riesz basis of subspaces in L2(µ) to a reader

who does not want to hear them.

Let D1 and D2 be two independent copies of the random dyadic lattice D. Suppose that
there is some rule which allows one to tell, for every square Q1 ∈ D1, whether it is “bad”
or “good” with respect to the lattice D2. Of course, since D1 and D2 are copies of the same
random dyadic lattice, we can use the same rule to define bad squares in D2 with respect to
D1.

Our next assumption is that bad squares are very rare. Namely, we suppose that for
every fixed D1 and for every Q1 ∈ D1, the probability

PD2
{Q1 is bad} 6 δ

(and vice versa, of course).
If all the above assumptions are satisfied, we will say that D is a perfect random dyadic

lattice.
Let again D1 and D2 be two independent copies of a random dyadic lattice D.
A function ϕ1 ∈ L2(µ) is called good (the full name should be D1-good with respect to

the lattice D2, or something like that) if for every bad square Q1 ∈ D1, we have

∆
Q1
ϕ1 = 0.

Even if a function ϕ1 ∈ L2(µ) is not good, we still can write the decomposition

ϕ1 =
[
Λ1ϕ1 +

∑

Q1∈D1,
Q1 is good

∆
Q1
ϕ1

]
+

∑

Q1∈D1,
Q1 is bad

∆
Q1
ϕ1 =: (ϕ1)good + (ϕ1)bad.

Note that this decomposition depends on both D1 and D2, and therefore (ϕ1)good and (ϕ1)bad
are random functions even if ϕ1 is a sure function. If the dyadic lattice D is perfect, it is
easy to show that always

‖(ϕ1)good‖L2(µ)
, ‖(ϕ1)bad‖L2(µ)

6 2‖ϕ1‖L2(µ)
.

What is more, if ϕ1 does not depend on D2, then for every fixed D1,

ED2
‖(ϕ1)bad‖2

L2(µ)
6 4δ‖ϕ1‖2

L2(µ)
.

Indeed, we have

ED2
‖(ϕ1)bad‖2

L2(µ)
= ED2

∥∥∥
∑

Q1∈D1,
Q1 is bad

∆
Q1
ϕ1

∥∥∥
2

L2(µ)

6 2ED2

∑

Q1∈D1,
Q1 is bad

‖∆
Q1
ϕ1‖2

L2(µ)

= 2
∑

Q1∈D1

PD2
{Q1 is bad}‖∆

Q1
ϕ1‖2

L2(µ)
6 2δ

∑

Q1∈D1

‖∆
Q1
ϕ1‖2

L2(µ)
6 4δ‖ϕ1‖2

L2(µ)
.
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Hence for all sure functions ϕ1, we have

E‖(ϕ1)bad‖2
L2(µ)

6 4δ‖ϕ1‖2
L2(µ)

.

III. Perfect hair

Let again µ be a measure on the complex plane C satisfying 0 < µ(C) < +∞.
Assume that we have a perfect random dyadic lattice D (i.e., a family of dyadic lattices

endowed with some probability so that the assumptions of the previous section are satisfied)
and suppose that with every dyadic lattice D in that family a nonnegative Lipschitz function
ΦD is associated in such a way that the following properties hold: 1) µ{x ∈ C : ΦD (x) >

0} 6 δµ(C) for every D; 2) For every two dyadic lattices D1,D2, for every Lipschitz function

Θ satisfying infCΘ > 0, Θ > δmax(ΦD1
,ΦD2

), and for any two good functions ϕ1 and ϕ2

(with respect to the lattices D1 and D2, correspondingly), we have

∣∣〈ϕ1, KΘ
ϕ2〉

∣∣6 N‖ϕ1‖L2(µ)
‖ϕ2‖L2(µ)

,

where N is some (large) positive constant, not depending on ϕ1, ϕ2 or Θ.

(The assumption infC Θ > 0 is purely technical, of course: it just allows us to avoid
tiresome discussions concerning the definition of K

Θ
ϕ2: the kernel is uniformly bounded,

the measure is finite, so everything makes sense.) Then we will say that we have “perfect

hair”.
Our first aim is to show that every perfect hair generates a bounded (in L2(µ)) operator,

which coincides with the Cauchy integral operator everywhere outside an exceptional set of
small µ-measure.

IV. Truncated mathematical expectation

Let ξ be a nonnegative random variable and let 0 < β < 1. Define

Eβξ := inf
{∫

Ω\Ω1

ξ dP : P{Ω1} 6 β
}

Note that A) If P{ξ > 0} 6 β, then Eβξ = 0; B) P{ξ > β−1Eβξ} 6 2β; C) If Φω(x)

(x ∈ C) is a random nonnegative Lipschitz function, then EβΦω(x) is a certain nonnegative
Lipschitz function.

V. How to use perfect hair

Theorem:
Assume that we have a perfect hair. Let β =

√
δ. Let Φ := EβΦD .

Then
1) µ{x ∈ C : Φ(x) > 0} 6

√
δµ(C); 2) The operator K

Φ
acts in L2(µ) in the sense that

10



supλ>0 ||KΦ+λ||L2(µ)→L2(µ)
< +∞.

Proof:
The first claim is easy: note that

Eµ{x ∈ C : ΦD(x) > 0} 6 δµ(C),

and thereby for the set

E :=
{
x ∈ C : P{ΦD(x) > 0} > β =

√
δ
}
,

we have µ(E) 6
√
δµ(C). It remains only to recall that, according to property (A) of the

truncated mathematical expectation, Φ = EβΦD ≡ 0 outside E.

Now we will prove even a little bit more than the second claim. Namely, we will show
that

sup{||K
Θ
|| : Θ is Lipschitz ,Θ > Φ} < +∞

(in the same sense as above; see the exact formulation below).
Fix λ > 0 and let

Nλ = sup{||K
Θ
|| : Θ is Lipschitz ,Θ > Φ + λ}.

Clearly, for every λ > 0, we have Nλ 6
µ(C)
λ

< +∞. We are going to prove that Nλ is
bounded by some constant independent of λ.

“Space” and “frequency” reductions
Choose Θ > Φ + λ and functions ϕ1, ϕ2 ∈ L2(µ) with ||ϕ1||L2(µ)

= ||ϕ2||L2(µ)
= 1 such

that ∣∣〈ϕ1, KΘ
ϕ2〉

∣∣ > 9
10
Nλ.

Consider two independent copies D1 and D2 of a perfect random dyadic lattice D. Let

S := {x ∈ C : max
j=1,2

ΦDj
(x) > β−1Φ(x)}.

Put
ϕ′
j := ϕjχS

, ϕ̃j := ϕjχ
C\S = ϕj − ϕ′

j j = 1, 2

(“space” reduction) and, at last,

ψj := (ϕ̃j)good = ϕ̃j − (ϕ̃j)bad, j = 1, 2

(“frequency” reduction).
We expect both reductions to be just “minor corrections”. Soon we will show that this

really is the case, namely, that

||ϕ′
j||L2(µ)

, ||(ϕ̃j)bad||L2(µ)
6

1

10
(∗)

with probability close to 1. Now let us demonstrate that these reductions really make sense.

11



Pick a pair of dyadic lattices D1 and D2, for which (∗) holds. We have

〈ϕ̃1, KΘ
ϕ̃2〉 = 〈ϕ1, KΘ

ϕ2〉 − 〈ϕ′
1, KΘ

ϕ2〉 − 〈ϕ̃1, KΘ
ϕ′
2〉

and thereby ∣∣〈ϕ̃1, KΘ
ϕ̃2〉

∣∣ > 9
10
Nλ − 2

10
‖K

Θ
‖ >

7
10
Nλ

(here we used the obvious estimate ||ϕ̃1||L2(µ)
6 ||ϕ1||L2(µ)

= 1 together with (∗) to get the

first inequality).
The key observation about the space reduction is that

〈ϕ̃1, KΘ
ϕ̃2〉 =

∫∫
k
Θ
(x1, x2)ϕ̃1(x1)ϕ̃2(x2) dµ(x1)dµ(x2) =

∫∫
k
Θ′
(x1, x2)ϕ̃1(x1)ϕ̃2(x2) dµ(x1)dµ(x2) = 〈ϕ̃1, KΘ′

ϕ̃2〉,

where

Θ′ := max{Θ, βΦD1
, βΦD2

}.

We still have Θ′ Lipschitz and satisfying Θ′ > Φ + λ, but now also Θ′ > δmax{ΦD1
,ΦD2

},
and therefore we only need to make the functions ϕ̃j good to apply property (2) of perfect
hair and to finish the story. This is exactly what the frequency reduction does. Like above,
we can write

〈ψ1, KΘ′
ψ2〉 = 〈ϕ̃1, KΘ′

ϕ̃2〉 − 〈(ϕ̃1)bad, KΘ′
ϕ̃2〉 − 〈ψ1, KΘ′

(ϕ̃2)bad〉

and thereby ∣∣〈ψ1, KΘ′
ψ2〉

∣∣ > 7
10
Nλ − 3

10
‖K

Θ′
‖ >

4
10
Nλ

(here we used the estimate ||ψj||L2(µ)
6 ||ϕ̃j||L2(µ)

+ ||(ϕ̃j)bad||L2(µ)
< 2 together with (∗) to

get the first inequality).
Now, according to property (2) of perfect hair, the left hand part does not exceed 4N

and we get Nλ 6 10N . It remains only to prove that (∗) holds with probability close to 1.
Note that for any given point x ∈ C, we have P{x ∈ S} 6 4β, and therefore,

E||ϕ′
j||2L2(µ)

6 4β, j = 1, 2.

Hence,

P
{
||ϕ′

j||L2(µ)
> β

1
3

}
6 4β

1
3 j = 1, 2.

Now we would like to say that the norms of the functions (ϕ̃j)bad are small as well. Unfor-
tunately, as constructed, each of them depends on both D1 and D2. So it seems that we can
only apply the obvious estimate ||(ϕ̃j)bad||L2(µ)

6 2||(ϕ̃j)||L2(µ)
6 2, which is clearly useless.

Note, nevertheless, that

(ϕ̃j)bad = (ϕj)bad − (ϕ′
j)bad.
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The norm of (ϕ′
j)bad does not exceed 2‖ϕ′

j‖L2(µ)
. As to (ϕj)bad, we can apply the estimate

for sure functions to ϕj, which yields

E||(ϕj)bad||2
L2(µ)

6 4δ.

So finally we conclude that with probability at least 1− 8β
1
3 − 8δ

1
3 > 9

10
all the norms in the

left hand part of (∗) are bounded by 2β
1
3 + δ

1
3 < 1

10
.

VI. Lyric deviation: Hausdorff measure and analytic capacity

We will start with a couple of definitions.
The 1-dimensional Hausdorff measure
Let ε > 0. For every set E ⊂ C define

Hε(E) := inf
{∑

j

rj : E ⊂
⋃

j

B(xj , rj), xj ∈ C, rj 6 ε
}

(the infimum is taken over all (countable) coverings of E by open disks B(xj , rj) with radii
rj 6 ε).

It is clear that Hε is an outer measure and that if ε′ 6 ε′′, then Hε′(E) > Hε′′(E) for
every E ⊂ C. Since every monotone function has a limit (maybe, infinite), we can define

H(E) := lim
ε→0

Hε(E) = sup
ε>0

Hε(E).

It is a trivial exercise to show that H is an outer measure. However, it is much better than
just that, namely, H is a Borel measure. The proof of this remarkable theorem can be found
in any (good) textbook on measure theory. We can only regret that it is not included in the
Leningrad (or Michigan) State University analysis course.

Analytic capacity
Let F ⊂ C be a compact set. We will say that F has positive analytic capacity if there

exists a bounded analytic function f : C \ F → C, which is not identically 0 and such that
f(x) → 0 as x→ ∞. Assume now that we have a compact set F of positive analytic capacity

and such that H(F ) < +∞. Let f be the corresponding bounded analytic function.

VII. Cauchy integral representation

We devote this section to a well-known representation of bounded analytic function out-
side of a compact of finite length. Since F is compact, we can consider only finite coverings
in the definition of Hε(F ). Now for every positive integer n, construct a covering

N(n)⋃

j=1

B(x
(n)
j , r

(n)
j ) ⊃ F

such that all r
(n)
j 6

1
n
,
∑

j r
(n)
j 6 H(F ) + 1

n
and B(x

(n)
j , r

(n)
j ) ∩ F 6= ∅ for every j. Let

Ωn = C \ clos⋃j B(x
(n)
j , r

(n)
j ) and let Γn := ∂Ωn. Note that Γn is a good contour (consisting

13



of finitely many arcs) and that Γn ⊂ C \ F . Therefore for every point x ∈ Ωn, we can write
the standard Cauchy formula

f(x) = − 1

2πi

∮

Γn

f(y) dy

x− y
=

∫

C

dνn(y)

x− y
,

where νn is a complex-valued measure defined (on Borel sets, say) by

νn(E) = − 1

2πi

∮

Γn∩E
f(y) dy.

Note that the variations of the complex-valued measures νn are uniformly bounded (by
||f ||

L∞(H(F )+ 1), say), and therefore (passing to a subsequence, if needed) we may assume
that νn weakly converge to a complex-valued Borel measure ν (over the space C0(C) of
all compactly supported complex-valued continuous functions on C). Note now that Ωn

contains all points x ∈ C for which dist(x, F ) > 1
n
. Therefore for any η ∈ C0(C) satisfying

suppϕ ⊂ C \ F , we have ∫

C

η dν = lim
n→∞

∫

C

η dνn = 0,

i.e., supp ν ⊂ F . Now passing to the limit in the Cauchy formula above, we see that for
every x ∈ C \ F ,

f(x) =

∫

C

dν(y)

x− y
.

Our next step will be to show that for every Borel set E ⊂ C we have

|ν|(E) 6 ‖f‖
L∞HF (E),

where HF (E) := H(E ∩ F ).
Recall that every finite Borel measure µ is regular in the sense that for every Borel set

E one can find an open set G ⊃ E such that µ(G \ E) is as small as one wants. Therefore
it is enough to prove this inequality for open sets only.

Recall also that for an open set G,

|ν|(G) = sup
{∣∣∣

∫

C

η dν
∣∣∣ : η ∈ C0(C), supp η ⊂ G, ||η||

L∞ 6 1
}
.

Therefore we need only to show that for every such η,

∣∣∣
∫

C

η dν
∣∣∣ 6 ‖f‖

L∞HF (G).

But we have ∫

C

η dν = lim
n→∞

∫

C

η dνn,

and for every n, ∣∣∣
∫

C

η dν
∣∣∣ 6 ‖f‖

L∞

∑

j:B(x
(n)
j ,r

(n)
j )∩supp η 6=∅

r
(n)
j .
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Now notice that if 1
n
< dist(supp η, ∂G), then the disks B(x

(n)
j , r

(n)
j ) that intersect supp η

cannot participate in the covering of F \G. Therefore,

∑

j:B(x
(n)
j ,r

(n)
j )∩supp η 6=∅

r
(n)
j 6

N(n)∑

j=1

r
(n)
j −

∑

j:B(x
(n)
j ,r

(n)
j )∩F\G 6=∅

r
(n)
j

6 H(F ) +
1

n
−H 1

n
(F \G) → H(F )−H(F \G) = H(F ∩G) = HF (G)

as n→ ∞, proving the claim.
Applying the Radon-Nykodim theorem, we conclude that there exists a Borel measurable

function h satisfying ‖h‖
L∞ 6 ‖f‖

L∞ and such that

f(x) =

∫

C

h(y)

x− y
dHF (y)

for every C \ F (there is no problem with convergence here, because, as we remember, the
integral is actually taken over F ). Note also that since f(x) 6= 0 for at least one x ∈ C,
we should have HF{y ∈ C : h(y) 6= 0} > 0. As a trivial consequence, we observe that
H(F ) > 0.

VIII. The Ahlfors radius R(x)

Now take some large M > 1. We will call a disk B(x, r) (x ∈ C, r > 0) non-Ahlfors, if

HF (B(x, r)) > Mr.

For every point x ∈ C define its Ahlfors radius R(x) by

R(x) := sup{r > 0 : B(x, r) is non-Ahlfors }.

Since f is bounded on C \F , so is the Cauchy integral
∫
C

h(y)
x−y

dHF (y). We are going to show

that, in a sense, this integral stays bounded on F as well (where f , generally speaking, does
not exist). Namely, for every x ∈ C

sup
ε>R(x)

∣∣∣
∫

C\B(x,ε)

h(y)

x− y
dHF (y)

∣∣∣ 6 7M‖f‖
L∞ .

Proof:
Note first of all, that the condition H(F ) < +∞ implies that the 2-dimensional Lebesgue

measure m(F ) = 0. Indeed, for every covering
⋃

j B(xj , rj) ⊃ F , we have

m(F ) 6 π
∑

j

r2j 6 π(max
j
rj)

∑

j

rj .

Therefore
m(F ) 6 πεHε(F ) 6 πεH(F )
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for every ε > 0, and we are done.
Now compare

∫
C\B(x,ε)

h(y)
x−y

dHF (y) to

4

πε2

∫

B(x, ε
2
)

f(z) dm(z) =
4

πε2

∫

B(x, ε
2
)\F

f(z) dm(z),

which is clearly bounded by ‖f‖
L∞ 6 M‖f‖

L∞ . Using the Cauchy integral representation
for f , we see that the difference equals

− 4

πε2

∫

B(x, ε
2
)

(∫

B(x,ε)

h(y)

z − y
dHF (y)

)
dm(z)+

∫

C\B(x,ε)

h(y)
( 1

x− y
− 4

πε2

∫

B(x, ε
2
)

dm(z)

z − y

)
dHF (y) =: I ′ + I ′′.

The integral I ′ allows the rough estimate

|I ′| 6 4

πε2
‖f‖

L∞

∫

B(x,ε)

(∫

B(x, ε
2
)

dm(z)

|z − y|
)
dHF (y).

Since the inner integral does not exceed πε for every y ∈ C, we get

|I ′| 6 4ε−1‖f‖
L∞HF (B(x, ε)) 6 4M‖f‖

L∞ ,

provided that ε > R(x).
To estimate I ′′, note that

∣∣∣ 1

x− y
− 4

πε2

∫

B(x, ε
2
)

dm(z)

z − y

∣∣∣ = 4

πε2

∣∣∣
∫

B(x, ε
2
)

z − x

(x− y)(z − y)
dm(z)

∣∣∣ 6 ε

|x− y|2

because |z − x| 6 ε
2
and 2|z − y| > |x− y| for every y ∈ C \B(x, ε), z ∈ B(x, ε

2
).

Thus

|I ′′| 6 ‖f‖
L∞

∫

C\B(x,ε)

ε

|x− y|2dHF (y).

To estimate the last integral, we need the following obvious lemma, which we will frequently
use in the future.

Comparison Lemma: Let S ⊂ C. Assume that we have a measure µ satisfying

µ{x ∈ C : dist(x, S) < r} 6Mr for every r > R0

and a nonnegative continuous decreasing function U(t) (t > 0).
Then for every R > R0

∫

{x:dist(x,s)>R}
U(dist(y, S))dµ(y) 6M

(
RU(R) +

∫ +∞

R

U(t)dt
)
.

Note also that the quantity in parentheses can be viewed as the integral over the whole ray
[0,∞) of min{U(t), U(R)} and therefore is a decreasing function in R. So, we can replace R
on the right hand side by any lesser number if we want to.
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The Comparison Lemma (with S = {x}, R0 = R(x), R = ε and U(t) = ε
t2
) yields

∫

C\B(x,ε)

ε

|x− y|2dHF (y) 6M
(
1 +

∫ +∞

ε

ε

t2
dt
)
= 2M,

and thereby |I ′′| 6 2M‖f‖
L∞ . It remains only to add the estimates to get the desired

inequality.
The additional assumption ε > R(x) in the formulation of the last statement seems quite

unpleasant. We would prefer to have a result that is valid for every ε > 0. This can be
achieved if we replace the kernel 1

x−y
by the suppressed kernel k

Φ
with a Lipschitz function

Φ satisfying Φ(x) > δR(x) for every x ∈ C.
Lemma:
For every x ∈ C

sup
ε>0

∣∣∣
∫

C\B(x,ε)

k
Φ
(x, y)h(y)dHF (y)

∣∣∣ 6 (11 + δ−1)M‖f‖
L∞ .

