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THE TDHF APPROXIMATION FOR HAMILTONIANS WITH
m-PARTICLE INTERACTION POTENTIALS
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D. GOTTLIEB§ , AND NORBERT J. MAUSER¶

Abstract. According to a theory of H. Spohn, the time-dependent Hartree (TDH) equation
governs the 1-particle state in N -particle systems whose dynamics are prescribed by a non-relativistic
Schrödinger equation with 2-particle interactions, in the limit N tends to infinity while the strength
of the 2-particle interaction potential is scaled by 1/N . In previous work we have considered the
same mean field scaling for systems of fermions, and established that the error of the time-dependent
Hartree-Fock (TDHF) approximation tends to 0 as N tends to infinity. In this article we extend our
results to systems of fermions with m-particle interactions (m > 2).
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1. The TDHF equation as a mean field approximation
The time-dependent Hartree Fock (TDHF) equation [1] is an attempt to approx-

imate the state of a system of interacting fermions by one time-dependent Slater
determinant (thus discarding any “correlation” in the many electron system, cf. [4]).
In our papers [2, 3] we have derived the TDHF dynamics as that of a single fermion
in the mean field, in the spirit of Spohn’s derivation of the time-dependent Hartree
equation [5] and refinements thereof [6, 7, 8] (see [9] for a good overview). Here we
show how the theorem of [2] for 2-particle interactions may be generalized to cases
where the N -particle Hamiltonian involves m-particle interactions with m > 2.

Let H be a Hilbert space and let Hn denote the nth tensor power of H, i.e.,

HN =

n times︷ ︸︸ ︷
H⊗ H⊗ · · · ⊗ H .

For π in the group Sn of permutations of {1, 2, . . . , n}, define the unitary “permuta-
tion” operator Uπ by

Uπ(x1 ⊗ ...⊗ xn) = xπ−1(1) ⊗ ...⊗ xπ−1(n)

for all x1, . . . , xn ∈ H. Define

An =
∑

π∈Sn

sgn(π)Uπ (1.1)

for all n ∈ N. Then 1
n!An is the orthogonal projector whose range is the space of

antisymmetric vectors in Hn.
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2 TDHF FOR m-PARTICLE INTERACTIONS

Consider N identical fermions whose 1-particle Hilbert space is H. The appropri-
ate N -fermion Hilbert space is the space of antisymmetric wavefunctions in HN , i.e.,
the range of the orthogonal projector 1

N !AN . If {ej}j∈J is an orthonormal basis of H
then the set

{
1√
N !
AN (ej1 ⊗ ej2 ⊗ · · · ⊗ ejN

) : {j1, j2, . . . , jN} ⊂ J
}

is an orthonormal basis of the antisymmetric subspace of HN . Antisymmetric vectors
built in this way are called Slater determinants.

The statistical states of the N -fermion system are density operators, i.e., nonneg-
ative operators of trace 1, that are supported on the antisymmetric subspace of HN .
These “fermionic” densities are those density operators D on HN that satisfy

DUπ = UπD = sgn(π)D ∀π ∈ SN . (1.2)

A density operator D on HN that commutes with every permutation operator Uπ

is symmetric; fermionic density operators are a special sort of symmetric density
operators.

The evolution of the state of the system, as given by the N -particle density
operator DN (t), is governed by a von Neumann equation

i
d

dt
DN (t) = [HN , DN (t)] , (1.3)

where HN denotes the Hamiltonian operator on HN for the N -particle system. If HN

commutes with the permutation operators Uπ for all π ∈ SN , then DN (t) remains
fermionic (resp., symmetric) at all t > 0 if DN (0) was fermionic (resp., symmetric).
We consider HN that are sums of symmetric k-particle interaction potentials for
k ≤ m, where m > 2 is arbitrary but finite, and fixed in the limit N −→ ∞. To be
specific, using the notation

X [k] = X(X − 1) · · · (X − k + 1)

for the “kth factorial power” of a number X, we consider

HN =
∑

1≤j≤N

Lj +
1

N − 1

∑

1≤i<j≤N

V
(2)
ij + · · · + 1

(N − 1)[m−1]

∑

1≤i1<···<im≤N

V
(m)
i1i2...im

,

(1.4)

where the 1-particle energy operator L and the k-particle interaction potentials V (k)

are defined as follows. L denotes a self-adjoint operator on the 1-particle space H,
e.g., the kinetic energy operator plus an external potential, and

