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ABSTRACT Investigations of transcriptional models by Amrhein et al. outline a strategy for connecting steady-state
distributions to process dynamics. We clarify its limitations: the strategy holds for a very narrow class of processes, which
excludes an example given by the authors.

1 BACKGROUND

A preprint by Amrhein et al. (1), adapted into Ch. 4 of the dissertation (2), describes the class of transcription and degradation
processes:
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where X is an RNA transcript, a(f) is its transcription rate, and 1y is its degradation rate. a(¢) may be stochastic, deterministic,
or constant. The distribution P of the discrete counts of X is given by a Poisson mixture, such that
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where A is a mixing parameter that has a probability distribution function f,. The time-dependent distribution of A can be
obtained by solving the underlying stochastic differential equation:
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This follows from the Poisson representation (3, 4), which has been applied to analogous problems (5, 6). Informally, dL, is the
instantaneous contribution from the transcription rate process, e.g., a(t)dt if « is deterministic.

Amrhein et al. note that if L, is a subordinator, the stationary law of f can be obtained by straightforward manipulations
(7) and that furthermore, this stationary law is self-decomposable. Conversely, every self-decomposable law can be represented
as the stationary distribution of a process driven by some subordinator.

In this context, a process is a subordinator if it is Lévy and increasing. The Lévy property requires stationary and independent
increments (7). A self-decomposable law is one that has the property G(z) = G(cz)G(z) for all ¢ € (0, 1), where G(z) is the
law’s characteristic function and G, is another characteristic function. If these criteria are met, then
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where ¥ (z) is the log-characteristic function of the stationary distribution of A, and ¢ is the log-characteristic function of the
subordinator L; at¢ = 1.

Finally, Amrhein et al. assert that the relegraph model can serve as such a subordinator (e.g., Fig. 2 and p. 6 of (1)). The
telegraph model describes transitions between two states (“on” and “off””), such that the transcription rate in the on state is
k:x (8). The steady-state distribution of the corresponding process is Poisson-Beta, i.e., the underlying continuous process
has a Beta stationary law (9). The notation suggests that the process governing the Beta-distributed A can be cast in the form
of Equation 3, i.e., a single stochastic differential equation driven by a subordinator. Specifically, Amrhein et al. define the
integrated telegraph process fot a(s)ds, such that a(s) = k; if the gene switch is in the “on” state and 0 otherwise, and propose
that it constitutes a subordinator. However, Amrhein et al. do not proceed to use the approach in Equation 4 to obtain the
stationary distribution, opting to follow a different derivation (5).
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2 RESULTS

The Amrhein et al. manuscript frames the connection between stochastic differential equations and chemical master equations
as its key result, uses the same notation for all described processes, and explicitly asserts that the telegraph process can be
represented in terms of a subordinator. It can therefore potentially be misleading, in that it suggests that the procedure in
Equation 4 applies to the telegraph process. This implication is incorrect. The procedure is legitimate for compound Poisson
(Sec. 4.4.2 and Sec. 4.3.1 of (2)) subordinators, among others (Supp. Sec. 5.3 of (10)). However, the relevant telegraph-derived
process (realization shown in the left panel of Fig. 2 of (1)) is not a subordinator, and cannot be represented in the form of
Equation 3. We present three arguments for why this is the case.

Distribution class. The steady state of the telegraph model is Beta-Poisson. Its mixing density is Beta (9). All subordinator-
driven Ornstein-Uhlenbeck processes induce self-decomposable stationary laws (11). All self-decomposable laws are unimodal
(12). Unimodal mixing distributions yield unimodal Poisson mixtures (13). Since the Beta-Poisson distribution may be bimodal
(Figure 1a), the underlying bimodal Beta law is not self-decomposable, implying the integrated telegraph process is not a
subordinator.

Admissible trajectory shapes. The integrated telegraph process is continuous and almost everywhere differentiable (Figure
1b). The only continuous Lévy processes are the Brownian motions with drift (14). The only continuous and differentiable Lévy
processes have the structure X; = k¢, implying the integrated telegraph process is not a subordinator and the premise does not
hold.

Increment conditions. A subordinator has independent increments (14). The integrated telegraph process fails to meet this
criterion: the evolution of the process from time ¢ to ¢ + / is strongly dependent on its evolution from 7 — 4 to ¢. In the most
striking case, if the switching rates are much lower than /™!, the two segments become highly correlated (Figure 1c). Therefore,
this process is not a subordinator and the premise does not hold.

Conclusion The integrated telegraph process happens to converge to the trivial kt subordinator in the constitutive limit
and the compound Poisson subordinator in the bursty limit. However, generally, representing driving by stochastic processes
necessitates explicitly coupling these processes to the chemical master equation, and requires considerable analytical effort (10).
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Figure 1: The telegraph process is not a subordinator. a. The stationary distribution is bimodal, implying the mixing distribution
is not self-decomposable (histogram: 1,000 simulated realizations; red line: analytical solution (15, 16)). b. The trajectory
shapes (gray lines) disagree with Lévy criteria (fifty realizations shown; dark red: reference time ¢; orange-red: time points ¢ + &
and t — h). c. Disjoint increments are non-independent (points: 1,000 simulated realizations).
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3 METHODS

To generate synthetic data for Figure 1, we simulated a system with k., = 0.15, ko ¢y = 0.1, ks, = 20, and y = 3.14 using
Gillespie’s stochastic simulation algorithm (17), as previously implemented for (18). We performed 1,000 simulations, run until
t =5, with the system state stored at 200 uniformly spaced time points (At = 0.025).

For the analytical solution in Figure 1a, we used the results from Huang et al. (15), setting the feedback term to zero.
This implementation was previously used for (16, 19). To obtain the “subordinator” functions for Figure 1b, we computed the
integral of the observed transcription rates, Y;. This quantity is the cumulative reaction flux of the transcription reaction up to a
given time. The panel shows the reference time # = 2.5, and the increment bounds 7 + & and ¢ — h, with 4 = 0.5. In Figure lc, we
plot the value of Y;,;, — Y; against the value of Y; — Y,_j,. The visualization includes Gaussian jitter with o = 0.1. For a process
with independent increments, the distribution of these quantities must be independent.

4 CODE AVAILABILITY
The Python notebook used to generate Figure 1 is available at https://github.com/pachterlab/GP_2023.
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