Proof: Recall that the kernel k
Φ
is given by

k
Φ
(x, y) =

x− y

|x− y|2 + Φ(x)Φ(y)
.

Put r := Φ(x), R := δ−1Φ(x) (> R(x)) and, at last, R′ := max{ε, R}. Write

∫

C\B(x,ε)

k
Φ
(x, y)h(y)dHF (y) =

∫

C\B(x,R′)

· · ·+
∫

B(x,R)\B(x,ε)

· · · =: I ′ + I ′′

(R in the second integral is not a misprint: we need this second term only for R > ε when
R′ = R).

Recall that |k
Φ
(x, y)| 6 1

Φ(x)
= r−1 for all y ∈ C.

Thus
|I ′′| 6 ‖f‖

L∞r
−1HF (B(x,R)) 6 ‖f‖

L∞r
−1MR = δ−1M‖f‖

L∞ .

As to I ′, let us compare it to Ĩ :=
∫
C\B(x,R′)

h(y)
x−y

dHF (y), which is bounded by 7M‖f‖
L∞ ,

because R′ > R(x). The difference does not exceed

‖f‖
L∞

∫

C\B(x,R′)

∣∣∣ 1

x− y
− x− y

|x− y|2 + Φ(x)Φ(y)

∣∣∣dHF (y).

Representing 1
x−y

as x−y
|x−y|2 and observing that for every two numbers t, s > 0, one has

1

t
− 1

t+ s
=

s

t(t + s)
6

s

t2
,

we get ∣∣∣ 1

x− y
− x− y

|x− y|2 + Φ(x)Φ(y)

∣∣∣ 6 Φ(x)Φ(y)

|x− y|3 6
r(r + |x− y|)

|x− y|3 .
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Applying the Comparison Lemma again, we see that

|I ′ − Ĩ| 6M‖f‖
L∞

[
r
r(r + r)

r3
+

∫ +∞

r

r(r + t)

t3
dt
]
= 7

2
M‖f‖

L∞ 6 4M‖f‖
L∞

(here, in order to simplify calculations, we used the possibility to replace R′ by the lesser
number r).

Now it remains only to bring all the estimates together to get the conclusion of the
lemma.

IX. The exceptional set H

The demand Φ(x) > δR(x) is much less restrictive than it seems at first glance. Let us
show that if M is sufficiently large, then R(x) = 0 for most x. Indeed, for every non-Ahlfors
point x ∈ C, one can find a disk B(x, r) such that HF (B(x, r)) > Mr. Using the Vitali
covering theorem, we can construct a countable family of pairwise disjoint non-Ahlfors disks
B(xj , rj) such that every non-Ahlfors disk B(x, r) is contained in the union

H :=
⋃

j

B(xj , 5rj).

Note that rj <
HF (B(xj ,rj))

M
and therefore

∑

j

rj <
HF (C)
M

.

Observing that every term in the sum is not greater than the whole sum, we conclude that

H
5HF (C)

M

(H) 6
5HF (C)
M

,

and thereby,

HF (C \H) = H(F \H) > H
5HF (C)

M

(F \H) > H
5HF (C)

M

(F )−H
5HF (C)

M

(H) ≥

H
5HF (C)

M

(F )− 5HF (C)
M

→ H(F ) = HF (C)

as M → +∞. Thus HF (H) = HF (C)−HF (C \H) → 0 as M → +∞, proving the claim.
Now define

R̃(x) := dist(x,C \H).

Clearly R̃ is a Lipschitz function. Since every non-Ahlfors disk is contained in H , we have
R̃(x) > R(x). At last HF{x ∈ C : R̃(x) > 0} = HF (H) can be made as small as one
wants by choosing the constant M large enough.

X. Localization

18



Let x0 be any L
2-Lebesgue point of h with respect to the measure HF satisfying h(x0) 6=

0. Recall that it means

HF (B(x0, r)) > 0 for every r > 0;

1

HF (B(x0, r))

∫

B(x0,r)

|h(x)− h(x0)|2 dHF (x) → 0 as r → 0.

Since the measure HF is finite, HF -almost every point x ∈ C is a Lebesgue point of a
bounded function h (actually this statement is true for any L2(HF )-function h). On the
other hand, as we have seen above, HF{x ∈ C : h(x) 6= 0} > 0. So, the needed point x0
really exists.

Now choose 0 < ρ < 1
8
so small that

1

HF (B(x0, ρ))

∫

B(x0,ρ)

|h(x)− h(x0)|2 dHF (x) < δ4|h(x0)|2.

Choose M > 1 so large that for the corresponding exceptional set H , we have

HF (H) 6
δ

3
HF (B(x0, ρ)).

Now let ρ′ < ρ be so close to ρ that

HF (B(x0, ρ) \B(x0, ρ
′)) <

δ

3
HF (B(x0, ρ)).

Let
Φ̃(x) := max{R̃(x), |x− x0| − ρ′}.

Note that Φ̃(x) is a nonnegative Lipschitz function majorizing the Ahlfors radius R(x) and
that

HF{x ∈ B(x0, ρ) : Φ̃(x) > 0} 6
2δ

3
HF (B(x0, ρ)).

Define the Borel measure µ by

µ(E) := HF (E ∩B(x0, ρ)).

Note that for every Lipschitz function Θ > δΦ̃ and for every x ∈ C we have

K♯

Θ
h(x) := sup

ε>0

∣∣∣
∫

C\B(x,ε)

k
Θ
(x, y)h(y) dµ(y)

∣∣∣ 6

[
(11 + δ−1)M + δ−1(ρ− ρ′)−1HF (C)

]
‖f‖

L∞ =: B|h(x0)|.
Indeed, if we replace dµ(y) by dHF (y), we will have the bound (11 + δ−1)M‖f‖

L∞ for the
supremum. The difference between the corresponding integrals does not exceed

∫

C\B(x0,ρ)

|k
Θ
(x, y)| · |h(y)| dHF (y) 6 ‖f‖

L∞

∫

C\B(x0,ρ)

dHF (y)
Θ(y)

6 ‖f‖
L∞

HF (C)
δ(ρ− ρ′)

,
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and we are done.

Now it is time to bring all the information together. Having started with a compact set
F of finite Hausdorff measure and positive analytic capacity, we have constructed a bounded
Borel measurable function h, a point x0 ∈ C for which h(x0) 6= 0, a measure µ (which is
just HF restricted to some small disk centered at x0), a large constant M , an open set H ,

a Lipschitz function Φ̃ and a (large) constant B (they are listed in the order one can choose
them) such that the following properties hold:

1) Every non-Ahlfors disk is contained in H, in particular, µ(B(x, r)) > Mr =⇒
B(x, r) ⊂ H (recall that µ(B(x, r)) 6 HF (B(x, r)) );

2) h(x) = h(x0) + g(x) with
∫
C
|g|2dµ 6 δ4µ(C);

3) Φ̃(x) > dist(x,C \H), µ{x ∈ C : Φ̃(x) > 0} 6
2δ
3
µ(C)

4) For every Lipschitz function Θ > δΦ̃ and for every point x ∈ C, one has K♯

Θ
h(x) 6

B|h(x0)|.
We recommend the reader to reread this list of objects and their properties attentively

several times. They are all completely natural, but a little too many to grasp at first glance.

XI. Construction of perfect hair

Given δ,M,B, h,H and Φ̃ as above, let us construct perfect hair. In order not to drag
x0 and h(x0) along all the time, assume that x0 = 0 and h(x0) = 1. Clearly, the problem is
shift-invariant, and we specially wrote all the above conditions in such a way that division
of f and h by the same constant would change nothing in them.

First we should construct a perfect dyadic lattice D. Our construction will be surprisingly
simple (compared to Guy David’s decomposition, say): we will just take the standard dyadic
lattice and consider its random shifts.

Pick any point ω ∈ [−1
4
, 1
4
)2 and take the square Q0(ω) := ω + [−1

2
, 1
2
)2 as the “starting”

square of the dyadic lattice D = D(ω). Recall that suppµ ⊂ B(0, 1
8
) and therefore supp µ ⊂

Q0(ω) for every such ω.
We are going to assign equal probability to every ω; so our probability P will be just 4

times the Lebesgue measure restricted to [−1
4
, 1
4
)2.

Once we have fixed the starting squareQ0, we have no choice of how to position the smaller
squares of D: we just split Q0 into four equal subsquares (of the same kind [a, b) × [c, d) ),
then split each new square etc. Nevertheless, we still have the freedom of how far down to
go at every point. Now we are going to use this freedom.

We will call a square terminal in the following two cases: 1) Q ⊂ H; or 2)
∫
Q
|g|2 dµ >

δ2µ(Q). Note that in particular, (2) holds if µ(Q) = 0. If a square is not terminal, we will

call it transit.
Now start the construction of D with the square Q0, which is always transit. It has size

(side length) l(Q0) = 2−0 = 1. Split it into four equal subsquares. Some of them may be
terminal and we will not touch those any more. But we will further split each transit square
of size 2−1 into four subsquares of size 2−2 and so on.
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XII. Projections Λ and ∆Q

Let D be one of the dyadic lattices constructed above. For a function ψ ∈ L1(µ) and for
a square Q ⊂ C, denote by 〈ψ〉

Q
the average value of ψ over Q with respect to the measure

µ, i.e.,

〈ψ〉
Q
:=

1

µ(Q)

∫

Q

ψ dµ

(of course, 〈ψ〉
Q
makes sense only for squares Q with µ(Q) > 0).

Put

Λϕ :=
〈ϕ〉

Q0

〈h〉
Q0

h.

Clearly, Λϕ ∈ L2(µ) for all ϕ ∈ L2(µ), and Λ2 = Λ, i.e., Λ is a projection. Note also, that
actually Λ does not depend on the lattice D, because the average is taken over the whole
support of the measure µ regardless of the position of the square Q0.

From now on, we will always denote by Qj (j = 1, 2, 3, 4) the four subsquares of a square
Q enumerated in some “natural order” (to be chosen by the reader). In particular, that
means that we will have to give up our idea to denote the squares in two copies D1 and D2

of the same random dyadic lattice D by Q1 and Q2, respectively. This is okay, because while
above it was important to emphasize the symmetry between D1 and D2, below we will start
almost every claim with “Assume (for definiteness) that l(Q) 6 l(R)...”.

For every square Q ∈ Dtr, define ∆
Q
ϕ by

∆
Q
ϕ
∣∣
C\Q

:= 0, ∆
Q
ϕ
∣∣
Qj

:=





[〈ϕ〉
Qj

〈h〉
Qj

−
〈ϕ〉

Q

〈h〉
Q

]
h, if Qj is transit;

ϕ−
〈ϕ〉

Q

〈h〉
Q

h, if Qj is terminal

(j = 1, 2, 3, 4). Observe that for every transit square Q, we have µ(Q) > 0 and

〈h〉
Q
= 1 + 〈g〉

Q
; |〈g〉

Q
| 6

√
〈|g|2〉

Q
6 δ,

so our definition makes sense: no zero can appear in the denominator.
Easy properties of ∆

Q
ϕ

For every ϕ ∈ L2(µ) and Q ∈ Dtr, 1) ∆
Q
ϕ ∈ L2(µ) ; 2)

∫
C
∆

Q
ϕdµ = 0; 3) ∆

Q
is a

projection, i.e., ∆2
Q
= ∆

Q
; 4) ∆

Q
Λ = Λ∆

Q
= 0; 5) If R ∈ Dtr and R 6= Q, then ∆

Q
∆

R
= 0.

To check these properties is left to the reader as an exercise.

Lemma:
For every ϕ ∈ L2(µ) we have

ϕ = Λϕ+
∑

Q∈Dtr

∆
Q
ϕ,
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the series converges in L2(µ) and, moreover,

2−1‖ϕ‖2
L2(µ)

6 ‖Λϕ‖2
L2(µ)

+
∑

Q∈Dtr

‖∆
Q
ϕ‖2

L2(µ)
6 2‖ϕ‖2

L2(µ)
.

Proof:
Note first of all that if one understands the sum

∑
Q∈Dtr as limn→∞

∑
Q∈Dtr:l(Q)>2−n, then

for µ-almost every x ∈ C, one has

ϕ(x) = Λϕ(x) +
∑

Q∈Dtr

∆
Q
ϕ(x).

Indeed, the claim is obvious if the point x lies in some terminal square. Suppose now that
it is not the case. Observe that

Λϕ(x) +
∑

Q∈Dtr:l(Q)>2−n

∆
Q
ϕ(x) =

〈ϕ〉
Qn

〈h〉
Qn

h(x),

where Qn is the dyadic square of size 2−n, containing x. Therefore, the claim is true if

〈ϕ〉
Qn → ϕ(x) and 〈h〉

Qn → h(x) as n→ ∞

(since for every transit square Q the average 〈h〉
Q
is close to 1, we surely have h(x) 6= 0 for

such x). But the exceptional set for any of these conditions has µ-measure 0.
Now let us compare Λϕ and ∆

Q
ϕ to the corresponding terms in the standard martingale

decomposition, i.e., to

Λ̃ϕ := 〈ϕ〉
Q0

and

∆̃
Q
ϕ
∣∣
C\Q

:= 0, ∆̃
Q
ϕ
∣∣
Qj

:=

{ 〈ϕ〉
Qj

− 〈ϕ〉
Q
, if Qj is transit;

ϕ− 〈ϕ〉
Q
, if Qj is terminal

(j = 1, 2, 3, 4). It is well-known (and easy to prove) that

‖Λ̃ϕ‖2
L2(µ)

+
∑

Q∈Dtr

‖∆̃
Q
ϕ‖2

L2(µ)
= ‖ϕ‖2

L2(µ)
.

A direct computation yields

‖Λ̃ϕ‖2
L2(µ)

= |〈ϕ〉
Q0 |2µ(Q0), ‖Λϕ‖2

L2(µ)
=

〈|h|2〉
Q0

|〈h〉
Q0 |2

|〈ϕ〉
Q0 |2µ(Q0),

i.e.,

‖Λϕ‖2
L2(µ)

=
〈|h|2〉

Q0

|〈h〉
Q0 |2

‖Λ̃ϕ‖2
L2(µ)

.
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We are going to show that the ratio
〈|h|2〉

Q0

|〈h〉
Q0 |2

is close to 1. Indeed, we can write

〈|h|2〉
Q0

|〈h〉
Q0 |2

− 1 =
〈|h|2〉

Q0 − |〈h〉
Q0 |2

|〈h〉
Q0 |2

=
〈|g|2〉

Q0 − |〈g〉
Q0 |2

|〈h〉
Q0 |2

.

Now note that
|〈h〉

Q0
| > 1− 〈|g|〉

Q0
> 1−

√
〈|g|2〉

Q0
> 1− δ,

while the numerator is not less than 0 (Cauchy inequality) and not greater than 〈|g|2〉
Q0

6 δ2.

Therefore the whole ratio lies between 0 and δ2(1− δ)−2 6 δ. So, we finally get

‖Λ̃ϕ‖2
L2(µ)

6 ‖Λϕ‖2
L2(µ)

6 (1 + δ)‖Λ̃ϕ‖2
L2(µ)

.

As to the terms ∆
Q
ϕ, we will represent each of them as the difference ∆′

Q
ϕ−

〈ϕ〉
Q

〈h〉
Q

h
Q
, where

∆′
Q
ϕ
∣∣
C\Q

:= 0, ∆′
Q
ϕ
∣∣
Qj

:=





〈ϕ〉
Qj

− 〈ϕ〉
Q

〈h〉
Qj

h, if Qj is transit;

ϕ− 〈ϕ〉
Q
, if Qj is terminal,

and

h
Q

∣∣
C\Q

:= 0, h
Q

∣∣
Qj

:=





〈h〉
Qj

− 〈h〉
Q

〈h〉
Qj

h, if Qj is transit;

h− 〈h〉
Q
, if Qj is terminal

(j = 1, 2, 3, 4). Note that ∆′ϕ ≡ ∆̃ϕ on C \Q and on every terminal square Qj . Also, if Qj

is a transit subsquare of Q, then
∫

Qj

|∆̃
Q
ϕ|2dµ 6

∫

Qj

|∆′
Q
ϕ|2dµ 6 (1 + δ)

∫

Qj

|∆̃
Q
ϕ|2dµ

(the reasoning is exactly the same as we had for Λϕ and Λ̃ϕ). Using the elementary inequality

2

3
|a|2 − 2|b|2 6 |a− b|2 6 3

2
|a|2 + 3|b|2 (a, b ∈ C),

we get

2
3
‖ϕ‖2

L2(µ)
− 2σ 6 ‖Λϕ‖2

L2(µ)
+

∑

Q∈Dtr

‖∆
Q
ϕ‖2

L2(µ)
6

3
2
(1 + δ)‖ϕ‖2

L2(µ)
+ 3σ,

where

σ :=
∑

Q∈Dtr

|〈ϕ〉
Q
|2

|〈h〉
Q
|2 ‖hQ‖

2

L2(µ)
6

1 + δ

(1− δ)2

∑

Q∈Dtr

|〈ϕ〉
Q
|2‖∆̃

Q
g‖2

L2(µ)
≤
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2
∑

Q∈Dtr

|〈ϕ〉
Q
|2‖∆̃

Q
g‖2

L2(µ)
,

because |〈h〉
Q
| > 1−δ; the same reasoning as we used when comparing ∆′

Q
ϕ to ∆̃

Q
ϕ, allows

us to conclude that ‖h
Q
‖2
L2(µ)

6 (1 + δ)‖∆̃
Q
h‖2

L2(µ)
, and, at last, ∆̃

Q
h = ∆̃

Q
g.

Now let us remind the reader of the celebrated
Dyadic Carleson Imbedding Theorem
Assume that we have a dyadic lattice D as above and a family of nonnegative numbers

{a
Q
}
Q∈D . Suppose also that for every square R ∈ D, we have

∑

Q∈D:Q⊂R

a
Q
6 Aµ(R).

Then for every function ϕ ∈ L2(µ) we have

∑

Q∈D:µ(Q)6=0

a
Q
|〈ϕ〉

Q
|2 6 4A‖ϕ‖2

L2(µ)
.

Now observe that for every transit square R ∈ D, we have

∑

Q∈Dtr:Q⊂R

‖∆̃
Q
g‖2

L2(µ)
=

∑

Q∈Dtr:Q⊂R

‖∆̃
Q
(gχ

R
)‖2

L2(µ)
6 ‖gχ

R
‖2
L2(µ)

=

∫

R

|g|2dµ 6 δ2µ(R).

Thus, applying the Dyadic Carleson Imbedding Theorem to a
Q
= ‖∆̃

Q
g‖2

L2(µ)
, if Q is transit,

and a
Q
= 0, if Q is terminal, we get

σ 6 8δ2‖f‖
L2(µ)

.

To finish the proof of the lemma, it remains only to note that

2

3
− 16δ2 >

1

2
and

3

2
(1 + δ) + 24δ2 6 2.