Lj =

j−1 times︷ ︸︸ ︷
I ⊗ · · · ⊗ I ⊗ L ⊗

N−j times︷ ︸︸ ︷
I ⊗ · · · ⊗ I

for j = 1, . . . , N . For 2 ≤ k ≤ m, the k-particle interaction potential V (k) is assumed
to be a bounded operator on Hk for k = 1, · · · ,m that commutes with all Uπ for
π ∈ Sk; and the operator V

(k)
i1i2...ik

on HN is defined to equal U∗
πV

(m)
1,2,...,kUπ, where π

is any permutation in SN with j = π(ij) for j = 1, . . . , m, and

V
(k)
1,2,...,k (x1 ⊗ · · · ⊗ xN ) = V (k)(x1 ⊗ · · · ⊗ xk)⊗ xk+1 ⊗ · · · ⊗ xN .
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In (1.4), the k-particle potentials are scaled by 1 over the (k−1)th factorial power
of (N − 1). This coefficient is asymptotically the same as N−k in the limit N −→∞
that concerns us, but the precise choice of 1/(N − 1)[k−1] for the coefficients is made
so that HN may be written as

HN =
∑

1≤j≤N

Lj +
1

(N − 1)[m−1]

∑

1≤i1<···<im≤N

Wi1i2...im , (1.5)

with

W1,2,...,m =
m∑

k=2

(m− k)!
∑

1≤j1<···<jk≤m

V
(k)
j1j2...jk

. (1.6)

Naturally, the sum of single-particle potentials Lj could be included in the definition
(1.6) of the effective m-particle potential W , but we must treat the single-particle
operators Lj separately because we do not assume that they are bounded, while we
do assume that all the higher interaction potentials V (k) are bounded (and therefore
HN is a bounded perturbation of the free Hamiltonian).

The TDHF approximation is in fact an approximation of the 1-particle density
operator DN :1(t) obtained from DN (t) by taking a partial trace. Partial traces may
be defined as follows. Let O be any orthonormal basis of H. When T is any trace
class operator on HN and n < N , the partial trace T:n of T is the operator on Hn

such that

〈y, T:nx〉 =
N−n∑

j=1

∑

zj∈O

〈
y ⊗ z1 ⊗ · · · ⊗ zN−n, T (x⊗ z1 ⊗ · · · ⊗ zN−n)

〉
(1.7)

for any x, y ∈ H⊗n (this quantity is independent of the choice of O). The partial trace
takes fermionic densities to fermionic densities: if a trace class operator T satisfies
(1.2) then so does T:n.

The time-dependent Hartree-Fock (TDHF) equation corresponding to (1.5) is

i
d

dt
F (t) =

[
L, F (t)

]
+ 1

(m−1)!

[
W, F (t)⊗mAm

]
:1

(1.8)

(here [X, Y ]:1 denotes the partial trace of the commutator of X and Y ). Following [10],
we define a strong solution of equation of (1.8) to be a continuously differentiable
function F (t) from [0,∞) to the real Banach space of Hermitian trace class operators
such that the domain of L is invariant under F (t) for all t ≥ 0 and

i
dF (t)

dt
x = [L,F (t)]x + 1

(m−1)!

[
W, F (t)⊗mAm

]
:1

x

for all x in the domain of L. A straightforward extension of the results proved in
[10] shows that (1.8) has a strong solution if the domain of L contains the range of
the initial condition F (0). Furthermore, F (t) = U∗F (0)U for some unitary operator
depending on t and F (0). In particular, the operator norm and the trace norm of
F (t) are constant.

Theorem 1.2 below states that the error of the TDHF approximation of DN :1(t)
tends to 0 as N −→ ∞. Theorem 1.2 contains further information about the n-
particle density operators DN :n(t), expressed in terms of the concept of “Slater clo-
sure” defined in [2]. Slater closure is analogous to the condition of asymptotic chaos as
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conceived by Mark Kac [11], i.e., the attainment in the limit N −→∞ of Boltzmann’s
“molecular chaos” (stochastic independence of particles). Theorem 1.2 confirms that
something analogous to the “propagation of chaos” is valid for mean field fermion sys-
tems. If PΨN

denotes the orthogonal projector onto the span of a Slater determinant
ΨN , then

(PΨN
):n =

Nn

N [n]
(PΨN

)⊗n
:1 AN ; (1.9)

this motivates the following definition of Slater closure:

Definition 1.1. For each N , let DN be a symmetric density operator on HN and let
An be the projector defined in (1.1). The sequence {DN} has Slater closure if, for
each fixed n,

lim
N→∞

∥∥DN :n −DN :1
⊗nAn

∥∥
1

= 0.

