London Mathematical Society Lecture Note Series., 202

The Technique of Pseudodifferential Operators

H.O. Cordes Emeritus, University of California, Berkeley

- -

TABLE OF CONTENTS

Chapter	0. Introductory discussions	1
0.0.	Some special notations, used in the book	1
0.1.	The Fourier transform; elementary facts	3
0.2.	Fourier analysis for temperate distributions on ${ t R}^n$	9
0.3.	The Paley-Wiener theorem; Fourier transform for	
,	general uE D'	14
0.4.	The Fourier-Laplace method; examples	20
0.5.	Abstract solutions and hypo-ellipticity	30
0.6.	Exponentiating a first order linear differential	
	operator	31
0.7.	Solving a nonlinear first order partial differen-	
	tial equation	36
0.8.	Characteristics and bicharacteristics of a linear	
	PDE	40
0.9.	Lie groups and Lie algebras for classical analysts	45
Chapter	1. Calculus of pseudodifferential operators	52
1.0.	Introduction	52
1.1.	Definition of udo's	52
1.2.	Elementary properties of ψ do's	56
1.3.	Hoermander symbols; Weyl ydo's; distribution	
	kernels	60
1.4.	The composition formulas of Beals	64
1.5.	The Leibniz' formulas with integral remainder	69
1.6.	Calculus of ψ do's for symbols of Hoermander type	72
1.7.	Strictly classical symbols; some lemmata for	
	application	78
Chapter	2. Elliptic operators and parametrices in R^n	81
2.0.	Introduction	81
2.1.	Elliptic and md-elliptic ųdo's	82
2.2.	Formally hypo-elliptic \u00eddo's	84
2.3.	Local md-ellipticity and local md-hypo-ellipticity	87
2.4.	Formally hypo-elliptic differential expressions	91
2.5.	The wave front set and its invariance under $\psi do's$	93

··· ···.

•	
2.6. Systems of udo's	97
Chapter 3. L^2 -Sobolev theory and applications	99
3.0. Introduction	99
3.1. L^2 -boundedness of zero-order ψ do's	99
3.2. L^2 -boundedness for the case of $\delta > 0$	103
3.3. Weighted Sobolev spaces; K-parametrix and Green	
inverse	106
3.4. Existence of a Green inverse	113
3.5. H_{s} -compactness for ψ do's of negative order	117
Chapter 4. Pseudodifferential operators on manifolds with	
conical ends	118
4.0. Introduction	118
4.1. Distributions and temperate distributions on	
manifolds	119
4.2. Distributions on S-manifolds; manifolds with	
conical ends	123
4.3. Coordinate invariance of pseudodifferential	
operators	129
4.4. Pseudodifferential operators on S-manifolds	134
4.5. Order classes and Green inverses on S-manifolds	139
Chapter 5. Elliptic and parabolic problems	144
5.0. Introduction	144
5.1. Elliptic problems in free space; a summary	147
5.2. The elliptic boundary problem	149
5.3. Conversion to an R ⁿ -problem of Riemann-Hilbert	
type	154
5.4. Boundary hypo-ellipticity; asymptotic expansion	
mod ∂_{ij}	157
5.5. A system of ψ de's for the ψ_{i} of problem 3.4	162
5.6. Lopatinskij-Shapiro conditions; normal solvabi-	
lity of (2.2).	169
5.7. Hypo-ellipticity, and the classical parabolic	
problem	174
- 5.8. Spectral and semi-group theory for ψdo's	179
5.9. Self-adjointness for boundary problems	186
5.10. C [*] -algebras of wdo's; comparison algebras	. 189
Chapter 6. Hyperbolic first order systems	196
6.0. Introduction	196
6.1. First order symmetric hyperbolic systems of PDE	196
6.2. First order symmetric hyperbolic systems of	-
$\forall de's on \mathbb{R}^n$.	200
6.3. The evolution operator and its properties	206

- -

viii

Contents	ix	
Ś		
6.4. N-th order strictly hyperbolic systems and	- / -	
symmetrizers.	210	
6.5. The particle flow of a single hyperbolic ψde	215	
6.6. The action of the particle flow on symbols	219	
6.7. Propagation of maximal ideals and propagation		
of singularities	223	
Chapter 7. Hyperbolic differential equations	226	
7.0. Introduction	226	
7.1. Algebra of hyperbolic polynomials	227	
7.2. Hyperbolic polynomials and characteristic surfaces	230	
7.3. The hyperbolic Cauchy problem for variable		
coefficients	235	
7.4. The cone h for a strictly hyperbolic expression		
of type e	.238	
7.5. Regions of dependence and influence; finite		
propagation speed	241	
7.6. The local Cauchy problem; hyperbolic problems		
on manifolds	244	
Chapter 8. Pseudodifferential operators as smooth		
operators of L(H)	247	
8.0. Introduction	247	
8.1. ψ do's as smooth operators of $L(H_0)$	248	
8.2. The 4DO-theorem	251	
8.3. The other half of the 4D0-theorem	257	
8.4. Smooth operators; the ψ^{*} -algebra property;		
ψdo-calculus	261	
8.5. The operator classes $4 GS$ and $4 GL$, and their		
symbols	265	
8.6 The Frechet algebras $\psi x_{0}^{}$, and the Weinstein-		
Zelditch class	271	
8.7 Polynomials in x and ∂_x with coefficients in A	275	
8.8 Characterization of YGX by the Lie algebra	279	
Chapter 9. Particle flow and invariant algebra of a semi-		
strictly hyperbolic system; coordinate invariance		
of Opw _m .	282	
9.0. Introduction	282	
9.1. Flow invariance of ψI_0	283	
9.2. Invariance of ψs_m under particle flows	286	
9.3. Conjugation of Op ψx with e^{iKt} , $K \in Op\psi c_e$	289	
9.4. Coordinate and gauge invariance; extension to		
S-manifolds	293	
9.5. Conjugation with e^{iKt} for a matrix-valued K=k(x,D)	296	

- ...

Contents

9.6.	A technical discussion of commutator equations	301
9.7.	Completion of the proof of theorem 5.4	305
Chapter	r 10. The invariant algebra of the Dirac equation	310
10.0.	Introduction	310
10.1.	A refinement of the concept of observable	314
10.2.	The invariant algebra and the Foldy-Wouthuysen	-
	transform	319
10.3.	The geometrical optics approach for the Dirac	
	algebra P	324
10.4.	Some identities for the Dirac matrices	329
10.5.	The first correction z ₀ for standard observables	334
10.6.	Proof of the Foldy-Wouthuysen theorem	343
10.7.	Nonscalar symbols in diagonal coordinates of $h(x,\xi)$	350
10.8.	The full symmetrized first correction symbol z _S	356
10.9.	Some final remarks	367
References		370
Index		380