XIII. Functions ΦD

Recall that we already have the Lipschitz function Φ̃ and that Φ̃(x) > dist(x,C \H). In
particular it follows that

Φ̃(x) > dist(x, ∂Q) for all x ∈ Q,

if Q ∈ Dterm and Q ⊂ H .
We would like to extend this property to all terminal squares in D. So, let us define

ΦD (x) = sup{Φ̃(x), dist(x,C \Q) : Q ∈ Dterm,

∫

Q

|g|2dµ > δ2µ(Q)}.
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Clearly, ΦD is Lipschitz, ΦD > Φ̃, and ΦD (x) > dist(x, ∂Q) whenever x ∈ Q ∈ Dterm.
Now note that

µ{x ∈ C : ΦD (x) > 0} 6 µ{x ∈ C : Φ̃(x) > 0}+
∑

Q∈Dterm,
∫
Q
|g|2>δ2µ(Q)

µ(Q).

The list in the end of Section X shows µ{x ∈ C : Φ̃(x) > 0} 6
2δ
3
µ(C). On the other

hand, the squares in Dterm are pairwise disjoint. Therefore the second sum does not exceed
δ−2

∫
C
|g|2dµ 6 δ2µ(C), and we finally get

µ{x ∈ C : ΦD(x) > 0} 6
(
2δ
3
+ δ2

)
µ(C) 6 δµ(C).

XIV. Action on good functions

Now let D1 and D2 be two dyadic lattices of the above kind. We need to show that for
every two good functions ϕ, ψ ∈ L2(µ) (they play the roles of the functions ϕ1 and ϕ2 in the
definition of perfect hair, respectively) and for every Lipschitz function Θ > δmax{ΦD1

,ΦD2
}

satisfying infC Θ > 0, one has

|〈ϕ,K
Θ
ψ〉| 6 N‖ϕ‖

L2(µ)
‖ψ‖

L2(µ)
.

The reader may be surprised by the fact that we are talking about good functions without
defining the bad squares first. Actually, to tell the truth, the bad squares are those with
which we do not know what to do. Almost all the statements below are very hard or even
impossible to prove directly for arbitrary squares Q ∈ D1, R ∈ D2. But they become next
to trivial, if we introduce some additional assumptions. All we need to do is to show that
all our auxiliary assumptions hold with probability close to 1, and this can be postponed to
the very end.

Note first of all, that it is enough to prove the desired inequality for functions ϕ and ψ
such that Λϕ = Λψ = 0.

Indeed, for any ϕ ∈ L2(µ), we have

‖K
Θ
Λϕ‖

L2(µ)
=

|〈ϕ〉
Q0 |

|〈h〉
Q0 |

‖K
Θ
h‖

L2(µ)
≤

1

1− δ
|〈ϕ〉

Q0 | · ‖KΘ
h‖

L∞(µ)

√
µ(Q0) 6 2B|〈ϕ〉

Q0 |
√
µ(Q0) 6 2B‖ϕ‖

L2(µ)
.

Taking into account that 〈ϕ,K
Θ
ψ〉 = −〈K

Θ
ϕ, ψ〉 for all ϕ, ψ ∈ L2(µ), we get

〈ϕ,K
Θ
ψ〉 = −〈K

Θ
Λϕ, ψ〉+ 〈ϕ− Λϕ,K

Θ
Λψ〉+ 〈ϕ− Λϕ,K

Θ
(ψ − Λψ)〉.

The first two terms do not exceed 2B‖ϕ‖
L2(µ)

‖ψ‖
L2(µ)

and 4B‖ϕ‖
L2(µ)

‖ψ‖
L2(µ)

, correspond-

ingly (because ‖ϕ − Λϕ‖
L2(µ)

6 2‖ϕ‖
L2(µ)

). Meanwhile, the functions ϕ′ = ϕ − Λϕ and

ψ′ = ψ−Λψ clearly satisfy the condition Λϕ = Λψ = 0 and their L2(µ)-norms are bounded
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by 2‖ϕ‖
L2(µ)

and 2‖ϕ‖
L2(µ)

, respectively. So, if we prove the desired inequality for all good ϕ

and ψ satisfying Λϕ = Λψ = 0 with some constant N1, then we will get it for two arbitrary
good functions with the constant N = 4N1 + 6B.

We would like to write

〈ϕ,K
Θ
ψ〉 =

∑

Q∈Dtr
1 , R∈Dtr

2

〈∆
Q
ϕ,K

Θ
∆

R
ψ〉.

The question arises of why this series converges in any reasonable sense. But let us observe
that, since infC Θ > 0, the operator K

Θ
is bounded in L2(µ) and therefore we can restrict

ourselves to the good functions ϕ and ψ that have only finitely many non-zero terms in their
decompositions (clearly, if ϕ is good, then any partial sum of the series Λϕ+

∑
Q∈D1

∆
Q
ϕ is

good as well). This not only removes any questions about the convergence, but also allows
us to rearrange and to group the terms in the sum in any way we want.

Due to this observation and due to the (anti)symmetry, it is enough to estimate the sum
over Q ∈ Dtr

1 and R ∈ Dtr
2 , for which l(Q) ≤ l(R). For the sake of notational simplicity,

everywhere below instead of
∑

Q∈Dtr
1 , Q is good, R∈Dtr

2 , l(Q)≤l(R), other conditions

,

we will write ∑

Q,R: other conditions

.

Also we will always reduce
∑

Q∈Dtr
1 :Q is good, other conditions to

∑
Q : other conditions

and
∑

R∈Dtr
2 : other conditions to

∑
R : other conditions.

Note, that (unless otherwise specified) we will always think that the summation over Q
goes only over good squares Q ∈ Dtr

1 , while the summation over R goes over all R ∈ Dtr
2 .

Of course, formally it doesn’t matter, because, since the functions ϕ and ψ are good, it is
merely a business of adding or omitting several zeros. But it will allow us (and the reader)
to see clearly where and what property is used. As the reader might have already guessed,
for the sum over pairs Q,R with l(Q) > l(R), this point of view should be changed to the
opposite.

Pick some large positive integer m and write
∑

Q,R

〈∆
Q
ϕ,K

Θ
∆

R
ψ〉 =

∑

Q,R:l(Q)>2−ml(R)

+
∑

Q,R:l(Q)<2−ml(R)

=

∑

Q,R:l(Q)>2−ml(R),
dist(Q,R)6l(R)

+

[
∑

Q,R:l(Q)>2−ml(R),
dist(Q,R)>l(R)

+
∑

Q,R:l(Q)<2−ml(R),
Q∩R=∅

]
+

∑

Q,R:l(Q)<2−ml(R),
Q∩R6=∅

=: σ1 + σ2 + σ3.

Recall that the kernel k
Θ
satisfies the estimates

|k
Θ
(x, y)| 6 1

max{|x− y|,Θ(x),Θ(y)} and |∇xkΘ(x, y) 6
4

|x− y|2 .
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The second inequality implies that

|k
Θ
(x, y)− k

Θ
(x′, y)| 6 16|x− x′|

|x− y|2 ,

provided that |x − x′| 6 1
2
|x − y|. Actually, we do not need the kernel to be that smooth.

We will see that the estimate

|k
Θ
(x, y)− k

Θ
(x′, y)| 6 A|x− x′|ε

|x− y|1+ε

with some (fixed) 0 < ε 6 1 and 0 < A < +∞ is sufficient for all our tricks. The reader
may ask: “Why introduce a special notation for the parameter, which is actually equal to
1; isn’t it merely a generalization for the sake of generalization?” Well, first of all, we want
to show that there is nothing very special about the Cauchy kernel 1

x−y
; it can be replaced

by any other (antisymmetric) Calderon-Zygmund kernel. And secondly, it will allow the
reader to check that our proof works not because of some “magic” numerical identities like
1
3
− 1

2
+ 1

6
= 0, but because we really have found a good way to go around the main drawback of

the Haar system: the impossibility to make good estimates near jumps. And once this main
drawback is removed, the old-fashioned Haar system becomes more elegant and powerful
than any ultramodern and superfamous wavelets.

XV. Estimation of σ2

Recall that the sum σ2 is taken over pairs Q,R such that Q∩R = ∅. If l(Q) > 2−ml(R),
then the squares not only do not intersect, but are well-separated: dist(Q,R) > l(R). We
would like to extend this property onto the case l(Q) < 2−ml(R). Though we cannot achieve
exactly the same separation by the length of the larger square, we can get as close to it as
we want. Namely, for any α > 0 and for any Q ∈ D1, the probability

PD2
{there exists R ∈ D2 : l(R) > 2ml(Q), R ∩Q = ∅ and dist(Q,R) < l(Q)αl(R)1−α}

allows an estimate that does not depend on Q and tends to 0 as m→ ∞.
We shall need this result for α = ε

2(1+ε)
(1
4
in the case of the Cauchy kernel). We will

postpone the proof of this claim to the end of the paper, as we said before; and now let us
observe that if we declare the corresponding squares Q bad and if ϕ is good, then for every
pair Q,R, participating in σ2, we have dist(Q,R) > l(Q)αl(R)1−α.

Define the long distance D(Q,R) between the squares Q and R by

D(Q,R) = l(Q) + l(R) + dist(Q,R).

Far Interaction Lemma:
Suppose that Q and R are two squares on the complex plane C, such that l(Q) ≤ l(R).

Let ϕ
Q
, ψ

R
∈ L2(µ). Assume that ϕ

Q
vanishes outside Q, ψ

R
vanishes outside R;

∫
C
ϕ
Q
= 0

and, at last, dist(Q, suppψ
R
) > l(Q)αl(R)1−α.
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Then

|〈ϕ
Q
, K

Θ
ψ
R
〉| 6 31+εA

l(Q)
ε
2 l(R)

ε
2

D(Q,R)1+ε

√
µ(Q)

√
µ(R)‖ϕ

Q
‖
L2(µ)

‖ψ
R
‖
L2(µ)

.

Remark
Note, that we require only that the support of the function ψ lies far from Q; the squares

Q and R themselves may intersect! We will really have such a situation when estimating σ3.
Proof:
Let x

Q
be the center of the square Q. Note that for all x ∈ Q, y ∈ suppψ

R
, we have

|x
Q
− y| > l(Q)

2
+ dist(Q, suppψ

R
) >

3l(Q)

2
>

√
2l(Q) > 2|x− x

Q
|.

Therefore,

|〈ϕ
Q
, K

Θ
ψ
R
〉| =

∣∣∣
∫∫

k
Θ
(x, y)ϕ

Q
(x)ψ

R
(y) dµ(x) dµ(y)

∣∣∣ =
∣∣∣
∫∫

[k
Θ
(x, y)− k

Θ
(x

Q
, y)]ϕ

Q
(x)ψ

R
(y) dµ(x) dµ(y)

∣∣∣ ≤

A
l(Q)ε

dist(Q, suppψ
R
)1+ε

‖ϕ
Q
‖
L1(µ)

‖ψ
R
‖
L1(µ)

.

There are two possible cases:
Case 1: dist(Q, suppψ

R
) > l(R)

Then
D(Q,R) = l(Q) + l(R) + dist(Q,R) 6 3 dist(Q, suppψ

R
)

and therefore

l(Q)ε

dist(Q, suppψ
R
)1+ε

6 31+ε l(Q)ε

D(Q,R)1+ε
6 31+ε l(Q)

ε
2 l(R)

ε
2

D(Q,R)1+ε
.

Case 2: l(Q)αl(R)1−α 6 dist(Q, suppψ
R
) 6 l(R)

Then D(Q,R) 6 3l(R) and we get

l(Q)ε

dist(Q, suppψ
R
)1+ε

6
l(Q)ε

[l(Q)αl(R)1−α]1+ε
=
l(Q)

ε
2 l(R)

ε
2

l(R)1+ε
6 31+ε l(Q)

ε
2 l(R)

ε
2

D(Q,R)1+ε
.

Now, to finish the proof of the lemma, it remains only to note that

‖ϕ
Q
‖
L1(µ)

6
√
µ(Q)‖ϕ

Q
‖
L2(µ)

and ‖ψ
R
‖
L1(µ)

6
√
µ(R)‖ψ

R
‖
L2(µ)

.

Applying this lemma to ϕ
Q
= ∆

Q
ϕ and ψ

R
= ∆

R
ψ, we obtain

|σ2| 6 31+εA
∑

Q,R

l(Q)
ε
2 l(R)

ε
2

D(Q,R)1+ε

√
µ(Q)

√
µ(R)‖∆

Q
ϕ‖

L2(µ)
‖∆

R
ψ‖

L2(µ)
(∗∗)
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We are going to show that the matrix T
Q,R

defined by

T
Q,R

:=
l(Q)

ε
2 l(R)

ε
2

D(Q,R)1+ε

√
µ(Q)

√
µ(R) (Q ∈ Dtr

1 , R ∈ Dtr
2 , l(Q)l(R) )

generates a bounded operator in l2.
Lemma:
For any two “sequences” {a

Q
}
Q∈Dtr

1

and {b
R
}
R∈Dtr

2

of nonnegative numbers, one has

∑

Q,R

T
Q,R

a
Q
b
R
6

31+ε(3 + ε−1)M

1− 2−
ε
2

[∑

Q

a2
Q

] 1
2
[∑

R

b2
R

] 1
2
.

Remark:
Note that T

Q,R
are defined for allQ,R with l(Q) 6 l(R) and that the condition dist(Q,R) >

l(Q)αl(R)1−α (or even the condition Q ∩ R = ∅) no longer appears in the summation!
Proof:
Let us “slice” the matrix T

Q,R
according to the ratio l(Q)

l(R)
. Namely, let

T
(n)
Q,R =

{
T
Q,R

, if l(Q) = 2−nl(R);

0, otherwise

(n = 0, 1, 2, . . . ). To prove the lemma, it is enough to show that for every n > 0,

∑

Q,R

T (n)

Q,R
a
Q
b
R
6 2−

ε
2
n31+ε(3 + ε−1)M

[∑

Q

a2
Q

] 1
2
[∑

R

b2
R

] 1
2
.

The matrix {T (n)
Q,R} has a “block” structure: the variables b

R
corresponding to the squares

R ∈ Dtr
2 , for which l(R) = 2j, can interact only with variables a

Q
corresponding to the

squares Q ∈ Dtr
1 , for which l(Q) = 2j−n. Thus, to get the desired inequality, it is enough to

estimate each block separately, i.e., to demonstrate that
∑

Q,R : l(Q)=2j−n,l(R)=2j

T (n)

Q,R
a
Q
b
R
≤

2−
ε
2
n31+ε(3 + ε−1)M

[ ∑

Q : l(Q)=2j−n

a2
Q

] 1
2
[ ∑

R : l(R)=2j

b2
R

] 1
2
.

Let us introduce the functions

F :=
∑

Q : l(Q)=2j−n

a
Q√
µ(Q)

χ
Q

and G :=
∑

R : l(R)=2j

b
R√
µ(R)

χ
R
.

Note that the squares of a given size in one dyadic lattice do not intersect, and therefore at
each point x ∈ C, at most one term in the sum can be non-zero. Also observe that

‖F‖
L2(µ)

=
[ ∑

Q : l(Q)=2j−n

a2
Q

] 1
2

and ‖G‖
L2(µ)

=
[ ∑

R : l(R)=2j

b2
R

] 1
2
.
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Then the estimate we need can be rewritten as
∫∫

kj,n(x, y)F (x)G(y) dµ(x) dµ(y)6 2−
ε
2
n31+ε(3 + ε−1)M‖F‖

L2(µ)
‖G‖

L2(µ)
,

where

kj,n(x, y) =
∑

Q,R : l(Q)=2j−n,l(R)=2j

l(Q)
ε
2 l(R)

ε
2

D(Q,R)1+ε
χ
Q
(x)χ

R
(y).

Again, for every pair of points x, y ∈ C, only one term in the sum can be nonzero. Since
|x− y|+ l(R) 6 3D(Q,R) for any x ∈ Q, y ∈ R, we obtain

kj,n(x, y) = 2−
ε
2
n l(R)ε

D(Q,R)1+ε
6 2−

ε
2
n31+ε 2jε

[2j + |x− y|]1+ε
=: 2−

ε
2
n31+εkj(x, y).

So, it is enough to check that

∫∫
kj(x, y)F (x)G(y) dµ(x) dµ(y)6 (3 + ε−1)M‖F‖

L2(µ)
‖G‖

L2(µ)
.

According to the Schur test, it would suffice to prove that for every y ∈ C, one has the
estimate

∫
C
kj(x, y) dµ(x) 6 (3 + ε−1)M and vice versa (i.e., for every x ∈ C, one has∫

C
kj(x, y) dµ(y) 6 (3 + ε−1)M). Then the norm of the integral operator with kernel kj in

L2(µ) would be bounded by the same constant (3 + ε−1)M , and the story would be over.
If we assumed a priori that R(y) 6 2j+1, then the needed estimate would be next to

trivial: we could write
∫

C

kj(x, y) dµ(x) =

∫

B(y,2j+1)

kj(x, y) dµ(x) +

∫

C\B(y,2j+1)

kj(x, y) dµ(x) ≤

2−jµ(B(y, 2j+1)) +

∫

C\B(y,2j+1)

2jε

|x− y|1+ε
dµ(x) ≤

M
(
2 + 1 +

∫ +∞

2j

2jε

t1+ε
dt
)
= (3 + ε−1)M

(we applied Comparison Lemma to estimate the integral over C \ B(y, 2j+1), and again we
used the possibility to switch from the radius 2j+1 to the smaller number 2j)

The problem is that we cannot guarantee that R(y) 6 2j+1 for every y ∈ C. So, generally
speaking, we are unable to show that the integral operator with kernel kj(x, y) acts in L

2(µ).
But we do not need that much! We only need to check that the corresponding bilinear form
is bounded on two given functions F and G. So, we are not interested in the points y ∈ C

for which G(y) = 0 (or in the points x ∈ C, for which F (x) = 0). But, by definition, G can
be non-zero on transit squares in D2 of size 2j only. Now let us notice that if R ∈ Dtr

2 , then
R(y) 6 2l(R) for every y ∈ R. Indeed, otherwise there exists a non-Ahlfors disk B(y, r) of
radius r > 2l(R). But then R ⊂ B(y, r) ⊂ H , which is impossible for a transit square!

The same reasoning shows that R(x) 6 2j−n+1 6 2j+1 whenever F (x) 6= 0, and we are
done with |σ2|.
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Now, we hope, the reader will agree that the decision to declare the squares contained in
H terminal was a good one: not only does the fact that the measure µ is not Ahlfors not put
us in any real trouble, but we just hardly have a chance to notice this fact at all. Also, it
is clear why the squares with large average of |g|2 have been declared terminal: this allowed
us to treat h like an accretive function all the time.

But it still remains unexplained why we were so eager to suppress the Cauchy kernel on
every terminal square. The answer is in the next two sections.

XVI. Estimation of σ3

Recall that the sum σ3 is taken over the pairs Q,R, for which l(Q) < 2−ml(R) and
Q∩R 6= ∅. We would like to improve this condition to the demand that Q lie “deep inside”
one of the four subsquares Rj (j = 1, 2, 3, 4).

Define the skeleton R of the square R by

skR :=

4⋃

j=1

∂Rj .

We will declare a square Q ∈ D1 bad if there exists a square R ∈ D2 such that l(R) > 2ml(Q)
and dist(Q, skR) 6 8l(Q)αl(R)1−α. Note that any square bad in the sense of the previous
section is bad in this new sense as well.

Now, for every good square Q ∈ D1, the conditions l(Q) < 2−ml(R) and Q ∩ R 6= ∅
together imply that Q lies inside one of the four subsquares Rj . We will denote this subsquare
by R

Q
. The sum σ3 can now be split into

σterm
3 :=

∑

Q,R :Q⊂R, l(Q)<2−ml(R),
RQ is terminal

〈∆
Q
ϕ,K

Θ
∆

R
ψ〉

and
σtr
3 :=

∑

Q,R :Q⊂R, l(Q)<2−ml(R),
RQ is transit

〈∆
Q
ϕ,K

Θ
∆

R
ψ〉.