Theorem 1.2. For each N , let DN (t) be a solution of (1.3) whose initial value DN (0)
is a symmetric density operator, and let FN (t) be the solution of the TDHF equation
(1.8) whose initial value is FN (0) = DN :1(0).

If {DN (0)} has Slater closure then {DN (t)} has Slater closure and

lim
N→∞

∥∥DN :1(t)− FN (t)
∥∥

1
= 0

for all t > 0.

2. Sketch of proof of theorem 1.2
The proof of Theorem 1.2 closely follows the proof in [2].
The idea is to compare the BBGKY hierarchy to the so-called TDHF hierarchy.

The BBGKY hierarchy is the system of equations satisfied by DN :1, DN :2, . . . when
DN satisfies the Schrödinger equation (1.3) and all DN :n for n > N are defined
to be identically 0. The TDHF hierarchy is the system of equations satisfied by
F, F⊗2A2, F

⊗3A3, etc. when F satisfies the TDHF equation (1.8). The partial trace
DN :n(t) satisfies

i
d

dt
DN :n(t) =

n∑

j=1

[
Lj , DN :n(t)

]
+ 1

(m−1)!

n∑

j=1

[Wj,n+1,...,n+m−1, DN :n+m−1(t)]:n

+ En(DN (t)), (2.1)

where the error term En(DN (t)) is small in trace norm when N is large relative to n.
If F (t) is a strong solution of the TDHF equation (1.8) then

i
d

dt
F (t)⊗nAn =

n∑

j=1

[
Lj , F (t)⊗nAn

]

+ 1
(m−1)!

n∑

j=1

[
Wj,n+1,...,n+m−1, F (t)⊗n+m−1An+m−1

]
:n

+ Rn(F (t)), (2.2)

where Rn is likewise small in trace norm when N >> n. One sees that the sequences
{DN :n(t)}n and {F (t)⊗nAn} each satisfy a hierarchy of equations, which are the same
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up to terms that are small in trace norm. From equations (2.1) and (2.2) it follows
that EN,n(t) ≡ DN :n(t)− FN (t)⊗nAn satisfies

i
d

dt
EN,n(t) =

n∑

j=1

[Lj , EN,n(t)]:n + 1
(m−1)!

n∑

j=1

[Wj,n+1,...,n+m−1, EN,n+m−1]:n

+ En(DN (t))−Rn(FN (t)) (2.3)

for n = 1, 2, . . . , N − 1.
Now we claim that, for each fixed n ∈ N, the trace norms of the extra terms

En(DN (t)) and Rn(FN (t)) in (2.1) and (2.2), and hence the difference En(DN (t)) −
Rn(FN (t)) of these errors in (2.3), are O(1/N) as N −→∞ uniformly in t. To see that
‖En(DN (t))‖1 = O(1/N), let us enumerate the terms of the form [Wi1i2...im , DN (t)]:n
that arise when one takes the nth partial trace of both sides of the von Neumann
equation (1.3) with HN given by (1.5), counting by the number of indices i1, . . . , im
that are larger than n. When all of these indices are larger than n, the nth partial
trace of the commutator equals 0. When all indices except i1 are in {1, . . . , n}, the
terms [Wi1i2...im

, DN (t)]:n all equal [Wi1,n+1,...,n+m−1, DN (t)]:n by the symmetry of
DN . The sum of the partial traces of these terms appears on the right-hand side of
(2.1), if

( (
N−n
m−1

)

(N − 1)[m−1]
− 1

(m−1)!

) n∑

j=1

[Wj,n+1,...,n+m−1, DN :n+m−1(t)]:n ,

is counted separately as part of the error En(DN (t)). This contribution to En is
bounded by

2‖W‖
(m− 1)!

(
(N − n)[m−1]

(N − 1)[m−1]
− 1

)

in trace norm, and this is O(1/N). The rest of the terms [Wi1i2...im
, DN (t)]:n, those

for which i2 ∈ {1, . . . , n}, also belong to the error En. Each of these terms is bounded
in trace norm by 2‖W‖, and the number of them is O(Nm−2), so their contribution to
En is O(1/N). The proof that ‖Rn(FN (t))‖1 = O(1/N) is deferred for the moment;
for now we complete the proof, supposing that there do exist bounds fn(N) such that

∥∥En(DN (t))−Rn(FN (t))
∥∥

1
≤ fn(N) (2.4)

uniformly in t, and such that fn(N) = O(1/N) as N −→∞ for each fixed n.
It is convenient to rewrite (2.3) in the “interaction picture,” whereby the generator

−i
∑

[Lj , · ] of the unperturbed (free) dynamics is eliminated from the right-hand side
of the equation, while all operators on the right-hand side assume the dependence on
time used in the Heisenberg picture for the free dynamics. Changing to the interaction
picture does not change the trace norm of the error term in (2.3), for −i

∑
[Lj , · ]

generates a unitary group of isometries of the space of trace class operators. The
details of this transformation are discussed in Section 4 of [2]. Here we get the
estimate

∥∥EN,n(t)
∥∥

1
≤

∥∥EN,n(0)
∥∥

1
+ fn(N) t + b n

∫ t

0

∥∥EN,n+m′(s)
∥∥

1
ds, (2.5)
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where b = 2‖W‖/(m−1)!, m′ ≡ m−1, and fn(N) is as in (2.4). Iterate (2.5) k times
to obtain the bound

∥∥EN,n(t)
∥∥

1
≤

k∑

j=0

(bt)j n(n + m′) · · · (n + (j − 1)m′)
j!

∥∥EN,n+jm′(0)
∥∥

1
(2.6)

+
k∑

j=0

bjtj+1 n(n + m′) · · · (n + (j − 1)m′)
(j + 1)!

fn+jm′(N) (2.7)

+ (bt)k+1n(n + m′) · · · (n + km′)

×
∫ t

0

∫ s1

0

· · ·
∫ sk

0

∥∥EN,n+(k+1)m′(s)
∥∥

1
dsk · · · ds1dt.

The last term on the right-hand side of the preceding equation is bounded by

2
n(n + m′) · · · (n + km′)

(k + 1)!
(bt)k+1 (2.8)

since the trace norm of EN,n+(k+1)m′(s) can never be larger than 2 (see Lemma 5.2
of [2]). As long as t < 1/b, (2.8) may be made arbitrarily small by choosing k large
enough. On the other hand, for fixed k, the sums (2.6) and (2.7) tend to 0 as N −→∞.
The terms of (2.7) tend to 0 because of our claim that fn(N) = O(1/N), and the
terms of (2.6) tend to 0 because

lim
N→∞

∥∥EN,p(0)
∥∥

1
≡ lim

N→∞

∥∥DN :p(0)− FN (0)⊗pAp

∥∥
1

= lim
N→∞

∥∥DN :p(0)−DN :1(0)⊗pAp

∥∥
1

= 0 (2.9)

for all p ∈ N by the hypotheses of Theorem 1.2. By choosing k arbitrarily large and
letting N −→∞, it can be shown that

lim
N→∞

∥∥EN,n(t)
∥∥

1
≡ lim

N→∞

∥∥DN :p(t)− FN (t)⊗pAp

∥∥
1

= 0

as long as t < 1/b. This proves the theorem for t < 1/b. The argument can be iterated
to establish the theorem for all t, as described in Section 6 of [2].

Finally, we return to the proof that ‖Rn(FN (t))‖1 = O(1/N). In fact, strong
solutions of the TDHF equation (1.8) satisfy

i
d

dt
FN (t)⊗nAn =

n∑

j=1

[
Lj , FN (t)⊗nAn

]

+ 1
(m−1)!

n∑

j=1

[
Wj,n+1,...,p , FN (t)⊗pA{j,n+1,...,p}An

]
:n

(2.10)

exactly, where

p = n + m− 1

and A{j,n+1,...,p} equals the sum of sgn(π)Uπ as in (1.1), but the sum is only over
permutations π ∈ Sp such that π(x) = x for all x /∈ {j, n+1, . . . , p}. Thus Rn(FN (t))
in (2.2) is

1
(m−1)!

n∑

j=1

[
Wj,n+1,...,n+m−1, FN (t)⊗p

(A{j,n+1,...,n+m−1}An −An+m−1

)]
:n

,
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and it follows that

‖Rn(FN (t))‖1 ≤ n

(m− 1)!

∥∥∥
[
Wn,n+1,...,p, FN (t)⊗p

(A{n,n+1,...,p}An −An+m−1

)]
:n

∥∥∥
1

≤ 2n

(m− 1)!

∥∥∥
{
Wn,n+1,...,pFN (t)⊗p

(A{n,n+1,...,p}An −Ap

)}
:n

∥∥∥
1
.

(2.11)

When both J ⊂ {1, . . . , n} and K ⊂ {n+1, . . . , p} have the same number ` of elements,
let U(JK) denote the permutation operator

U(JK) ≡ U(j1k1)(j2k2)···(j`k`),

where j1 < j2 < · · · < j` are the elements of J and k1 < · · · < k` are the elements of
K. With this notation we can write the identity

Ap = A{n+1,...,p}
(
I +

min{n,m−1}∑

`=1

(−1)`
∑

J⊂{1,...,n}
#J=`

∑

K⊂{n+1,...,p}
#K=`

U(JK)

)
An.