XVII. Estimation of σterm
3

First of all, write (recall that Rj denote the children of R):

σterm
3 =

4∑

j=1

∑

Q,R : l(Q)<2−ml(R),
Q⊂Rj∈Dterm

2

〈∆
Q
ϕ,K

Θ
∆

R
ψ〉.

Clearly, it is enough to estimate the inner sum for every fixed j. Let us do it for j = 1. We
have

∑

Q,R : l(Q)<2−ml(R),
Q⊂R1∈Dterm

2

〈∆
Q
ϕ,K

Θ
∆

R
ψ〉 =

∑

R:R1∈Dterm
2

∑

Q: l(Q)<2−ml(R),
Q⊂R1

〈∆
Q
ϕ,K

Θ
∆

R
ψ〉.
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Roughly speaking, our main idea here is the following. If R1 ∈ Dterm
2 , then for all x ∈ R1,

one has
Θ(x) > δΦD2

(x) > δ dist(x, ∂R1).

For the points x that lie in the “central part” of R1, the right hand side is at least δ(R)
8
.

Assume that it is so for every point x ∈ R1. Then

k
Θ
(x, y) 6

1

Θ(x)
6

8

δ(R)
for all x ∈ R1, y ∈ C.

Hence

|K
Θ
∆

R
ψ(x)| 6

8‖∆
R
ψ‖

L1(µ)

δ(R)
for all x ∈ R1,

and therefore

‖χ
R1

·K
Θ
∆

R
ψ‖

L2(µ)
6 8‖∆

R
ψ‖

L1(µ)

√
µ(R1)

δ(R)
6

8µ(R)

δ(R)
‖∆

R
ψ‖

L2(µ)
6

8M

δ
‖∆

R
ψ‖

L2(µ)
,

because µ(R1) 6 µ(R), ‖∆
R
ψ‖

L1(µ)
6

√
µ(R)‖∆

R
ψ‖

L2(µ)
, and µ(R) 6 Ml(R) (otherwise

the disk of radius l(R), centered at the same point as R, would be non-Ahlfors, and we would
have R ⊂ H , which is impossible).

Now, recalling the remark from Section II, and taking into account that ∆
Q
ϕ ≡ 0 outside

Q, we get ∑

Q:Q⊂R1

|〈∆
Q
ϕ,K

Θ
∆

R
ψ〉| =

∑

Q:Q⊂R1

|〈∆
Q
ϕ, χ

R1
·K

Θ
∆

R
ψ〉| ≤

√
2‖χ

R1
·K

Θ
∆

R
ψ‖

L2(µ)

[ ∑

Q:Q⊂R1

‖∆
Q
ϕ‖2

L2(µ)

] 1
2 ≤

16M

δ
‖∆

R
ψ‖

L2(µ)

[ ∑

Q:Q⊂R1

‖∆
Q
ϕ‖2

L2(µ)

] 1
2
.

So, we obtain ∑

R:R1∈Dterm
2

∑

Q:Q⊂R1

|〈∆
Q
ϕ,K

Θ
∆

R
ψ〉| 6

16M

δ

∑

R:R1∈Dterm
2

‖∆
R
ψ‖

L2(µ)

[ ∑

Q:Q⊂R1

‖∆
Q
ϕ‖2

L2(µ)

] 1
2
6

16M

δ

[ ∑

R:R1∈Dterm
2

‖∆
R
ψ‖2

L2(µ)

] 1
2
[ ∑

R:R1∈Dterm
2

∑

Q:Q⊂R1

‖∆
Q
ϕ‖2

L2(µ)

] 1
2

.

But the terminal squares in D2 do not intersect! Therefore every ∆
Q
ϕ can appear at most

once in the last double sum, and we get the bound

∑

R:R1∈Dterm
2

∑

Q:Q⊂R1

|〈∆
Q
ϕ,K

Θ
∆

R
ψ〉| 6
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16M

δ

[∑

R

‖∆
R
ψ‖2

L2(µ)

] 1
2
[∑

Q

‖∆
Q
ϕ‖2

L2(µ)

] 1
2
6

32M

δ
‖ϕ‖

L2(µ)
‖ψ‖

L2(µ)
.

The problem is that we cannot guarantee the estimate Θ(x) >
δ(R)
8

for every point
x ∈ R1. So, the kernel k

Θ
can grow near the boundary. Nevertheless, due to our definition

of good squares, we need only to consider the squares Q ⊂ R1, for which dist(Q, ∂R1) >

8l(Q)αl(R)1−α. So, if such a square Q lies close to the boundary of R1, the size l(Q) has to
be very small and the corresponding function ∆

Q
ϕ should oscillate very fast. We may hope

that this fast oscillation will compensate for the growth of the kernel. To show that it is
really the case, we need one more standard technical tool.

XVIII. Whitney decomposition

Let S0 be an arbitrary square on the complex plane C. Consider the standard dyadic
lattice starting with the square S0, and denote byW (S0) the family of all maximal subsquares
S in this lattice, for which dist(S, ∂S0) > l(S) (see Picture 2). The Whitney decomposition
W (S0) has the following remarkable properties: 1) The squares S ∈ W (S0) are pairwise

disjoint and cover the interior of S0; 2) dist(S, ∂S0) = l(S) for every S ∈ W (S0); 3) The

expanded squares S̃ := 2S (S ∈ W (S0) ) still lie “deep inside” S, namely, dist(S̃, ∂S0) =
l(S)
2

= l(S̃)
4
, and every point x ∈ C belongs to at most 6 squares S̃. Denote again the center

of a square Q by x
Q
. For S ∈ W (R1) put

ψ
R,S

:= χ
S̃
∆

R
ψ and ψ̃

R,S
:= χ

R\S̃
∆

R
.

We have
∑

Q: l(Q)<2−ml(R),
Q⊂R1

〈∆
Q
ϕ,K

Θ
∆

R
ψ〉 =

∑

S∈W (R1)

∑

Q: l(Q)<2−ml(R),
Q⊂R1, xQ

∈S

〈∆
Q
ϕ,K

Θ
∆

R
ψ〉 =

∑

S∈W (R1)

∑

Q: l(Q)<2−ml(R),
Q⊂R1, xQ

∈S

〈∆
Q
ϕ,K

Θ
ψ
R,S

〉+
∑

S∈W (R1)

∑

Q: l(Q)<2−ml(R),
Q⊂R1, xQ

∈S

〈∆
Q
ϕ,K

Θ
ψ̃
R,S

〉.

Note now that for every good Q ⊂ R1 such that x
Q
∈ S ∈ W (R1), one has

8l(Q) 6 8l(Q)αl(R)1−α
6 dist(Q, ∂R1) 6 dist(x

Q
, ∂R1) 6 2l(S),

and therefore

dist(Q, supp ψ̃
R,S

) > dist(Q, ∂S̃) >
l(S)− l(Q)

2
>
l(S)

4
> l(Q)αl(R)1−α.

Now the Far Interaction Lemma yields

|〈∆
Q
ϕ,K

Θ
ψ̃
R,S

〉| 6 31+εA
l(Q)

ε
2 l(R)

ε
2

D(Q,R)1+ε

√
µ(Q)

√
µ(R)‖∆

Q
ϕ‖

L2(µ)
‖ψ̃

R,S
‖
L2(µ)

.
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Taking into account that ‖ψ̃
R,S

‖
L2(µ)

6 ‖∆
R
ψ‖

L2(µ)
and summing over all R ∈ Dtr

2 , we arrive

at the same sum as in the long term interaction of Section XV (actually, we arrive at the
part of that sum which has not been used yet, but has already been estimated there).

So, it remains to find a good upper bound for

∑

S∈W (R1)

∑

Q: l(Q)<2−ml(R),
Q⊂R1, xQ

∈S

〈∆
Q
ϕ,K

Θ
ψ
R,S

〉.

Observe once more that the conditions Q ∈ Dtr
1 , Q is good, l(Q) < 2−ml(R), Q ⊂ R1 and

x
Q

∈ S together imply Q ⊂ S̃ (as we have seen above, they even imply that Q lies deep

inside S̃). So, it is enough to estimate the sum

∑

S∈W (R1)

∑

Q:Q⊂S̃, x
Q
∈S

|〈∆
Q
ϕ,K

Θ
ψ
R,S

〉|.

Note now that for every x ∈ S̃, we have

Θ(x) > δ dist(x, ∂R1) >
δ(S̃)

4
.

Recall that the “naive” reasoning from Section XVII could not be used for the whole R1.
But it can be used for S̃. Repeating our “naive” reasoning from Section XVII for the square
S̃ instead of the whole R1, we obtain

∑

Q:Q⊂S̃, x
Q
∈S

|〈∆
Q
ϕ,K

Θ
ψ
R,S

〉| 6 ‖χ
S̃
·K

Θ
ψ
R,S

‖
L2(µ)

[ ∑

Q:Q⊂S̃, x
Q
∈S

‖∆
Q
ϕ‖2

L2(µ)

] 1
2
6

4µ(S̃)

δ(S̃)
‖ψ

R,S
‖
L2(µ)

[ ∑

Q:Q⊂S̃, x
Q
∈S

‖∆
Q
ϕ‖2

L2(µ)

] 1
2
.

We would like to say again that µ(S̃) 6 Ml(S̃). If not, then, of course, we can conclude

that S̃ ⊂ H , but this does not yield a contradiction immediately, because S̃ is not a transit
square in D2 (actually, it is not in D2 at all!). Note, nevertheless, that if we have at least

one good square Q ∈ Dtr
1 such that Q ⊂ S̃ (otherwise the sum is 0, and we have nothing

to worry about), then we can extend the above chain of inclusions to Q ⊂ S̃ ⊂ H , which
is a contradiction! So, as before, despite the fact that we cannot use the Ahlfors condition
whenever we want to, we can use it whenever we need to.

Thus, we get

∑

S∈W (R1)

∑

Q:Q⊂S̃,
x
Q
∈S

|〈∆
Q
ϕ,K

Θ
ψ
R,S

〉| 6 4M

δ

∑

S∈W (R1)

‖ψ
R,S

‖
L2(µ)

[ ∑

Q:Q⊂S̃,
x
Q
∈S

‖∆
Q
ϕ‖2

L2(µ)

] 1
2
6
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4M

δ

[ ∑

S∈W (R1)

‖ψ
R,S

‖2
L2(µ)

] 1
2
[ ∑

S∈W (R1)

∑

Q:Q⊂R1, xQ
∈S

‖∆
Q
ϕ‖2

L2(µ)

] 1
2

(we relaxed the condition Q ⊂ S̃ in the last sum to Q ⊂ R1; it causes no harm now). But

∑

S∈W (R1)

‖ψ
R,S

‖2
L2(µ)

=
∑

S∈W (R1)

∫

S̃

|∆
R
ψ|2 dµ 6 6

∫

C

|∆
R
ψ|2 dµ = 6‖∆

R
ψ‖2

L2(µ)

(because every point lies in not more than 6 squares S̃).
Meanwhile,

∑

S∈W (R1)

∑

Q:Q⊂R1, xQ
∈S

‖∆
Q
ϕ‖2

L2(µ)
=

∑

Q:Q⊂R1

‖∆
Q
ϕ‖2

L2(µ)
.

Hence, summing over all R ∈ Dtr
2 , for which R1 ∈ Dterm

2 , we get

∑

R:R1∈Dterm
2

∑

S∈W (R1)

∑

Q:Q⊂S̃,
x
Q
∈S

|〈∆
Q
ϕ,K

Θ
ψ
R,S

〉| 6

4
√
6M

δ

∑

R:R1∈Dterm
2

‖∆
R
ψ‖

L2(µ)

[ ∑

Q:Q⊂R1

‖∆
Q
ϕ‖2

L2(µ)

] 1
2

6

10M

δ

[ ∑

R:R1∈Dterm
2

‖∆
R
ψ‖2

L2(µ)

] 1
2
[ ∑

R:R1∈Dterm
2

∑

Q:Q⊂R1

‖∆
Q
ϕ‖2

L2(µ)

] 1
2

6

10M

δ

[∑

R

‖∆
R
ψ‖2

L2(µ)

] 1
2
[∑

Q

‖∆
Q
ϕ‖

L2(µ)

] 1
2

6
20M

δ
‖ϕ‖

L2(µ)
‖ψ‖

L2(µ)
,

finishing the story with σterm
3 .

XIX. Estimation of σtr
3

Recall that

σtr
3 =

∑

Q,R :Q⊂R, l(Q)<2−ml(R),
RQ is transit

〈∆
Q
ϕ,K

Θ
∆

R
ψ〉.

Split every term in the sum as

〈∆
Q
ϕ,K

Θ
∆

R
ψ〉 = 〈∆

Q
ϕ,K

Θ
(χ

R
Q

∆
R
ψ)〉+ 〈∆

Q
ϕ,K

Θ
(χ

R\R
Q

∆
R
ψ)〉.

Observe that since Q is good, Q ⊂ R and l(Q) < 2−ml(R), we have

dist(Q, suppχ
R\R

Q

∆
R
ψ) > dist(Q, skR) > l(Q)αl(R)1−α.

35



Using the Far Interaction Lemma and taking into account that the norm ‖χ
R\R

Q

∆
R
ψ‖

L2(µ)

does not exceed ‖∆
R
ψ‖

L2(µ)
, we conclude that the sum

∑

Q,R :Q⊂R, l(Q)<2−ml(R),
RQ is transit

|〈∆
Q
ϕ,K

Θ
(χ

R\R
Q

∆
R
ψ)〉|

can be estimated by the sum (∗∗) from Section XV.
Thus, our task is to find a good bound for the sum

∑

Q,R :Q⊂R, l(Q)<2−ml(R),
RQ is transit

〈∆
Q
ϕ,K

Θ
(χ

R
Q

∆
R
ψ)〉.

Recalling the definition of ∆
R
ψ and recalling that R

Q
is a transit square, we get

χ
R

Q

∆
R
ψ = c

R,Q
χ
R

Q

h,

where

c
R,Q

=
〈ψ〉

R
Q

〈h〉
R

Q

− 〈ψ〉
R

〈h〉
R

is a constant. So, our sum can be rewritten as

∑

Q,R :Q⊂R, l(Q)<2−ml(R),
RQ is transit

c
R,Q

〈∆
Q
ϕ,K

Θ
(χ

R
Q

h)〉.

Our next aim will be to extend the function χ
R

Q

h to the whole function h in every term

(which is exactly the opposite of the idea of the previous section, where, in a similar situation,
we tried to “shrink” the function ∆

R
ψ to ψ

R,S
).

Let us observe that

〈∆
Q
ϕ,K

Θ
(χ

C\R
Q

h)〉 =
∫

C\R
Q

k
Θ
(x, y)∆

Q
ϕ(x)h(y) dµ(x) dµ(y) =

∫

C\R
Q

[k
Θ
(x, y)− k

Θ
(x

Q
, y)]∆

Q
ϕ(x)h(y) dµ(x) dµ(y).

Note again that for every x ∈ Q, y ∈ C \R
Q
, we have

|x
Q
− y| > l(Q)

2
+ dist(Q,C \R

Q
) >

3l(Q)

2
>

√
2l(Q) > 2|x− x

Q
|.

Therefore

|k
Θ
(x, y)− k

Θ
(x

Q
, y)| 6

A|x− x
Q
|ε

|x
Q
− y|1+ε

6
Al(Q)ε

|x
Q
− y|1+ε

,
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and

|〈∆
Q
ϕ,K

Θ
(χ

C\R
Q

h)〉| 6 Al(Q)ε‖∆
Q
ϕ‖

L1(µ)

∫

C\R
Q

|h(y)| dµ(y)
|x

Q
− y|1+ε

.

Now let us consider the sequence of squares R(j) ∈ D2, beginning with R(0) = R
Q

and

gradually ascending (R(j) ⊂ R(j+1), l(R(j+1)) = 2l(R(j))) to the starting square R0 = R(N)

of the lattice D2. Clearly, all the squares R(j) are transit.
We have

∫

C\R
Q

|h(y)| dµ(y)
|x

Q
− y|1+ε

=

∫

R0\R
Q

|h(y)| dµ(y)
|x

Q
− y|1+ε

=
N∑

j=1

∫

R(j)\R(j−1)

|h(y)| dµ(y)
|x

Q
− y|1+ε

=:
N∑

j=1

Ij.

Note now that, since Q is good and l(Q) < 2−ml(R) 6 2−ml(R(j)) for all j = 1, . . . , N , we
have

dist(Q,R(j) \R(j−1)) > dist(Q,R(j)) > l(Q)αl(R(j))1−α.

Hence

Ij 6
1

[l(Q)αl(R(j))1−α]1+ε

∫

R(j)

|h| dµ.

Recalling that α = ε
2(1+ε)

, we see that the first factor equals
1

l(Q)
ε
2 l(R(j))1+

ε
2

.

Since R(j) is transit, we have

∫

R(j)

|h| dµ 6

∫

R(j)

(1 + |g|) dµ 6 (1 + δ)µ(R(j)) 6 (1 + δ)Ml(R(j)).

Thus,

Ij 6
(1 + δ)M

l(Q)
ε
2 l(R(j))

ε
2

= 2−(j−1) ε
2
(1 + δ)M

l(Q)
ε
2 l(R)

ε
2

.

Summing over j > 1, we get

∫

C\R
Q

|h(y)| dµ(y)
|x

Q
− y|1+ε

=

N∑

j=1

Ij 6
(1 + δ)M

1− 2−
ε
2

1

l(Q)
ε
2 l(R)

ε
2

.

Now let us note that, since R
Q
∈ Dtr

2 , we have

‖∆
R
ψ‖2

L2(µ)
>

∫

R
Q

|∆
R
ψ‖2 dµ = |c

Q,R
|2
∫

R
Q

|h|2 dµ >

|c
Q,R

|2|〈h〉|2
R

Q

µ(R
Q
) > (1− δ)2|c

Q,R
|2µ(R

Q
).

So,

|c
Q,R

| 6 1

1− δ

‖∆
R
ψ‖

L2(µ)√
µ(R

Q
)
.
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Combining this estimate with the Cauchy inequality ‖∆
Q
ϕ‖

L1(µ)
6

√
µ(Q)‖∆

Q
ϕ‖

L2(µ)
, we

finally obtain

|〈∆
Q
ϕ,K

Θ
(χ

C\R
Q

h)〉| 6 (1 + δ)MA

(1− δ)(1− 2−
ε
2 )

[
l(Q)

l(R)

] ε
2

√
µ(Q)

µ(R
Q
)
‖∆

Q
ϕ‖

L2(µ)
‖∆

R
ψ‖

L2(µ)

and ∑

Q,R :Q⊂R, l(Q)<2−ml(R),
RQ is transit

|c
R,Q

| · |〈∆
Q
ϕ,K

Θ
(χ

C\R
Q

h)〉| 6

(1 + δ)MA

(1− δ)(1− 2−
ε
2 )

4∑

j=1

∑

Q,R :Q⊂Rj

[
l(Q)

l(R)

] ε
2

√
µ(Q)

µ(Rj)
‖∆

Q
ϕ‖

L2(µ)
‖∆

R
ψ‖

L2(µ)
.

So, it is enough to demonstrate that, say, the matrix {T
Q,R

} defined by

T
Q,R

:=

[
l(Q)

l(R)

] ε
2

√
µ(Q)

µ(R1)
(Q ⊂ R1),

generates a bounded operator in l2 in the sense that for every two “sequences” {a
Q
}
Q∈Dtr

1

and {b
R
}
R∈Dtr

2

of nonnegative numbers, one has

∑

Q,R:Q⊂R1

T
Q,R

a
Q
b
R
6

1

1− 2−
ε
2

[∑

Q

a2
Q

] 1
2
[∑

R

b2
R

] 1
2
.