Subtracting this identity from the identity

A{n,n+1,...,p}An = A{n+1,...,p}
(
I −

p∑

k=n+1

U(nk)

)
An,

we find that

A{n,n+1,...,p}An −Ap = A{n+1,...,p}BAn, (2.12)

where

B = −
p∑

k=n+1

U(nk) −
min{n,m−1}∑

`=1

(−1)`
∑

J⊂{1,...,n}
#J=`

∑

K⊂{n+1,...,p}
#K=`

U(JK). (2.13)

Substituting (2.12) in (2.11), we find that

‖Rn(FN (t))‖1 ≤ 2n

(m− 1)!

∥∥∥
{
Wn,n+1,...,pFN (t)⊗pA{n+1,...,p}BAn

}
:n

∥∥∥
1

=
2n

(m− 1)!

∥∥∥
{
Wn,n+1,...,pA{n+1,...,p}FN (t)⊗pB}

:n
An

∥∥∥
1

≤ 2n!n
(m− 1)!

∥∥∥
{
Wn,n+1,...,pA{n+1,...,p}FN (t)⊗pB}

:n

∥∥∥
1
. (2.14)

The last inequality in (2.14) holds by the triangle inequality and the fact that ‖TU‖1 =
‖T‖1 for all unitary U and trace class T , and the equality preceding it holds because
FN (t)⊗p commutes with A{n+1,...,p}. Substitute (2.13) into (2.14) and apply the
triangle inequality; it results that ‖Rn(FN (t))‖1 is bounded by a sum of terms of the
form

2n!n
(m− 1)!

∥∥∥
{
Wn,n+1,...,pA{n+1,...,p}U(j2k2)···(j`k`)FN (t)⊗pU(j1k1)

}
:n

∥∥∥
1
, (2.15)
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where j1 < n and U(j2k2)···(j`k`) denotes I in case ` = 1 (note that FN (t)⊗p commutes
with any permutation operator U(jk)). We will show that each of these terms is
O(1/N). Let Mn,...,p denote Wn,n+1,...,pA{n+1,...,p}. Then

(2.15) =
2n!n

(m− 1)!

∥∥∥
{
Mn,...,pU(j2k2)···(j`k`)FN (t)⊗pU(j1k1)

}
:n

∥∥∥
1

=
2n!n

(m− 1)!

∥∥∥
{
Mn,...,pU(2,p−1)···(`,p−`+1)FN (t)⊗pU(1,p)

}
:n

∥∥∥
1

≤ 2n!n
(m− 1)!

∥∥∥
{
Mn,...,pU(2,p−1)···(`,p−`+1)FN (t)⊗pU(1,p)

}
:p−1

∥∥∥
1

(2.16)

=
2n!n

(m− 1)!

∥∥∥(FN (t)⊗ I⊗p−2)U(1,2,··· ,p−1)Mn−1,...,p−1

U(1,p−2)···(`,p−`)FN (t)⊗p−1U(p−1,p−2,...,1)

∥∥∥
1

(2.17)

≤ 2n!n
(m− 1)!

‖FN (t)‖ ‖M‖ ∥∥FN (t)⊗p−1
∥∥

1
(2.18)

≤ 2n!n‖W‖ ‖FN (t)‖ (2.19)

≤ 2n!n‖W‖ 1
N

. (2.20)

Inequality holds in (2.16) holds because X:n = (X:p−1):n, and the trace norm of a
partial trace is less than or equal to the trace norm of the original operator. In
equation (2.17) — which is verified using the definition (1.7) of the partial trace —
(1, 2, · · · , p− 1) denotes the permutation

(
1 2 · · · p− 2 p− 1
2 3 · · · p− 1 1

)

and (p − 1, p − 2, . . . , 1) denotes its inverse. Inequality (2.18) comes from apply-
ing the general bound ‖BT‖1 ≤ ‖B‖ ‖T‖1, valid for all bounded operators B and
trace class operators T , and inequality (2.19) holds because ‖FN (t)‖1 = ‖FN (0)‖1 =
‖DN :1(0)‖1 = 1. Finally, inequality (2.20) holds because ‖FN (t)‖ = ‖FN (0)‖ =
‖DN :1(0)‖, and ‖DN :1‖ ≤ 1/N if DN is an N -particle fermionic density operator.
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