Again let us “slice” the matrix T
Q,R

according to the ratio l(Q)
l(R)

. Namely, let

T
(n)
Q,R =

{
T
Q,R

, if Q ⊂ R1, l(Q) = 2−nl(R);

0, otherwise

(n = 1, 2, . . . ). It is enough to show that for every n > 0,

∑

Q,R

T (n)

Q,R
a
Q
b
R
6 2−

ε
2
n
[∑

Q

a2
Q

] 1
2
[∑

R

b2
R

] 1
2
.

The matrix {T (n)
Q,R} has a very good “block” structure: every a

Q
can interact with only one

variable b
R
. So, it is enough to estimate each block separately, i.e., to show that for every

fixed R ∈ Dtr
2 ,

∑

Q:Q⊂R1, l(Q)=2−nl(R)

2−
ε
2
n

√
µ(Q)

µ(R1)
a
Q
b
R
6 2−

ε
2
n
[∑

Q

a2
Q

] 1
2
b
R
.
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But, reducing both parts by the non-essential factor 2−
ε
2
nb

R
, we see that this estimate is

equivalent to the trivial estimate

∑

Q:Q⊂R1, l(Q)=2−nl(R)

√
µ(Q)

µ(R1)
a
Q
6

[ ∑

Q:Q⊂R1, l(Q)=2−nl(R)

µ(Q)

µ(R1)

] 1
2
[∑

Q

a2
Q

] 1
2
6

[∑

Q

a2
Q

] 1
2
,

(since squares Q ∈ D1 of fixed size do not intersect,
∑

Q:Q⊂R1, l(Q)=2−nl(R) µ(Q) 6 µ(R1) ).
So, the extension of χ

R
Q

h to the whole h does not cause much harm, and we get the sum

∑

Q,R :Q⊂R, l(Q)<2−ml(R),
RQ is transit

c
R,Q

〈∆
Q
ϕ,K

Θ
h〉

to estimate. Note that the inner product 〈∆
Q
ϕ,K

Θ
h〉 does not depend on R at all, so it

seems to be a good idea to sum over R for fixed Q first. Recalling that

c
R,Q

=
〈ψ〉

R
Q

〈h〉
R

Q

− 〈ψ〉
R

〈h〉
R

and that Λψ = 0 ⇐⇒ 〈ψ〉
R0 = 0, we conclude that for every Q ∈ Dtr

1 that really appears in
the above sum,

∑

R :R⊃Q, l(R)>2ml(Q),
RQ is transit

c
R,Q

=
〈ψ〉

R(Q)

〈h〉
R(Q)

,

where R(Q) is the smallest transit square R ∈ D2 containing Q and such that l(R) > 2ml(Q).
So, we obtain the sum

∑

Q: l(Q)<2−ml(R)

〈ψ〉
R(Q)

〈h〉
R(Q)

〈∆
Q
ϕ,K

Θ
h〉

to take care of.
Actually, the range of summation should be Q ∈ Dtr

1 , Q is good (default); there exists a
square R ∈ Dtr

2 such that l(Q) < 2−ml(R), Q ⊂ R and R
Q
is transit, so the last sum we wrote

includes some extra terms compared to the original one, namely, the terms corresponding to
the squares Q, for which R(Q) = R0. But first, we remember that 〈ψ〉

R0 = 0, and second,

now (but not before!) we are going to put the absolute value bars around each term, so we
may add as many terms as we want; the point is not to lose any of them. In this respect
everything is obviously fine.

Clearly, the squares with ‖∆
Q
ϕ‖

L2(µ)
= 0 do not contribute anything to the sum. Also,

since R(Q) is transit, |〈h〉
R(Q)

| > 1− δ. So, we can write

∑

Q: l(Q)<2−ml(R)

∣∣∣∣∣
〈ψ〉

R(Q)

〈h〉
R(Q)

〈∆
Q
ϕ,K

Θ
h〉
∣∣∣∣∣ 6
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1

1− δ

∑

Q: l(Q)<2−ml(R),
‖∆

Q
ϕ‖

L2(µ)
>0

|〈ψ〉
R(Q)

|
|〈∆

Q
ϕ,K

Θ
h〉|

‖∆
Q
ϕ‖

L2(µ)

· ‖∆
Q
ϕ‖

L2(µ)
6

1

1− δ

[
∑

Q: l(Q)<2−ml(R),
‖∆

Q
ϕ‖

L2(µ)
>0

|〈ψ〉
R(Q)

|2
|〈∆

Q
ϕ,K

Θ
h〉|2

‖∆
Q
ϕ‖2

L2(µ)

] 1
2 [∑

Q

‖∆
Q
ϕ‖2

L2(µ)

] 1
2
.

The last factor does not exceed
√
2‖ϕ‖

L2(µ)
. So, it is sufficient to show that the middle factor

squared is bounded by some constant times ‖ψ‖2
L2(µ)

. Switching to the summation over R,

we see that the middle factor squared equals

∑

R

|〈ψ〉
R
|2

∑

Q∈F(R)

|〈∆
Q
ϕ,K

Θ
h〉|2

‖∆
Q
ϕ‖2

L2(µ)

=:
∑

R

a
R
|〈ψ〉

R
|2,

where
F(R) := {Q : R(Q) = R, ‖∆

Q
ϕ‖

L2(µ)
> 0} .

So, in order to finish the story with σtr
3 , it is enough to show that the numbers a

R
satisfy

the Carleson condition. Note that for every Q ∈ F(R), one has Q ⊂ R and that the families
F(R) are pairwise disjoint (one could say much more, but these two trivial observations are
the only ones that will matter). Now, for every S ∈ D2, we have

∑

R:R⊂S

a
R
6

∑

Q:Q⊂S,
‖∆

Q
ϕ‖

L2(µ)
>0

|〈∆
Q
ϕ,K

Θ
h〉|2

‖∆
Q
ϕ‖2

L2(µ)

=
∑

Q:Q⊂S
‖∆

Q
ϕ‖

L2(µ)
>0

|〈∆
Q
ϕ, χ

S
·K

Θ
h〉|2

‖∆
Q
ϕ‖2

L2(µ)

6

2‖χ
S
·K

Θ
h‖2

L2(µ)
=

∫

S

|K
Θ
h|2 dµ 6 2B2µ(S)

(because Θ > δΦD2
> δΦ̃), and we are through.

XX. Estimation of σ1

Recall that
σ1 =

∑

Q,R: l(Q)>2−ml(R),
dist(Q,R)l(R)

〈∆
Q
ϕ,K

Θ
∆

R
ψ〉.

We are going to put the absolute value signs around every term and to restore the symmetry
between Q and R (so, we will add the corresponding part from the sum over pairs Q,R, for
which l(Q) > l(R)). Thus, we have to estimate the sum

σ′
1 =

∑

Q∈Dtr
1 , R∈Dtr

2 :
Q,R are good,

2−m6
l(Q)
l(R)

62m,

dist(Q,R)6max{l(Q),l(R)}

|〈∆
Q
ϕ,K

Θ
∆

R
ψ〉|
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(now all the conditions for the range of summation are written explicitely).
The key observation about this sum is that every square Q can interact with not more

than 22m(4 · 2m + 1)2(2m + 1) squares R and vice versa (the estimate is quite rough, of
course, and is obtained as follows: one has 2m + 1 possible values for l(R); once the size
l(R) ∈ [2−ml(Q), 2ml(Q)] is fixed, the corresponding squares R are contained in the square
of size (4 · 2m + 1)l(Q), centered at the same point as Q, are pairwise disjoint, and the area
of each of them is not less than 2−2ml(Q)2). Therefore, it is enough to show that for some
large constant U > 0, not depending on ϕ, ψ and Θ, one has

|〈∆
Q
ϕ,K

Θ
∆

R
ψ〉| 6 U‖∆

Q
ϕ‖

L2(µ)
‖∆

R
ψ‖

L2(µ)
,

provided that Q ∈ Dtr
1 , R ∈ Dtr

2 , Q,R are good, 2−m 6
l(Q)
l(R)

6 2m and dist(Q,R) 6

max{l(Q), l(R)}.

XXI. Negligible contours

Let G be a contour on the complex plane C. Let M̃ be some large positive number. We
will call G negligible (the full name should be M̃ -negligible with respect to the measure µ),
if for every r > 0,

µ{x ∈ C : dist(x,G) 6 r} 6 M̃r.

Lemma: Let G be a negligible contour splitting the complex plane C into two (open) regions
Ω1 and Ω2. Then for any two functions η1, η2 ∈ L2(µ) such that ηj vanishes outside Ωj ∪G,
one has

|〈η1, KΘ
η2〉| 6 4M̃‖η1‖L2(µ)

‖η2‖L2(µ)
.

Proof: Note that the condition that G is negligible immediately implies that µ(G) = 0. So,
we may assume that ηj vanishes outside Ωj. We have

|〈η1, KΘ
η2〉| 6

∫∫
|k

Θ
(x1, x2)| · |η1(x1)| · |η2(x2)| dµ(x1) dµ(x2).

Clearly, the integrand can be non-zero only if x1 ∈ Ω1 and x2 ∈ Ω2. According to the Schur
test (full L2-version), it is enough to find a function λ : C \G→ (0,+∞), such that

∫

Ω1

|k
Θ
(x1, x2)|λ(x1) dµ(x1) 6 4M̃λ(x2) for every x2 ∈ Ω2,

and vice versa, i.e.,

∫

Ω2

|k
Θ
(x1, x2)|λ(x2) dµ(x2) 6 4M̃λ(x1) for every x1 ∈ Ω1.

We will check that these properties hold for

λ(x) =
1√

dist(x,G)
.
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Indeed, for x1 ∈ Ω1 and x2 ∈ Ω2, we have

|k
Θ
(x1, x2)| 6

1

|x1 − x2|
6

1

max{dist(x1, G), dist(x2, G)}
.

Thus, according to the Comparison lemma,

∫

Ω1

|k
Θ
(x1, x2)|λ(x1) dµ(x1) 6

∫

Ω1

1

max{dist(x1, G), dist(x2, G)}
1√

dist(x1, G)
dµ(x1) 6

M̃

∫ +∞

0

1

max{t, dist(x2, G)}
1√
t
dt =

4M̃√
dist(x2, G)

= 4M̃λ(x2).

Now observe that

〈∆
Q
ϕ,K

Θ
∆

R
ψ〉 =

4∑

i,j=1

〈ϕ(i)

Q
, K

Θ
ψ(j)

R
〉,

where ϕ(i)
Q

:= χ
Qi
∆

Q
ϕ, and ψ(j)

R
:= χ

Rj
∆

R
ψ.

Assume that the boundaries of all the subsquares Qi and Rj are M̃-negligible contours.
Then it makes sense to write

〈ϕ(i)

Q
, K

Θ
ψ(j)

R
〉 =

〈χ
Qi\Rj

· ϕ(i)

Q
, K

Θ
ψ(j)

R
〉+ 〈χ

Qi∩Rj
· ϕ(i)

Q
, K

Θ
(χ

Rj\Qi
· ψ(j)

R
)〉+

〈χ
Qi∩Rj

· ϕ(i)

Q
, K

Θ
(χ

Qi∩Rj
· ψ(j)

R
)〉.

In the first two terms the supports of the functions are separated by negligible contours (∂Rj

and ∂Qi, respectively). So, the corresponding inner products are bounded by

4M̃‖ϕ(i)

Q
‖
L2(µ)

‖ψ(j)

R
‖
L2(µ)

6 4M̃‖∆
Q
ϕ‖

L2(µ)
‖∆

R
ψ‖

L2(µ)
.

As to the inner product 〈χ
Qi∩Rj

· ϕ(i)
Q
, K

Θ
(χ

Qi∩Rj
· ψ(j)

R
)〉, there are two possibilities:

Case 1: one of the squares (say, Qi) is terminal
Then we have the estimate

|k
Θ
(x, y)| 6 1

δmax{dist(x, ∂Qi), dist(y, ∂Qi)}

for all x, y ∈ Qi ∩ Rj and, repeating our above reasoning with the Schur test, we obtain

|〈χ
Qi∩Rj

· ϕ(i)

Q
, K

Θ
(χ

Qi∩Rj
· ψ(j)

R
)〉| 6

4M̃

δ
‖ϕ(i)

Q
‖
L2(µ)

‖ψ(j)

R
‖
L2(µ)

6
4M̃

δ
‖∆

Q
ϕ‖

L2(µ)
‖∆

R
ψ‖

L2(µ)
.

Case 2: both squares Qi and Rj are transit
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Then both functions χ
Qi∩Rj

· ϕ(i)

Q
and χ

Qi∩Rj
· ψ(j)

R
are constant multiples of the same

function η := χ
Qi∩Rj

· h. But the kernel k
Θ
is antisymmetric, and therefore 〈η,K

Θ
η〉 = 0.

What if the boundary of some square Qi (or Rj) is not negligible? We do not know
how to get a good estimate in this case; instead, we will try to rule it out by declaring the
corresponding squares bad. But we should be very careful here: the temptation to declare
a square Q ∈ Dtr

1 bad if ∂Q is not negligible should be severely suppressed, because, as we
remember, “badness” of the square Q should depend rather on D2, than on Q itself. So, we
are going to use a little bit less straightforward definition.

Namely, we will call a transit square Q ∈ D1 bad if there exists a transit square R ∈ D2

such that 2−ml(Q) 6 l(R) 6 2ml(Q), dist(R,Q) 6 2ml(Q) and for at least one j = 1, 2, 3, 4,

the boundary ∂Rj is not M̃ -negligible (we do not care about the terminal squares, so let
them all be “good by the definition”). Then for every pair of squares Q,R appearing in the
sum σ′

1, the assumption that Q is good allows to conclude that all the four subsquares Rj of
the square R are negligible and vice versa! Now it remains only to show that we can choose
m and M̃ (in this order) so that PD2

{Q is bad} 6 δ for every Q ∈ Dtr
1 .

XXII. Estimation of probability

Let Q ∈ Dtr
1 . Consider the “extended lattice”

D̃2 = D̃2(ω) =
{
ω +

[
j
2n
, j+1

2n

)
×

[
k
2n
, k+1

2n

)
: j, k, n ∈ Z, n > 1

}
.

Clearly, D̃2 contains every square R ∈ D2 of size 1
2
or less. Note that when ω runs over[

−1
4
, 1

4

)
×
[
−1

4
, 1

4

)
, the lattice D̃2 runs over its whole period.

Starting now, we will declare a square Q ∈ Dtr
1 bad if either

1) there exists a square R ∈ D̃2 such that dist(Q, ∂R) 6 16l(Q)αl(R)1−α and l(R) >

2ml(Q), or 2) there exists a square R ∈ D̃2 such that R ⊂ (4 · 2m + 1)Q, l(R) > 2−(m+1)l(Q)

and ∂R is not M̃ -negligible. We leave it to the reader to check that every square Q bad in

the sense of Section XV, XVI or XXI is bad according to this new definition as well.
Choice of m
Fix k > m. Let us estimate the probability that there exists a square R ∈ D̃2 of size

l(R) = 2kl(Q) such that dist(Q, ∂R) 6 16l(Q)αl(R)1−α. Since the lattice D̃2 runs over its
whole period, we can find this probability exactly: it equals to the ratio of the area of the
dashed rim on Picture 3 to the area of the whole square with side 2kl(Q) (just look at where
the center x

Q
should lie with respect to the lattice D2). Observing that

16l(Q)αl(R)1−α + l(Q)
2

6 17l(Q)αl(R)1−α,

we conclude that this ratio is less than 68
[
l(Q)
l(R)

]α
= 68 · 2−kα.

Therefore the probability that the square Q is bad according to the first part of our
definition does not exceed

68
∞∑

k=m

2−kα =
68 · 2−mα

1− 2−α
6
δ

3
,
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provided that m is taken large enough.

Choice of M̃

Now let us look at how large the probability that Q is bad according to the second part of
our definition may be. Recall that ∂R is M̃ -negligible if µ{x ∈ C : dist(x, ∂R) 6 r} 6 M̃r
for all r > 0. Note first of all, that we do not have any trouble with r > l(Q). Indeed, since
R ⊂ (4 · 2m + 1)Q, we have

{x ∈ C : dist(x, ∂R) 6 r} ⊂ B(x
Q
, (4 · 2m + 1)l(Q) + r)) ⊂ B(x

Q
, (4 · 2m + 2)r).

But µ(B(x
Q
, (4 · 2m + 2)r) 6 (4 · 2m + 2)Mr, because Q is a transit square, r > l(Q) and

therefore R(x
Q
) 6 l(Q) 6 r < (4 · 2m + 2)r. So, everything is okay with such r, provided

that M̃ > (4 · 2m + 2)M .
Now observe that for r < l(Q) we have

{x ∈ C : dist(x, ∂R) 6 r} ⊂ B(x
Q
, (4 · 2m + 2)l(Q) ).

So, the part of the measure µ that lies outside the disk B(x
Q
, (4 · 2m + 2)l(Q) ) does not

matter and we can replace the whole measure µ by its restriction µ̃ to this disk, defined as

µ̃(E) := µ(E ∩B(x
Q
, (4 · 2m + 2)l(Q) ) ).

Though we do not know much about µ̃, there is one thing we can say for certain:

µ̃(C) 6 (4 · 2m + 2)Ml(Q);

and this will be enough for us.
Consider the grid L = L(ω) consisting of all vertical lines serving as boundaries of squares

in D̃2 of size 2−(m+1)l(Q). We are going to show that if M̃ is sufficiently large, then, with

probability 1 − δ
3
or more, this entire grid is M̃

2
-negligible with respect to the measure µ̃.

Of course (together with the same estimate for horizontal lines), this will imply that the
probability that the square Q is bad according to the second part of our definition does not
exceed 2δ

3
, finishing the story.

Note that the grid L runs (several times) over its whole period when ω runs over[
−1

4
, 1

4

)
×
[
−1

4
, 1

4

)
. So, we can change the random parameter ω to another random param-

eter τ ∈ [0, 2−(m+1)l(Q) ) (which is just the real part of ω mod 2−(m+1)l(Q), of course) and
reformulate our problem as the following: we should demonstrate that the one-dimensional
Lebesgue measure of such τ ∈ [0, 2−(m+1)l(Q) ) that the grid L(τ) consisting of all vertical

lines intersecting the real axis at the points of the kind τ + k
2m+1 , k ∈ Z, is not M̃

2
-negligible

with respect to the measure µ̃, does not exceed δ
3
2−(m+1)l(Q).

Consider the 2−(m+1)l(Q)-periodic sweeping ν of the measure µ̃, i.e. the measure defined
on Borel subsets E of the real line R by

ν(E) = µ̃
(⋃

k∈Z

(
k · 2−(m+1)l(Q) + E

)
× R

)
.
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Note that L(τ) is not M̃
2
-negligible if and only if Mν(τ) > M̃

2
, where

Mν(τ) = sup
r>0

ν([τ − r, τ + r])

2r

is the Hardy-Littlewood maximal function. But the standard estimate for the maximal
function of a periodic measure yields

m1{τ ∈ [0, 2−(m+1)l(Q)) : Mν(τ) >
M̃

2
} 6

4ν([0, 2−(m+1)l(Q)) )

M̃
=

4µ̃(C)

M̃
6

4(4 · 2m + 2)M

M̃
l(Q).

So, if M̃ > 12δ−1(4 · 2m + 2)M , we are okay.

XXIII. Quantitative pulling ourselves up by the hair

We are going to present the succession of “fancy” Tb theorems in the nonhomogeneous
setting.

The first one is the least “fancy” because b will be accretive in it, but it solves a problem
of P. Mattila about an analytic characterization of Besicovitch rectifiable sets.

The middle one is the theorem proved in the previous sections; it gives an alternative
proof of the result of Guy David [D1], thus solving the analytic part of Vitushkin’s conjecture.

The last one—and the most difficult—gives a quantitative information in the solution of
Vitushkin’s conjecture. Namely, given a set E of positive analytic capacity γ and length M ,
this last theorem allows us to say quantitatively what portion of the length is rectifiable,
and “how” rectifiable it is.

In what follows µ is a positive measure on C satisfying the following non-uniform linear
growth condition:

lim sup
r→0

µ(B(x, r))

r
<∞ for µ a.e x .

The truncated Cauchy integral is

(Cε
µb)(ζ) =

∫

|z−ζ|>ε

b(z) d µ(z)

ζ − z
.

The maximal Cauchy integral is

(C∗
µb)(ζ) = sup

ε>0
|(Cµ

ε b)(ζ)| .

Recall that for any 1-Lipschitz function Φ on C the following Calderón-Zygmund kernel
was introduced

kΦ(x, y) =
x− y

|x− y|2 + Φ(x)Φ(y)
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and let KΦ be the canonical Calderón-Zygmund operator with this antisymmetric kernel.
Recall that

kΦ(x, y) ≤ min[
1

Φ(x)
,

1

Φ(y)
] .

Consider another truncation of the Cauchy integral:

(CΦb)(ζ) =

∫

|z−ζ|≥Φ(ζ)

b(z) d µ(z)

ζ − z
.

As usual M1 denotes the following maximal function

(M1f)(ζ) = sup
r>0

1

r

∫

B(ζ,r)

|f(z)| d µ(z) .

Lemma 1:
|(KΦf)(x)− (CΦf)(x)| 6 A(M1f)(x) .

Proof Fix x and consider the absolute value of the difference of the kernels. For y ∈
B(x,Φ(x)) it is at most 1

Φ(x)
. For y such that |y − x| > Φ(x) it is

6
(Φ(x)Φ(y)|x− y|

[|x− y|2 + Φ(x)Φ(y)]|x− y|2 6 |kΦ|
Φ(x)Φ(y)

|x− y|2 6
Φ(x)

|x− y|2 .

Splitting {y : |y − x| > Φ(x)} into annuli {y : 2k+1Φ(x) > |y − x| > 2kΦ(x)} finishes the
proof.

Recall that we have assumption of non-uniform linear growth on µ.
Let us also normalize µ and think (if otherwise not stated) that ‖µ‖ = 1. Recall that

M-non-Ahlfors disc is a B(x,R) such that

µ(B(x,R)) >MR, x ∈ supp µ .

In this case the point x is called an M-non-Ahlfors point.
Lemma 2: There exists ε = ε(M), ε → 0 if M → ∞, such that the union of all

M-non-Ahlfors discs has µ-measure at most ε.
Proof. It follows from non-uniform linear growth condition that

µ{x ∈ suppµ : sup
r

µ(B(x, r))

r
>

√
M} = δ(M) → 0, when M → ∞ .

Denote this set by GM . For x ∈ supp µ \GM we choose the maximal M-non-Ahlfors disc
centered at x (if any). Their union will be called O. By Vitali’s lemma, O is covered by
∪B(xj , 5rj), where xj ∈ supp µ \GM , and B(xj , rj) are disjoint and M-non-Ahlfors. Thus,

Σ ri 6
1

M
Σµ(B(xi, ri)) 6

1

M

On the other hand, µ(B(xj, 5rj)) 6 5
√
M rj . Thus,
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µ(O) 6 Σµ(B(xj , 5rj)) 6 5
√
MΣ rj 6

5√
M

M-non-Ahlfors points can be only in O ∪GM . So we see that

µ(M-non-Ahlfors points) → 0, when M → ∞
But we want a bit more—the smallness of measure of the union of allM-non-Ahlfors discs.

To get this, consider points in GM , and consider maximal M-non-Ahlfors disc centered at
each of them. Call their union G. The set G is covered by ∪jB(yj, 5Rj), where B(yj, Rj) are

disjointM-non-Ahlfors discs. Consider y ∈ B(yj, 5Rj). Then
µ(B(y,10Rj ))

10Rj
>

µ(B(yj ,Rj))

10Rj
>

√
M
10

.

In our notations this means that y ∈ GM/100. Thus, G ⊂ GM/100. So µ(G) is small if M is
large. The lemma is proved.

Lemma 3: Let ‖µ‖ = 1, let µ be a positive measure with non-uniform linear growth, and
let H = HM be the union of all M-non-Ahlfors discs. Let Φ be a 1-Lipschitz function such
that Φ(x) > dist(x,C \H). Then KΦ and CΦ are bounded or unbounded simultaneously on
L2(µ).

Proof. In Lemma 1 we saw that |(KΦ − CΦ)(f)(x)| 6 A(M1f)(x). Actually, the proof
says more, namely

|(KΦ − CΦ)(f)(x)| 6 A(M1,Φf)(x) := A sup
r>Φ(x)

1

r

∫

B(x,r)

|f(y)| d µ(y) .

But for r > Φ(x) we have µ(B(x, r)) 6 Mr. Therefore,

(M1,Φf)(x) 6M sup
1

µ(B(x, r))

∫

B(x,r)

|f(y)| d µ(y) .

It is well-known that this maximal operator is bounded in L2(µ). Lemma is proved.

Now we are ready to present several conditions for KΦ (Φ is a 1-Lipschitz function) to
be bounded on L2(µ). While doing that we are interested in such Φ’s that FΦ := {x ∈ C :
Φ(x) = 0} has positive measure (or, if circumstances permit, even measure close to 1). This
interest is easy to explain: for such Φ we have

(KΦ f, g) = (Cf, g) (∗)

for f, g supported on FΦ. And after all, we are interested in estimates of the Cauchy operator
C.

Theorem 1: Let µ be a measure with non-uniform linear growth, let HM be the union
of all M-non-Ahlfors discs,

Φ(x) > dist(x,C \HM)

and let Φ be a 1-Lipschitz function. Consider (KΦ,εf)(x) :=
∫
|y−x|>ε

kΦ(x, y)f(y) d µ(y). If

there exists a constant B such that

(K∗
Φ1)(x) := sup

ε>0
|(KΦ,ε1)(x)| 6 B <∞ for µ a. e. x
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then
‖KΦ‖L2(µ)→L2(µ) 6 ABM .

An assumption on the maximal singular function (K∗
Φ1) can be conveniently modified.

Let us consider the following assumption of a.e. finiteness of the maximal singular function:

(K∗
Φ1)(x) <∞ for µ a. e. x .

Fix a large M and L > 100M . Fix a bounded measurable function b. If x is such that
(K∗

Φb)(x) > L, then there exists a maximal ε0(x) such that |(KΦ,ε0b)(x)| > L (the function
ε→ (KΦ,ε0b)(x) is right continuous). Consider

GL(b) := ∪x∈supp µB(x, 2ε0(x)) .

Lemma 4: Let us assume the a.e. finiteness of the maximal singular function. Then
µ(GL(b) \HM) → 0 if L→ ∞.

Remind that Calderón-Zygmund constants of kernel kΦ are bounded by C.

Proof. Let y ∈ B(x, 2ε0(x). Let us prove first that

K∗
Φ1(y) ≥ L− ACM

for an absolute constant A. In fact, let us consider two cases: a) Φ(x) ≥ 1
5
ε0(x), b) Φ(x) <

1
5
ε0(x). In the first case let ε = 20Φ(x). Then

|Kε
Φ(y)−K

ε0(x)
Φ (x)| ≤

∫

z:|z−y|≥ε

|kΦ(y, z)− kΦ(x, z)| , dµ(z) +
∫

z:|z−y|≤20Φ(x)

|kΦ(x, z)| dµ(z) .

The first integral can be estimated as usual using the Calderón-Zygmund property of the
kernel kΦ and the fact that all “large” disks centered at y are contained in discs centered
at x of “almost” the same radii. These radii will be larger than Φ(x), and, hence, they
will be M-Ahlfors. The second integral is bounded by AM because kΦ(x, z) ≤ 1

Φ(x)
and

µ(B(y, 20Φ(x)) ≤ µ(B(x, 40Φ(x)) ≤ 40MΦ(x) (the first inequality holds because we are in
the first case).

Let us consider case b) now. Put ε = 4ε0(x). Then

Kε
Φ(y)−K

ε0(x)
Φ (x)| ≤

∫

z:|z−y|≥ε

|kΦ(y, z)− kΦ(x, z)| dµ(z)+

∫

z:|z−y|≤4ε0(x)

|kΦ(x, z)| dµ(z) .

The first integral can be estimated exactly as in the case a). The second integral is bounded
by C

ε0(x)
µ(B(x, 6ε0(x))), where C is the constant from Calderón-Zygmund properties of our

kernel. The disc B(x, 6ε0(x)) is M-Ahlfors because we are in case b). Thus the second
integral is also bounded by ACM .
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Now it is clear that the assumption

K∗
Φ1(x) <∞ for µ a.e x

implies that

µ(GL(1)) → 0 when L→ ∞ .

Lemma 4 is proved.

Recall that for a given M , HM denotes the union of all M-non-Ahlfors disks.

Theorem 1a: Let µ satisfy the non-uniform linear growth condition, let Φ be a 1-
Lipschitz function such that Φ(x) > dist(x,C \HM), and assume the a.e. finiteness of the
maximal singular function (K∗

Φ1)(x). Let Ψ be a 1-Lipschitz function such that Ψ(x) >

max[dist(x,C \ (GL(1)),Φ(x)]. Then
1) (K∗

Ψ1)(x) 6 AC(L+M) uniformly, and
2) ‖KΨ‖L2(µ)→L2(µ) 6 AC(L+M)M .

Remark. In the first claim of Theorem 1a one can replace 1 by any bounded function
b, ‖b‖∞ ≤ 1.

Proof. The second claim of the Theorem follows from the first claim and from Theorem
1. The first claim is a simple calculation using Lemma 1. Let us do it for the sake of
completeness.

Let Cε
Ψf(x) :=

∫
y:|y−x|>max[ε,Ψ(x)]

k(x, y) dµ(y).

Step 1. For any 1-Lipschitz Ψ > Φ and any ε,

|Kε
Ψ1(x)− Cε

Ψ1(x)| 6 AM1,Ψ1(x) 6 AM1,Ψ1(x) 6 AM .

In fact, if ε 6 Ψ(x), then

|Kε
Ψ1(x)− Cε

Ψ1(x)| 6
∫

ε6|y−x|6Ψ(x)

dµ(y)

Ψ(x)
+

∫

y:|y−x|>Ψ(x)

Ψ(x)Ψ(y)|x− y|
(|x− y|2 +Ψ(x)Ψ(y))|x− y|2 .

The first term is bounded by µ(B(x,Ψ(x))
Ψ(x)

6 M .
The second term can be estimated precisely as in Lemma 1 if we use that Ψ > Φ. So it

is also bounded by AM . If now ε > Ψ(x), then only the second term will appear. We are
done with the first step.
Step 2. Recall that ε0(x) = max{ε : |Kε

Φ1(x)| 6 L}. Fix x0 and let ε 6 ε0(x0). Then
Ψ(x0) > 2ε0(x0) > ε. Then |Kε

Ψ1(x0)| 6
∫
ε6|y−x|62ε0

|kΨ(x0, y) dµ(y) + |K2ε0
Ψ 1(x0)|. The first

term is bounded by µ(B(x0,2ε0)
Ψ(x0)

6
µ(B(x0,Ψ(x0))

Ψ(x0)
6M since Ψ > Φ. Using step 1 we can reduce

the estimate of the second term to the estimate of |C2ε0
Ψ 1(x0)| (with the error bounded by

AM). Let us now use the fact that Ψ(x0) > 2ε0(x0), Ψ(x0) > Φ(x0). This means that

C2ε0
Ψ 1(x0) = C

Ψ(x0)
Φ 1(x0). By another application of step 1 we can see that the last quantity

is within AM of K
Ψ(x0)
Φ 1(x0). The absolute value of this expression is bounded by L by the
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definition of ε0 and the fact that Ψ(x0) > 2ε0. In particular, our second term is bounded by
L+ AM .
Step 3. ε0(x0) < ε 6 Ψ(x0). Then |Kε

Ψ1(x0)−Kε
Φ1(x0)| 6

∫
ε6|y−x0|6Ψ(x0)

|kΨ(x0, y)| dµ(y) +
|
∫
ε6|y−x0|6Ψ(x0)

kΦ(x0, y) dµ(y)|+
∫
y:|y−x0|>Ψ(x0)

|kΦ(x0, y)− kΨ(x0, y)| dµ(y). The first term is

bounded by µ(B(x0,Ψ(x0))
Ψ(x0)

6M . The second term is bounded by |Kε
Φ1(x0)|+ |KΨ(x0)

Φ 1(x0)| 6
2L, because ε0(x0) < ε 6 Ψ(x0), just by the definition of ε0. The third term can be estimated
precisely as in Lemma 1 if we notice that the integrand is bounded by |kΦ(x0, y)−k(x0, y)|+
|k(x0, y)− kΨ(x0, y)| 6 2Ψ(x0)

|x−x0|2 . The integral then is bounded by AM .

Step 4. ε > Ψ(x0). We use the first step to write |Kε
Ψ1(x0) − Cε

Ψ(x0)| 6 AM and also
|Kε

Ψ1(x0)−Cε
Ψ(x0)| 6 AM . Therefore, we are left to estimate |Cε

Φ1(x0)−Cε
Ψ(x0)|. But this

quantity vanishes because ε > Ψ(x0) > Φ(x0).
The first claim of Theorem 1a is completely proved. We have already made a remark that
the second claim follows from the first one combined with Theorem 1.

Before proving Theorem 1, we would like to present its beautiful application found by
Xavier Tolsa [XT2].

Recall that R(x, y, z) denotes the radius of the circle passing through x, y, z ∈ C. We
will call a measure µ > 0 on C Besicovitch-Melnikov-Verdera rectifiable if µ =

∑∞
n=0 µ|En,

En, n = 1, 2, 3, ... are compact sets, and

c2(µ|En) :=

∫∫∫

E3
n

R−2(x, y, z) d µ(x) d µ(y) d µ(z) <∞, n = 1, 2, 3, ...;µ(E0) = 0 .

The curvature c2(µ) was widely used by Melnikov and Verdera (see, for example [MV]). The
name is natural because if µ = H1|E, E being a compact set, then µ turns out to be a
Besicovitch-Melnikov-Verdera rectifiable measure if and only if E is a Besicovitch rectifiable
set. This is a difficult geometric result proved by G. David and J.-C. Léger. This result
becomes especially difficult because of the nonhomogeneity of the measure µ, namely because
lim infr→0

µ(B(x,r))
r

may apriori easily become 0.
In his paper [XT2] Xavier Tolsa gave the following application of Theorem 1a. We use

the notations of Theorem 1.

Theorem (Xavier Tolsa): If µ satisfies non-uniform linear growth condition and if for
any M the assumption of a.e. finiteness of the maximal singular function (K∗

Φ1)(x) holds for
Φ(x) := dist(x,C \ HM), then µ is Besicovitch-Melnikov-Verdera rectifiable. If in addition

for µ a.e. x, lim supr→0
µ(B(x,r))

r
> 0, then supp µ is Besicovitch rectifiable. If E is a compact

set such that H1(E) <∞, then E is Besicovitch rectifiable if and only if the principal value
of the Cauchy integral CH1|E(x) exists for H1 a.e. x ∈ E.

The last claim completely solves the conjecture of Mattila [Ma]. Mattila proved this
result with the extra assumption of “non-uniform homogeneity”:

lim inf
r→0

H1(B(x, r))

r
> 0 for H1 a.e. x ∈ E .
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Proof. We will prove the first assertion. The rest is not difficult to deduce. We choose
L,M so large that

µ(GL(1) ∪HM) <
1

2
.

Theorem 1a says that with Ψ(x) := dist(x,C\(GL(1)∪HM)) the operatorKΨ is bounded
on L2(µ) with norm at most ALM . Consider GL,M := GL(1) ∪HM , f = 1C\GL,M

. Then (*)
implies

c2(µ|C \GL,M)) =

∫

C\GL,M )

|C1C\GL,M )|2 d µ =

∫

C\GL,M )

|KΨf |2 d µ 6 ALM .

The first equality is the famous formula of Melnikov-Verdera from [MV]. Notice that µ(C \
GL,M) > 1

2
. But choosing larger L,M we can make µ(C \ GL,M) as close to 1 as we wish

(recall that our convention is that ‖µ‖ = 1). So we can scoop the measure µ by pieces with
finite curvature c2. This proves the first claim of the Theorem.

The other claims now follow easily. For example, the a.e. existence of the principal value
of the Cauchy integral CH1|E(x) implies the a.e. finiteness of the maximal singular integral
C∗

H1|E(x). This and the non-uniform linear growth of H1 (it always has this property)

imply that a.e. finiteness of the maximal singular integral (K∗
Φ1)(x) holds for Φ(x) :=

dist(x,C \HM) and any M (see Section VIII). Then µ = H1|E is a Besicovitch-Melnikov-
Verdera rectifiable measure (by the first claim). The result of David and Léger now shows
that E is Besicovitch rectifiable.

To prove Theorems 1 (and, so, to prove the second claim of Theorem 1a) we need to
use our decomposition into good and bad functions. Recall that we used the probability
space (Ω, P ) of pairs of random dyadic lattices, ω = (ω1, ω2), here ωi “enumerates” the i-th
(i = 1, 2) dyadic lattice Di. These lattices D1, D2 are independent. We used also the notion
of “good” and “bad” squares in D1 andD2. We also used the decomposition of sure functions
f, g ∈ L2(µ) to random functions

f = fgood + fbad, g = ggood + gbad ,

fbad = ΣQ∈D1,Q is bad∆Qf, gbad = ΣR∈D2,R is bad∆Rg .

The proof of Theorem 1 (and, so, of 1a) is based on the following lemma.

Lemma 5: Let µ be a measure with non-uniform linear growth, let HM be the union of
all M-non-Ahlfors discs, let

Φ(x) > dist(x,C \HM) ,

and let Φ is a 1-Lipschitz function. Consider (KΦ,εf)(x) :=
∫
|y−x|>ε

kΦ(x, y)f(y) d µ(y). Let

B be a finite constant such that

(K∗
Φ1)(x) := sup

ε>0
|(KΦ,ε1)(x)| 6 B for µ a. e. x .

Then
|(KΦfgood, ggood)| 6 ABM‖f‖‖g‖ ,
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|(KΦf, g)| 6 ABM ||f‖‖g‖+ ‖KΦ‖R(ω, f, g),
where the expectation of the remainder R(ω, f, g) has the following estimate: ER(ω, f, g) 6
1
2
‖f‖‖g‖.

The inequalities of the lemma imply immediately Theorem 1. In its turn, the last in-
equality follows from the first one and the fact proved in the previous sections:

E‖fbad‖2 6 45−239‖f‖2 ,
E‖gbad‖2 6 45−239‖g‖2 .

The proof of the first inequality of the lemma takes a good part of previous sections. So,
Theorem 1 and 1a are proved.

What if we replace the function 1 by a complex valued function b (even, say, real valued
but not always positive) in one of our main assumptions:

(K∗
Φb)(x) := sup

ε>0
|(KΦ,εb)(x)| 6 B <∞ for µ a. e. x ?

This is equivalent to still having the function 1 but having complex measure µ. We prefer
to denote by µ only positive measures, and to use the symbol ν for b d µ. So now b is an
L∞(µ)-function of norm 1, and we assume that

(C∗b)(x) := sup
ε>0

|(Cεb)(x)| <∞ for µ a. e. x .

We do not write the subscript µ because it will be always the same µ.
We still assume everywhere below that µ has the non-uniform linear growth condition

(unless it is stated otherwise).
Now we are in the framework of the Tb theorem rather than the T1 theorem. The main

problem we encounter is that our b will not be accretive. The second problem (we always
have it in this paper) is that µ has no doubling property.

We start again by considering the set HM of allM-non-Ahlfors discs for µ. Again we can
see that our assumption on (C∗b)(x) implies (see Lemma 1) the a.e finiteness of the maximal
singular operator:

(K∗
Φb)(x) <∞ for µ a. e. x

for every 1-Lipschitz Φ such that Φ(x) > dist(x,C\HM)). Exactly as before we can introduce
the sets GL = GL(b) = the union of B(x, 2ε0(x)), where ε0 is the maximal radius for which
|(KΦ,ε0b)(x)| > L, and GL,M = GL ∪HM .

Lemma 6: Let (K∗
Φb)(x) <∞ for µ a. e. x hold. Then µ(GL) → 0 when L→ ∞.

Let Ψ(x) = dist(x,C \GL,M). The set FΨ = {x ∈ supp µ : Ψ(x) = 0} has measure close
to the full measure of µ. Unfortunately, unlike in Theorem 1a, we cannot say that KΨ is
bounded on L2(µ). The place where the proof will break down is Lemma 5. The estimate
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for good functions will not work. This is because ∆Qf is now adapted to the function b.
On squares where accretivity of b becomes very bad (or non-existent) the pieces ∆Qf will
blow up because the accretivity constant lives in their denominators. This was impossible
for b = 1—it is accretive in any scale. To deal with this problem of non-accretivity of b we
need even more randomness: first let us assume that for a certain positive η the union of
squares (“non-accretive squares”) Q ∈ D1 such that

|
∫

Q

b d µ| < η µ(Q)

has total measure less than δ, and this is uniformly true for every random lattice D1 ( so for
D2 also).

Let Ti be the family of “non-accretive” squares of Di, i = 1, 2, in the above sense. Let
ω ∈ Ω. Let T ω

i = ∪Q∈Ti
Q.

We have the (strange) assumption that

µ(T ω
1 ∪ T ω

2 ) 6 δ for all ω ∈ Ω . (∗∗)

Lemma 7: Consider any 1-Lipschitz function Φω such that Φω(x) > dist(x,C \ (GL,M ∪
T ω
1 ∪ T ω

2 )). Then
|(KΦω

fgood, ggood)| 6 ALM η−2‖f‖‖g‖ .

This lemma is the result of our previous sections. Using the last inequality we can obviously
write

|(KΦω
f, g)| 6 ALM η−2‖f‖‖g‖+ ‖KΦω

‖R(ω, f, g)
with R(ω, f, g) having small average (exactly as in Lemma 5). But now it is not clear what
to do with the random norm ‖KΦω

‖. We can consider a sure function Φ = supΦω. It is
again 1-Lipschitz and again

|(KΦf, g)| 6 ALM η−2‖f‖‖g‖+ ‖KΦ‖R(ω, f, g)
with small ER(ω, f, g). So the bound for the norm of ‖KΦ‖ will follow by averaging the
previous inequality.

But this is useless because our “nice” set

FΦ = {x : Φ(x) = 0} = ∩ωFΦω
= ∩ω{x : Φω(x) = 0}

and these random sets could easily have empty intersection.
We have, however, an extra “strange” assumption (**): µ(T ω

1 ∪ T ω
2 ) 6 δ for all ω ∈ Ω.

Then for sufficiently large L,M we have

µ(GL,M ∪ T ω
1 ∪ T ω

2 ) 6 2δ for all ω ∈ Ω .

Notice that this means (by Fubini’s theorem and Tchebyshov’s inequality) that

µ{x : P{ω : x ∈ GL,M ∪ T ω
1 ∪ T ω

2 } 6
√
2δ} > 1−

√
2δ .
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We can now consider the expectation of Φω rather than maximum. Moreover, as we have
done in Section IV, let us now consider the truncated mathematical expectation:

Ψ(x) := inf{E(Φω(x) 1S(ω)) : S ⊂ Ω, P (S) = 1−
√
2δ} .

Now we have the good estimate for the zero set FΨ:

µ(FΨ) > 1−
√
2δ .

On the other hand, Lemma 7 can leads us to

Theorem 2: Let µ have a non-uniform linear growth condition. Assume the a.e. finite-
ness of maximal singular operator, namely:

(C∗b)(x) := sup
ε>0

|(Cεb)(x)| <∞ for µ a. e. x

We also assume that µ has the non-uniform linear growth condition. Assume also (**). Let
Φω(x) = dist(x,C\(GL,M ∪T ω

1 ∪T ω
2 )), and let Ψ be the truncated mathematical expectation

of Φω defined above. Then
1)

|(KΨf, g)| 6 ALMη−2‖f‖‖g‖+ (‖K∗
Ψ‖+ AM)R(ω, f, g)

where ER(ω, f, g) 6 Aδ‖f‖‖g‖.
2) In particular, ‖KΨ‖L2(µ)→L2(µ) 6 ALMη−2.

Automatically, for the set FΨ (whose measure µ(FΨ) > 1−
√
2δ) we have

‖C‖L2(FΨ,µ)→L2(FΨ,µ) 6 ALMη−2 .

This theorem was proved by all the previous sections. However, the second part of
the theorem requires the estimate of ‖K∗

Ψ‖ via ‖KΨ‖. This is done in [NTV2] for Ahlfors
measures (i.e. measures having a uniform linear growth condition). Completely similar
reasoning for non-uniformly Ahlfors measures (i.e. measures having a non-uniform linear
growth condition) can be found in Section XXV of the present paper.

Theorem 2 gives the analytic part of Vitushkin’s conjecture but without the estimate of
how large the rectifiable part of Vitushkin’s compact is, and how rectifiable it is. This is
because the assumption (**) does not happen very often. In fact, why should an arbitrary
non-zero complex function b (and in applications we usually do not know anything else
about b) be accretive except for a small set? In our previous sections we achieve (**) by
localizing our considerations to an unspecified small disc around a Lebesgue point x0 of b,
where b(x0) 6= 0. Clearly, this way will not lead us to the proof of quantitative version of
Vitushkin’s conjecture.

However, there is one piece of information which is usually available about b, and which
has not been used so far. Namely, we have the accretivity of b in one—the highest—scale:

‖b‖∞ = 1, |
∫

C

b d µ| = γ > 0 . (γ)
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This brings us to the quantitative version of Tb theorem, where b has accretivity only at
the highest scale. We do not assume (**), but we assume (γ). As always ‖µ‖ = 1.

Theorem 3: Assume the a.e. finiteness of the maximal singular operator:

(C∗b)(x) := sup
ε>0

|(Cεb)(x)| <∞ for µ a. e. x .

Also assume that µ has the non-uniform linear growth condition. Assume also (γ). Then
there exists a set F , µ(F ) > 3γ

16
, such that

‖C‖L2(F,dµ)→L2(F,dµ) 6 AL(γ)M(γ)γ−20

where M(γ) = inf{M : µ(HM) < γ
32
} and L(γ) = inf{L : µ(GL \HM(γ))) <

γ
32
}.

The next theorem is the promised quantitative version of Vitushkin’s conjecture. We will
obtain it (easily) as a corollary of Theorem 3.

Theorem 4 (quantitative version of Vitushkin’s conjecture): Let E ⊂ C be a
compact set such that its length H1(E) = M < ∞ and its analytic capacity γ(E) = γ > 0.
Then there exists a set F , H1(F ) > γ

16
, such that

c2(H1|F ) 6 A (
diamE

γ
)(
M

γ
)42H1(F ) .

Proof of Theorem 3: Consider Ti = maximal squares from Di such that

|
∫

Q

b d µ| 6 γ

2
µ(Q) .

Put Ti = ∪Q∈Ti
Q, i = 1, 2. For brevity, let E = suppµ. Using (γ) we have

|
∫

E

b d µ| = |
∫

T1
b d µ|+ |

∫

E\T1
b d µ| =

|ΣQ∈T1

∫

Q

b d µ|+ |
∫

E\T1
b d µ| 6 γ

2
ΣQ∈T1µ(Q) + µ(E \ T1) 6

γ

2
+ µ(E \ T1) .

Therefore,

µ(E \ T ω
1 ), µ(E \ T ω

2 ) >
γ

2
.

We wrote the superscript ω to emphasize that these are random sets. We want to show
that for some detectable (=not very small) set of x ∈ E the probability p(x) := P{ω : x ∈
E \ (T ω

1 ∪ T ω
2 )} is not too small. Denote p1(x) := P{ω : x ∈ E \ T ω

1 }. Notice that the sets
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E \ T ω
1 , E \ T ω

2 are independent and that E \ (T ω
1 ∪T ω

2 )} = (E \ T ω
1 )∩ (E \ T ω

2 ). Therefore,
p(x) = p1(x)

2. Also

∫

E

p1(x) d µ = E

∫
1E\T ω

1
d µ = Eµ(E \ T ω

1 ) >
γ

2
.

Now let us split E = S ∪ L, where S := {x ∈ E : p1(x) 6
γ
4
} and L := {x ∈ E : p1(x) >

γ
4
}. Then we have µ(L) >

γ
4
. For x ∈ L, p(x) = p21(x) >

γ2

16
. For the sake of brevity we

denote β = γ2

16
. So

µ{x ∈ E : P{ω : x ∈ E \ (T ω
1 ∪ T ω

2 )} > β} >
γ

4
.

Now let us choose M =M(γ), k = L(γ) to be smallest numbers such that

µ(HM) 6
γ

32
, µ(GL \HM) 6

γ

32
.

Consider Oω := GL,M ∪ T ω
1 ∪ T ω

2 . Put Φω(x) := dist(x,C \Oω). Thus,

µ{x ∈ E : P{ω : Φω(x) = 0} > β} > 3γ

16
.

Let us introduce sure 1-Lipschitz function

Φ0(x) := inf
S⊂Ω, P (S)=β

sup
ω∈S

Φω(x) .

Let us also fix a small positive number τ and put

Φ(x) := Φ0(x) + τ .

All estimates in the future will not depend on τ .
We know that the zero set F := FΦ0 has detectable measure:

µ(F ) >
3γ

16
.

We will need a small modification of Lemma 7 of this section.
Lemma 7a: Consider any 1-Lipschitz function Φω such that Φω(x) > dist(x,C\(GL,M ∪

T ω
1 ∪ T ω

2 )). Fix a small positive number ε. Then we can decompose f = fgood + fbad, g =
ggood + gbad in such a way that

E‖fbad‖ ≤ ε‖f‖, E‖gbad‖ ≤ ε‖g‖ ,
and

|(KΦω
fgood, ggood)| 6 ALMC(ε) η−2‖f‖‖g‖, where C(ε) ≤ Aε−8 .

All the previous sections were devoted to the proof of such a statement (called Lemma 7 in
this section) with a fixed small absolute constant ε (it has been chosen to be 45−239). But
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the same proof gives Lemma 7a because in our calculations in Section XXII we can choose
a very large m and a very large M̃ in accordance with the smallness of ε. They can be
chosen to achieve our first inequality of Lemma 7a. Then the second inequality of Lemma
7a follows from the bookkeeping of the estimate of the bilinear form of the operator KΦω

on
good functions.

Main Lemma: Operator CΦ is bounded on L2(µ) by AL(γ)M(γ)γ−20 (and the bound
does not depend on τ).

Proof. Fix ε = aγ2. Here a is a small positive absolute constant. Recall that the
splitting into good and bad functions can be made dependent on a number ε. Then

E‖fbad‖ 6 ε‖f‖, E‖fbad‖ 6 ε‖f‖ .

Lemma 7a (with η = γ/2) then states the following:

|(KΦ∨Φω
fgood, ggood)| 6 ALMC(ε)γ−2, with C(ε) 6 Aε−8 .

We used the notations Φ ∨ Φω = max(Φ,Φω). We use now Lemma 1.

|(KΦ∨Φω
f, g)| 6 |(KΦ∨Φω

fgood, ggood)|+ |(CΦ∨Φω
fbad, ggood)|+

|(CΦ∨Φω
fgood, gbad)|+ |(CΦ∨Φω

fbad, gbad) + A‖M1,Φf ||‖g‖ .
Notice that Φ(x) > dist(x,C\GL,M). Using Lemma 3 we make an estimate in the last term:

‖M1,Φf‖ 6 AM‖f‖ .

The estimate of |(CΦ∨Φω
fbad, ggood)|+ ... involves an important lemma and several nota-

tions. Let kω(x, y) denote the kernel of KΦ∨Φω
. Let cω(x, y) denote the kernel of CΦ∨Φω

.
Notice that

pω(x, y) := |kω(x, y)− cω(x, y)|
is a “Poisson” type kernel. In particular,

∫
pω(x, y)|f(y)| d µ(y)6 A (M1,Φf)(x)

Consider the averaging of the kernels: k = Ekω, c = Ecω, p = Epω. The same “Poisson”
property holds then for the average p = Epω):

∫
p(x, y)|f(y)| d µ(y)6 A (M1,Φf)(x) .

Let us also introduce operators c∗, k∗ as follows:

(c∗f)(x) := sup
r>0

|
∫

|y−x|>r

c(x, y)f(y) d µ(y)|, (k∗f)(x) := sup
r>0

|
∫

|y−x|>r

k(x, y)f(y) d µ(y)| .
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The same “Poisson” property holds then for the comparison of k∗ and c∗ (notice that k, c
are defined in such a way that |k(x, y)|, |c(x, y)| ≤ 1

Φ(x)
:

(c∗f)(x) 6 (k∗f)(x) + (M1,Φf)(x) .

We are ready to formulate the main inequalities:

|(CΦf)(x)| 6
A

γ2
((c∗f)(x) + (M1,Φf)(x)) , (MI)

|(CΦ∨Φω
f)(x)| 6 A

γ2
((c∗f)(x) + (M1,Φf)(x)) . (MI)

Let us use (MI) to estimate

|(CΦ∨Φω
fbad, ggood)|+ |(CΦ∨Φω

fgood, gbad)|+ |(CΦ∨Φω
fbad, gbad)| .

After that we will prove (MI). By (MI), Lemma 1 and the Poisson property for the comparison
of k∗ and c∗: |(CΦ∨Φω

fbad, ggood)| 6 A
γ2 (‖(c∗fbad)‖‖g‖ + ‖M1,Φf)‖‖g‖) 6

A
γ2‖(k∗fbad)‖‖g‖ +

A
γ2‖M1,Φf‖‖g‖. We continue:

|(CΦ∨Φω
fbad, ggood)| 6

A

γ2
ε‖k∗‖‖f‖‖g‖+ A

γ2
M‖f‖‖g‖ .

Collecting our estimates for the good and bad function together, we get

|(KΦ∨Φω
f, g)| 6 ALMγ−2ε−8‖f‖‖g‖+ A

γ2
ε‖k∗‖‖f‖‖g‖+ A

γ2
M‖f‖‖g‖ .

We already fixed ε = aγ2. Thus (with very small absolute a)

|(KΦ∨Φω
f, g)| 6 ALMγ−18‖f‖‖g‖+ Aa‖k∗‖‖f‖‖g‖+ AMγ−2‖f‖‖g‖ .

Recall that k denotes the average of the kernel of KΦ∨Φω
. Averaging the previous inequality

we get

‖kf‖ 6 ALMγ−18‖f‖+ Aa‖k∗‖‖f‖+ A

γ2
M‖f‖ . (kI)

In Theorem 7.1 of [NTV2] it is proved that ‖k∗f‖ 6 A1C‖f‖ + A2C‖k‖‖f‖, where C
stands for the Calderón-Zygmund constant of the kernel. Theorem 7.1 of [NTV2] is valid for
operators with Calderón-Zygmund kernels. This is the case here because the averaging k of
the Calderón-Zygmund kernels kω is still a Calderón-Zygmund kernel.
However, there is a difference between the sitation in [NTV2] and the situation here. In
[NTV2] one assumed that the measure µ has a uniform linear growth condition. Our µ,
however, has only the non-uniform linear growth condition (we call such measures non-
uniformly Ahlfors measures). We are going to formulate now an analog of Theorem 7.1
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from [NTV2] that is valid for non-uniformly Ahlfors measures. First, recall that given a
Calderón-Zygmund kernel and a measure µ we say that the operator T with kernel k (see
[NTV3]) is a Calderón-Zygmund operator if it is bounded on L2(µ). Also recall that

M̃βg(x) := sup
r>0

1

µ(B(x, 3r)

(∫

B(x,r)

|g(y)|β dµ(y)
) 1

β

.

When β = 1 we write M̃g(x) instead of M̃1g(x).

Theorem 5. Let µ be a non-uniformly Ahlfors measure. Fix a positive number M , and
let R(x) := sup{r > 0 : µ(B(x, r)) > Mr}. Let k(x, y) be a Calderón-Zygmund kernel
having Calderrón-Zygmund constant C and such that

|k(x, y)| 6 min
[ 1

R(x)
,

1

R(y)

]
.

Let T be a Calderón-Zygmund operator with kernel k. Fix β ∈ (1, 2). Then the following
Cotlar type inequality holds:

(T ∗f)(x) 6 A1C[M̃Tf ](x)+A2CMM̃βf(x)+A3C‖T‖L2(µ)→L2(µ)M̃βf(x) . (CI)

The proof follows exactly the lines of the proof of Theorem 7.1 of [NTV2]. But for the
sake of completness we give a full proof in Section XXV.

Combining this result with inequality (kI), we get

‖k∗f‖ 6 ALMγ−18‖f‖+ Aa‖k∗‖‖f‖+ AM‖f‖ .
Finally, using the fact that a is very small we get the estimate for the maximal singular
operator:

‖k∗f‖ 6 2ALMγ−18‖f‖ .
Now let us use again the “Poisson” property for the comparison of k∗ and c∗: (c∗f)(x) 6

(k∗f)(x) + (M1,Φf)(x) to get

‖c∗f‖ 6 ALMγ−18‖f‖ .
Let us use the first part of the main inequality (MI) to conclude now that

‖CΦf‖ 6 ALMγ−20‖f‖ .
The main Lemma is proved.

We are left to prove (MI).
The proof of (MI) is based on two ingredients—the calculation of the kernel c(x, y) (average
of cω(x, y)) and on the following lemma.
As usual, given R > 0, we denote by (M1,Rf)(x) = supr>R

1
r

∫
B(x,r)

|f(y)| d µ(y).
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Blanket Lemma: Let b(x, y) be kernel such that |b(x, y)| 6 1
|x−y| . Then we have a well-

defined (b∗f)(x) := supr>0 |
∫
|y−x|>r

b(x, y)f(y) d µ(y)|. Let R > 0 and let φ be a decreasing

function on [0,∞), 0 6 φ 6 1. Consider

(bφRf)(x) := |
∫

|y−x|>R

b(x, y)φ(|x− y|)f(y)dµ(y)| .

Then
(bφRf)(x) 6 2 (b∗f)(x) + 2 (M1,Rf)(x) .

Proof. Consider annuli Ak(x) = {y : 2k−1R 6 |y − x| 6 2kR}. Then

(bφRf)(x) ≈ Σk>1

∫

Ak

b(x, y)φkf(y)dµ(y)

where φk are some values (say, left end point values) of φ(t) for t ∈ [2k−1R, 2kR], k = 1, 2, ....
More precisely (φ0 := 0)

(bφRf)(x) = Σk>1(φk − φk−1)

∫

|y−x|>2k−1R

b(x, y)f(y) d µ(y) + Discrepancy .

Thus, the monotonicity of φ implies

|The first term| 6 φ1|
∫

|y−x|>R

b(x, y)f(y) d µ(y)|+

Σk>2(φk−1 − φk)|
∫

|y−x|>2k−1R

b(x, y)f(y) d µ(y)| 6 2 (b∗f)(x) supφ .

On the other hand, let us use the symbol Jk to denote the jump (the oscillation) of the
monotone function φ on the interval [ak, ak+1]. Then

|Discrepancy| 6 Σk>1Jk
1

2k−1R

∫

B(x,2kR)

|f(y)| d µ(y) .

We continue the previous estimate as follows:

|Discrepancy| 6 2 (M1,Rf)(x)Σk>1Jk .

But φ was assumed to be monotone and 0 6 φ 6 1, so the sum of the jumps is bounded by
1. The lemma is proved.

We continue the proof of (MI). Let t ≥ Φ(x). Then

v(t) := P{ω : Φ ∨ Φω(x) 6 t} ≥ γ2/16 .

It is obvious that for |x− y| < Φ(x) we have v(|x− y|) = 0. Now let us compute the kernel
c(x, y) = Ecω(x, y). Clearly,

c(x, y) =
v(|x− y|)
x− y

=
χC\B(x,Φ(x))v(|x− y|)

x− y
.
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Put β := γ2/16. To obtain (MI) we can apply the Blanket Lemma with R(x) = Φ(x) or

R(x) = Φ ∨ Φω(x), with b(x, y) =
c(x,y)

β
and φ(t) = β

v(t)
. Theorem 3 is completely proved.

XXIV. The proof of Theorem 4. The quantitative version of Vitushkin’s
conjecture.

Now let Γ be a compact on C whose H1 measure is L and whose analytic capacity is γ.
We can think that Γ consists of finitely many circle arcs. Consider x ∈ Γ and R(x) > 0 such
that

H1(B(x,R) ∩ Γ)

R
>

160πL

γ
.

The union of such B(x,R(x)) is covered by ∪B(xj , 5Rj) and

ΣH1(∂B(xj , 5Rj)) 6
γ

16
.

Let G be the boundary of the complement of ∪jB(xj , 5Rj) ∪ Γ. Let F = Γ ∩ G. It is now
clear that

H1(G \ F ) 6 γ

16
.

It is easy to check that there is no 1000L/γ-non-Ahlfors disc for G. On the other hand,
there exists a function b on G such that its Cauchy integral is bounded by 1 outside of G
(its Cauchy integral vanishes inside all B(xi, 5Ri)), such that ‖b‖∞ 6 1, and such that

|
∫

G

b dH1| = γ .

As b we can take just the Ahlfors function of Γ outside of ∪B(xi, 5Ri) and zero inside. In
particular,

(C∗ b dH1)(x) 6 A
L

γ
for H1 a.e x ∈ G .

Let us consider the normalized measure µ := H1/L restricted on Γ. Then we are under the
assumptions of Theorem 3, where we can put L := 1

γ
, M := 1

γ
, γ := γ

L
and get a set F0 ⊂ E

with µ(F0) >
γ
8L
, that is with H1(F0) >

γ
8
, such that ‖C‖L2(F0,µ)→L2(F0,µ) 6 Aγ−2(γ/L)−20.

That is ‖C‖L2(F0,H1)→L2(F0,H1) 6 Aγ−1(γ/L)−21.
Consider F ∗ := F0 ∩ F . Then H1(F0) >

γ
8
and H1(G \ F ) 6 γ

16
imply that

H1(F ∗) >
γ

16
.

The advantage of F ∗ is that it is contained in the original set Γ because F is. Also we have

‖C‖L2(F ∗,H1)→L2(F ∗,H1) 6 Aγ−1(γ/L)−21

just because F ∗ ⊂ F0. The last relationship and the formula of Melnikov-Verdera shows
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c2(H1|F ∗) 6 (Aγ−1(γ/L)−21)2H1(F ∗) = Aγ−2(γ/L)−42H1(F ∗) .

We tacitly assumed diamΓ = 1. Thus, we have in general

c2(H1|F ∗) 6 A(
diamΓ

γ
)2(γ/L)−42H1(F ∗) .

Theorem 4 is proved.

XXV. The proof of Theorem 5. Cotlar’s inequality for non-uniformly Ahlfors
measures.

We start the proof by fixing r > 0, x ∈ supp µ, and putting r̂ = max[r,R(x)]. Con-
sider (T rf)(x) :=

∫
y:|y−x|>r

k(x, y)f(y) dµ(y). Put rj := 3j r̂, µj := µ(B(x, rj)). Let k be

the smallest index such that µk+1 ≤ 36µk−1. It exists, because otherwise, for every k,
µ(B(x, r̂)) ≤ 36−kµ2k ≤ 2M36−kr2k. This is because our radii are greater than R(x) :=
sup{r > 0 : µ(B(x, r)) > Mr}. We continue with µ(B(x, r̂)) ≤ 2M36−k32kr̂ = 2M2−2kr̂.
This contradicts the assumption x ∈ suppµ.

Let R := rk−1. We estimate |(T rf)(x)− (T 3Rf)(x)| ≤
∫
B(x,r̂)\B(x,r)

|k(x, y)| |f(y)| dµ(y)+
∑k

j=1

∫
B(x,rj)\B(x,rj−1)

.... The first term vanishes if r̂ > R(x). Otherwise it is bounded by

1

R(x)

∫

B(x,r̂)

|f(y)| dµ(y) = 1

r̂

∫

B(x,r̂)

|f(y)| dµ(y) ≤

µ(B(x, 3r̂)

r̂µ(B(x, 3r̂)

∫

B(x,r̂)

|f(y)| dµ(y) .

And this is less than AM M̃f(x). Similarly
∫

B(x,rj)\B(x,rj−1)

|k(x, y)| |f(y)| dµ(y)≤ µj+1

rj−1µ(B(x, rj+1)

∫

B(x,rj)

|f(y)| dµ(y) .

But we know that rj−1 = 3−k+j−1rk, µj+1 ≤ 36(36)
−k+j

2 µk. Hence
µj+1

rj−1
≤ 36·3k−j+16−k+j µk

rk
≤

AM2−k+j. Therefore,

k∑

j=1

∫

B(x,rj)\B(x,rj−1)

|k(x, y)| |f(y)| dµ(y)≤ AM
k∑

j=1

2−k+j 1

µ(B(x, rj+1)

∫

B(x,rj)

|f(y)| dµ(y) .

The last sum is obviously bounded by AM M̃f(x). We finally get

|(T rf)(x)− (T 3Rf)(x)| ≤ AM M̃f(x) .

Now we need to estimate (T 3Rf)(x). Consider the average VR(x) :=
1

µ(B(x,R)

∫
B(x,R)

Tf dµ
First,

|VR(x)| ≤
µ(B(x, 3R))

µ(B(x,R))
M̃ [Tf ](x) ≤ 36M̃ [Tf ](x) .
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Second,

VR(x)− (T 3Rf)(x) =

∫

C\B(x,3R)

T
′

[δx −
1

µ(B(x,R)
χB(x,R) dµ]f dµ−

1

µ(B(x,R)

∫

B(x,R)

T [fχB(x,3R)] dµ = I + II .

Here T
′

denotes the operator with kernel k(y, x).
Estimate of I. Put η = δx − 1

µ(B(x,R)
χB(x,R) dµ. All radii greater than 3R are M-Ahlfors

for µ. This and the fact that η(C) = 0 allows us to use the Calderón-Zygmund property of

k(y, x) to prove as usual (see [NTV2] for example) that I ≤ AM ‖η‖ M̃f(x) ≤ AM M̃f(x).
Estimate of II. Fix β ∈ (1, 2). Let 1/α+ β = 1.

|II| ≤ 1

µ(B(x,R)
‖χB(x,R)‖Lα(µ)‖T (fχB(x,3R))‖Lβ(µ) ≤ ‖T‖β

(
∫
B(x,3R)

|f |β dµ) 1
β

µ(B(x,R))
1
β

.

Here we abbreviate ‖T‖β := ‖T‖Lβ(µ)→Lβ (µ). We can continue

|II| ≤ ‖T‖β
µ(B(x, 9R))

1
β (M̃βf)(x)

µ(B(x,R))
1
β

≤

36
1
β ‖T‖β(M̃βf)(x) ≤ A‖T‖β(M̃βf)(x) .

To estimate ‖T‖β via ‖T‖2 we need first

Estimate of weak type via ‖T‖2.

Lemma (G. David). For any measurable set F and any point x ∈ suppµ,

T ∗χF (x) ≤ A1M̃ [TχF ](x) + A2M + A3‖T‖2 .

Proof. Fix x ∈ suppµ, r > 0. Put r̂ = max[r,R(x)], where R(x) := sup{r > 0 :
µ(B(x, r)) > Mr}. Consider rj = 3j r̂. Put µj := µ(B(x, rj)). Let k be the smallest index
such that µk ≤ 6µk−1. It exists. Otherwise, for every k, µ(B(x, r̂)) ≤ 6−kµk ≤ 2M6−krk.
This is because our radii are greater than R(x) := sup{r > 0 : µ(B(x, r)) > Mr}. We con-
tinue with µ(B(x, r̂)) ≤ 2M6−k3kr̂ = 2M2−kr̂. This contradicts the assumption x ∈ supp µ.
Put R = rk−1. We estimate |(T rf)(x) − (T 3Rf)(x)| ≤

∫
B(x,r̂)\B(x,r)

|k(x, y)| |χF (y)| dµ(y) +∑k
j=1

∫
B(x,rj)\B(x,rj−1)

.... The first term vanishes if r̂ > R(x). Otherwise it is bounded by

1

R(x)

∫

B(x,r̂)

|χF (y)| dµ(y) =
1

r̂

∫

B(x,r̂)

|χF (y)| dµ(y) ≤ 2M .

Similarly ∫

B(x,rj)\B(x,rj−1)

|k(x, y)| |χF (y)| dµ(y) ≤
µj

rj−1
.
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But we know that rj−1 = 3−k+j−1rk, µj ≤ 6(6)−k+jµk. Hence
µj

rj−1
≤ 6 · 3k−j+16−k+j µk

rk
≤

AM2−k+j. Therefore,

k∑

j=1

∫

B(x,rj)\B(x,rj−1)

|k(x, y)| |χF (y)| dµ(y) ≤ AM
k∑

j=1

2−k+j ≤ AM .

We finally get

|(T rf)(x)− (T 3Rf)(x)| ≤ AM .

Now we need to estimate (T 3RχF )(x). Consider the average VR(x) :=
1

µ(B(x,R)

∫
B(x,R)

TχF dµ

Firstly, by the choice of R, we have

|VR(x)| ≤
µ(B(x, 3R))

µ(B(x,R))
M̃ [TχF ](x) ≤ 6M̃ [TχF ](x) .

Second,

VR(x)− (T 3Rf)(x) =

∫

C\B(x,3R)

T
′

[δx −
1

µ(B(x,R)
χB(x,R) dµ]χF dµ−

1

µ(B(x,R)

∫

B(x,R)

T [χF∩B(x,3R)] dµ = I + II .

Here T
′

denotes the operator with kernel k(y, x).
Estimate of I. Put η = δx − 1

µ(B(x,R)
χB(x,R) dµ. All radii greater than 3R are M-Ahlfors

for µ. This and the fact that η(C) = 0 allows us to use the Calderón-Zygmund property of

k(y, x) to prove as usual (see [NTV2] for example) that I ≤ A ‖η‖ supρ≥R
µ(B(x,ρ))

ρ
≤ AM .

Estimate of II.

|II| ≤ 1

µ(B(x,R)
‖χB(x,R)‖L2(µ)‖T (χF∩B(x,3R))‖L2(µ) ≤ ‖T‖2

(
∫
B(x,3R)

|χF |2 dµ)
1
2

µ(B(x,R))
1
2

.

We can continue

|II| ≤ ‖T‖β
µ(B(x, 3R))

1
2

µ(B(x,R))
1
2

≤

6
1
2‖T‖2 ≤ A‖T‖2 .

The lemma is completely proved.

Now we are ready to repeat the considerations of Theorem 5.1 of [NTV2] (with small
modifications due to the fact that µ is a non-uniformly Ahlfors measure).

We are going to prove now that

‖T‖L1(µ)→L1,∞ ≤ A1CM + A2C‖T‖2 , (W )

where C depend only on Calderón-Zygmund constants of the kernel of T .
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Let ν ∈M(C) be a finite linear combination of unit point masses with positive coefficients,
i.e.,

ν =
N∑

i=1

αiδxi
.

Theorem 6.
‖Tν‖

L1,∞(µ)
6 (A1CM + A2C‖T‖2)‖ν‖ .

Here there is no problem with the definition of Tν: it is just the finite sum∑N
i=1 αiK(x, xi), which makes sense everywhere except at finitely many points.

Proof. In this proof B(x, ρ) denotes closed ball, B
′

(x, ρ) denotes open ball. Without loss
of generality, we may assume that ‖ν‖ =

∑
i αi = 1 (this is just a matter of normalization).

Thus we have to prove that
‖Tν‖

L1,∞(µ)
6 A4. Fix some t > 0 and suppose first that µ(C) > 1

t
. Let B(x1, ρ1) be

the smallest (closed) ball such that µ(B(x1, ρ1)) >
α1

t
(since the function ρ → µ(B(x1, ρ))

is increasing and continuous from the right, tends to 0 as ρ→ 0, and is greater than
1

t
>
α1

t
for sufficiently large ρ > 0, such ρ1 exists and is strictly positive).

Note that for the corresponding open ball B′(x1, ρ1) := {y ∈ C : dist(x1, y) < ρ1},
we have µ(B′(x1, ρ1)) = limρ→ρ1−0 µ(B(x1, ρ)) 6

α1

t
. Since the measure µ is σ-finite and

non-atomic, one can choose a Borel set E1 satisfying

B′(x1, ρ1) ⊂ E1 ⊂ B(x1, ρ1) and µ(E1) =
α1

t
.

Let B(x2, ρ2) be the smallest ball such that µ(B(x2, ρ2) \ E1) >
α2

t
(since µ(C) > 1

t
, the

measure of the remaining part C \ E1 is still greater than
1− α1

t
>

α2

t
). Again for the

corresponding open ball B′(x2, ρ2), we have µ(B′(x2, ρ2) \ E1) 6
α2

t
, and therefore there

exists a Borel set E2 satisfying

B′(x2, ρ2) \ E1 ⊂ E2 ⊂ B(x2, ρ2) \ E1 and µ(E2) =
α2

t
.

In general, for i = 3, 4, . . . , N , let B(xi, ρi) be the smallest ball such that

µ
(
B(xi, ρi) \

i−1⋃

ℓ=1

Eℓ

)
>
αi

t
,

and let Ei be a Borel set satisfying

B′(xi, ρi) \
i−1⋃

ℓ=1

Eℓ ⊂ Ei ⊂ B(xi, ρi) \
i−1⋃

ℓ=1

Eℓ and µ(Ei) =
αi

t
.
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Put E :=
⋃

iEi. Clearly

⋃

i

B′(xi, ρi) ⊂ E ⊂
⋃

i

B(xi, ρi) and µ(E) =
1

t
.

Now let us compare Tν to t
∑

i χC\B(xi,2ρi)
· Tχ

Ei
=: tσ outside E. We have

Tν − tσ =
∑

i

ϕi

where
ϕi = αiTδxi

− t χ
C\B(xi,2ρi)

· Tχ
Ei
.

Note now that
∫

C\E
|ϕi|dµ 6

∫

C\B(xi,2ρi)

∣∣T [αiδxi
− tχ

Ei
dµ]

∣∣dµ+

∫

B(xi,2ρi)\B′(xi,ρi)

αi|Tδxi
|dµ =: I + αiII .

To estimate I, notice that it has the form
∫
C\B(x,2ρ)

|Tη| dµ with the measure η supported

by B(x, ρ) and η(C) = 0. To estimate such an integral we put r̂ := max[2ρ, R(x)] and
split

∫
C\B(x,2ρ)

|Tη| dµ =
∫
B(x,r̂)\B(x,2ρ)

|Tη| dµ+
∫
C\B(x,r̂)

|Tη| dµ =: I1 + I2. The ntegral I2 is

estimated exactly as in Lemma 3.4 of [NTV2] because our measure is 2M-Ahlfors for disks
centered at x with radii larger than r̂. Hence I2 ≤ ACM‖η‖ ≤ ACMαi. On the other hand
using the properties of the kernel of T we see that

I1 ≤ Cmin[
1

2ρ
,

1

R(x)
]µ(B(x, r̂))‖η‖ ≤ ACMαi .

Hence I ≤ ACMαi.
To estimate II we notice that it has the form

∫
B(x,2ρ)\B(x,ρ)

|Tδx| dµ. This is almost the

same as I1. Namely, II ≤ ACmin[1
ρ
, 1
R(x)

]µ(B(x, 2ρ)) ≤ ACµ(B(x,2max[R(x),ρ]
max[R(x),ρ]

. This is bounded
by ACM because our measure is 2M-Ahlfors for disks centered at x with radii larger than
R(x). Finally I + αiII ≤ ACMαi.

Finally we conclude that
∫

C\E
|Tν − tσ|dµ 6 ACM

∑

i

αi = ACM,

and thereby |Tν − tσ| 6 ACMt everywhere on C \ E, except, maybe, a set of measure
1
t
. To accomplish the proof of the theorem, we will show that for sufficiently large B =
B(C,M, ‖T‖2),

µ{|σ| > B} 6
2

t
.

Then, combining all the above estimates, we shall get

µ
{
x ∈ C : |Tν(x)| > (B + ACM)t

}
6

4

t
.
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We will apply the standard Stein-Weiss duality trick. Assume that the inverse inequality
µ{|σ| > B} > 2

t
holds. Then either µ{σ > B} > 1

t
, or µ{σ < −B} > 1

t
. Assume for

definiteness that the first case takes place and choose some set F ⊂ C of measure exactly 1
t

such that σ > B everywhere on F . Then, clearly,
∫

C

σχ
F
dµ >

B

t
.

On the other hand, this integral can be computed as

∑

i

∫

C

[Tχ
Ei
] · χ

F\B(xi,2ρi)
dµ =

∑

i

∫

C

χ
Ei

· [T ′

χ
F\B(xi,2ρi)

] dµ.

Fix a point x ∈ Ei ⊂ B(xi, ρi). We will use again the property that |K(x, y)| ≤ 1
R(x)

.

|T ′

χ
F\B(xi,2ρi)

(x)− T
′

χ
F\B(x,ρi)

(x)| 6
∫

B(xi,2ρi)\B(x,ρi)

|K(y, x)| dµ(y) ≤ ACµ(B(x, 3max[ρi, R(x)]))

max[ρi, R(x)]
≤ ACM,

because all disks centered at x and of radii greater than R(x) are 2M-Ahlfors, and therefore
for every x ∈ Ei ∩ supp µ,

|T ′

χ
F\B(xi,2ρi)

(x)| 6 (T
′

)♯χ
F
(x) + ACM 6 2 · AM̃T

′

χ
F
(x) + ACM

according to Guy David’s lemma. Hence
∫

C

σχ
F
dµ 6 ACMµ(E) + 2 ·A

∫

C

χ
E
· M̃T

′

χ
F
dµ.

But the first term equals
ACM

t
while the second one does not exceed

2 · 3n ‖χ
E
‖
L2(µ)

‖M̃T
′

χ
F
‖
L2(µ)

6
2 · 3n
t

‖M̃‖
L2(µ)→L2(µ)

‖T ′‖
L2(µ)→L2(µ)

.

Recalling that ‖T ′‖
L2(µ)→L2(µ)

= ‖T‖
L2(µ)→L2(µ)

, we see that one can take

B = ACM + 2 · 3n ‖M̃‖
L2(µ)→L2(µ)

‖T‖
L2(µ)→L2(µ)

to get a contradiction. Since the norm ‖M̃‖
L2(µ)→L2(µ)

is bounded by some absolute constant

(the constant in the Marcinkiewicz interpolation theorem), we are done.
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